

Extension Toolkit
for DASYLab 2016

October 2016

NATIONAL INSTRUMENTS grants you a non-exclusive license to use this Software on one computer at a time. You do not

obtain title to the Software or any copyrights or proprietary rights in the Licensed Software. You may not transfer, sub-

license, rent, lease, convey, copy, modify, translate, convert to another programming language, decompile or disassemble

the Licensed Software for any purpose, except as expressly provided for in this license. You may not copy the
Documentation.

You may copy the licensed Software for backup purposes only, in support of your use of the Software in accordance with
the terms and conditions of this license.

NATIONAL INSTRUMENTS warrants, for a period of ninety days after your receipt of the product, 1) the disks on which the

Software is distributed to be free from defects in materials and workmanship, and 2) that the software will perform

substantially in accordance with the Documentation. If the product fails to comply with the warranty set forth above,

NATIONAL INSTRUMENTS’s entire liability and your exclusive remedy will be replacement of the disks or NATIONAL

INSTRUMENTS’s reasonable effort to make the product meet the warranty set forth above. If NATIONAL INSTRUMENTS is

unable to make the Product conform to the above warranty, then you may return the complete package to NATIONAL

INSTRUMENTS or its dealer, and NATIONAL INSTRUMENTS, at its option, may refund all or a fair portion of the price you
paid for this package.

Although NATIONAL INSTRUMENTS has tested the Software and reviewed the Documentation, NATIONAL INSTRUMENTS

MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS SOFTWARE OR DOCU-

MENTATION, THEIR QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT,

THIS SOFTWARE AND DOCUMENTATION ARE LICENSED “AS IS,” AND YOU, THE LICENSEE, ARE ASSUMING THE ENTIRE RISK
AS TO THEIR QUALITY AND PERFORMANCE.

IN NO EVENT WILL NATIONAL INSTRUMENTS BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE OR DOCUMENTATION, even if advised of the

possibility of such damages. In particular, NATIONAL INSTRUMENTS shall have no liability for any programs or data stored
or used with the Software, including the costs of recovering such programs or data.

English Language Support and Distribution:

Worldwide - Outside the Americas: measX GmbH & Co.KG, Trompeterallee 110, D–41189 Moenchengladbach, Germany

www.measx.com · info@measx.com

Americas: Measurement Computing Corporation, 16 Commerce Blvd, Middleboro, MA 02346 USA
www.mccdaq.com · info@mccdaq.com

DASYLab is a registered trademark of National Instruments Ireland Resources Limited. SIGNALYS is a trademark of ZIEGLER

Instruments. WorkBench PC is a trademark of Strawberry Tree Inc. OxySoft is a trademark of SensoTech GmbH. FlexPro Control

is a trademark of Geitmann Datentechnik GmbH. InterView is a trademark of PHOENIX TEST-LAB GmbH. Microsoft is a

registered trademark of Microsoft Corporation. Windows 98, Windows NT, Windows 2000, Windows XP, Windows 7, Windows
8, and Windows 10 are trademarks of Microsoft Corporation.

The DASYLab™ software and the information in this document are subject to change without notice.

Copyright © 1994-2016 by National Instruments Ireland Resources Limited. All rights reserved.

Contents

© National Instruments Ireland Resources Limited 3 DASYLab Extension Toolkit

Table of Contents

1 INTRODUCTION 8

2 WHAT IS NEW IN EXTENSION TOOLKIT FOR DASYLAB 2016 9

3 INSTALLATION 10

3.1 HARDWARE REQUIREMENTS 10

3.2 SOFTWARE REQUIREMENTS 10

3.3 REQUIRED KNOWLEDGE 10

3.4 INSTALLING THE EXTENSION TOOLKIT FOR DASYLAB 2016 10

4 PRINCIPLES OF OPERATION 12

4.1 GENERAL OVERVIEW 12

4.2 THE MODULE CLASS CONCEPT 12

4.3 COUPLING NEW MODULE CLASSES TO DASYLAB 12

4.4 FUNCTIONS A MODULE CLASS MUST PROVIDE FOR DASYLAB 13

4.5 FUNCTIONS GROUPS PROVIDED BY DASYLAB 14

4.6 MODULE TYPES 14

4.7 THINGS A MODULE SHOULD NOT DO 15

4.8 COMPATIBILITY WITH FUTURE VERSIONS OF DASYLAB 15

4.9 ALTERNATIVES TO USING THE EXTENSION TOOLKIT 15

5 A DASYLAB EXTENSION EXAMPLE 16

5.1 GENERAL DLL ROUTINES 16

5.2 DLL MENU ENTRIES 17

5.3 AN EXAMPLE MODULE CLASS: DERIVATION 20

5.3.1 INTERNAL DATA STRUCTURE OF A MODULE CLASS 20

5.3.2 REGISTERING A NEW MODULE CLASS WITH DASYLAB 22

5.3.3 PROCESSING MESSAGES SENT BY DASYLAB 23

5.3.4 PROCESSING THE DQM_UNREGISTER_CLASS MESSAGE 25

5.3.5 PROCESSING THE DMM_CREATE_MODULE MESSAGE 25

5.3.6 PROCESSING THE DMM_DELETE_MODULE MESSAGE 26

5.3.7 PROCESSING THE DMM_LOAD_MODULE MESSAGE 26

5.3.8 PROCESSING THE DMM_SAVE_MODULE MESSAGE 26

5.3.9 PROCESSING THE DMM_GET_PARAMETERS_INFO MESSAGE 27

5.3.10 PROCESSING THE DMM_GET_EXTRA_PARAM_SIZE MESSAGE 27

5.3.11 PROCESSING THE DMM_GET_EXTRA_PARAMS MESSAGE 27

5.3.12 PROCESSING THE DMM_SET_EXTRA_PARAMS MESSAGE 27

5.3.13 PROCESSING THE DCM_SETUP_FIFO MESSAGE 27

5.3.14 PROCESSING THE DMM_PREPARE_START_MODULE MESSAGE 28

5.3.15 PROCESSING THE DMM_START_MODULE MESSAGE 28

5.3.16 PROCESSING THE DMM_GO_MODULE MESSAGE 29

Contents

Extension Toolkit for DASYLab 2016 4 www.dasylab.com

5.3.17 PROCESSING THE DMM_PREPARE_STOP MESSAGE 29

5.3.18 PROCESSING THE DMM_STOP_MODULE MESSAGE 29

5.3.19 PROCESSING THE DMM_PAUSE_MODULE MESSAGE 29

5.3.20 PROCESSING THE DMM_RESUME_MODULE MESSAGE 29

5.3.21 PROCESSING THE DMM_PARAM_MODULE MESSAGE 29

5.3.22 PROCESSING THE DMM_QUERY_MODULE_ACTION MESSAGE 30

5.3.23 PROCESSING THE DMM_QUERY_SYNC_MODULE_ACTION MESSAGE 30

5.3.24 PROCESSING THE DMM_EXPLAIN_USER_ACTION MESSAGE 30

5.3.25 PROCESSING THE DMM_MODULE_ACTION MESSAGE 31

5.3.26 PROCESSING THE DMM_CLEAR_SYNC_MODULE_ACTIONS MESSAGE 32

5.3.27 PROCESSING THE DMM_INIT_SYNC_MODULE_ACTION MESSAGE 32

5.3.28 PROCESSING THE DMM_SYNC_MODULE_ACTION MESSAGE 33

5.3.29 PROCESSING THE DMM_SYNC_MODULE_NO_ACTION MESSAGE 33

5.3.30 PROCESSING THE DMM_COPY_CHANNEL_NAME MESSAGE 34

5.3.31 PROCESSING THE DMM_GET_CHANNEL_NAME MESSAGE 34

5.3.32 PROCESSING THE DMM_SET_CHANNEL_NAME_COPY_OPTION MESSAGE 34

5.3.33 PROCESSING THE DCM_GET_UNIT MESSAGE 34

5.3.34 PROCESSING THE DMM_SAVE_WINDOW_POS MESSAGE 35

5.3.35 PROCESSING THE DMM_DEL_WINDOW_POS MESSAGE 35

5.3.36 PROCESSING THE DMM_SHOW_WINDOW_POS MESSAGE 35

5.3.37 PROCESSING THE DMM_NORMALIZE_ALL_WINDOWS MESSAGE 35

5.3.38 PROCESSING THE DMM_HIDE_ALL_WINDOWS MESSAGE 35

5.3.39 PROCESSING THE DMM_SHOW_ALL_WINDOWS MESSAGE 35

5.3.40 PROCESSING THE DMM_MINIMIZE_ALL_WINDOWS MESSAGE 35

5.3.41 PROCESSING THE DMM_ACTIVATE_LAYOUT MESSAGE 35

5.3.42 PROCESSING THE DMM_ACTIVATE_WORKSHEET MESSAGE 35

5.3.43 PROCESSING THE DMM_ACTIVATE_DISPLAY_WND MESSAGE 35

5.3.44 PROCESSING THE DMM_GLOBAL_VAR_CHANGED AND DMM_GLOBAL_STRING_CHANGED

MESSAGE 36

5.3.45 PROCESSING THE DMM_CHANGE_VAR_NAME MESSAGE 36

5.3.46 REPLACING MODULES 36

5.3.47 PROCESSING THE DMM_REQUEST_GLOB_VARS MESSAGE 37

5.3.48 PROCESSING THE DMM_REQ_MODULE_DEFAULT MESSAGE 40

5.3.49 PROCESSING THE DMM_IS_DEBUG MESSAGE 40

5.3.50 PROCESSING THE DMM_GET_TIMEBASE_ID MESSAGE 40

5.3.51 PROCESSING THE PROCESSDATA MESSAGE 41

5.3.52 EVENT DRIVEN ACTIONS 43

5.3.53 WINDOW ARRANGEMENT UNDER DASYLAB 46

5.3.54 PARAMETER SETUP DIALOG BOX HANDLING 47

5.3.55 USING DEFAULT DIRECTORIES 55

5.3.56 USING COUNTRY-SPECIFIC SETTINGS 56

5.3.57 PRINTING DATA OR GRAPHICS WITH DASYLAB 56

5.4 USING GLOBAL STRINGS OR VARIABLES WITH DASYLAB 58

5.4.1 USEFUL FUNCTIONS FOR SUPPORTING GLOBAL VARIABLES 58

5.4.2 USEFUL FUNCTIONS FOR SUPPORTING GLOBAL STRINGS 59

5.5 THE GDI STACK 61

5.5.1 FUNCTION: CREATESTACKEDPEN 61

5.5.2 FUNCTION: CREATESTACKEDPENINDIRECT 61

Contents

© National Instruments Ireland Resources Limited 5 Extension Toolkit for DASYLab 2016

5.5.3 FUNCTION: CREATESTACKEDFONTINDIRECT 61

5.5.4 FUNCTION: CREATESTACKEDSOLIDBRUSH 61

5.5.5 FUNCTION: CREATESTACKEDBRUSHINDIRECT 62

5.5.6 FUNCTION: DELETESTACKEDOBJECT 62

5.5.7 NEW EXTRA DATA TRANSPORT API 62

6 32 BIT AND VERSIONS 63

6.1 FILE DIALOGS AND FILE NAMES 63

6.1.1 FILE NAMES 63

6.2 WORKSHEETS IN ASCII FORMAT 63

6.2.1 BACKGROUND 63

6.2.2 STRUCTURE PARAMETER_INFO 63

6.3 MULTI-THREADING 66

7 MODULE INDEPENDENT DIALOG BOX 67

7.1 TOOLKIT MENU 67

7.2 REGISTER MENU CALLBACK FUNCTION 67

8 LAYOUT / VI TOOL CONNECTIONS 68

8.1 LAYOUT EXAMPLE: LAMP.C 68

8.1.1 PROCESSING THE DMM_QUERY_PANEL MESSAGE 68

8.1.2 PROCESSING THE DMM_PANEL_CONNECT MESSAGE 69

8.1.3 PROCESSING THE DMM_PANEL_SET_SIZE MESSAGE 69

8.1.4 PROCESSING THE DMM_PANEL_REQUEST_METAFILE MESSAGE 69

8.1.5 PROCESSING THE DMM_PANEL_PERFORM_DRAW MESSAGE 70

8.1.6 PROCESSING THE DMM_PANEL_DRAW_NEW_DATA MESSAGE 70

8.1.7 PROCESSING THE DMM_PANEL_DISCONNECT/DMM_PANEL_DISCONNECT_ALL MESSAGE 70

8.1.8 PROCESSING THE DMM_PANEL_WM_XXXX MOUSE MESSAGES 71

8.1.9 DRAWING METHOD PT_PAINT_SCALED 71

8.1.10 DRAWING METHOD PT_TEXT 71

8.1.11 DRAWING METHOD PT_WINDOW 72

9 MULTIPLE TIME BASES IN DASYLAB 74

9.1 BACKGROUND 74

9.2 TIME BASE IDENTIFIERS 74

9.3 USING A TIME BASE FROM A DRIVER’S VIEW 74

9.3.1 REGISTERING AND UNREGISTERING 74

9.3.2 SETTING THE TIME BASE INFORMATION 75

9.3.3 UPDATING THE TIME BASE TIME 75

9.3.4 CALLING THE TIME BASE DIALOG 75

9.4 USING A TIME BASE FROM A MODULE’S VIEW 75

9.4.1 SYNCHRONIZING TO AN EXISTING TIME BASE 75

9.4.2 SETTING UP A MODULE’S OUTPUT PARAMETERS 75

Contents

Extension Toolkit for DASYLab 2016 6 www.dasylab.com

9.4.3 RETRIEVING THE ACTUAL TIME 76

10 MORE EXAMPLES 77

11 DASYLAB'S DATA STRUCTURES 78

11.1 GENERAL CONSTANTS 78

11.2 INTERNAL REPRESENTATION OF DATA 78

11.3 THE MODCLASS TYPE 78

11.4 THE MODULE TYPE 79

11.5 THE FIFO_HEADER TYPE 81

11.6 THE DATA_BLOCK_HEADER TYPE 82

11.7 THE PARAMETER_INFO TYPE 82

11.8 THE EXT_TIMEBASE TYPE 83

11.9 VARIABLES 83

12 FUNCTIONS PROVIDED BY DASYLAB 86

12.1 MEMORY MANAGEMENT 86

12.2 FIFO BUFFER HANDLING 86

12.3 MODULE CLASS HANDLING 88

12.4 GENERAL UTILITY FUNCTIONS 89

12.5 STRING UTILITY FUNCTIONS 92

12.6 MATH UTILITY FUNCTIONS 93

12.7 DIALOG BOX HANDLING 94

12.8 PRINT UTILITY FUNCTIONS 96

12.9 FUNCTIONS FOR GLOBAL VARIABLES AND GLOBAL STRINGS 96

12.10 INTERNAL ERROR HANDLING 101

12.11 CONSOLE OUTPUT 102

12.12 MODULE INDEPENDENT MEMORY REGISTRATION 102

12.13 MULTIPLE TIME BASE USAGE 104

12.14 EXTRA MEMORY BLOCK HANDLING ACROSS DATA CONNECTIONS 106

13 GENERAL CONVENTIONS 108

13.1 CREATING NEW MODULE CLASSES 108

13.2 CREATING NEW PROJECT FILES / MAKEFILES 108

13.3 DIALOG BOX STYLE GUIDE 109

13.3.1 GLOBAL DIALOG BOX 109

13.3.2 GROUP BOXES 109

13.3.3 STATIC AND EDIT CONTROLS 110

13.3.4 RADIO AND CHECK BUTTONS 110

13.3.5 PUSH BUTTONS 110

14 VERSION HISTORY OF THE CHANGES 111

Contents

© National Instruments Ireland Resources Limited 7 DASYLab Extension Toolkit

Introduction

Extension Toolkit for DASYLab 2016 8 www.dasylab.com

1111 IntroductionIntroductionIntroductionIntroduction

The DASYLab Data Acquisition Laboratory

DASYLab is a Windows-based, interactive software for data acquisition and control. DASYLab 2016 is

available for MS Windows 7, 8, 8.1 and 10.

DASYLab was designed for great flexibility by using object-oriented techniques. All of the data

processing takes place in independent, encapsulated modules that can be freely connected together.

New user designed modules can be easily added to this scheme.

The DASYLab Extension Toolkit

The Extension Toolkit described in this document allows the user and third parties to extend the

capabilities of DASYLab by designing their own modules using the C programming language.

This documentation describes all of the internal DASYLab structures necessary to create own

modules and explains how to couple them to DASYLab.

Several examples are included with this toolkit to serve as a starting point for your own modules.

Compatibility

The Extension Toolkit for DASYLab 2016 works with DASYLab 2016 and coming versions. To build an

extension module for DASYLab 13, you have to use the Extension Toolkit 9. There are no special

toolkit versions for DASYLab 10 to 13. You can use the toolkit Extension Toolkit 9 for these DASYLab

versions, too.

What is new in Extension Toolkit for DASYLab 2016

© National Instruments Ireland Resources Limited 9 Extension Toolkit for DASYLab 2016

2222 What is new in What is new in What is new in What is new in Extension Toolkit for DASYLabExtension Toolkit for DASYLabExtension Toolkit for DASYLabExtension Toolkit for DASYLab 2016201620162016

For DASYLab 2016 the interface between the main program and the DLLs with the modules went

through significant modifications/enhancements. As a result, DLLs created with the Extension Toolkit

9 and earlier are not compatible with DASYLab 2016. They will not load intentionally - vice versa DLLs

created with Extension Toolkit for DASYLab 2016 will not load in DASYLab 13 and earlier.

Here are the main changes in this version:

• DLAB_FLOAT was changed from 4 byte float to 8 byte double to improve the accuracy of

computation results and to minimize errors generated by accumulation of computing errors.

• In the structure DATA_BLOCK_HEADER the member wBlocksize was renamed to uiBlockSize

and its data format was enlarged from WORD to UINT. Block sizes (number of samples in one

block) can now be larger than 32768 Samples; see the declaration of MAX_BLOCKSIZE in

types.h.

• In the structure FIFO_HEADER the member wBlockSize was renamed to uiBlockSize – the

data format was already UINT.

• The structure Sysinfo was responsible for authentication of DLLs regarding flags in the

serial number. It is renamed to SerialOpt and gained additional flags.

• The newly introduced message DMM_GET_TIMEBASE_ID supports the handling of unused time

bases.

• For later DASYLab releases we provide a new API for data transport at start time (we call this

static) and data transport with the data blocks at process time (we call that dynamic). A first

version of this API is included in the current toolkit, but all functions (except one) are subject

to change. To provide compatibility with later DASYLab releases (as far as we can look into

the future) add a call of EmemBlock_PROCESS_MsgCopyPlain before using

ReleaseOutputBlock.

• ShowPipeStatus and AdvancePipeStatus were removed, since DASYLab handles the

animation of the data flow internally. SetFontSmallProc was removed, since deprecated

from Windows 32 on. Function CenterDialog was removed, since handled in DASYLab

internally. Some function declarations (that were never exported to this interface) for

bitmap handling were also removed.

Installation

Extension Toolkit for DASYLab 2016 10 www.dasylab.com

3333 InstallationInstallationInstallationInstallation

3.13.13.13.1 Hardware RequirementsHardware RequirementsHardware RequirementsHardware Requirements
To use DASYLab, you need an IBM compatible PC computer with x86 compatible CPU from 1 GHz

upwards, a hard disk and at least 1 GB of RAM. This configuration is also adequate for extending

DASYLab using the Extensions Toolkit for DASYLab 2016.

3.23.23.23.2 Software RequirementsSoftware RequirementsSoftware RequirementsSoftware Requirements
The use of DASYLab is generally restricted to Windows 7, Windows 8/8.1, and Windows 10.

An ANSI-compatible C compiler with complete Windows development support is needed to develop

extension modules for DASYLab. We suggest (and have tested) Microsoft Visual C++ 2013 or higher,

but other compilers should work as well.

Note: Please ensure that all needed libraries for your module are available on the destination system

– e.g. the C runtime library 8.0 (msvcr80.dll), if you have compiled with Visual Studio 2005.

DASYLab currently uses dialog boxes using CTRL3D style. We recommend using this style for any new

development. Therefore the Microsoft Application Studio or Borland Resource Workshop will work

best to design resources for DASYLab Extensions.

