
1

The emergence of the Internet of Things (IoT) represents a
significant step in the evolution of hardware and software
and their interaction. In a typical IoT application, a computing
device with a browser connects to an edge device such as a
smart thermostat or wearable health monitor. The computing
device may be running any of several operating systems, so
operating-system-dependent drivers are not appropriate for IoT
applications, which rely on driverless-control strategies. Driverless
control is the latest stage in the evolution of programming
techniques extending back to 1949 when assembly language
provided a text-based level of abstraction above the 1s and 0s
of machine code.

Although the term IoT brings to mind low-channel-count,
low-bandwidth smart-home and related consumer-oriented
applications, the underlying technology also finds use in industrial
applications. In the industrial space, the edge device can become
a high-channel-count, high-speed data-acquisition system that
collects high-quality data. In such an application, driverless
control can save customers significant time and money.

Software Evolution
Historically, suppliers of data-acquisition equipment typically
provided turnkey bespoke systems with custom proprietary
software. Such systems could be challenging to scale up as
customers’ needs changed. If one vendor could not meet all of

White Paper

a customer’s needs, that customer might have been faced with
purchasing multiple turnkey systems from different vendors that
did not play well together.

The emergence of personal-computer operating systems
enables more flexibility and scalability. Customers can assemble
a system with hardware from one or more vendors and alter
it as needed. Each vendor provides drivers compatible with
the Interchangeable Virtual Instrument (IVI) standard. The
drivers would let the operating system access the hardware’s
functionality. These drivers are operating-system dependent, and
customers would need to install and update them. The drivers
serve as an interface between user-defined commands, often
in the form of SCPI (Standard Commands for Programmable
Instruments), and the edge device, such as a data-acquisition
instrument. SCPI was merged into the IVI standard in 2003, and
the combination of SCPI and IVI drivers has become the typical
approach to communicating with and controlling test equipment.

With the IoT eliminating the need for drivers, any device with a
browser—including a Windows or Linux PC, an Apple Macintosh,
a smartphone, or even a single-board computer—can take direct
control of an edge device. With this approach, any edge device
that can acquire data from sensors can publish that data to the
Internet or to a private network over an Ethernet connection,
effectively eliminating middleware and anything else that stands
between your application software and the hardware.

IoT Opens Door to Driverless Control
of Data-Acquisition Hardware

HTTP, the Internet Backbone
The backbone of the Internet is HTTP, which was devised to
display data in a web browser. A subset within HTTP called
Representational State Transfer (REST) is the de facto standard
for accessing resources over the web, enabling the sending
and receiving of commands such as GET, PUT, and POST—
commands that are self-explanatory even for nonprogrammers.
An application programming interface (API) that conforms to
the constraints of REST HTTP is called a RESTful API. With your
REST HTTP-based data-acquisition instrument connected to
the Internet via Ethernet, you can take full advantage of web
services. For example, send your acquired data directly to a file
server or create a web page that displays the data.

REST HTTP offers yet another advantage. A driver typically
comes with a manual that lists and describes available
commands. In contrast, REST HTTP offers discoverability, a
feature that lets you access all the relevant information without
a manual—sending a GET command will cause the instrument
to report back the available commands plus information such
as instrument serial number through your browser. The specific
commands you will see will depend on the instrument you are
querying. You can also configure what data you are seeing—
requesting just the data from channel 3, for example—all by
calling different HTTP addresses.

The driverless approach provides full instrument
functionality, offering more flexibility and lower-level access
to instrumentation than traditional drivers. You may notice a
small amount of latency, which is inherent in how the Internet
works. Drivers, too, can cause slow response times because
they typically impose some overhead to support many use
cases, including ones you do not need. In addition, for real-
time applications, REST HTTP supports deterministic response
times, which are not guaranteed with a Windows driver. You can
develop your program on a shadow PC for real-time applications
and then directly port your code to your real-time target.

Programming-Language Evolution
To augment your application, you can use one of many
programming languages that have been developed since the
introduction of assembly language, including C, C++, Microsoft
Visual Basic, Java, JavaScript, or C#. A key consideration when
choosing a language is to make sure its popularity enables you
to easily employ programmers fluent in that language. As an
alternative to a commercial programming environments, you
could consider a free, open-source programming environment
like Python, created as a high-level, general-purpose programming
language in 1990. Python relies on modules that perform specific
functions and on a massive community that can create and
maintain these modules and provides support. Python, widely
adopted in the educational community, offers a clean, simple,
uncluttered syntax. As of July 2022 the TIOBE organization rated
it the most popular programming language, followed by C, Java,
and C++, with assembly language in eighth place.