3.33.33.33.3 Required KnowledgeRequired KnowledgeRequired KnowledgeRequired Knowledge
To extend DASYLab using this Extensions Toolkit we expect you to be an experienced C programmer.

You should know the basics of using Windows and should have some experience in using DASYLab.

Experience in Windows programming is not necessary if you write standard modules. You will need

to know Windows programming if you want to design your own visualization modules, write

modules that directly access hardware, etc. The little Windows programming knowledge that is used

for programming the parameter settings dialog box can be learned on the fly by looking at the

examples included in this toolkit.

Experience in C++ programming is also unneeded since existing DASYLab Extensions Toolkits are

based completely on ANSI-C.

You should have basic knowledge of digital signal processing and good knowledge of the problems

you want to solve using your new module classes.

3.43.43.43.4 Installing the Extension ToolInstalling the Extension ToolInstalling the Extension ToolInstalling the Extension Toolkkkkitititit for DASYLab 2016for DASYLab 2016for DASYLab 2016for DASYLab 2016
The toolkit comes with a standard setup routine. To install it, run the file setup_DLEXTK_2016.exe

from the Windows Explorer.

The Extension Toolkit will install itself completely into one directory and its subdirectories. No

drivers are installed in the Windows directory, nothing is added to other directories. To remove it,

use Control Panel (Add/Remove 'Extension Toolkit for DASYLab 2016').

Installation will create a new program manager group with the readme icon.

Installation

© National Instruments Ireland Resources Limited 11 Extension Toolkit for DASYLab 2016

The directory structure is as follows:

- DLAB_EXT_2016

 - Example

 - OBJ32

 - Shared

The path Example contains all sources for the examples:

• *.c, *.h, the bitmaps, resource file, icons, project files for Visual Studio

The path Shared contains:

• all toolkit headers

• all toolkit sources with help routines and functions to exchange data between DASYLab

and the toolkit DLL

Once you have installed the Extension Toolkit for DASYLab 2016 you can try out the demo examples.

If you own MS Visual C++ 2013, all you need to do is to load the prepared project file provided with

the toolkit. For other compilers you have to set up your own project files. Refer to page 108 for

information on how to set up the project parameters.

Principles of Operation

Extension Toolkit for DASYLab 2016 12 www.dasylab.com

4444 Principles of Principles of Principles of Principles of OOOOperationperationperationperation

4.14.14.14.1 General General General General OverviewOverviewOverviewOverview
The Extension Toolkit for DASYLab 2016 was designed to allow users and third parties to extend

DASYLab by designing their own modules, or module classes (see below). There is no special

restriction on what modules designed by this toolkit can do. In fact, all of DASYLab's internal module

classes could be rewritten using the toolkit. So the programmer is given the full facilities.

On the other hand, the Extension Toolkit is restricted to designing new module classes. It is not

possible to add other extensions – such as additional functionality of the main window function bar,

or a different routing algorithm – to DASYLab using this toolkit. Currently, new modules and new

hardware device drivers are the only extensions one can create to extent DASYLab’s possibilities.

4.24.24.24.2 The The The The Module Class ConceptModule Class ConceptModule Class ConceptModule Class Concept
In spite of being written completely in ANSI C, DASYLab internally is an object-oriented system. The

modules communicate with each other and with the system, primarily using predefined messages.

We distinguish the module class (that is the type of the module) from the module itself. If you look

at the Generator module class, you may have several modules of that same class in one worksheet.

Each module is called an instance of the module class Generator.

All instances of a module class share the same code to handle messages to the modules. They have

different data areas to store their private data, such as parameter box settings or intermediate

results.

One of the most important principles of object-oriented design is data encapsulation: The private

data of one module may be manipulated only by the module itself. No module may manipulate

other module's data and the DASYLab kernel will not touch the private data of the individual

modules.

4.34.34.34.3 Coupling Coupling Coupling Coupling nnnnew Module Classes ew Module Classes ew Module Classes ew Module Classes to DASYto DASYto DASYto DASYLabLabLabLab
A set of new module classes usually get bound together into one DLL file. One DLL file may contain

up to 50 different module classes. After telling the name of this DLL to DASYLab, DASYLab will load

the DLL at each program start and will execute one initialization routine in the DLL.

Inside this initialization routine the DLL registers all new module classes it wants to define and

possibly extends DASYLab’s menu bar with the new modules. This is all there is to it – the new

modules now are fully integrated into DASYLab.

By default, DASYLab tries to load the default extension DLL files DLAB_UX1.DLL, DLAB_UX2.DLL,… up

to DLAB_UX8.DLL. But you may use any names you want by adding lines to the DASYLAB.INI file:

[Extend]

DLL1=MY_DLL_1.DLL

DLL2=YOUR_DLL.DLL
…
DLL8=OUR_DLL.DLL

The DASYLAB.INI file is located in the DASYLab document directory and can be manipulated using a

text editor.

DASYLab can load up to eight DLL extensions at a time.

Principles of Operation

© National Instruments Ireland Resources Limited 13 Extension Toolkit for DASYLab 2016

4.44.44.44.4 Functions a Functions a Functions a Functions a Module Class Must Provide Module Class Must Provide Module Class Must Provide Module Class Must Provide for DASYfor DASYfor DASYfor DASYLabLabLabLab
DASYLab will send messages to the individual modules to make them perform actions. These

messages include:

• CreateModule message: The module will receive this message just after it has been created. It

can set up its private data with default values, open visualization windows, etc. here.

• DeleteModule message: The module will receive this message just before it is deleted by the

system. It should free any resources it has allocated.

• LoadModule message: The module will receive this message just after it has been loaded from

a previously saved worksheet. It should check the loaded parameters, open visualization

windows, etc. here.

• StartModule message: The module will receive this message just before the experiment is

started.

• StopModule message: The module will receive this message just after the experiment was

stopped.

• ProcessData message: The module will receive this message periodically while the

experiment is running. It should check its inputs for incoming data, then process the data and

put them to its output.

• ParameterSetup message: The module should show its parameter setup dialog.

• CreateReplace message: The module should publish its parameters for replacement.

• CheckReplace message: The module class should indicate whether it is able to replace a given

module.

• ReplaceModule message: The module should setup its parameters according to a template

created from the original module.

Each module class must provide its own code to perform specific actions upon receiving the

individual messages. A default handler is provided for the case that one module class does not want

or need to perform any action on a specific message.

Generally speaking, a module takes full control and full responsibility for its own private data. For

example, it has to handle the parameter setup dialog box completely on its own.

On the other hand, a module does not have to take worry about how it is bound into a worksheet.

No special handling is necessary if more than one other module is connected to its output, or if the

module is running inside a black box. The inter-module communication is completely handled by the

DASYLab kernel.

Principles of Operation

Extension Toolkit for DASYLab 2016 14 www.dasylab.com

4.54.54.54.5 Functions Functions Functions Functions Groups Groups Groups Groups ProvProvProvProvided ided ided ided by DASYby DASYby DASYby DASYLabLabLabLab
DASYLab provides some functions that can be used inside new module classes. These functions

belong to the following groups:

• Memory management: Provides some additional consistency checks to detect badly behaving

modules earlier.

• FIFO handling: Handles the data exchange between the modules.

• General Utility functions: Converting a value into a string, performing a basic FFT calculation,

etc.

• Dialog box handling: Functions supporting the channel selection bar and hotkeys, e.g. F1, F7,

and F8.

• Internal Error Handling: A module can raise an internal error whenever it gets into a

suspicious situation.

• GDI Stack: Several modules can share the same GDI objects (fonts, brushes, pens, ...)

• Global Variables/Strings: Use and management of global variables and strings

• Layout connections: Display windows can support graphical outputs into the layout tool (VI-

Tool)

The functions provided by DASYLab can be called from inside the routines handling the messages

received by a module. For example, while performing a ProcessData message, a module typically

calls a FIFO handling function to determine, if any data is waiting on its input side, then process the

data, and finally call another FIFO handling function to put the data out to the output side.

Each module class has to provide its own code. It is not possible to call the code of existing DASYLab

module classes as subroutines.

4.64.64.64.6 MMMModuleoduleoduleodule TypesTypesTypesTypes
Module classes can be divided into several groups which share similar data handling:

a) Data source modules: These modules “produce” data, they only have outputs, but do not

have any inputs inside the worksheet. Examples of this type are the Software Generator

module, the Analog Input module, the File Read module, and the RS232 Input module.

b) Data processing modules: These are modules that have inputs and outputs. Many of

DASYLab’s internal modules are of that type, examples include the Arithmetic module, the

Relay module, and Trigger modules.

c) Data sink modules: These are modules that have inputs, but no outputs. Examples include

visualization modules like the Y/t chart, the File Write module or the Analog Output module.

Outputs can be added to some of these modules to chain the incoming data through to

simplify the worksheet. For the purpose of this extensions toolkit, we will ignore the chain-

through option and use the term data sink for these module classes.

d) Special module classes: like Black Box modules, that can produce any of the types

mentioned before.

Principles of Operation

© National Instruments Ireland Resources Limited 15 Extension Toolkit for DASYLab 2016

4.74.74.74.7 Things a module should not doThings a module should not doThings a module should not doThings a module should not do
It is very important that no module breaks the rules of object-oriented programming. Most

important is the data encapsulation that ensures that no module manipulates any other module's

data. Ensuring that each module is a closed, self-contained unit is the necessary basis, to allow the

user to freely connect modules in a worksheet.

To avoid conflicts with other modules, a module should follow the naming conventions listed below.

It is not allowed to use DASYLab’s internal names for custom modules, to use reserved codes, or to

create new module messages, etc.

A module must follow the general rules of Windows programming. For example, when an object

allocated by the module is no longer needed, it must be freed by that module.

4.84.84.84.8 Compatibility with future versions of DASYCompatibility with future versions of DASYCompatibility with future versions of DASYCompatibility with future versions of DASYLabLabLabLab
We will try to keep the modules compatible for future versions of DASYLab on a source code basis,

that is: when there is need to add new functions to the DASYLab DLL interface, we will try first to

keep the interface compatible to old existing DLL's, and, if that's not possible, to try to limit the

effort to one recompilation of the modules (without having to change the source code).

If the modules want to take advantage of new facilities, they must eventually provide new

functionality.

4.94.94.94.9 Alternatives to using the Alternatives to using the Alternatives to using the Alternatives to using the Extension ToExtension ToExtension ToExtension Toolkitolkitolkitolkit
In addition to the Extension Toolkit there are other ways to extend DASYLab: The Driver Toolkit for

the design of device drivers, external utility programs can provide functionality that need not be

included in a module, and one can control DASYLab via DDE, or exchange Data via DDE.

Starting with DASYLab 13, you can also use the new script module and the integrated Python Script

language to create your own DASYLab modules. Details can be found in the DASYLab online

documentation.

Note: Of course, you can use the Extension Toolkit to create device drivers, too. It is even the

currently recommended way: The Driver Toolkit is the Extension Toolkit’s predecessor. Using the

Driver Toolkit you are limited to create drivers for DASYLab that take the place of the “Driver”

modules (category “Input/Output”) in competition to other “Driver Toolkit Drivers” – only one driver

can be selected, only one type of hardware can be used to acquire data. The Extension Toolkit allows

you to add additional groups to DASYLab’s existing main categories (e.g. Statistics, Inputs/Outputs).

It’s up to you, if the added modules are just for calculation, or if their purpose is to communicate

with diverse hardware devices.

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 16 www.dasylab.com

5555 A DASYA DASYA DASYA DASYLabLabLabLab Extension ExampleExtension ExampleExtension ExampleExtension Example

In this chapter we present a complete example of a DLL containing some simple, new DASYLab

modules: Derivation, Demand Trigger, Lamp and Generator.

The internal functions are very similar to the DASYLab's build in functions; in fact, the examples are

based upon original DASYLab source code, with modifications to improve its use as an example.

We will not go into too much detail here, but explain the concepts and the general ideas behind the

extension. The details can be found in the reference section following this section. Some comments,

prototype definitions, etc. are also left out from the source code to make the examples easier to

read. You can find the complete examples in the toolkit files.

A DLLs containing new modules for DASYLab consists of two parts:

1. Two global routines with required, fixed names which are called by DASYLab just after the

DLL has been loaded and just before the DLL is going to get unloaded.

2. The code for each of the new module classes.

You will usually have the code for the global routines and for each of the module classes in separate

source files. In addition, you need resource files defining the outfit of the dialog boxes, bitmaps, and

the like.

5.15.15.15.1 General DLL General DLL General DLL General DLL RoutinesRoutinesRoutinesRoutines
The two functions a DLL must provide for DASYLab are called Init_DLL and Exit_DLL.

DASYLab will call the Init_DLL function immediately after the DLL has been loaded. This function

may then add a menu to DASYLab's menu bar (containing all of the module classes defined in this

DLL) and call init functions for all of the modules it wants to define. Each module class can

alternatively integrate itself into the DASYLab menu tree and browser.

DASYLab will call the Exit_DLL function just before the DLL is to be unloaded. In most cases, the

Exit_DLL function can be left empty, because the exit functions of the individual modules (which

are called independently by DASYLab) will do all the work that is necessary.

Typically the two functions get bound together in one source file looking like this:

#include <WINDOWS.H>
#include "DLAB.H"
BOOL Init_DLL (void)
{
 /* Expand DASYLab's module bar for the new modules */
 ExpandModuleBar();

 /* Init all new Modules here */
 Init_DERIVATION ();
 Init_MORE ();
 Init_AND_MORE ();
 Init_AND_MORE_MODULES ();
 return TRUE;
}
BOOL Exit_DLL (void)
{
 return TRUE;
}

Calling the INIT function once for each module class is sufficient for the DLL. One function of the

INIT function of the module class is to register itself with DASYLab as shown below.

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 17 Extension Toolkit for DASYLab 2016

Inside the new submenu, the extension must always use the fixed range from 2950 to 2974 of

module class menu IDs to distinguish the different module classes. DASYLab then maps this range

onto a different range for internal use. So there is no problem when different extension DLL's use

the same menu bar IDs.

5.25.25.25.2 DLL Menu EntriesDLL Menu EntriesDLL Menu EntriesDLL Menu Entries
With DASYLab 9, the interface has been completely reworked. The DASYLab screen comprises the

Module Browser that contains the Modules tab, the Black-Box tab, and the Navigator tab. DASYLab

provides all available modules in a tree structure, on the Module tab. You can drag and drop the

modules from the Browser into the worksheet. Integrate the modules that you create with the

Extension Toolkit in the thematically related module group.

The following section describes the steps you must complete in your sources, to insert your

Extension Toolkit modules and additional configuration dialog boxes in the menus of the browser.

The description uses the source code examples of the Extension Toolkit to include the example

modules Trigger on Demand, Derivation, Generator, and Status lamp

New: Trigger on Demand New: Derivation

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 18 www.dasylab.com

New: Generator New: Status lamp

The examples also demonstrate how you can include the comprehensive configuration dialog box

Global Setup in the menu: Experiment»Experiment Setup»New !!! » Global Setup.

The Global Setup dialog box is integrated in the ExpandModuleBar function in the file

DlabExtTkExample.c. The function uses szMainMenuEntry to forward the main menu entry that

contains the submenus you want to change to the DASYLAB_INSERT_MENU structure. The following

entries in szMainMenuEntry are valid:

MOD Submenu in the Module menu

ME Submenu in the Experiment menu

HLP Submenu in the Help menu

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 19 Extension Toolkit for DASYLab 2016

typedef struct
{
 UINT uiSize;
 UINT uiVersion;
 char szMainMenuEntry[MAIN_MENU_ENTRY_MAXLEN];
 char szSubMenusEntry[SUB_MENUS_ENTRY_MAXLEN];
 char szNewMenuEntries[SUB_MENUS_ENTRY_MAXLEN];
 char szMenuGroupEntries[MAIN_MENU_ENTRY_MAXLEN];
 UINT uiNewMenuID;
 char cMenuAccessKey;
} DASYLAB_INSERT_MENU;

Use szSubMenusEntry to specify into which submenu you want your module integrated.

The following submenus are defined for "MOD":

IO Modules » Input / Output

TRIG Modules » Trigger Functions

MATH Modules » Mathematics

STAT Modules » Statistics

SIG Modules » Signal Analysis

CONTR Modules » Control

DISPL Modules » Display

FILE Modules » Files

REDUCT Modules » Data Reduction

NET Modules » Network

SPEC Modules » Special

ADDON* Modules » Add-on Modules

*Only available for DASYLab versions installed with Add-on serial number.

The following submenus are defined for "ME":

HS Experiment » Hardware Setup

ES Experiment » Experiment Setup

TB Experiment » Time Base Setup

The following submenus are defined for "HLP":

HW Help

Use the separator // in szSubMenusEntry to create further submenus in the browser.

The modules are integrated in the respective Init-function of the menu structure as described in

chapter 5.3.2. To do so, check the following functions:

• Init_DERIVATION (file Deriv.c, function FillTkDllsMenu_DERIVATION)

• Init_DEMANDTRIG (file dmd_trig.c, function FillTkDllsMenu_DEMANDTRIG)

• Init_GENERATOR (file Generat.c, function FillTkDllsMenu_GENERATOR)

• Init_LAMP (file Lamp.c, function FillTkDllsMenu_LAMP).

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 20 www.dasylab.com

5.35.35.35.3 An exampAn exampAn exampAn example module class: le module class: le module class: le module class: Derivation

Each of the module classes defined inside a DLL is an independent unit. You will usually have a

separate source file for each module class.

We present a complete new DASYLab module class named Derivation, which is very similar to

DASYLab’s internal Derivation class. The user can select between two functions: Calculating the

derivation of a channel or calculating the integral of a channel.

Modules of the Derivation class are typical data processing modules. We will show examples of data

source and data sink module classes later.

5.3.15.3.15.3.15.3.1 Internal data structure of a module classInternal data structure of a module classInternal data structure of a module classInternal data structure of a module class

A module class should not use any global or static variables, except possibly some space to save

global strings loaded from the resource. Therefore it should not define any (static or non-static)

variables outside of function scope and it should not declare any static variables inside a function

scope.

It is very important not to mix up different modules’ data, so every instance (= module) of a class

must get its own data space.

When creating a new module of some class, DASYLab allocates data space for three different types

of private data for that module which are described in the following sequences. The DASYLab kernel

does not know the internal structure of this data; it just needs to know the sizes of these three

different structures to allocate the memory.

5.3.1.15.3.1.15.3.1.15.3.1.1 Non temporary parameters of a module classNon temporary parameters of a module classNon temporary parameters of a module classNon temporary parameters of a module class

ThisModule->ModuleParameters: Parameters of the module that can be set up using the module

parameter dialog box. We use the MODULE_DERIVATION structure in the example below to define

that data.

typedef struct
{
 char szChannelName[MAX_CHANNEL][24]; /* Channel Name (all Modules) */
 UINT wFunction[MAX_CHANNEL]; /* Derivation, Integral, ... */
 BOOL___bPhaseCorrection[MAX_CHANNEL]; /* Phase Correction (OLD) */
 BOOL bRestart[MAX_CHANNEL]; /* Restart after... */
 UINT wBlocks[MAX_CHANNEL]; /* ... 'Blocks' ? */
 WORD wDerivVersion; /* Internal version of this module */
 BOOL bCopyChannelName[MAX_CHANNEL]; /* Copy channel names */
 char szUnit[MAX_CHANNEL][MAX_UNIT_LEN]; /* Unit */
} MODULE_DERIVATION;

This structure only is necessary if a module is saved with the worksheet: Since DASYLab version 5.0

three kinds of worksheet files can be saved:

1. Binary worksheet

The DASYLab kernel will save the data as one big chunk, not looking at the contents of the structure.

When the worksheet is loaded, the DASYLab kernel restores this chunk before sending a Load

message to the module.

For this reason it is important never to change the data structure once it has been defined. It is,

however allowed to extend the structure at the end. If you absolutely need to change the size of a

component in the structure, you must rename, but leave intact the old field, and add a new field at

the end. As you can see the parameter __bPhaseCorrection is not needed in the module

DERIVATION. Two underlines show this fact and preserve the size of the module structure.

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 21 Extension Toolkit for DASYLab 2016

An example of this would be to increase the length of the channel names from 24 to, say 36. You

would make a change looking like this:

typedef struct
{

 char __old_ChannelName[MAX_CHANNEL][24];

 UINT wFunction[MAX_CHANNEL]; /* Derivation, Integral, ... */

 char ChannelName[MAX_CHANNEL][36]; /* new Channel Name */
 ...

} MODULE_DERIVATION;

When loading an old worksheet, the DASYLab Kernel loads the old block, and fills up the remaining

bytes with zeroes before sending the Load message to the module.

On receipt of the Load message, the module should check if the new names are all empty, and, if it is

true, assume an old worksheet was loaded and copy all old names into their new places.

Modules classes which do not follow these rules will have serious problems when loading old

worksheets.

2. ASCII worksheet for compatibility with previous versions of DASYLab

Binary worksheets cannot be loaded in previous versions of DASYLab. The solution for this problem

is the use of ASCII-worksheets. To save the parameters of a module in ASCII-format, the

PARAMETER_INFO structure is introduced. This structure contains the module parameters in a special

manner. A pointer to this structure has to be returned if a worksheet is loaded or saved as ASCII

worksheet.

Refer to chapter 6.2 for a detailed description of this structure.

3. Text worksheet for documentation purposes only

The use of ASCII-worksheets contains the possibility to save worksheets as documentation text files.

All module parameters given in the PARAMETER_INFO structure are used except those, whose

description starts with a ‘*’ sign. DASYLab cannot load a worksheet from this file type.

5.3.1.25.3.1.25.3.1.25.3.1.2 Temporary parameters of a module classTemporary parameters of a module classTemporary parameters of a module classTemporary parameters of a module class

ThisModule->TempModuleData: Intermediate data for the module, such as window handles,

pointers to additional allocated memory blocks, etc. These are not saved with the worksheet. We

use the VAR_DERIVATION struct in the example below to define that data.

typedef struct
{
 /* This module supports event actions */
 int NumSyncActions; /* Number of supported synchron events */
 struct
 {
 BOOL bReceived; /* Sync event has happened */
 BOOL bFulFilled; /* Sync event with/without action */
 int ChanMask; /* Mask only connected channels */
 int DoneMask; /* Mark ready channels */
 UINT ActionNumber; /* Which action is wanted */
 double ActionTime; /* When did the event appear */
 } SyncAction[MAX_SYNC_ACTIONS];
} VAR_DERIVATION;

5.3.1.35.3.1.35.3.1.35.3.1.3 Temporary parameters of each channelTemporary parameters of each channelTemporary parameters of each channelTemporary parameters of each channel

ThisModule->TempChannelData[channel]: Intermediate data for each channel, such as

intermediate results of computation. These are also not saved with the worksheet. We use the

CHANNEL_DERIVATION structure in the example below to define that data.

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 22 www.dasylab.com

typedef struct
{
 double y1; /* Last Data Value of the last Data Block */
 double z; /* Value of the Integral */
 DWORD dwCount; /* Actual Block Counter */
} CHANNEL_DERIVATION;

5.3.25.3.25.3.25.3.2 Registering a new module class Registering a new module class Registering a new module class Registering a new module class with DASYwith DASYwith DASYwith DASYLabLabLabLab

When DASYLab executes the INIT function of a DLL, the INIT function will call the INIT functions of

all of the module classes contained within. At this point the module class must register itself with

DASYLab.

The module class must fill a MODCLASS structure containing

• The instance handle of the DLL containing the module class

• The internal module class name for identification

• The respective sizes of the data structures mentioned above

• A string for the default module name

• A string describing the function of the module

• The help index in the help file

• The name of the help file that contains the help for this module.

• The ID of the Black Box type the module can appear in; always BB_UNIVERSAL at present.

• An icon to be shown in the module bar.

• An icon for the module block in the worksheet

• A ProcessData function to do all the data processing while the experiment is running. This

function therefore handles the ProcessData message.

• A PerformAction function to handle all other messages sent to the module

All unused fields must be filled up with zeroes. This should be done by setting the entire structure to

zero first, and then fill out the fields needed.

Then call the RegisterModuleClass function:

static char IdString_DERIVATION[MODULE_NAME_LENGTH+1];

static char StatusString_DERIVATION[MODULE_STATUS_LENGTH];

void Init_DERIVATION (void)
{
 MODCLASS mc;
 memset (&mc, 0, sizeof(mc));

 LoadString (hInst, MN_MODULE_DERIVATION, IdString_DERIVATION, MODULE_NAME_LENGTH+1);

 LoadString (hInst, MN_STATUS_DERIVATION, StatusString_DERIVATION, MODULE_STATUS_LENGTH-1);
 mc.hInst = hInst;
 mc.Name = "NEW:DERIV";

 mc.DataSize = sizeof (MODULE_DERIVATION);

 mc.VarSize = sizeof(VAR_DERIVATION);

 mc.ChannelSize = sizeof (CHANNEL_DERIVATION);

 mc.MenuId = MN_MODULE_DERIVATION;

 mc.IdString = IdString_DERIVATION;

 mc.StatusString = StatusString_DERIVATION;
 mc.HelpId = 0;
 mc.HelpFileName = NULL;

 mc.BBoxId = BB_UNIVERSAL;

 mc.ModIcon = LoadBitmap (hInst, "DERIVATION_ICO");

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 23 Extension Toolkit for DASYLab 2016

 mc.BlkIcon = LoadBitmap (hInst, "DERIVATION");

 mc.PerformAction = PerformAction_DERIVATION;

 mc.ProcessData = ProcessData_DERIVATION;

 // Insert menu item in the DASYLab menu.
 if (mc.MenuId != 0)
 FillTkDllsMenu_DERIVATION (mc.MenuId);

 RegisterModuleClass (&mc);
}

If there are any additional handles allocated, they must be freed when the DQM_UNREGISTER_CLASS

message is sent to the module.

The ModIcon and BlkIcon items need not (and must not) be freed by the module class because this

is done by the DASYLab kernel.

After having successfully called the RegisterModuleClass function, the module class is known to

DASYLab and can now be used like any other module class: you can add the module class to the

function bar, create modules of that class, etc.

The new module class does not automatically appear in the standard menu bar of DASYLab, but

since the menu bar can be extended by the DLL, the DLL can also add the new module classes to the

menu bar.

5.3.35.3.35.3.35.3.3 Processing messages Processing messages Processing messages Processing messages sent by DASYsent by DASYsent by DASYsent by DASYLabLabLabLab

All messages sent to a module are sent to the PerformAction function. The only exception is the

ProcessData message which has its own handling function for efficiency reasons.

DASYLab will send messages to a module in response to certain events, for example, the

creation/deletion of a module. These events will be described below.

Generally, do not perform message handling inside the PerformAction function, but use the

PerformAction function only as a switch to the desired location.

We suggest the following scheme for the PerformAction function:

unsigned long PerformAction_DERIVATION (MODULE *ThisModule, int wMsg, int wParam, long lParam)
{
 switch (wMsg)
 {
 /* DASYLab Class Messages */
 case DQM_UNREGISTER_CLASS:
 return Exit_DERIVATION();

 /* DASYLab Module Messages */
 case DMM_CREATE_MODULE:
 return Create_DERIVATION (ThisModule);

 case DMM_DELETE_MODULE:
 return Delete_DERIVATION (ThisModule);

 case DMM_PARAM_MODULE:
 return Param_DERIVATION (ThisModule);

 case DMM_SAVE_MODULE:
 return Save_DERIVATION (ThisModule);

 case DMM_LOAD_MODULE:
 return Load_DERIVATION (ThisModule);

 case DMM_START_MODULE:
 return Start_DERIVATION (ThisModule);

 case DMM_STOP_MODULE:

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 24 www.dasylab.com

 return Stop_DERIVATION (ThisModule);

 case DMM_GET_PARAMETERS_INFO:
 {
 return (long) ParameterDerivation;
 }
 break;

 case DMM_SET_CHANNEL_NAME_COPY_OPTION:
 {
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;
 UINT i;

 for (i=0; i<MAX_CHANNEL; i++)
 ModuleInfo->bCopyChannelName[i] = wParam;
 }
 break;

 case DMM_GET_CHANNEL_NAME:
 {
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;

 if (wParam<MAX_CHANNEL)
 {
 if (ModuleInfo->bCopyChannelName[wParam])
 strcpy (ModuleInfo->szChannelName[wParam], (LPSTR)lParam);
 CopyChannelName (ThisModule->Fifo[wParam],
 (LPSTR *)ModuleInfo->szChannelName[wParam]);
 }
 }
 break;

 /* Register here all possible event messages for the action module */
 case DMM_QUERY_MODULE_ACTION:
 case DMM_QUERY_SYNC_MODULE_ACTION:
 return ActionQuery_DERIVATION (ThisModule, wMsg, wParam,
 (ONE_ACTION FAR *) lParam);

 /* Process event messages */
 case DMM_MODULE_ACTION:
 case DMM_CLEAR_SYNC_MODULE_ACTIONS:
 case DMM_INIT_SYNC_MODULE_ACTION:
 case DMM_SYNC_MODULE_ACTION:
 case DMM_SYNC_MODULE_NO_ACTION:
 return Action_DERIVATION (ThisModule, wMsg, wParam,
 (ONE_ACTION FAR *) lParam);

 /* DASYLab Channel Messages */
 case DCM_SETUP_FIFO:
 return SetupFifo_DERIVATION (ThisModule, wParam);

 case DCM_GET_UNIT:
 {
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;

 return (long) ModuleInfo->szUnit[wParam];
 }
 break;

 default:
 break;
 }

 return PerformDefaultAction (ThisModule, wMsg, wParam, lParam);
}

A module may receive several other messages which are sent by the DASYLab kernel for Black Box

handling, etc. Standard modules should not handle these messages by themselves.

It is important to call the PerformDefaultAction function for every message the module class does

not want to process on its own. This also ensures proper operation in the case that we may

introduce new messages in the future.

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 25 Extension Toolkit for DASYLab 2016

5.3.45.3.45.3.45.3.4 Processing the Processing the Processing the Processing the DQM_UNREGISTER_CLASS messagemessagemessagemessage

The DQM_UNREGISTER_CLASS message is sent to the module class only one time at the very end,

immediately before DASYLab exits. All modules were deleted before so the worksheet is empty at

the time the DQM_UNREGISTER_CLASS message occurs.

For standard data processing modules, there is no need to process this message. Modules classes

that allocate additional resources in the INIT function should free them here.

A typical example of this are visualization modules which register a window class inside the INIT

function and must unregister it here again.

The return value in response to this message must always be TRUE.

static BOOL Exit_DERIVATION (void)
{
 /* Nothing to do for most module classes */
 return TRUE;
}

5.3.55.3.55.3.55.3.5 Processing the Processing the Processing the Processing the DMM_CREATE_MODULE memememessagessagessagessage

The DMM_CREATE_MODULE message is sent to each newly created instance of a module class

immediately after it has been created. The DASYLab kernel has allocated space for the module's

private data (three structures, see above) before sending this message.

The module must check, if its number of inputs and outputs are zero, and if so, define default values

for them. In one special case (loading an old worksheet when the structure of the module's data has

badly changed) DASYLab will pre-set values for the number of inputs and outputs and the module is

not allowed to change these. The standard case, however, is that DASYLab sends the message with

number of inputs and outputs set to zero before.

The module must then set up default values for all of its parameter settings. So every module class

has to process this message.

The module should return TRUE if the message was processed successfully, and FALSE in case of

error. Before returning FALSE, it should display a message box explaining what went wrong.

static BOOL Create_DERIVATION (MODULE *ThisModule)
{
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;
 CHANNEL_DERIVATION *ChannelInfo;
 char DummyBuf[10];
 UINT i;

 /* Setup Default Values for Number of Inputs and Outputs */
 if (ThisModule->wNumInpChan == 0 && ThisModule->wNumOutChan == 0)
 {
 ThisModule->wNumOutChan = 1;
 ThisModule->wNumInpChan = 1;
 }

 /* Setup Default Values for Private Data */
 for (i=0; i<MAX_CHANNEL; i++)
 {
 /* Setup Channel Name */
 strcpy (ModuleInfo->szChannelName[i], IdString_DERIVATION);
 strcat (ModuleInfo->szChannelName[i], " ");
 itoa (i, DummyBuf, 10);
 strcat (ModuleInfo->szChannelName[i], DummyBuf);

 /* Default Function */
 ModuleInfo->wFunction[i] = IDD_DERIVATION_DIFF;

 strcpy (ModuleInfo->szUnit[i], "#0/s");

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 26 www.dasylab.com

 }

 return TRUE;
}

5.3.65.3.65.3.65.3.6 Processing the Processing the Processing the Processing the DMM_DELETE_MODULE messagemessagemessagemessage

The DMM_DELETE_MODULE message is sent to each instance of a module class immediately before it

will be deleted by the DASYLab kernel. It should free any allocated memory, handles, etc. that were

allocated while processing the Create or Load message.

There is only one Delete message that applies to both: modules that were newly created; and

modules that were loaded from disk. For this reason care must be taken to ensure that new and

loaded modules allocate the same objects.

The module must always return TRUE in response to this message.

static BOOL Delete_DERIVATION (MODULE *ThisModule)
{
 /* Since we didn’t allocate Memory or GDI Objects: */
 /* Nothing to do */
 UNUSED (ThisModule); /* Prevent Compiler Warning */
 return TRUE;
}

5.3.75.3.75.3.75.3.7 Processing the Processing the Processing the Processing the DMM_LOAD_MODULE messagemessagemessagemessage

The DMM_LOAD_MODULE message is sent to each newly created instance of a module class

immediately after it has been loaded from a saved worksheet. The DASYLab kernel has allocated

space for the module's private data (three structures, see above) and has loaded the first of them

(ThisModule->ModuleParameters) with the values found on the disk before sending this message.

The module must do initialization setup similar to that of the Create message. After having

processed this message, all necessary settings, opening windows, allocating space, etc. should be

done that also take place for the Create message.

The module also handles changes in the ThisModule->ModuleParameters structure here. See the

comments above for how this must be done.

The module should return TRUE if the message was processed successfully, and FALSE in case of

error. Before returning FALSE, it should display a message box explaining what went wrong.

static BOOL Load_DERIVATION (MODULE *ThisModule)
{
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;
 int i;

 /* Here the use of the wDerivVersion-parameter is obvious: Older versions of */
 /* this module class won't have the szUnit-parameter. By checking the */
 /* internal version we can set this parameter to default values. */
 if (ModuleInfo->wDerivVersion < 1)
 {
 for (i=0; i<MAX_CHANNEL; i++)
 strcpy (ModuleInfo->szUnit[i],
 GetDefaultString (ModuleInfo->wFunction[i]));
 }
 ModuleInfo->wDerivVersion = DERIV_VERSION;

 return TRUE;
}

5.3.85.3.85.3.85.3.8 Processing the Processing the Processing the Processing the DMM_SAVE_MODULE messagemessagemessagemessage

The DMM_SAVE_MODULE message is sent to each module immediately before the DASYLab kernel

saves a worksheet. The Module may look up intermediate values like window positions and add

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 27 Extension Toolkit for DASYLab 2016

them to the ThisModule->ModuleParameters field. That field is then saved en-bloc by the DASYLab

kernel.

The module must always return TRUE in response to this message.

static BOOL Save_DERIVATION (MODULE *ThisModule)
{
 /* Store Window Sizes, ... but for this Module: */
 /* Nothing to do */
 UNUSED (ThisModule); /* Prevent Compiler Warning */
 return TRUE;
}

5.3.95.3.95.3.95.3.9 Processing the Processing the Processing the Processing the DMM_GET_PARAMETERS_INFO messagemessagemessagemessage

The DMM_GET_PARAMETERS_INFO message is sent before a worksheet is saved in ASCII-format or text

format for documentation purposes or saved a worksheet is loaded from an ASCII-file. The returned

value to this message is a pointer to an array of the PARAMETER_INFO structure which describes the

private variables of the module in question. An example is given in the PerformAction_DERIVATION

function in chapter 5.3.3.

See chapter 6.2 for detailed information about the PARAMETER_INFO structure.

5.3.105.3.105.3.105.3.10 Processing the Processing the Processing the Processing the DMM_GET_EXTRA_PARAM_SIZE messagemessagemessagemessage

Some modules have parameters of variable size which have to be stored with the worksheet. The

DMM_GET_EXTRA_PARAM_SIZE message is sent to receive the size of those parameters. If a module

returns a value greater than 0 as response to this message the DMM_GET_EXTRA_PARAMS is sent to this

module afterwards to get a pointer to the parameters of variable size.

case DMM_GET_EXTRA_PARAM_SIZE:
 return ExtraParamSize;

5.3.115.3.115.3.115.3.11 Processing the Processing the Processing the Processing the DMM_GET_EXTRA_PARAMS messagemessagemessagemessage

The DMM_GET_EXTRA_PARAMS message is sent to store parameters of variable size with the

worksheet. The module must return a pointer to these parameters in response of this message.

case DMM_GET_EXTRA_PARAMS:
 return (long) ExtraParams;

5.3.125.3.125.3.125.3.12 Processing the Processing the Processing the Processing the DMM_SET_EXTRA_PARAMS messagemessagemessagemessage

The DMM_SET_EXTRA_PARAMS message is sent to load parameters of variable size from the worksheet.

The lParam parameter with an offset of four is the pointer to these parameters.

case DMM_SET_EXTRA_PARAMS:
 if (lParam != 0)
 {
 ExtraParams = (void *) (lParam + 4);
 }
 break;

5.3.135.3.135.3.135.3.13 Processing the Processing the Processing the Processing the DCM_SETUP_FIFO messagemessagemessagemessage

The DCM_SETUP_FIFO messages are sent to every module that contains output channels, before the

experiment gets started, and after the DMM_PREPARE_START_MODULE message is sent to the module.

One DCM_SETUP_FIFO message is sent for every output channel of the module. The messages may be

sent in any order, so you must not assume any specific order there. In particular, the message may

be sent for a higher channel before a lower channel. You should treat the output channels

completely independent of each other.

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 28 www.dasylab.com

Before sending the DCM_SETUP_FIFO message for one specific channel, the DASYLab kernel will set

up default values for the ChannelType, ChannelFlags, MaxBlockSize and SampleDistance on

that channel. The module then should check if the values are in the expected range, and may change

any of them as appropriate.

For example: FFT calculation will change the ChannelType to FFT data, averaging data of 4 points

into one will then multiply the sample rate by that factor of four (because the samples at the output

of the module are four times as wide apart from each other than the input samples are), etc.

Note: It is very important to keep the channel information consistent with the data on the channel.

If your module changes the data rate, the type of data, the block size, etc., you must set up

the correct values here.

The module should return TRUE if the message was processed successfully, and FALSE in case of

error. Before returning FALSE, it should display a message box explaining what went wrong.

static BOOL SetupFifo_DERIVATION (MODULE *ThisModule, UINT wFifoNr)
{
 /* For Demonstration Purpose we added some future Data Types */
 switch (ThisModule->Fifo[wFifoNr]->ChannelType)
 {
 case KT_NORMAL: /* Standard Channel Type */
 case KT_SPEC: /* Spectral Data, full Length */
 case KT_SPEC2: /* Spectral Data, half Length */
 case KT_CLASS: /* Histogram Data old Type */
 case KT_CLASS2: /* Histogram Data new Type with Time Info */
 /* These were the allowed Data Types, were we have nothing else to do */
 break;
 /* case KT_BINARY: TTL Data */
 /* case KT_SPEC3: Spectral Data with half Length + 1 */
 default:
 /* Only the above Types of Data are allowed; otherwise we return */
 /* FALSE; so an Error Message would be sent */
 return FALSE;
 }

 return TRUE;
}

We have added the validity check for the channel type here. As an alternative, it could be added to

the handling of the DMM_START_MODULE message. Modules that don't have output channels will

never see a DCM_SETUP_FIFO message, and must therefore do all checks inside the

DMM_START_MODULE message handler.

5.3.145.3.145.3.145.3.14 Processing the Processing the Processing the Processing the DMM_PREPARE_START_MODULE messagemessagemessagemessage

The DMM_PREPARE_START_MODULE message is sent to every module before the DMM_START_MODULE

message is sent to the module. A module can process this message to check if the experiment can be

started. If the module cannot start the experiment it must return FALSE after processing this

message.