2

If you do not want to write code, you can use Node-RED. This
community-driven, open-source programming environment
allows integration with any web-connected hardware, API,
or web page. Similar to NI LabVIEW, it employs a graphical,
block-diagram approach to software development, eliminating
the need to write lines of code. Node-RED requires only a
browser to serve as a programming environment and visual
data display. To create special functions not directly supported
by Node-RED, you can add functions written in JavaScript, C#,
C++, Python, or other programming languages.

Communication Interfaces
Several communications standards have found use in test-and-
measurement applications, including RS-232, an early standard
that still finds use in legacy applications. GPIB, initially the
Hewlett-Packard Instrument Bus, adds features specific to test-
and-measurement applications and has been codified as the
IEEE 488 standard. More modern communications standards
include several generations of USB, with USB 4.x offering data
rates to 40 Gb/s. USB can be useful for connecting a bench
instrument to a laptop. RS-232, GPIB, and USB operate over
relatively short distances: 15 m, 20 m, and 5 m, respectively.

Ethernet is at the pinnacle of communications interfaces, a key
Internet technology that commonly carries the Internet Protocol
(IP). Used extensively in local-area networks (LANs), it offers
cable lengths to 100 m, but with repeaters and routers, the
distance it can span is essentially unlimited. It finds wide use in
test-and-measurement applications, particularly in conjunction
with instruments that comply with the LAN eXtensions for
Instrumentation (LXI) standard.

REST HTTP for Thermocouple
and Strain-Gauge Instruments
AMETEK Programmable Power’s VTI Instruments brand (VTI)
employs REST to provide driverless control for its products,
including EX1401 isolated thermocouple and voltage
measurement instrument and EX1403A bridge- resistance
and strain-gauge measurement instrument. Both instruments
feature 16 channels and 24-bit resolution. The EX1401 provides
typical accuracies of ±0.20°C and sample rates to 20-kS/s, while
the EX1403A reaches sample rates of 128 kS/s. At first glance,
these instruments would seem far removed from an IoT device
like a smart thermostat that measures one temperature and
controls one heating or cooling unit. Nevertheless, they have
Ethernet interfaces and support driverless control, meeting the
definition of an IoT device.

Although REST HTTP is sufficiently flexible to accommodate
various data types, including HTML and XML, VTI has chosen to
use JSON (JavaScript Object Notation) because it is compact and
fast to parse. VTI’s RESTful API supports discoverability—a GET
request to an API directory will return a list of subdirectories
and endpoints, minimizing the need for documentation.

858.458.0223 | www.programmablepower.com

https://www.tiobe.com/tiobe-index/
http://www.programmablepower.com

3

Figure 1 shows the VTI RESTful HTTP interface for an EX1403A
instrument imported into a Python environment. Typing “rest.”
displays functions specific to the instrument being called. To get
the same intuitive programming experience with an IVI driver
for Windows, you could install a module called comtypes, a
lightweight Python COM package that allows COM type calls to
the driver. This functionality is not available at all under Linux.

VTI has published two libraries to assist you in implementing
driverless control of its instruments from a Python environment.
The first, JSON REST, provides support for all JSON/REST
communications and includes a wrapper layer to make VTI
products particularly easy to use. The second, vtivrt, implements
the VMEbus International Trade Association’s VITA 49 high-
speed data-streaming interface used by VTI’s REST-based
digitizer instruments. The data-streaming interface is not REST-
based but is used alongside the REST interface as the only
method available for reading large quantities of high-speed
data. VTI’s REST APIs come with examples to help speed test-
system development (Figure 2).

858.458.0223 | www.programmablepower.com

Figure 2. A RESTful HTTP example of acquiring data from the EX1403A.

Figure 1. A typical Python IDE shows the discovery of available commands.

VTI also supports using its RESTful HTTP APIs in conjunction
with Node-RED. The company offers a set of nodes you can
use in the Node-RED environment, allowing you to control
VTI hardware without writing code. You can also use
Node-RED in a multivendor environment and publish the
front-panel display on a LAN where multiple test engineers
can access it. You can quickly and easily modify VTI’s nodes,
as shown in Figure 3 for the EX1403A. For path, enter the
HTTP address that points to the page that controls or displays
the status of a particular EX1403A function.

Conclusion
Platform-independent driverless control using a RESTful
API can save you time and money when setting up a data-
acquisition system. You need only a device with a browser.
You can augment your system with free, community-driven,
open-source programming languages like Python, or you
can use a tool like Node-RED that eliminates the need to
write code. VTI Instruments fully supports REST for its
EX1401 isolated thermocouple and voltage measurement
instrument and EX1403A bridge and strain gauge
measurement instrument while simultaneously providing
traditional drivers for multiple operating systems. Customers
have successfully employed VTI’s RESTful API, including in
real-time applications. The company stands ready to assist
you in migrating from traditional drivers to REST HTTP.

Figure 3. A Node-RED programming block
diagram with an EX1403A instrument.

https://pypi.org/project/comtypes/
http://www.programmablepower.com
https://www.vtiinstruments.com/