5.3.155.3.155.3.155.3.15 Processing the Processing the Processing the Processing the DMM_START_MODULE messagemessagemessagemessage

The DMM_START_MODULE message is sent to every module before the experiment gets started, but

after the DMM_PREPARE_START_MODULE messages have been sent to the module.

The module should set up intermediate results, reset counters etc. here to prepare for the coming

experiment. At this point the characteristics of each input channel are also known, and the module

should check, if its input channels have the right characteristics (type, flags), if they match each

other, etc. If it allocates any object here, these objects must be freed again inside the handling of the

DMM_STOP_MODULE message.

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 29 Extension Toolkit for DASYLab 2016

The module should return TRUE if the message was processed successfully, and FALSE in case of

error. Before returning FALSE, it should display a message box explaining what went wrong.

static BOOL Start_DERIVATION (MODULE *ThisModule)
{
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;
 CHANNEL_DERIVATION *ChannelInfo;
 UINT i;

 for (i=0; i<ThisModule->wNumOutChan; i++)
 {
 /* Per Channel Data */
 ChannelInfo = ThisModule->TempChannelData[i];
 /* Initialize internal Values every time */
 ChannelInfo->y1 = 0.0;
 ChannelInfo->z = 0.0;
 ChannelInfo->dwCount = 0;
 }
 return TRUE;
}

5.3.165.3.165.3.165.3.16 Processing the Processing the Processing the Processing the DMM_GO_MODULE messagemessagemessagemessage

The DMM_GO_MODULE message is sent to every module immediately before the experiment starts. The

corresponding function which is processing this message must return quickly.

5.3.175.3.175.3.175.3.17 Processing the Processing the Processing the Processing the DMM_PREPARE_STOP messagemessagemessagemessage

This message is sent when the worksheet stops. For example, the message can terminate driver

module threads before DASYLab- FIFOs logs off. This prevents crashes within a thread when

accessing FIFOs that no longer exist. The DASYLab sequence control calls DMM_PREPARE_STOP before

DMM_STOP_MODULE.

5.3.185.3.185.3.185.3.18 ProcProcProcProcessing the essing the essing the essing the DMM_STOP_MODULE messagemessagemessagemessage

The DMM_STOP_MODULE message is sent to every module after the experiment is stopped. The module

should free resources allocated inside the DMM_START_MODULE message handler. The module must

always return TRUE in response to this message.

static BOOL Stop_DERIVATION (MODULE *ThisModule)
{
 UNUSED (ThisModule);
 return TRUE;
}

5.3.195.3.195.3.195.3.19 Processing the Processing the Processing the Processing the DMM_PAUSE_MODULE messagemessagemessagemessage

The DMM_PAUSE_MODULE message is sent to every module when the user paused the experiment.

5.3.205.3.205.3.205.3.20 Processing theProcessing theProcessing theProcessing the DMM_RESUME_MODULE messagemessagemessagemessage

The DMM_RESUME_MODULE message is sent to every module when the user resumed the experiment

after it has been paused.

5.3.215.3.215.3.215.3.21 Processing the Processing the Processing the Processing the DMM_PARAM_MODULE messagemessagemessagemessage

The DMM_PARAM_MODULE message is sent to a module when the user double-clicks on its block in the

worksheet. The module should display a dialog box allowing the user to set up and modify the

module parameters.

Most of the work is done in the dialog box function (i.e. DERIVATIONProc) as explained below. So we

just call the dialog box here.

The module must always return TRUE in response to this message.

static BOOL Param_DERIVATION (MODULE *ThisModule)

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 30 www.dasylab.com

{
 HWND hwnd = ThisModule->hwndModule;
 DialogBox (hInst, "DERIVATION", hwnd, DERIVATIONProc);
 return TRUE;
}

The above form of the Dialog Box call assumes that DERIVATIONProc is equipped with windows

prolog/epilog code. Most of today's Windows compilers can generate this prolog/epilog code

automatically for every function.

For old compilers not supporting this, you have to use an additional MakeProcInstance:

static void Param_DERIVATION (MODULE *ThisModule)
{
 HWND hwnd = ThisModule->hwndModule;
 FARPROC lpDlgProc;
 lpDlgProc = MakeProcInstance ((FARPROC) DERIVATIONProc, hInst);
 DialogBox (hInst, "DERIVATION", hwnd, (DLGPROC) lpDlgProc);
 FreeProcInstance (lpDlgProc);
}

Using the old form does no harm when used with the new compilers. So if you have problems with

dialog boxes, you may safely test the old form to see if the problems are gone. If that does not

resolve your problems and you still don't see the box appearing on the screen, then the dialog box

template is probably missing in your resource file. We will discuss the DialogBox handling later.

5.3.225.3.225.3.225.3.22 Processing the Processing the Processing the Processing the DMM_QUERY_MODULE_ACTION messagemessagemessagemessage

The DMM_QUERY_MODULE_ACTION message is sent to every module in order to ask, if the module

supports asynchronous event driven actions.

5.3.235.3.235.3.235.3.23 Processing the Processing the Processing the Processing the DMM_QUERY_SYNC_MODULE_ACTION messagemessagemessagemessage

The DMM_QUERY_SYNC_MODULE_ACTION message is sent to every module in order to ask, if the module

supports synchronous event driven actions. Depending on the action number, the module can

choose, if the specified action is supported. As shown in the example, the messages

DMM_QUERY_SYNC_MODULE_ACTION and DMM_QUERY_MODULE_ACTION are treated in the same function,

because they are both supported. If a module has to differ between synchronous and asynchronous

actions, there should be two different functions in order to check the action support. Here the

predefined ACTION_RESET variable is supported.

static BOOL ActionQuery_DERIVATION (MODULE *ThisModule, int wAction, int wChannel, ACTION *Action)
{
 switch (Action->Number)
 {
 /* We can process a Reset action */
 case ACTION_NULL:
 case ACTION_RESET:
 return TRUE;
 default:
 break;
 }

 return FALSE;

 UNUSED(ThisModule);
 UNUSED(wAction);
 UNUSED(wChannel);
}

5.3.245.3.245.3.245.3.24 Processing the Processing the Processing the Processing the DMM_EXPLAIN_USER_ACTION messagemessagemessagemessage

The DMM_EXPLAIN_USER_ACTION message is sent to the specific module to declare new user defined

event driven actions. Each module class has the possibility to define up to 25 private event driven

actions. The IDs ACTION_USER_0,…,ACTION_USER_24 are defined in the file CONST.H. The example

GENERAT.C describes the usage of user defined event driven actions. Here the frequency and

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 31 Extension Toolkit for DASYLab 2016

amplitude can be changed by the action module. For better syntax understanding the IDs

ACTION_USER_0 and ACTION_USER_1 are renamed to ACTION_SET_FREQ and
ACTION_SET_AMPLITUDE.

The following parameters can be defined:

• Actual instance handle hInst of the DLL.

• The action description string InternalName.

• Number and kind of parameters Params which can be changed. Please use the predefined

IDs from TYPES.H (ACTION_NO_PARAMS, ACTION_1_PARAMS, ACTION_2_PARAMS,

ACTION_3_PARAMS, ACTION_4_PARAMS or ACTION_STRING_PARAMS). As you see, you can

use no parameters, up to 4 double or integer parameters or a single string parameter in one

action channel.

• The string ID IdName of the event driven action. DASYLab reads with the help of the instance

handle and the IdName the name of the action out of the resource file of the DLL.

• Buffer of string parameter IDs for each parameter that can be defined. This string is shown in

the dialog box of the action module above each parameter edit field.

• The parameter ParamType describes the kind of variable the action module should show in

the dialog box. Possible are ACTION_PARAM_TYPE_INT for integer and

ACTION_PARAM_TYPE_DOUBLE for double parameters.

static BOOL ExplainAction_GENERATOR (MODULE *ThisModule, int wAction, int wChannel,
 ACTION_DESCRIPTION *Acd)
{
 switch (Acd->Number)
 {
 case ACTION_SET_FREQ:
 Acd->hInst = hInst;
 strcpy (Acd->InternalName, "GEN_SET_FREQ");
 Acd->Params = ACTION_1_PARAMS;
 Acd->IdName = STR_ACTION_SET_FREQ;
 Acd->IdParams[0] = STR_FREQUENZ;
 Acd->ParamType[0] = ACTION_PARAM_TYPE_DOUBLE;
 return TRUE;

 case ACTION_SET_AMPLITUDE:
 Acd->hInst = hInst;
 strcpy (Acd->InternalName, "GEN_SET_AMPL");
 Acd->Params = ACTION_1_PARAMS;
 Acd->IdName = STR_ACTION_SET_AMPLITUDE;
 Acd->IdParams[0] = STR_AMPLITUDE;
 Acd->ParamType[0] = ACTION_PARAM_TYPE_DOUBLE;
 return TRUE;

 default:
 break;
 }

 return FALSE;

 UNUSED (ThisModule);
 UNUSED (wAction);
 UNUSED (wChannel);
}

5.3.255.3.255.3.255.3.25 Processing the Processing the Processing the Processing the DMM_MODULE_ACTION messagemessagemessagemessage

The DMM_MODULE_ACTION message is sent to the specific module to perform an asynchronous action.

Depending on the action number the module can select the concerning action. This and the

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 32 www.dasylab.com

following messages are analyzed in the function Action_DERIVATION depending on the specified

action.

....
switch (wAction)
 {
 /* Asynchron event */
 case DMM_MODULE_ACTION:
 {
 /* Which event */
 switch (Action->Number)
 {
 /* Reset */
 case ACTION_RESET:
 {
 CHANNEL_DERIVATION * ChannelInfo;
 UINT i;

 /* Select all channels */
 if (wChannel == 0)
 wChannel = -1;

 for (i=0; i<ThisModule->wNumOutChan; i++)
 {
 if (wChannel & (1L << i))
 {
 ChannelInfo = ThisModule->TempChannelData[i];

 /* Reset variable */
 ChannelInfo->z = 0.0;
 }
 }
 }
 return TRUE;

 default:
 break;
 }
 }
 break;
....

5.3.265.3.265.3.265.3.26 Processing the Processing the Processing the Processing the DMM_CLEAR_SYNC_MODULE_ACTIONS messagemessagemessagemessage

The DMM_CLEAR_SYNC_MODULE_ACTIONS message is sent to the specified module to initialize the

variables needed for the synchronous actions.

...
/* Clear all list of synchronous actions */
case DMM_CLEAR_SYNC_MODULE_ACTIONS:
{
 VAR_DERIVATION *PrivatVars = ThisModule->TempModuleData;

 PrivatVars->NumSyncActions = 0;
}
break;
...

5.3.275.3.275.3.275.3.27 Processing the Processing the Processing the Processing the DMM_INIT_SYNC_MODULE_ACTION messagemessagemessagemessage

The DMM_INIT_SYNC_MODULE_ACTION message is sent to the specified module to initialize the

variables needed for the synchronous actions. Only MAX_SYNC_ACTIONS actions are possible to create

for each module. The variable PrivatVars->NumSyncActions counts the used synchronous actions.

/* Init synchronous actions */
case DMM_INIT_SYNC_MODULE_ACTION:
{
 VAR_DERIVATION *PrivatVars = ThisModule->TempModuleData;

 /* We support only MAX_SYNC_ACTIONS actions */
 if (PrivatVars->NumSyncActions >= MAX_SYNC_ACTIONS)
 return FALSE;

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 33 Extension Toolkit for DASYLab 2016

 /* Select all channels */
 if (wChannel == 0)
 wChannel = -1;

 /* Deselect not connected channels */
 wChannel &= (int) ((1L << ThisModule->wNumOutChan) - 1);

 /* Sign action index */
 Action->ReceiveID = PrivatVars->NumSyncActions;

 /* Init varialbles */
 PrivatVars->SyncAction[Action->ReceiveID].ActionNumber = Action->Number;
 PrivatVars->SyncAction[Action->ReceiveID].ActionTime = 0.0;
 PrivatVars->SyncAction[Action->ReceiveID].bReceived = FALSE;
 PrivatVars->SyncAction[Action->ReceiveID].bFulFilled = FALSE;
 PrivatVars->SyncAction[Action->ReceiveID].ChanMask = wChannel;
 PrivatVars->SyncAction[Action->ReceiveID].DoneMask = 0;

 /* Prepare next action number */
 PrivatVars->NumSyncActions += 1;

 return TRUE;
}
break;

5.3.285.3.285.3.285.3.28 Processing the Processing the Processing the Processing the DMM_SYNC_MODULE_ACTION messagemessagemessagemessage

The DMM_SYNC_MODULE_ACTION message is sent to the specified module when a synchronous event

has happened. If the module supports synchronous actions, the data flow depends on the messages

DMM_SYNC_MODULE_ACTION or DMM_SYNC_MODULE_NO_ACTION. These messages appear continuously,

in order to process new data blocks and in the case of DMM_SYNC_MODULE_ACTION start the specified

event driven action.

/* It’s a sychron event driven action */
case DMM_SYNC_MODULE_ACTION:
case DMM_SYNC_MODULE_NO_ACTION:
{
 VAR_DERIVATION *PrivatVars = ThisModule->TempModuleData;

 /* First we process old actions */
 if (PrivatVars->SyncAction[Action->ReceiveID].bReceived)
 return FALSE;

 /* Have we to do any actions */
 if (wAction == DMM_SYNC_MODULE_ACTION)
 PrivatVars->SyncAction[Action->ReceiveID].bFulFilled = TRUE;
 else
 PrivatVars->SyncAction[Action->ReceiveID].bFulFilled = FALSE;

 /* Set received flag */
 PrivatVars->SyncAction[Action->ReceiveID].bReceived = TRUE;

 /* Set ready mask */
 PrivatVars->SyncAction[Action->ReceiveID].DoneMask = 0;

 /* Set action start time */
 PrivatVars->SyncAction[Action->ReceiveID].ActionTime = Action->fStartTime;
}
break;

First of all the variable PrivatVars->SyncAction[Action->ReceiveID].bReceived is tested, if the

old action has been processed. If the message DMM_SYNC_MODULE_ACTION has been sent, the action

has to be performed. The flag PrivatVars->SyncAction[Action->ReceiveID].bFulFilled is set

to TRUE and will be worked out in the ProcessData function.

5.3.295.3.295.3.295.3.29 Processing the Processing the Processing the Processing the DMM_SYNC_MODULE_NO_ACTION messagemessagemessagemessage

The DMM_SYNC_MODULE_NO_ACTION message is sent to the specified module when no synchronous

action has to be performed. See example above.

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 34 www.dasylab.com

5.3.305.3.305.3.305.3.30 Processing the Processing the Processing the Processing the DMM_COPY_CHANNEL_NAME messagemessagemessagemessage

DASYLab supports copying channel names from one module to another. This message is sent to data

source modules to copy the name of each channel to the connected module(s) by using the

CopyChannelName function. The processing of this message is given in the Generator example:

case DMM_COPY_CHANNEL_NAME:
 {
 MODUL_GENERATOR *PrivatInfo = ThisModule->ModuleParameters;
 UINT i;

 for (i=0; i<ThisModule->wNumOutChan; i++)
 {
 CopyChannelName (ThisModule->Fifo[i], (LPSTR *)PrivatInfo->szChannelName[i]);
 }
 }
 break;

5.3.315.3.315.3.315.3.31 Processing the Processing the Processing the Processing the DMM_GET_CHANNEL_NAME messagemessagemessagemessage

This message is sent to data processing and data sink modules: The wParam value specifies the

current channel number and the lParam value is a pointer to the channel name of the previous

module. If the channel names of the previous module should be copied this message should be

processed like this:

case DMM_GET_CHANNEL_NAME:
 {
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;

 if (wParam<MAX_CHANNEL)
 {
 if (ModuleInfo->bCopyChannelName[wParam])
 strcpy (ModuleInfo->szChannelName[wParam], (LPSTR)lParam);

 /* If the module has output channels: copy channel name to the connected module(s) */
 CopyChannelName (ThisModule->Fifo[wParam], (LPSTR *)ModuleInfo->szChannelName[wParam]);
 }
 }
 break;

5.3.325.3.325.3.325.3.32 Processing the Processing the Processing the Processing the DMM_SET_CHANNEL_NAME_COPY_OPTION messagemessagemessagemessage

When worksheets of older DASYLab versions are loaded, the user is asked if he wants to set the

option to copy channel names from one module to another. Depending on the user’s choice, the

corresponding variable is initialized with the value of wParam of this message:

case DMM_SET_CHANNEL_NAME_COPY_OPTION:
 {
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;
 UINT i;

 for (i=0; i<MAX_CHANNEL; i++)
 ModuleInfo->bCopyChannelName[i] = wParam;
 }
 break;

5.3.335.3.335.3.335.3.33 Processing the Processing the Processing the Processing the DCM_GET_UNIT messagemessagemessagemessage

The handling of physical units for each channel of a module is similar to copying channel names:

case DCM_GET_UNIT:
 {
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;

 return (long) ModuleInfo->szUnit[wParam];
 }
 break;

Processing this message means to copy the unit of each channel to the connected module(s). The

wParam value specifies the current channel number.

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 35 Extension Toolkit for DASYLab 2016

Data source modules should provide a list box in which the physical unit of the channel can be

selected. The unit can be copied through data processing modules by using the placeholder #0. If a

data processing module performs arithmetic operations that have effect on the physical unit

different operations can be done with the placeholder. See the DASYLab manual for details. Data

sink modules should simplify the unit by using the ExpandUnitString function (� example Lamp.c).

5.3.345.3.345.3.345.3.34 Processing the Processing the Processing the Processing the DMM_SAVE_WINDOW_POS messagemessagemessagemessage

The DMM_SAVE_WINDOW_POS message is sent to the specified module when the user wants to create a

new window arrangement. The actual window position and dimensions are saved under the actual

number stored in the wParam variable. The function SaveHwndPos of the toolkit has to be called in

order to save the actual window position. The data for storing the positions are placed in the

ModuleWndPos structure. In order to recall the positions, the data have to be placed in the module

parameters which are copied into the worksheet. See the example LAMP.C where this function is

used.

5.3.355.3.355.3.355.3.35 Processing the Processing the Processing the Processing the DMM_DEL_WINDOW_POS messagemessagemessagemessage

The DMM_DEL_WINDOW_POS message is sent to the specified module when the actual arrangement

should be deleted. No further action has to be done here.

5.3.365.3.365.3.365.3.36 Processing the Processing the Processing the Processing the DMM_SHOW_WINDOW_POS messagemessagemessagemessage

The DMM_SHOW_WINDOW_POS message is sent to the specified module when the actual arrangement

number wParam should be shown. Call here the toolkit function ShowHwndPos.

5.3.375.3.375.3.375.3.37 Processing the Processing the Processing the Processing the DMM_NORMALIZE_ALL_WINDOWS messagemessagemessagemessage

DASYLab sends this message to modules, if function View » All Windows » Restore was executed.

5.3.385.3.385.3.385.3.38 Processing the Processing the Processing the Processing the DMM_HIDE_ALL_WINDOWS messagemessagemessagemessage

DASYLab sends this message to modules, if function View » All Windows » Hide was executed.

5.3.395.3.395.3.395.3.39 Processing the Processing the Processing the Processing the DMM_SHOW_ALL_WINDOWS messagemessagemessagemessage

DASYLab sends this message to modules, if function View » All Windows » Show was executed.

5.3.405.3.405.3.405.3.40 Processing the Processing the Processing the Processing the DMM_MINIMIZE_ALL_WINDOWS messagemessagemessagemessage

DASYLab sends this message to modules, if function View » All Windows » Minimize was executed.

5.3.415.3.415.3.415.3.41 Processing the Processing the Processing the Processing the DMM_ACTIVATE_LAYOUT messagemessagemessagemessage

The DMM_ACTIVATE_LAYOUT message is sent when the layout window is activated. Any child window

should be hidden.

5.3.425.3.425.3.425.3.42 Processing the Processing the Processing the Processing the DMM_ACTIVATE_WORKSHEET messagemessagemessagemessage

The DMM_ACTIVATE_WORKSHEET message is sent when the worksheet window is activated. The actual

window arrangement for this view should be restored.

5.3.435.3.435.3.435.3.43 Processing the Processing the Processing the Processing the DMM_ACTIVATE_DISPLAY_WND messagemessagemessagemessage

The DMM_ACTIVATE_DISPLAY_WND message is sent when the display window is activated. The actual

window arrangement for this view should be restored.

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 36 www.dasylab.com

5.3.445.3.445.3.445.3.44 Processing the Processing the Processing the Processing the DMM_GLOBAL_VAR_CHANGED and and and and

DMM_GLOBAL_STRING_CHANGED messagemessagemessagemessage

The DMM_GLOBAL_VAR_CHANGED and DMM_GLOBAL_STRING_CHANGED message is sent, if the value of a

global variable or a global string has changed. This message is sent to the module only if it registered

global variables and/or global strings. See chapter 5.4 Using global strings or variables with DASYLab

for details.

5.3.455.3.455.3.455.3.45 Processing the Processing the Processing the Processing the DMM_CHANGE_VAR_NAME messagemessagemessagemessage

The DMM_CHANGE_VAR_NAME message is sent if the name of a global variable or a global string has

changed. The message will have the old name as wParam and the new name as lParam.

If the module uses global variables by number, no action needs to be taken, since the global

variable/string functions will handle the new name correctly.

However, if the module stores placeholders for global variables or strings in text strings (like for file

names etc.), the module should call the ChangeNameInString function to change the string to the

use of the new name and return the appropriate result. If several such strings have to be processed,

return a Boolean AND of all those return values to indicate any failure.

Here is an example of how to handle the DMM_CHANGE_VAR_NAME message:

case DMM_CHANGE_VAR_NAME:
{
 MODULE_FILESAVE *ModuleInfo = ThisModule->ModuleParameters;

 return ChangeNameInString (ModuleInfo->szFileName, sizeof (ModuleInfo->szFileName),
 (LPSTR) wParam, (LPSTR) lParam);
}

5.3.465.3.465.3.465.3.46 Replacing modulesReplacing modulesReplacing modulesReplacing modules

5.3.46.15.3.46.15.3.46.15.3.46.1 Processing the Processing the Processing the Processing the DMM_CREATE_REPLACE messagemessagemessagemessage

The DMM_CREATE_REPLACE message is sent to a module if the user clicks Replace module in the

context menu of the module block. The lParam of the message contains a pointer to a

ModuleReplaceTemplate structure. This is a MODULE structure which has all relevant parameters

copied from the module’s MODULE structure. The ModuleParameters member however does not

point to the module’s private parameters, but to a MODULE_DATA_TEMPLATE structure, which is an

abstraction of the module’s parameters. This can be used by a module which will replace the existing

one to setup its parameters correctly. Parameters supported for transfer to the new module are:

channel names, units, and CopyChannelName settings.

If the module supports several subtypes which could replace each other (e.g. the Arithmetic

module), the module can set the bReplaceItself member of the MODULE_DATA_TEMPLATE structure

to TRUE. In this case, the same module will appear in the list of module available for replacement.

It is the module’s responsibility to copy its private parameters to the MODULE_DATA_TEMPLATE where

appropriate. If the creation of the template fails or the module does not support replacing, return

FALSE to this message, otherwise TRUE. FALSE is default.

See the toolkit examples for setting up a DMM_CREATE_REPLACE handler for special types of modules.

5.3.46.25.3.46.25.3.46.25.3.46.2 Processing the Processing the Processing the Processing the DQM_CHECK_REPLACE messagemessagemessagemessage

If the user has clicked Replace module in the context menu of the module block and a

ModuleReplaceTemplate has successfully been created by the above message, all module classes

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 37 Extension Toolkit for DASYLab 2016

are inquired if they can replace the existing module by the DQM_CHECK_REPLACE module class

message. The lParam of the message contains a pointer to the ModuleReplaceTemplate.

The module class should check the settings in the ModuleReplaceTemplate and return TRUE if it can

replace a module described by the template, and FALSE otherwise. Default return value is FALSE.

Things especially to check here are number of input and output channels and the ChannelRelation

type. Note that e.g. a relay module cannot replace an arithmetic module with two inputs and one

output although it might have the same number of inputs and outputs, but a different

ChannelRelation.

See the toolkit examples for setting up a DQM_CHECK_REPLACE handler for special types of modules.

5.3.46.35.3.46.35.3.46.35.3.46.3 Processing the Processing the Processing the Processing the DMM_REPLACE_MODULE messagemessagemessagemessage

If the user has selected a module for replacing an existing one, the MODULE structure of the new

module will be created by DASYLab. To initialize the new module, the DMM_REPLACE_MODULE message

will be sent to it. The lParam of the message contains a pointer to the ModuleReplaceTemplate of

the original module.

Usually it is a good idea to call the CreateModule handler first to setup the module parameters. Note

that no DMM_CREATE_MODULE message is sent. It should be made sure that the Create handler does

not reset e.g. the number of input and output channels. However, the setup for the Replace case can

be made completely separate from the Create case.

For safety, the ChannelRelation parameter of the new module’s MODULE structure should be set,

since it might be different in the original module.

Finally, the module should copy the relevant parameters from the MODULE_DATA_TEMPLATE structure

of the original module. Note that each parameter in this structure is masked by a Boolean flag that

indicates whether the entry is valid and should be copied.

If the replace operation fails for some reason, the module might return FALSE to this message. The

replace operation will be cancelled in that case, reporting an error message to the user. Note that in

this case, the module is responsible for doing all cleanup operations necessary to delete the new

module, a separate DMM_DELETE_MODULE message will not be sent.

If the replace operation succeeded, return TRUE.

See the toolkit examples for setting up a DMM_REPLACE_MODULE handler for special types of modules.

5.3.46.45.3.46.45.3.46.45.3.46.4 Processing the Processing the Processing the Processing the DMM_GET_MODULE_TYPE messamessamessamessagegegege

If the module supports several subtypes which could replace each other (e.g. the Arithmetic

module), the module should return its subtype identifier through this message.

This message will be sent to the module only in the case of an Undo of a Replace operation in order

to identify whether the subtype of a module has been changed by the preceding Replace operation.

The subtype identifier can be any integer number which is a unique indication of the module’s

subtype. It is only checked for equality to the subtype identifier of the original module if the module

class is the same.

5.3.475.3.475.3.475.3.47 Processing the Processing the Processing the Processing the DMM_REQUEST_GLOB_VARS messagemessagemessagemessage

Since version 8, DASYLab provides an overview of the usage of all global variables – it is called the

Variable Overview. In order to get information regarding the usage of variables of a module it sends

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 38 www.dasylab.com

the message DMM_REQUEST_GLOB_VARS to every module of the current worksheet. If a module does

not answer this message the appropriate module will be listed as "has to be checked manually"

because the Variable Overview cannot decide, if variables are used or not in this module.

Even if the module does not use any variable it has to answer this request. See the following

example from the file deriv.c.

BOOL RequestGlobalVars_DERIVATION (MODULE *ThisModule, LPARAM pHandle)
{
 GLVO_MODULE_NOTIFY_PARAM Param;

 Param.wSize = sizeof (GLVO_MODULE_NOTIFY_PARAM);
 Param.uiVersion = GLVO_VERSION;
 Param.pHandle = pHandle;
 Param.wVarUsage = GLVO_VARUSAGE_NEVER;

 Param.wVarType = GLVO_VARTYPE_NONE;
 Param.wVarNumber = 0;
 Param.wAccess = GLVO_ACCESS_NONE;
 Param.iChannelNumber = -1;
 Param.bAction = FALSE;
 Param.wActionNumber = 0;
 strcpy(Param.szDescription, "---");
 GlvoModuleNotifyGlobalVar (&Param);

 return TRUE;

 UNUSED (ThisModule);
}

The call of the function GlvoModuleNotifyGlobalVar with the properly filled structure variable

Param notifies the Variable Overview if and in which way variables are used inside this module.

See the following example from the file generator.c where global variables are used for frequency

and amplitude.

BOOL RequestGlobalVars_GENERATOR (MODULE *ThisModule, LPARAM pHandle)
{
 GLVO_MODULE_NOTIFY_PARAM Param;
 MODULE_GENERATOR *ModuleInfo = ThisModule->ModuleParameters;
 UINT i;

 Param.wSize = sizeof (GLVO_MODULE_NOTIFY_PARAM);
 Param.uiVersion = GLVO_VERSION;
 Param.pHandle = pHandle;

 Param.wVarType = GLVO_VARTYPE_NUMBER;
 Param.wAccess = GLVO_ACCESS_READ;
 Param.bAction = FALSE; /* must be FALSE ! */
 Param.wActionNumber = 0; /* must be 0 ! */

 for (i=0; i<ThisModule->wNumOutChan; i++)
 {
 /* Frequency */
 LoadString (hInst, STR_FREQUENZ, Param.szDescription,
 sizeof(Param.szDescription));
 if (ModuleInfo->nVarFrequency[i] == 0)
 {
 /* Set proper parameters in order to show that we do not */
 /* use a variable here */
 Param.wVarUsage = GLVO_VARUSAGE_NOT_YET;
 Param.wVarNumber = 0;
 Param.iChannelNumber = -1;
 strcpy(Param.szDescription, "---");
 }
 else
 {
 Param.wVarUsage = GLVO_VARUSAGE_USED;
 Param.wVarNumber = (short)ModuleInfo->nVarFrequency[i];
 Param.iChannelNumber = i;
 }
 GlvoModuleNotifyGlobalVar (&Param);

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 39 Extension Toolkit for DASYLab 2016

 /* Amplitude */
 LoadString (hInst, STR_AMPLITUDE, Param.szDescription,
 sizeof(Param.szDescription));
 if (ModuleInfo->nVarAmplitude[i] == 0)
 {
 /* Set proper parameters in order to show that we do not */
 /* use a variable here */
 Param.wVarUsage = GLVO_VARUSAGE_NOT_YET;
 Param.wVarNumber = 0;
 Param.iChannelNumber = -1;
 strcpy(Param.szDescription, "---");
 }
 else
 {
 Param.wVarUsage = GLVO_VARUSAGE_USED;
 Param.wVarNumber = (short)ModuleInfo->nVarAmplitude[i];
 Param.iChannelNumber = i;
 }
 GlvoModuleNotifyGlobalVar (&Param);
 }

 /* return true in order to show that we processed the */
 /* message DMM_REQUEST_GLOB_VARS */
 return TRUE;
}

Please note that this function has to return TRUE. If it does not, the module will appear in the list of

unsupported modules.

The elements of GLVO_MODULE_NOTIFY_PARAM in detail:

• wSize:

The size of the structure GLVO_MODULE_NOTIFY_PARAM.

• pHandle:

The handle given by the request message.

• wVarType:

The type of the global variable. Can be GLVO_VARTYPE_NONE, GLVO_VARTYPE_NUMBER,

GLVO_VARTYPE_STRING or GLVO_VARTYPE_SYSTEM.

• wVarNumber:

The Number of the numeric, string or system variable. Please note that system variables will

not be shown in the Variable Overview.

• wAccess (kind of access):

GLVO_ACCESS_NONE, GLVO_ACCESS_READ, GLVO_ACCESS_WRITE, GLVO_ACCESS_RW.

• wVarUsage (Kind of usage):

GLVO_VARUSAGE_NEVER, GLVO_VARUSAGE_NOT_YET, GLVO_VARUSAGE_USED,

GLVO_VARUSAGE_USED_AS_INDEX. Please use the constant GLVO_VARUSAGE_NOT_YET if the

specific module parameter can be a variable but currently is not. The constant

GLVO_VARUSAGE_USED_AS_INDEX has to be used if the content of the variable will be used as

the number of another variable. So you will very likely do not need it.

• iChannelNumber:

Number of the current channel. Usually in the range from 0 to 15 for standard channels but

all numbers up to 255 are allowed. This can be useful for modules using a master/slave

concept. If the variable is not related to a channel, you have to set -1 here.

• bAction:

Always FALSE!

• wActionNumber:

Always 0!

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 40 www.dasylab.com

• szDescription:

Please fill this element with a description of the module parameter which holds the variable.

For example "Frequency" or "Amplitude". The size of the string can be up to

GLVO_USAGEDESCRIPTION_MAXLEN characters.

5.3.485.3.485.3.485.3.48 Processing the Processing the Processing the Processing the DMM_REQ_MODULE_DEFAULT messagemessagemessagemessage

Since version 8, DASYLab provides setting user defined module defaults. When a user defined

default has been set for a specific module, every time the user creates this module, it will load these

settings. However, module default settings are only possible, if the creator of the specific module

give permission to do that. The way to do that is to include the following lines in

PerformAction_XXX:

case DMM_REQ_MODULE_DEFAULT:
 return TRUE;

The example modules in the toolkit already contain these lines. In some seldom cases, it might be

necessary to refuse a permit for setting module defaults – e.g. if you providing a master/slave

organization of your modules, or if the settings depend on hardware options which may change in

certain circumstances. To do so just return FALSE, and the user will not be able to set a default for

your module.

5.3.495.3.495.3.495.3.49 Processing the Processing the Processing the Processing the DMM_IS_DEBUG messagemessagemessagemessage

This message informs DASYLab whether a module originates from a release or from a debug DLL.

Modules from a debug DLL have a red frame in the worksheet. The following is an example for the

use of source texts within the PerformAction:

 case DMM_IS_DEBUG:
ifdef _DEBUG
 return 2;
else
 return TRUE;
endif

5.3.505.3.505.3.505.3.50 Processing the Processing the Processing the Processing the DMM_GET_TIMEBASE_ID messagemessagemessagemessage

DASYLab 2016 introduced this new message. It is used to support the system to find out, which time

bases are actual used in the worksheet.

In recent versions of DASYLab, all time bases are stored in the worksheet. When you take this

worksheet to another computer with different measurement hardware, the time bases of the

original hardware stay inside the worksheet, and there was no way to delete them. DASYLab was

augmented with an option do delete unused time bases from the worksheet. For this purpose it

needs to ask every module, which time base ID it uses. The default function returns 0 (= no time

base is used) what is appropriate for all data processing modules.

But all data source modules (slider, switch, generator, hardware input modules, hardware output

modules) need to return the time base ID, they are bind to, or they are synchronized to. If you do

not answer to that message, the block size and the sample rate of your time base do not make it into

the work sheet. Example is in Generat.c in this toolkit example:

case DMM_GET_TIMEBASE_ID:
 return ((MODULE_GENERATOR *)ThisModule->ModuleParameters)->uiTimeBase;

Hint: The time bases DASYLab and Driver are always stored into the flowchart – so nothing to do for

you, when you use these time bases.

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 41 Extension Toolkit for DASYLab 2016

5.3.515.3.515.3.515.3.51 Processing the Processing the Processing the Processing the ProcessData messagemessagemessagemessage

We shall now discuss the probably most interesting item: the processing of the data.

Unlike all of the other messages, the ProcessData message is not sent by sending it to the general

PerformAction message handler. For efficiency reasons, the DASYLab kernel calls the ProcessData

function directly. Despite this, we will continue talking about the ProcessData message here.

The ProcessData message is sent to a module periodically while the experiment is running. The

DASYLab kernel keeps a list of all modules of a worksheet (including those inside black boxes) and

continuously chains through this list, sending one ProcessData message to every module in the list

again and again until the experiment is stopped.

One important fact to know is that this process can be interrupted. No ProcessData messages are

sent while the user drags a window or while a disk save is in progress, etc. It is also not possible for

the DASYLab kernel to guarantee any minimal number of messages sent to a module in some time

interval. The messages are always sent as fast as possible, and the rate depends on many

parameters like the CPU power of your computer and the number and type of the modules in the

worksheet.

The actions performed on the ProcessData message depends on the type of the module. For data

processing modules like the Derivation example, you will typically find actions like this:

Once for each channel:

a) Check if there is enough space on the output side to hold one more data block. If so,

b) Check if data is available on the input side. If so,

c) Read one block of data from the input side, process the data, and output the processed data

to the output side, and move the animation marker.

We will discuss other possibilities later when looking at more examples.

static int ProcessData_DERIVATION (MODULE *ThisModule)
{
 MODULE_DERIVATION *ModuleInfo = ThisModule->ModuleParameters;
 CHANNEL_DERIVATION *ChannelInfo;
 UINT i, wFifoNr;
 FIFO_HEADER *OutFifo;
 DATA_BLOCK_HEADER *OutputBlock;
 DATA_BLOCK_HEADER *InputBlock;

 /* Walk through all the FIFO´s after each other */
 for (wFifoNr=0; wFifoNr<ThisModule->wNumOutChan; wFifoNr++)
 {
 /* Now we´re in one FIFO */
 OutFifo = ThisModule->Fifo[wFifoNr];
 ChannelInfo = ThisModule->TempChannelData[wFifoNr];

 /* Do we have Space to create a new Block ? */
 if ((OutputBlock = GetCurrentOutputBlock (OutFifo)) != NULL)
 {
 /* Are there Data Blocks at the Input ?*/
 InputBlock = GetInputBlock (ThisModule, wFifoNr);

 if (InputBlock != NULL &&
 /* have we received any actions */
 GotSyncActions (ThisModule, wFifoNr, InputBlock->fStartTime))
 {
 double faktor, y1, z;

 /* Perform actions */
 DoSyncActions(ThisModule,wFifoNr);

 /* Copy Time Information */

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 42 www.dasylab.com

 OutputBlock->fStartTime = InputBlock->fStartTime;
 OutputBlock->fSampleDistance = InputBlock->fSampleDistance;
 OutputBlock->wBlockSize = InputBlock->wBlockSize;

 /* Do the computing... */

 switch (ModuleInfo->Function[wFifoNr])
 {
 case IDD_DERIVATION_DIFF:
 {
 faktor = 1.0 / InputBlock->fSampleDistance;
 y1 = ChannelInfo->y1;

 for (i=0; i<InputBlock->wBlockSize; i++)
 {
 z = InputBlock->Data[i];
 OutputBlock->Data[i] =
 (DLAB_FLOAT) (faktor * (z - y1));
 y1 = z;
 }

 ChannelInfo->y1 = y1;
 }
 break;

 case IDD_DERIVATION_INT:
 {
 faktor = InputBlock->fSampleDistance;
 z = ChannelInfo->z;

 for (i=0; i<InputBlock->wBlockSize; i++)
 {
 z += faktor * InputBlock->Data[i];
 OutputBlock->Data[i] = (DLAB_FLOAT) z;
 }

 ChannelInfo->z = z;
 }
 break;

 default:
 /* That should not happen */
 ImpossibleCase();
 return FALSE;
 }

 /* Add this Data Block to the FIFO, so that a "Son" Block can */
 /* get Access to it */
 ReleaseOutputBlock (OutFifo);

 /* Release "Father" Block */
 ReleaseInputBlock (ThisModule, wFifoNr);

 /* With Restart ? */
 ChannelInfo->wCount += 1;
 if (ChannelInfo->wCount >= ModuleInfo->wBlocks[wFifoNr])
 {
 if (ModuleInfo->bRestart[wFifoNr])
 {
 ChannelInfo->y1 = 0.0;
 ChannelInfo->z = 0.0;
 }
 ChannelInfo->wCount = 0;
 }

 }
 }
 }
 return TRUE;
}

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 43 Extension Toolkit for DASYLab 2016

5.3.525.3.525.3.525.3.52 Event driven actionsEvent driven actionsEvent driven actionsEvent driven actions

We shall now discuss the appearing asynchronous or synchronous actions. As shown in the examples

above there are a lot of messages which coordinate the use of the event driven actions. Here is just a

short overview about the general functionality of supporting event driven actions.

5.3.52.15.3.52.15.3.52.15.3.52.1 Register predefined evenRegister predefined evenRegister predefined evenRegister predefined event driven action supportt driven action supportt driven action supportt driven action support

Insert the DMM_QUERY_SYNC_MODULE_ACTION for synchronous and DMM_QUERY_MODULE_ACTION for

asynchronous actions into the PerformAction function. The function is called for each action (IDs

defined in file CONST.H). Quit the supported actions with a TRUE return value.

Action ID constant in CONST.H

Printing ACTION_PRINT

Reset value ACTION_RESET

Set old value to new one ACTION_SET

Fade channel in ACTION_FADE_IN

Fade channel out ACTION_FADE_OUT

Perform next ACTION_NEXT

Copy to clipboard ACTION_TO_CLIPBOARD

Display all channels in one window ACTION_ONE_WINDOW

Set caption string ACTION_SET_CAPTION

Perform message box ACTION_WARN_MESSAGE

Select windows arrangement ACTION_SEL_WIN_SETUP

Load worksheet ACTION_LOAD_DSB

Load and start worksheet ACTION_LOAD_GO_DSB

Start backup of files ACTION_BACKUP

Send layout to printer ACTION_PRINT_LAYOUT

Display layout as full screen ACTION_FULLSCREEN_LAYOUT

Bring layout to top ACTION_ACTIVATE_LAYOUT

Change global variable ACTION_SET_VAR

Change global string ACTION_SET_STRING

Save global variable to INI ACTION_SAVE_VAR

Save global string to INI ACTION_SAVE_STRING

Get global variable from INI ACTION_LOAD_VAR

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 44 www.dasylab.com

Action ID constant in CONST.H

Get global string from INI ACTION_LOAD_STRING

Add constant to global variable ACTION_ADD_VAR

Multiply constant with global

variable

ACTION_MULT_VAR

Show layout not in full screen ACTION_NORMALIZE_LAYOUT

Activate worksheet MDI at top ACTION_SHOW_WORKSHEET

Repaint all layout objects ACTION_UPDATE_LAYOUTER_OBJECTS

Enter a global string ACTION_INPUT_GLOBAL_STRINGS

Enter a global variable ACTION_INPUT_GLOBAL_VARS

Start an external EXE file ACTION_START_EXTERNAL_PROGRAM

Quit DASYLab ACTION_EXIT_DASYLAB

Quit Windows ACTION_EXIT_WINDOWS

Quit and restart windows ACTION_EXIT_RESTART_WINDOWS

Do a message beep ACTION_MESSAGE_BEEP

Stop experiment ACTION_STOP_DSB

Stop and restart experiment ACTION_STOP_RESTART_DSB

Save global variable to INI-file ACTION_SAVE_VAR_TO_FILE

Save global string to INI-file ACTION_SAVE_STRING_TO_FILE

Load global variable from INI-file ACTION_LOAD_VAR_TO_FILE

Load global string from INI-file ACTION_LOAD _STRING_TO_FILE

Create directory ACTION_CREATE_DIR

Copy global variable to another ACTION_COPY_VAR

Copy global string to another ACTION_COPY_STRING

5.3.52.25.3.52.25.3.52.25.3.52.2 Register user defined event driven action supportRegister user defined event driven action supportRegister user defined event driven action supportRegister user defined event driven action support

Insert the DMM_EXPLAIN_USER_ACTION supporting user defined event driven actions into the

PerformAction function. The function is called for all user IDs (IDs defined in file CONST.H). Define

here for the selected IDs the necessary variables as described under Processing the

DMM_EXPLAIN_USER_ACTION message.

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 45 Extension Toolkit for DASYLab 2016

User Action ID constant in CONST.H

1 ACTION_USER_0

2 ACTION_USER_1

.. ..

24 ACTION_USER_24

5.3.52.35.3.52.35.3.52.35.3.52.3 Initialize variables for Initialize variables for Initialize variables for Initialize variables for synchronous event driven action supportsynchronous event driven action supportsynchronous event driven action supportsynchronous event driven action support

Insert the DMM_CLEAR_SYNC_MODULE_ACTIONS and DMM_INIT_SYNC_MODULE_ACTION into the

PerformAction function. When supporting synchronous event driven actions here the needed

variables are initialized as described in the example above.

5.3.52.45.3.52.45.3.52.45.3.52.4 Asynchronous action handlingAsynchronous action handlingAsynchronous action handlingAsynchronous action handling

As shown in the ProcessData function above whenever an asynchronous event appears we get the

DMM_MODULE_ACTION message. Now we have to perform the action request immediately. For

example, reset a certain value. The variable ACTION->Number specifies the specific action called to

process.

5.3.52.55.3.52.55.3.52.55.3.52.5 Synchronous action handlingSynchronous action handlingSynchronous action handlingSynchronous action handling

We shall now discuss the appearing synchronous event driven actions. As shown in the ProcessData

function above whenever a synchronous event appears we get the DMM_SYNC_MODULE_ACTION or the

DMM_SYNC_MODULE_NO_ACTION message. This message is sent out from the action module after every

data block, to synchronize the data and message flow. The module (here: Derivation) has to wait

until it receives one of these messages until it can perform a new data block. When these messages

appear, no action is performed but all necessary variables are set to the specific values so that the

data flow in the ProcessData function can be continued. The ProcessData function contains two

new functions which control the message flow in the synchronous mode. Here is the example of the

derivation module.

5.3.52.65.3.52.65.3.52.65.3.52.6 Check received synchronous actionsCheck received synchronous actionsCheck received synchronous actionsCheck received synchronous actions

The GotSyncActions function is called every time the ProcessData function is performed. If the

number of supported synchronous actions is higher than 0, the data evaluation can be continued if

the synchronous event flags for the selected channel are set. Otherwise the function returns with

the Boolean value FALSE and the ProcessData function is left.

static BOOL GotSyncActions (MODULE *ThisModule, UINT wFifoNr, double fStartTime)
{
 VAR_DERIVATION *PrivatVars = ThisModule->TempModuleData;
 int i;

 /* Test each sychron action */
 for (i=0; i<PrivatVars->NumSyncActions; i++)
 {
 /* Is this channel an synch action channel */
 if (PrivatVars->SyncAction[i].ChanMask & (1L << wFifoNr))
 {
 /* Have we received the synch action already */
 if (! PrivatVars->SyncAction[i].bReceived)
 return FALSE;

 /* Have we worked out this action for this channel */
 if (PrivatVars->SyncAction[i].DoneMask & (1L << wFifoNr))
 return FALSE;

 /* Is the time of the synch action nearly equal the time of the data block */
 if (! IsNearlyEqual(fStartTime,PrivatVars->SyncAction[i].ActionTime,0.001))

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 46 www.dasylab.com

 {
 /* If not then stop the experiment and show a sweet messagebox */
 StopExperiment ();
 strcpy (ShortTempString, ThisModule->ModuleName);
 LoadString (hInstDlab, STR_ILL_ACTION_TIME,
 LongTempString, sizeof(LongTempString));
 ShowWarning (ShortTempString, LongTempString);
 return FALSE;
 }
 }
 }

 return TRUE;
}

5.3.52.75.3.52.75.3.52.75.3.52.7 Perform synchronous action messages in the Perform synchronous action messages in the Perform synchronous action messages in the Perform synchronous action messages in the ProcessData functionfunctionfunctionfunction

If the test in synchronous mode has succeeded, we can perform all necessary actions and reset the

variables DoneMask and bReceived, so that new event driven actions can be received and

performed.

static void DoSyncActions (MODULE *ThisModule, UINT wFifoNr)
{
 VAR_DERIVATION *PrivatVars = ThisModule->TempModuleData;
 int i;

 /* Test each sychron action */
 for (i=0; i<PrivatVars->NumSyncActions; i++)
 {
 /* Is this channel an synch action channel */
 if (PrivatVars->SyncAction[i].ChanMask & (1L << wFifoNr))
 {
 /* Is an action necessary */
 if (PrivatVars->SyncAction[i].bFulFilled)
 {
 /* OK then select the action */
 switch (PrivatVars->SyncAction[i].ActionNumber)
 {
 /* Reset of the derivation is the only action so far */
 case ACTION_RESET:
 {
 /* Channel Data */
 CHANNEL_DERIVATION *KanalInfo = ThisModule->TempChannelData[wFifoNr];

 /* Reset variable */
 KanalInfo->z = 0.0;
 }
 break;
 }
 }

 /* Mark the channel mask that this channel is ready */
 PrivatVars->SyncAction[i].DoneMask |= (1L << wFifoNr);

 /* If all channel actions are done, then prepare for the next event */
 if (PrivatVars->SyncAction[i].DoneMask == PrivatVars->SyncAction[i].ChanMask)
 PrivatVars->SyncAction[i].bReceived = FALSE;
 }
 }
}

5.3.535.3.535.3.535.3.53 Window Window Window Window Arrangement under DASYArrangement under DASYArrangement under DASYArrangement under DASYLabLabLabLab

The feature of arranging window placements can also be used by user defined window modules. In

the included example LAMP.C you can see the general functionality of saving deleting and showing

window arrangements. Supporting this function is quite easy: all you have to add are the following

source lines into the PerformAction_XXX function of your module and add the necessary structure

MODULE_WND_POS into the module parameters.

case DMM_SAVE_WINDOW_POS:

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 47 Extension Toolkit for DASYLab 2016

{
 MODUL_LAMPE *PrivatInfo = ThisModule->ModuleParameters;

 SaveHwndPos (&PrivatInfo->WndPos[wParam], ThisModule->hwndWindow);
 return TRUE;
}
break;

/* Delete the actual Window position */
case DMM_DEL_WINDOW_POS:
 return TRUE;

/* Delete all actual Window positions */
case DMM_DEL_ALL_WINDOW_POS:
 return TRUE;

/* Show the window at the defined position number */
case DMM_SHOW_WINDOW_POS:
{
 MODUL_LAMPE *PrivatInfo = ThisModule->ModuleParameters;

 ShowHwndPos (&PrivatInfo->WndPos[wParam], ThisModule->hwndWindow);
 return TRUE;
}
break;

5.3.545.3.545.3.545.3.54 Parameter setup dialog box handlingParameter setup dialog box handlingParameter setup dialog box handlingParameter setup dialog box handling

As mentioned before, most of the real work for processing the DMM_PARAM_MODULE message is done

inside the DialogBox function.

A lot of windows functions and messages will be used in the following text. The meaning of those

can be found in the Windows SDK literature, or in the online help of your compiler. We will not

discuss the Windows functions or messages in this document.

Dialog boxes for modules typically consist of three parts:

1. A set of global parameters that apply to the module in general or to all channels

2. A channel selection bar to select the number of channels and to select one active channel.

3. A set of channel specific parameters. Changes here only affect the active channel.

5.3.54.15.3.54.15.3.54.15.3.54.1 The The The The DisplayChannel and and and and RetrieveChannel functionsfunctionsfunctionsfunctions

Generally, the functions DisplayChannel and RetrieveChannel are defined inside each module

class. The DisplayChannel function displays the parameters for the active channel in the dialog box

while the RetrieveChannel function reads back the changed values and saves them for the active

channel.

static void DisplayChannel (HWND hDlg, UINT wNummer)
{
 MODULE_DERIVATION *TempInfo = SingleInfo;
 char StrBuf[24];
 itoa (wNummer, StrBuf, 10);
 SetDlgItemText (hDlg, IDD_KANAL_NR, StrBuf);
 SetDlgItemText (hDlg, IDD_KANAL_NAME, TempInfo->ChannelName[wNummer]);
 /* DERIVATION-Optionen */

 CheckRadioButton (hDlg, IDD_DERIVATION_DIFF, IDD_DERIVATION_INT,
 TempInfo->Function[wNummer]);
}

static void RetrieveChannel (HWND hDlg, UINT wNummer)
{
 MODULE_DERIVATION *TempInfo = SingleInfo;
 GetDlgItemText (hDlg, IDD_KANAL_NAME,
 TempInfo->ChannelName[wNummer], CHANNEL_NAME_LENGTH);

 /* Pushing any Buttons, Radio Buttons or Check Boxes is handled in the */

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 48 www.dasylab.com

 /* WM_COMMAND case of the Dialog Box Function */
}

5.3.54.25.3.54.25.3.54.25.3.54.2 General outline of a dialog box functionGeneral outline of a dialog box functionGeneral outline of a dialog box functionGeneral outline of a dialog box function

A dialog box function is similar to the PerformAction function discussed above, but it will operate

on the window handle of the dialog box window and receive Windows messages instead of DASYLab

messages. The DASYLab kernel ensures that a pointer to the module in question can be found under

CurrentModulePtr for the entire lifetime of the dialog box.

At the start of dialog box handling, the parameters of the module are copied to intermediate storage

and a pointer to the data is saved in the global variable SingleInfo. This can then be accessed while

processing subsequent messages.

While the dialog box is open, only the temporary storage is manipulated leaving the original data

intact. When the user presses OK, the temporary data is copied over the original data. If the user

pressed Cancel, nothing is copied and the original data remains intact.

A typical outline of a dialog box function is as follows:

BOOL CALLBACK DERIVATIONProc (HWND hDlg, UINT Message, WPARAM wParam, LPARAM lParam)
{
 MODULE *ThisModule = CurrentModulePtr;

 MODULE_DERIVATION *TempInfo = SingleInfo;
 switch (Message)
 {

 case WM_INITDIALOG:
 {
 // Initialization of the dialog box
 // Copy the module's data to a temporary storage and modify
 // only this temporary data. So the original data remain intact
 // until the OK button is pressed.
 }
 break;

 case WM_CLICK_LDOWN:
 {
 // Left mouse click on channel bar: Select new active channel
 }
 break;

 case WM_COPYFOCUS:
 {
 // F7 was pressed. Copy the active parameter of the active channel
 // to all channels
 }
 break;

 case WM_COPYALL:
 {
 // F8 was pressed. Copy all parameters of the active channel
 // to all channels
 }
 break;

 case WM_COMMAND:
 {

 UINT cmd_id = GET_WM_COMMAND_ID (wParam,lParam);

 switch (cmd_id)
 {

 case IDD_LESS:
 {
 // Minus button was pressed: remove one channel
 }
 break;

 case IDD_MORE:
 {
 // Plus button was pressed: add one channel
 }
 break;

 case IDD_MODUL_NAME:

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 49 Extension Toolkit for DASYLab 2016

 case IDD_MODUL_BEZEICHNUNG:

 case IDD_KANAL_NAME:
 {
 // Found in most module classes: The user clicked on the
 // module name or description field.
 // No action is necessary here, we just remember the
 // last mouse-clicked item for the context sensitive help.
 }
 break;

 case IDD_DERIVATION_DIFF:

 case IDD_DERIVATION_INT:
 {
 // Special handling for each module class: The user clicked
 // on some parameter field.
 // Possibly retrieve data or do other actions here plus
 // save the mouse click for the on-line help.
 }
 break;
 case IDHELP:
 {
 // Call the context sensitive help, based on the knowledge of
 // the last item the user mouse-clicked
 }
 break;
 case IDOK:
 {
 // OK button was pressed. Save all parameters.
 }
 break;
 case IDCANCEL:
 {
 // Cancel button was pressed. Ignore all changed parameters
 // and leave the original values intact.
 }
 break;
 }
 }
 }
 return FALSE;
}

The routine processes only some of the messages sent to a dialog box. Others will be handled by a

default handler provided by windows. The WM_COMMAND message is a special case, because it is sent

whenever the user clicks on an item and you can access the field ID of the clicked field from the

parameters. This field ID is then used for sub-casing this message.

We will now discuss the actions done by our Derivation example for the individual messages.

5.3.54.35.3.54.35.3.54.35.3.54.3 Actions for Actions for Actions for Actions for WM_INITDIALOG

In response to WM_INITDIALOG the module creates intermediate storage, copies the data to that

storage, sets up the channel bar, selects the first channel to be active, displays the global data and

the data of the active channel, defines limits for the maximum string length for all of the text input

fields, and sets a focus (active item inside the dialog box).

It may (and does in this example) disable some functions while the experiment is running, if it does

not want that parameters be changed during run time. You should take care to decide what

parameters can, or cannot be changed during run time.

case WM_INITDIALOG:
 {
 ThisModule = CurrentModulePtr;
 /* Allocate temporary Memory; if we leave the Dialog Box with */
 /* "Cancel" we do not want to have changed values; so we create */

 /* a Structure like the MODUL_... Structure, copy the Data from */
 /* the original Structure, work on the temporary Structure and */
 /* copy the Temporary Structure to the original Structure if the */
 /* User pushes the OK Button. */

 SingleInfo = MemAlloc (sizeof (MODULE_DERIVATION));
 if (!SingleInfo)

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 50 www.dasylab.com

 {
 EndDialog(hDlg, FALSE);
 return (TRUE);
 }
 TempInfo = SingleInfo;
 memcpy (TempInfo, ThisModule->ModuleParameters,

 sizeof (MODULE_DERIVATION));
 /* If the Experiment is running, we cannot change the Function, */
 /* but we like to see which is chosen. */
 if (bExperimentIsRunning)
 {

 EnableWindow (GetDlgItem (hDlg, IDD_DERIVATION_DIFF), FALSE);

 EnableWindow (GetDlgItem (hDlg, IDD_DERIVATION_INT), FALSE);
 }
 /* Setup global Settings for the Dialog Box (More, Less Buttons) */
 wDialNumChan = ThisModule->wNumOutChan;
 wDialCurChan = 0;
 wDialMaxChan = 16;
 InitChannelBar (hDlg);
 DisplayChannel (hDlg, wDialCurChan);

 /* Set some Limits and initial Text for Edit Controls */

 Edit_LimitText (GetDlgItem (hDlg, IDD_KANAL_NAME),

 CHANNEL_NAME_LENGTH);

 Edit_LimitText (GetDlgItem (hDlg, IDD_MODUL_NAME),

 MODULE_NAME_LENGTH);

 SetDlgItemText (hDlg, IDD_MODUL_NAME, ThisModule->ModuleName);

 Edit_LimitText (GetDlgItem (hDlg, IDD_MODUL_BEZEICHNUNG),

 MODULE_DESCRIPTION_LENGTH);

 SetDlgItemText (hDlg, IDD_MODUL_BEZEICHNUNG,
 ThisModule->ModuleDescription);

 SetFocus (GetDlgItem (hDlg, IDD_MODUL_NAME));
 wDialLastFocus = 0;
 return FALSE;
 }
 break;

5.3.54.45.3.54.45.3.54.45.3.54.4 Actions for Actions for Actions for Actions for WM_CLICK_LDOWN

This message is not a Windows message, but a message sent by the DASYLab kernel that looks

similar to a Windows message.

In response to WM_CLICK_LDOWN, the module changes the active channel, that is: retrieve the

possibly changed parameters of the current channel, select a new channel and then display the

parameters of that channel.

case WM_CLICK_LDOWN:
 {
 /* A different Channel was selected in the Channel Bar */
 if (LOWORD (lParam) == 2)
 {
 RetrieveChannel (hDlg, wDialCurChan);
 HandleChannelClick (hDlg, wParam);
 DisplayChannel (hDlg, wDialCurChan);
 }
 wDialLastFocus = IDD_KAN00;
 SetFocus (GetDlgItem (hDlg, IDD_MODUL_NAME));
 return TRUE;
 }
 break;

5.3.54.55.3.54.55.3.54.55.3.54.5 Actions for Actions for Actions for Actions for WM_COPYFOCUS

This message is not a Windows message, but a message sent by the DASYLab kernel that looks

similar to a Windows message. The message is send, when the user presses the F7 key inside of a

dialog.

In response to WM_COPYFOCUS the module should copy the focused parameter of the current channel

to all other channels.

case WM_COPYFOCUS:

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 51 Extension Toolkit for DASYLab 2016

 {
 UINT i;
 /* Handle F7, get the Field with the Focus and copy its content to all other Channels */
 RetrieveChannel (hDlg, wDialCurChan);
 DisplayChannel (hDlg, wDialCurChan);
 /* Who has the Focus */
 for (i=0; i<wDialNumChan; i++)
 {
 if (i != wDialCurChan)
 {
 switch (wDialLastFocus)
 {
 case IDD_KANAL_NAME:
 strcpy (TempInfo->ChannelName[i],
 TempInfo->ChannelName[wDialCurChan]);
 break;
 case IDD_DERIVATION_DIFF:
 case IDD_DERIVATION_INT:
 TempInfo->Function[i] = TempInfo->Function[wDialCurChan];
 break;
 }
 }
 }
 }
 break;

5.3.54.65.3.54.65.3.54.65.3.54.6 Actions for Actions for Actions for Actions for WM_COPYALL

This message is not a Windows message, but a message sent by the DASYLab kernel that looks

similar to a Windows message. This message is send, when the user presses the F8 key inside of a

dialog.

In response to WM_COPYALL the module should copy all parameters of the current channel to all

other channels.

case WM_COPYALL:
 {
 UINT i;
 /* Handle F8, copy all fields to all other Channels */
 RetrieveChannel (hDlg, wDialCurChan);
 DisplayChannel (hDlg, wDialCurChan);
 for (i=0; i<wDialNumChan; i++)
 {
 if (i != wDialCurChan)
 {
 strcpy (TempInfo->ChannelName[i],
 TempInfo->ChannelName[wDialCurChan]);
 TempInfo->Function[i] = TempInfo->Function[wDialCurChan];
 }
 }
 }
 break;

5.3.54.75.3.54.75.3.54.75.3.54.7 Actions for Actions for Actions for Actions for WM_COMMAND

The module should retrieve the field ID of the field in question and then process the subcase for that

field ID.

In the literature, you will often find the use of wParam for this field ID which works under Windows

3.1, but not under Win32 systems. Therefore you should use the compatibility macro shown below:

case WM_COMMAND:
 {
 UINT cmd_id = GET_WM_COMMAND_ID (wParam,lParam);

 switch (cmd_id)
 {
 // sub-cases
 }
 }

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 52 www.dasylab.com

5.3.54.85.3.54.85.3.54.85.3.54.8 Actions for Actions for Actions for Actions for WM_COMMAND subcase subcase subcase subcase IDD_LESS

This removes one channel. The DASYLab kernel ensures that this message will not be sent if only one

channel is active and that it will not be sent while the experiment is running.

case IDD_LESS:
 {
 /* One Channel is canceled */
 RetrieveChannel (hDlg, wDialCurChan);

 HandleLessMoreButton (hDlg, IDD_LESS);
 DisplayChannel (hDlg, wDialCurChan);

 wDialLastFocus = IDD_KAN00;

 SetFocus (GetDlgItem (hDlg, IDD_MODUL_NAME));
 return TRUE;
 }
 break;

5.3.54.95.3.54.95.3.54.95.3.54.9 Actions for Actions for Actions for Actions for WM_COMMAND subcase subcase subcase subcase IDD_MORE

This adds one channel. The DASYLab kernel ensures that this message will not be sent if the

maximum number of channels is reached and that it will not be sent while the experiment is

running.

case IDD_MORE:
 {
 /* One Channel was added */
 RetrieveChannel (hDlg, wDialCurChan);

 HandleLessMoreButton (hDlg, IDD_MORE);
 DisplayChannel (hDlg, wDialCurChan);

 wDialLastFocus = IDD_KAN00;

 SetFocus (GetDlgItem (hDlg, IDD_MODUL_NAME));
 return TRUE;
 }
 break;

5.3.54.105.3.54.105.3.54.105.3.54.10 Actions for Actions for Actions for Actions for WM_COMMAND subcase subcase subcase subcase IDD_MODUL_NAME

Several subcases of the WM_COMMAND message require no special processing, but only need to be

recognized for the context sensitive help.

case IDD_MODUL_NAME:

case IDD_MODUL_BEZEICHNUNG:

case IDD_KANAL_NAME:
 {
 /* Who has the Input Focus */

 if (GET_WM_COMMAND_CMD (wParam,lParam) == EN_SETFOCUS)

 wDialLastFocus = cmd_id;
 return FALSE;
 }
 break;

5.3.54.115.3.54.115.3.54.115.3.54.11 Actions for module class specific subcases ofActions for module class specific subcases ofActions for module class specific subcases ofActions for module class specific subcases of WM_COMMAND

Several subcases of the WM_COMMAND message are specific to our DERIVATION example. These are

listed below.

In this example we only have to recognize function changes for a channel.

case IDD_DERIVATION_DIFF:

case IDD_DERIVATION_INT:
 {
 /* Who has the Input Focus */

 TempInfo->Function[wDialCurChan] = cmd_id;

 wDialLastFocus = cmd_id;
 }
 break;

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 53 Extension Toolkit for DASYLab 2016

5.3.54.125.3.54.125.3.54.125.3.54.12 Actions for Actions for Actions for Actions for WM_COMMAND subcase subcase subcase subcase IDHELP

When the user presses the Help button, the dialog box will receive a WM_COMMAND message with sub-

code IDHELP. It should then call the context sensitive help.

The help file name is loaded from the DLL's own resources, so every DLL should come with its own

help file providing help for its modules.

The DASYLab online Help was changed from WinHelp (.HLP) to HtmlHelp (.CHM). The case IDHELP

examples Deriv.c, dmg_trig.c, Generat.c, and Lamp.c show the fundamental procedures for

integrating the CHM Help.

Download the compilation libraries necessary for the HtmlHelp, from the Microsoft internet page

and copy them into the shared folder (htmlhelp.lib and htmlhelp.h). The respective Includes

and Calls are commented out so that you can compile the resource without the necessary libraries.

After you have copied the libraries into the shared folder, you must delete these comment rows.

Search for htmlhelp to find the respective code positions.

 case IDHELP:
 {
 UINT wHelpID=MODULNAME;

 LoadString (hInstDlab, ID_EVAHILFE, ShortTempString, sizeof(ShortTempString));
 strcpy (LongTempString, ExeFileDir);
 strcat (LongTempString, ShortTempString);

 // Load help file with the parameter of the last focus
 switch (wDialLastFocus)
 {
 case IDD_MODUL_NAME:
 wHelpID = MODULNAME;
 break;
 case IDD_MODUL_BEZEICHNUNG:
 wHelpID = MODULBESCHREIB;
 break;
 case IDD_KAN00:
 wHelpID = GL_KANALANZ;
 break;
 case IDD_KANAL_NAME:
 wHelpID = KBEZEICHNUNG;
 break;
 case ID_LIST_UNIT:
 wHelpID = KEINHEIT;
 break;
 default:
 /*
 !!!! Here your help file should be used !!!!
 LoadString (hInst, ID_YOUR_HELP, ShortTempString, sizeof(ShortTempString));
 wHelpID = YOUR_HELP_ID;
 */
 break;
 }

 HtmlHelp (
 NULL,
 LongTempString,
 HH_HELP_CONTEXT,
 wHelpID);

 wDialLastFocus = 0;
 return TRUE;
 }
 break;

The toolkit also provides the following functions which makes calling the HTML online help easier.

BOOL TKCallOnlineHelp (UINT uiHelpPathInfo, UINT uHelpCommand, UINT uiLastFocus,
 char* chHelpFileName, DWORD_PTR dwHelpIndex);

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 54 www.dasylab.com

The functions in detail:

• uiHelpPathInfo: Valid for this parameter are:

o HELP_PATH_IS_ALREADY_COMPLETE_DESIGNED

The chHelpFileName parameter already contains the name of the online help

including the respective path specification.

o HELP_PATH_INCLUDE_ONLY_THE_FILE_NAME

The chHelpFileName parameter contains the name of the online help which

DASYLab is searching for on the path specified by ExeFileDir.

• uHelpCommand: Specifies the action to perform.

This parameter corresponds to the third parameter of the API function HtmlHelp.

• uiLastFocus: Corresponds to the fourth parameter of the API function HtmlHelp.

If the transfer is an IDD_MODUL_NAME, IDD_MODUL_BEZEICHNUNG, IDD_KANAL_NAME,

IDD_KAN00, or ID_LIST_UNIT, the subject-related call automatically occurs from the

DASYLab online help. Otherwise the subject-related call dwHelpIndex is realized from

chHelpFileName.

• chHelpFileName: Specifies the name of the online help.

Refer to the parameter uiHelpPathInfo

• dwHelpIndex: Corresponds to the fourth parameter of the API function HtmlHelp, refer

also to the parameter uiLastFocus

5.3.54.135.3.54.135.3.54.135.3.54.13 Actions for Actions for Actions for Actions for WM_COMMAND subcase subcase subcase subcase IDOK

When the user presses the OK button, the dialog box will receive a WM_COMMAND message with sub-

code IDOK. It should then copy the manipulated temporary data back over the original data of the

module and call the ChangeModuleSize function to handle changes in the number of selected

channels. Finally, it should call EndDialog to close the dialog box.

case IDOK:
 {
 SetFocus (GetDlgItem (hDlg, IDOK));

 RetrieveChannel (hDlg, wDialCurChan);
 GetDlgItemText (hDlg, IDD_MODUL_NAME,
 ThisModule->ModuleName, MODULE_NAME_LENGTH+1);
 GetDlgItemText (hDlg, IDD_MODUL_BEZEICHNUNG,
 ThisModule->ModuleDescription,
 MODULE_DESCRIPTION_LENGTH+1);
 /* Save the temporary Structure to the original Structure */
 memcpy (ThisModule->ModuleParameters, TempInfo,
 sizeof (MODULE_DERIVATION));
 /* Release Memory for temporary Structure */
 MemFree (SingleInfo);
 SingleInfo = NULL;
 /* Change the Size of the Module Icon if necessary */
 ChangeModuleSize (ThisModule, wDialNumChan, wDialNumChan);
 EndDialog(hDlg, TRUE);
 return (TRUE);
 }
 break;

5.3.54.145.3.54.145.3.54.145.3.54.14 Actions for Actions for Actions for Actions for WM_COMMAND subcase subcase subcase subcase IDCANCEL

When the user presses the Cancel button, the dialog box will receive a WM_COMMAND message with

sub-code IDCANCEL. It should then call EndDialog to close the dialog box without saving the

manipulated data over the original data.

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 55 Extension Toolkit for DASYLab 2016

case IDCANCEL:
 {
 SetFocus (GetDlgItem (hDlg, IDCANCEL));
 /* Release Memory for temporary Structure */
 MemFree (SingleInfo);
 SingleInfo = NULL;
 EndDialog (hDlg, FALSE);
 return (TRUE);
 }
 break;
 }
 }
 }
 return FALSE;

This finishes the description of the dialog box handling, as well as the description of the example

module class DERIVATION. You have now seen the complete code for a sample DLL containing one

additional module.

5.3.555.3.555.3.555.3.55 Using default directoUsing default directoUsing default directoUsing default directoriesriesriesries

DASYLab supports several default directories which also can be used by the Extension Toolkit user.

Please use concerning the function of your module the adequate directory listed below.

Function Group Variable

Data Values (like Data Save

module)

DefDataDir

Device Data (like IEEE module) DefDeviceDir

Additional Utilities DefUtilityDir

The directory selection should be used as in the following example is described. If the actual

filename ActualDataDir is empty the default directory DefDataDir is used as the variable

lpstrInitialDir in the OpenFileName structure. So first time a directory is selected the default

directory is used. Every new selection will start from the previously defined directory.

memset (&ofn, 0, sizeof (OPENFILENAME));

_splitpath (ActualDataDir, szDrive, szDir, NULL, NULL);
if (strlen (szDir) == 0)
 strcpy (szDirName, DefDataDir);
else
{
 _makepath (szDirName, szDrive, szDir, NULL, NULL);
}

ofn.lStructSize = sizeof (OPENFILENAME);
ofn.hwndOwner = hwnd;
ofn.lpstrFilter = szFilter;
ofn.nFilterIndex = 1;
ofn.lpstrFile = szFile;
ofn.nMaxFile = sizeof (szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof (szFileTitle);
LoadString (hInst, STR_DATA_SAVE, szTitle, 128);
ofn.lpstrTitle = szTitle;
LoadString (hInst, STR_DATA_EXT, szFileExt, 5);
ofn.lpstrDefExt = szFileExt;
ofn.lpstrInitialDir = szDirName;

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 56 www.dasylab.com

ofn.Flags = OFN_PATHMUSTEXIST | OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT | OFN_ENABLEHOOK |
ofn_ExplorerFlag;
ofn.hInstance = hInst;
ofn.lpfnHook = CommDlgHookProc;
if (GetSaveFileName (&ofn))
{
 strcpy (ActualDataDir, ofn.lpstrFile);
}

Look for the description of ofn_ExplorerFlag under the 32-bit-extension paragraph.

5.3.565.3.565.3.565.3.56 Using countryUsing countryUsing countryUsing country----specific settingsspecific settingsspecific settingsspecific settings

When displaying text, Windows uses country-specific formats for the time, the date and numbers.

You can specify these settings in the Windows Control Panel under the International icon. When

DASYLab displays text on the screen or writes them in a file these country-specific formats are used.

So, if you have to output text on the screen or in a file use the settings defined in the control panel.

The DLL receives the information from the following variables:

Function Variable

Leading zero in date value (02) bDateLeadingZero

Leading zero in month value (09) bMonthLeadingZero

Long format of year (1999) bDateYearLong

Format of the date wDateFormat

Counting time from 0 to 24 hours bTime24h

Leading zero in time value (09) bTimeLeadingZero

Time separator TimeTrenn

Decimal separator DezTrenn

Leading zero in decimal value bDecLeadingZero

Date format separator DateTrenn

All general string conversion functions of the toolkit use this variables. So, if you use these functions

you don’t have to care for correct country-specific formats.

5.3.575.3.575.3.575.3.57 Printing data or graphics with DASYPrinting data or graphics with DASYPrinting data or graphics with DASYPrinting data or graphics with DASYLabLabLabLab

DASYLab supports a special page layout for graphical or text printings like in the Y/t chart, or the

data list used. The page format which can be selected from the main menu is also reachable from

the toolkit. The following example shows the general use of the printing functions used in DASYLab.

Important is the DruckInfo structure which includes the variables used in order to make a print.

void CopyDataToPrinter (MODUL_NEW *PrivatInfo, VAR_NEW *PrivatVars,
 MODULE * ThisModule, BOOL bAskBefore)
{
 DruckInfo DI;

 /* Init Printer */

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 57 Extension Toolkit for DASYLab 2016

 if (! InitPrinter (&DI, bAskBefore))
 {
 return;
 }
 /* Supports the printer colors */
 if (GetDeviceCaps (DI.dc, COLORRES) <= 2 &&
 GetDeviceCaps (DI.dc, PLANES) <= 2)
 PrivatInfo->bWithColor = FALSE;
 else
 PrivatInfo->bWithColor = TRUE;
 /* Change the output mode */
 PrivatVars->uiOutputMode = OUT_PRINTER;

 /* Lock all output windows in DASYLAB */
 EnableWindow (ThisModule->hwndWindow, FALSE);

 /* Calculate the font */
 Setup_New_Font (PrivatInfo, PrivatVars, DI.dc);

 /* Print Page Header */
 PrintHeader (&DI, ThisModule->ModuleDescription);

 /* Save actual DC */
 SaveDC (DI.dc);

 /* Set the origin and mode! */
 SetMapMode (DI.dc, MM_ISOTROPIC);

 /* Set actaul window dimensions */
 PrivatInfo->uiXsize = DI.reData.right-DI.reData.left;
 PrivatInfo->uiYsize = DI.reData.bottom-DI.reData.top;

 /* Window (Set Coordinate system to display rectangle) setzen */
 SetWindowExtEx (DI.dc, PrivatInfo->uiXsize, PrivatInfo->uiYsize, NULL);

 /* Set the Viewport */
 SetViewportOrgEx (DI.dc, DI.reData.left, DI.reData.top, NULL);
 SetViewportExtEx (DI.dc, PrivatInfo->uiXsize, PrivatInfo->uiYsize, NULL);

 NOW DO ALL PRINTER OUTPUTS WITH THE DEVICE CONTEXT DI.dc

 /* Print bottom layout */
 PrintFooter (&DI);
 RestoreDC (DI.dc, -1);

 /* Leave printer device */
 ExitPrinter (&DI);

 /* restore the Output mode */
 PrivatVars->uiOutputMode = OUT_SCREEN;
 /* restore the font */
 Setup_New_Font (PrivatInfo, PrivatVars, NULL);
 PrivatInfo->bWithColor = TRUE;

 /* Unlock window outputs */
 EnableWindow (ThisModule->hwndWindow, TRUE);
}

• The function InitPrinter initializes the printer. Opens the device context DI.dc.

• The function ExitPrinter closes the device context.

• The function PrintHeader prints the header of the selected page layout.

• The function PrintFooter prints the bottom of the selected page layout.

• The function NextPage prints the bottom of the selected page layout and forces a new page.

• Important print variables of the structure DruckInfo:

HDC dc – Device context of the printer.

RECT reData – Rectangle dimension for the data output. The rectangle reData contains the

valid rectangle for the output to the printer.

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 58 www.dasylab.com

5.45.45.45.4 Using global strings or variables with DASYUsing global strings or variables with DASYUsing global strings or variables with DASYUsing global strings or variables with DASYLabLabLabLab
DASYLab supports since version 3.0 the use of global strings or variables in processing and display

modules. A global string i.e. in the Lamp example displays instead a normal string the string stored

under the particular string number. The syntax which has to be used for a global string is ${STR_x}. x

is the number of the string (in range 1-999). As string you can define variables as ${VAR_x}. Since

version 5.0 of DASYLab system strings and variables are supported. They can be used as global

variables and strings, but their values are changed by the DASYLab kernel.

There are two variable management possibilities:

• Retrieve actual variable/string at every time it is used

• Register/Unregister used variables or strings so that a change causes a message, the module can

process

Example: Global Variables in the Generator module

Retrieve the global variable if the syntax fits to ${VAR_x} or to the syntax of a system variable:

GetDlgItemText (hDlg, IDD_GEN_AMPL, ShortTempString, 24);
if (ExpandVarNumber (ShortTempString, 24, &VarNummer))
 TempInfo->nVarAmplitude[wNummer] = VarNummer;
else
{
 TempInfo->fAmplitude[wNummer] = atof (ShortTempString);
 TempInfo->nVarAmplitude[wNummer] = 0;

}

The function ExpandVarNumber checks the dialog box item string. If there was added a global

variable the return value is larger than 0. In VarNumber the referring variable number from 1 to 999

is stored.

Show the global variable in the module dialog box, if used. Otherwise show the amplitude’s value:

if (TempInfo->nVarAmplitude[wNummer] == 0)
 chg_float (ShortTempString, TempInfo->fAmplitude[wNummer], -4);
else
 GlVar_SetSyntax (ShortTempString, TempInfo->nVarAmplitude[wNummer]);
SetDlgItemText (hDlg, IDD_GEN_AMPL, ShortTempString);

The function GlVar_SetSyntax displays the variable in the correct syntax.

5.4.15.4.15.4.15.4.1 Useful functions for supporting global variablesUseful functions for supporting global variablesUseful functions for supporting global variablesUseful functions for supporting global variables

5.4.1.15.4.1.15.4.1.15.4.1.1 Function:Function:Function:Function: GlVar_RegisterByNumber

Call this function to register the used variable number (1-999). Each time this variable is changed

from outside, a message DMM_GLOBAL_VAR_CHANGED is sent to the registered module.

5.4.1.25.4.1.25.4.1.25.4.1.2 Function: Function: Function: Function: GlVar_UnRegisterByNumber

Call this function to unregister the used variable number. The number of calls for register and

unregister have to be equal. So pay attention in a module dialog box. Unregister the variables before

the ChangeModuleSize function is called and register the variables again before leaving the dialog

box in the IDOK statement. It is also useful to register all variables at the START function again.

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 59 Extension Toolkit for DASYLab 2016

5.4.1.35.4.1.35.4.1.35.4.1.3 Function: Function: Function: Function: GlVar_Set, GlVar_Get, GlVar_PrefixGet,

GlVar_VarStringGet

Here is a short description of additional functions which can be called. GlVar_Set and GlVar_Get set

or retrieve the value of a particular variable. GlVar_PrefixGet gets the prefix string of a special

variable number. GlVar_VarStringGet gets a variable number out of a string (dialog box string ...).

5.4.1.45.4.1.45.4.1.45.4.1.4 Function: Function: Function: Function: GlVar_SetSyntax

This function is used for setting the correct text in a dialog box, if a global variable or a system

variable is used (see example above).

5.4.1.55.4.1.55.4.1.55.4.1.5 Function: Function: Function: Function: SetMenuForGlobalVars

The popup menu of those edit fields in a dialog box where global strings can be entered can be

extended by using this function. A menu to select global variables or system variables is added. This

function has to be called with the initialization of the dialog box WM_INITDIALOG:

case WM_INITDIALOG:
 {
 ...
 SetMenuForGlobalVars (hDlg, IDD_GEN_FREQ);
 SetMenuForGlobalVars (hDlg, IDD_GEN_AMPL);
 ...
 return (FALSE);
 }
 break;

5.4.25.4.25.4.25.4.2 Useful functions for supUseful functions for supUseful functions for supUseful functions for supporting global stringsporting global stringsporting global stringsporting global strings

5.4.2.15.4.2.15.4.2.15.4.2.1 Function: Function: Function: Function: GlStr_RegisterByText

Call this function to register a global string. You can call this function, if a global string is included in

the string or not. The function checks if there is a global string is included, and registers the string

number in a local stack. Each time the global string is changed from outside, a message

DMM_GLOBAL_STRING_CHANGED is sent to the registered module.

static void RegisterStrVarGenerator (MODULE * ThisModule)
{
 MODUL_GENERATOR *PrivatInfo = ThisModule->ModuleParameters;
 UINT i;

 for (i=0; i<ThisModule->wNumOutChan; i++)
 {
 GlStr_RegisterByText (PrivatInfo->szChannelName[i], ThisModule,
 HandleAction_GENERATOR);
 if (PrivatInfo->nVarFrequency[i] > 0)
 GlVar_RegisterByNumber (PrivatInfo->nVarFrequency[i], ThisModule,
 HandleAction_GENERATOR);
 if (PrivatInfo->nVarAmplitude[i] > 0)
 GlVar_RegisterByNumber (PrivatInfo->nVarAmplitude[i], ThisModule,
 HandleAction_GENERATOR);
 }
}

Here all important strings are checked of existing global strings. The third parameter of the function

contains the address of the PerformAction function which retrieves the message

DMM_GLOBAL_STRING_CHANGED. Look also in the example where this function is called, to avoid

multiple registrations without unregistering before.

5.4.2.25.4.2.25.4.2.25.4.2.2 Function: Function: Function: Function: GlStr_UnregisterByText

Call this function to unregister the used global string. The number of calls for register and unregister

have to be equal. So pay attention in a module dialog box. Unregister the string before copying the

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 60 www.dasylab.com

temporary module variables into the module data. Register the variables again before leaving the

dialog box in the IDOK statement. It is also useful to register all variables at the START function again.

static void UnregisterStrVarGenerator (MODULE * ThisModule)
{
 MODUL_GENERATOR *PrivatInfo = ThisModule->ModuleParameters;
 UINT i;

 for (i=0; i<ThisModule->wNumOutChan; i++)
 {
 GlStr_UnregisterByText(PrivatInfo->szChannelName[i], ThisModule, HandleAction_GENERATOR);
 if (PrivatInfo->nVarFrequency[i] > 0)
 GlVar_UnregisterByNumber(PrivatInfo->nVarFrequency[i], ThisModule,HandleAction_GENERATOR);
 if (PrivatInfo->nVarAmplitude[i] > 0)
 GlVar_UnregisterByNumber(PrivatInfo->nVarAmplitude[i], ThisModule,HandleAction_GENERATOR);
 }
}

Example (GENERAT.C) dialog box treatment:

case IDOK:
{
 SetFocus (GetDlgItem (hDlg, IDOK));
 ...

 UnregisterStrVarGenerator (ThisModule);

 /* Copy temporary data to the module parameters */
 memcpy (ThisModule->ModuleParameters, TempInfo, sizeof (MODUL_GENERATOR));

 ChangeModuleSize (ThisModule, 0, wDialNumChan);

 RegisterStrVarGenerator (ThisModule);
 ...
}
break;

5.4.2.35.4.2.35.4.2.35.4.2.3 Function: Function: Function: Function: ExpandString

Before the output of a string which could contain a global string, it is necessary to exchange the

global string with the stored string. Use the ExpandString function for easily changing the global

string holder.

Example (LAMP.C):

ExpandString (PrivatInfo->chTextOff[wChannelNr], sizeof(PrivatInfo->chTextOff[wChannelNr]),
 cBuf, sizeof(cBuf));
Textout(hDC, xpos, ypos, cBuf, strlen (cBuf));

Here the text of the OFF state is checked for a global string and stored into the string cBuf. The

maximum string length of each string has to be included, so that an overwriting behind the end of

the string can be avoided.

5.4.2.45.4.2.45.4.2.45.4.2.4 Functions: Functions: Functions: Functions: ExpandVarNumber, GlStr_RegisterByNumber,

GlStr_UnregisterByNumber, GlStr_Set, GlStr_Get,

GlStr_PrefixGet

The general function is nearly the same as of the global variable functions.

GlStr_RegisterByNumber and GlStr_UnregisterByNumber registers or unregisters the string

directly by the string number. GlStr_Set manipulates a global string, GlStr_Get allows to read an

actual string by its number. GlStr_PrefixGet calls the prefix text which is displayed in the global

string configuration dialog box.

5.4.2.55.4.2.55.4.2.55.4.2.5 Function: Function: Function: Function: GlStr_SetSyntax

This function is used for setting the correct text in a dialog box if a global string or a system string is

used (see example above).

A DASYLab Extension Example

© National Instruments Ireland Resources Limited 61 Extension Toolkit for DASYLab 2016

5.4.2.65.4.2.65.4.2.65.4.2.6 FunctioFunctioFunctioFunction: n: n: n: SetMenuForGlobalStrings

The popup menu of those edit fields in a dialog box where global strings can be entered can be

extended by using this function. A menu to select global strings or system strings is added. This

function has to be called with the initialization of the dialog box WM_INITDIALOG:

case WM_INITDIALOG:
{
 ...
 SetMenuForGlobalStrings (hDlg, IDD_KANAL_NAME);
 ...
 return (FALSE);
}
break;

5.55.55.55.5 The GDI StackThe GDI StackThe GDI StackThe GDI Stack
DASYLab provides several GDI register and unregister functions. Normally, a device is allocated as

often as it is requested. Although it could be the same type, i.e. a red brush. So because the

Windows operating system offers a limited device count multiple requests of same devices should

be avoided. Therefore DASYLab offers a GDI management. DASYLab looks if i.e. a red brush is

allocated. If not the handle is requested from Windows, otherwise a counter is increased. The user

has to pay attention, to release as often the device handle as it was requested.

5.5.15.5.15.5.15.5.1 Function: CreateStackedFunction: CreateStackedFunction: CreateStackedFunction: CreateStackedPenPenPenPen

Call this function to receive a pen handle by the DASYLab GDI stack management.

5.5.25.5.25.5.25.5.2 Function: CreateStackedPenIndirectFunction: CreateStackedPenIndirectFunction: CreateStackedPenIndirectFunction: CreateStackedPenIndirect

Call this function to receive a pen handle by the DASYLab GDI stack management. As parameter the

LPLOGPEN structure is used. It is defined as

typedef struct tagLOGPEN { /* lgpn */
 UINT lopnStyle;
 POINT lopnWidth;
 COLORREF lopnColor;
} LOGPEN;

5.5.35.5.35.5.35.5.3 Function: CreateStackedFontIndirectFunction: CreateStackedFontIndirectFunction: CreateStackedFontIndirectFunction: CreateStackedFontIndirect

Call this function to receive a font handle by the DASYLab GDI stack management. As parameter the

LPLOGFONT structure is used. It is defined as:

typedef struct tagLOGFONT { /* lf */
 int lfHeight;
 int lfWidth;
 int lfEscapement;
 int lfOrientation;
 int lfWeight;
 BYTE lfItalic;
 BYTE lfUnderline;
 BYTE lfStrikeOut;
 BYTE lfCharSet;
 BYTE lfOutPrecision;
 BYTE lfClipPrecision;
 BYTE lfQuality;
 BYTE lfPitchAndFamily;
 BYTE lfFaceName[LF_FACESIZE];
} LOGFONT;

5.5.45.5.45.5.45.5.4 Function: CreateStackedSolidBrushFunction: CreateStackedSolidBrushFunction: CreateStackedSolidBrushFunction: CreateStackedSolidBrush

Call this function to receive a solid brush handle by the DASYLab GDI stack management. As

parameter the COLORREF structure is used.

A DASYLab Extension Example

Extension Toolkit for DASYLab 2016 62 www.dasylab.com

5.5.55.5.55.5.55.5.5 Function: CreateStackedBrushIndirectFunction: CreateStackedBrushIndirectFunction: CreateStackedBrushIndirectFunction: CreateStackedBrushIndirect

Call this function to receive any brush handle by the DASYLab GDI stack management. As parameter

the LPLOGBRUSH structure is used. It is defined as:

typedef struct tagLOGBRUSH { /* lb */
 UINT lbStyle;
 COLORREF lbColor;
 int lbHatch;
} LOGBRUSH;

5.5.65.5.65.5.65.5.6 Function: DeleteStackedObjectFunction: DeleteStackedObjectFunction: DeleteStackedObjectFunction: DeleteStackedObject

After using a device handle it has to be unregistered by the DASYLab GDI stack. So call this function

before requesting i.e. a changed pen color or at the DELETE function, when the module is destroyed.

5.5.75.5.75.5.75.5.7 New Extra Data Transport APINew Extra Data Transport APINew Extra Data Transport APINew Extra Data Transport API

For a later DASYLab release (after DASYLab 2016), we provide a new API for data transport at start

time (we call this static) and data transport with the data blocks at process time (we call that

dynamic). A first version of this API is included in the toolkit, but all functions (except one) are

subject to change. To provide compatibility with later DASYLab releases (as far as we can look into

the future) add a call of EmemBlock_PROCESS_MsgCopyPlain before the call of

ReleaseOutputBlock in your ProcessData function:

// TK2016: For future compatibility: Copy extra memory (per data block) from the "Father" block
// to the block we filled with data above
// - This will have no effect in DASYLab 2016 but your module/dll will support a new feature in
// DASYLab 2017 without recompiling
// - The cpu cost for DASYLab 14 is near zero - the call of this funtion is optional for DASYLab 2016
// and mandatory for the following DASYLab versions.
//
// If the InFifo parameter is NULL, the function assumes, that the maximum blocksize of the input fifo
// is equal to the maximum blocksize of the output fifo (what is "the normal behaviour") .
// If you are unsure (what you shouldn't be because you wrote/modified the
// SetupFifo_xxx routine) or the maximum blocksize of OutFifo and InFifo is not equal, then provide
// the InFifo as parameter.

EmemBlock_PROCESS_MsgCopyPlain (OutFifo, OutputBlock, NULL, InputBlock);
// Add this Data Block to the FIFO, so that a "Son" FIFO can get Access to it
ReleaseOutputBlock (OutFifo);

32 Bit and Versions

© National Instruments Ireland Resources Limited 63 Extension Toolkit for DASYLab 2016

6666 32 Bit32 Bit32 Bit32 Bit and Versionsand Versionsand Versionsand Versions

6.16.16.16.1 File dialogs and file namesFile dialogs and file namesFile dialogs and file namesFile dialogs and file names

6.1.16.1.16.1.16.1.1 File NamesFile NamesFile NamesFile Names

DASYLab 2016 uses long file names. So we recommend a string length of at least 256 characters.

6.26.26.26.2 WorksheetsWorksheetsWorksheetsWorksheets in ASCII formatin ASCII formatin ASCII formatin ASCII format

6.2.16.2.16.2.16.2.1 BackgroundBackgroundBackgroundBackground

Since DASYLab was also available as 32-bit version it was impossible to load 16-bit worksheets with

the 32-bit DASYLab version and vice versa. Also loading a worksheet with an older version of

DASYLab is not possible. The solution for this problem is to save and load worksheets as ASCII text

files. As described in chapter 5.3.1.1 the structure PARAMETER_INFO is necessary for that purpose.

Saving worksheets in a text format can be used for documentation purposes also.

6.2.26.2.26.2.26.2.2 Structure PARAMETER_INFOStructure PARAMETER_INFOStructure PARAMETER_INFOStructure PARAMETER_INFO

6.2.2.16.2.2.16.2.2.16.2.2.1 General DescriptionGeneral DescriptionGeneral DescriptionGeneral Description

The PARAMETER_INFO structure is used to describe the module’s parameters in such a manner that

each variable, its type and its location in the corresponding structure are specified. The

PARAMETER_INFO structure is defined as follows:

typedef struct
{
 char *szDescription;
 char *szType;
 size_t nOffset;
 size_t nStructOffset;
} PARAMETER_INFO;

In the following description of the structure, elements enclosed in {curly brackets} are optional:

szDescription: Text to describe the parameter. It can have the following contents:
{*}Parameter_Description_Text{[0..X1]}

X1: Maximum number of channels of the module.

A leading asterisk (*) means, that this parameter cannot be set in the

dialog box. Parameters marked with * will not be saved in a text

documentation worksheet.

szType: Text that describes the type of the parameter:
Type{[0..X2]}{:Y1=DESCRIPTION1, Y2=DESCRIPTION2,

 ..., Yn=DESCRIPTIONn}

X2: Maximum number of this parameter.

Y1...Yn: Values this parameter can have (not allowed for decimal, string

or struct parameters).

DESCRIPTION1...DESCRIPTIONn: Description of the values this parameter

can have (not allowed for decimal, string or struct parameters).

See chapter 6.2.2.3 for supported types.

nOffset: Offset of the starting address of this parameter in bytes within the

parameter structure. Use the macro offsetof (STRUCTURE,

PARAMETER) defined in header file STDDEF.H to calculate this value.

32 Bit and Versions

Extension Toolkit for DASYLab 2016 64 www.dasylab.com

nStructOffset: Sometimes an array of another structure is used within the parameter

structure. The value nStructOffset is the size of this structure. Normally

this value would be 0.

At the end of the initialization all elements have to be set to NULL or 0.

6.2.2.26.2.2.26.2.2.26.2.2.2 ExampleExampleExampleExample

Now we shall discuss an example of the PARAMETER_INFO structure for a better understanding:

...
#include <stddef.h> /* Header for the offsetof macro */
...
#define MAX_STR_LEN 24
...
// Structures used in the module's parameter structure
typedef struct
{
 int nValue;
 double fValue;
} INT_DOUBLE;

typedef struct
{
 double fValue[MAX_CHANNEL];
 int nValue[MAX_CHANNEL];
} DOUBLE_INT;
...
typedef struct
{
 // Channel Name
 char szChannelName[MAX_CHANNEL][MAX_STR_LEN];
 UINT wFunction[MAX_CHANNEL]; // Function: 0=FUCNTION1, 1=FUNCTION2, 2=FUNCTION3
 char szUnit[MAX_CHANNEL][MAX_UNIT_LEN]; // Unit
 BOOL bCopyChannelName[MAX_CHANNEL]; // Copy channel names to the output
 WORD wNewArray[9]; // 9 element array of values type WORD
 char szNewArray[9][124]; // 9 element array of strings with 124 characters
 INT_DOUBLE IntDouble[MAX_CHANNEL]; // Structure with MAX_CHANNEL elements
 DOUBLE_INT DoubleInt; // Structure with MAX_CHANNEL elements
} MODULE_EXAMPLE;

static PARAMETER_INFO FAR ParameterExample[] =
{
 // Using strings
 { "Channel_Name[0..15]", "string[24]", offsetof (MODULE_EXAMPLE, szChannelName[0][0]), 0 },

 // Using descriptions
 { "Function[0..15]", "UINT:0=FUNCTION1,1=FUNCTION2,2=FUNCTION3", offsetof (MODULE_EXAMPLE, wFunction[0]), 0 },
 { "Unit[0..15]", "string[64]", offsetof (MODULE_EXAMPLE, szUnit[0][0]), 0 },
 { "Copy_Channel_Name[0..15]", "BOOL", offsetof (MODULE_EXAMPLE, bCopyChannelName[0]), 0 },

 // Using an array which does not correspond to the number of channels
 { "Word_Array", "WORD[0..8]", offsetof (MODULE_EXAMPLE, wNewArray[0]), 0 },

 // Array of strings which does not correspond to the number of channels
 { "String_Array", "string[124][0..8]", offsetof (MODULE_EXAMPLE, szNewArray[0][0]), 0 },
 // Using a struct where we have to use nStructOffset
 { "Int_Double_nValue[0..15]", "int", offsetof (MODULE_EXAMPLE, IntDouble[0].nValue), sizeof (INT_DOUBLE) },
 { "Int_Double_fValue[0..15]", "double", offsetof (MODULE_EXAMPLE, IntDouble[0].fValue), sizeof (INT_DOUBLE) },

 // Using a struct where we don’t have to use nStructOffset
 { "Double_Int_nValue[0..15]", "int", offsetof (MODULE_EXAMPLE, DoubleInt.nValue[0]), 0 },
 { "Double_Int_fValue[0..15]", "double", offsetof (MODULE_EXAMPLE, DoubleInt.fValue[0]), 0 },

 // Never forget this line !!!
 { NULL, NULL, 0, 0 }
};

32 Bit and Versions

© National Instruments Ireland Resources Limited 65 Extension Toolkit for DASYLab 2016

This example shows the different cases which can occur in a module’s data structure:

1. The variable wFunction can have the values 0, 1 or 2. Each value specifies a specific function.

These functions are named FUNCTION1, FUNCTION2 and FUNCTION3. Look in GENERATOR.C for an

example.

2. The variables wNewArray and szNewArray show how to handle arrays which do not correspond

to the maximum number of channels of the module. The maximum array index has to be set in

the szType parameter.

3. The variables IntDouble and DoubleInt explain the use of the nStructOffset parameter: The

addresses of the elements of DoubleInt can be accessed directly, because each element is

stored after the other, but the elements of IntDouble have an offset of the structure’s size.

6.2.2.36.2.2.36.2.2.36.2.2.3 Supported TypesSupported TypesSupported TypesSupported Types

The szType parameter in the PARAMETER_INFO structure describes the type of parameter. The

following table shows which types can be used:

Type C/C++/MFC equivalent

"string" Char[x] (array)

"lpstring" Char*

"char" Char

"BOOL" BOOL

"UINT" UINT

"WORD" WORD

"DWORD" DWORD

"unsigned long" Unsigned long

"unsigned long int" Unsigned long int

"long" Long

"long int" Long int

"signed long int" Signed long int

"unsigned short" Unsigned short

"unsigned short int" Unsigned short int

"short" Short

"short int" Short int

"signed short int" Signed short int

"int" Int

"signed" Signed

"signed int" Signed int

"char" Char

"signed char" Signed char

32 Bit and Versions

Extension Toolkit for DASYLab 2016 66 www.dasylab.com

Type C/C++/MFC equivalent

"unsigned char" Unsigned char

"COLORREF" COLORREF

"time_t" Time_t

"DLAB_FLOAT" see types.h

"float" Float

"double" Double

"long double" Long double

"lpstring" Char*

"LOGFONT" LOGFONT

"POINT" POINT

"RECT" RECT

"MODULE_WND_POS" see types.h

6.36.36.36.3 MultiMultiMultiMulti----threadingthreadingthreadingthreading
If the experiment is running, the calling of the ProcessData function for each module is running in

its own thread. This has some effects: e.g. handles which are received in the START function may be

invalid in the ProcessData function.

For more information see the multi-threading programming tips published by Microsoft.

Module Independent Dialog Box

© National Instruments Ireland Resources Limited 67 Extension Toolkit for DASYLab 2016

7777 Module Independent Dialog BoxModule Independent Dialog BoxModule Independent Dialog BoxModule Independent Dialog Box

It is possible to generate a module independent dialog box. In this dialog box the user could make

some general settings, which do not belong to a special module but for example to the connected

hardware. The box could be opened to setup, e.g. address and interrupt. The necessary extensions

are described in following parts.

7.17.17.17.1 Toolkit MenuToolkit MenuToolkit MenuToolkit Menu
Add to your existing menu in the RC file the new entry for the setup box.

UX1_MENU MENU DISCARDABLE
BEGIN
 POPUP "&New"
 BEGIN
 MENUITEM "&Global Setup", MN_UX_SETUP

The menu ID MN_UX_SETUP has to be defined in particular ranges. The definitions are shown in the

file CONST.H and have to be between 4990 and 4999. So at least 10 menu entries are possible for

each DLL. Every DLL has to use these IDs. DASYLab remaps the IDs to distinguish between every DLL

call.

[CONST.H]
...
#define MN_FIRST_EXT_MENU_ID 4990
#define MN_LAST_EXT_MENU_ID 4999
...

[DLAB_UX1.H]
...
#define MN_UX_SETUP 4990
...

7.27.27.27.2 Register Menu Callback FunctionRegister Menu Callback FunctionRegister Menu Callback FunctionRegister Menu Callback Function
The menu entries are prepared in such a way that DASYLab has to know which function should be

called if the user selects the particular menu ID. Therefore you have to register a callback function

during the initialization. So include the registration function in the INIT_DLL function. We have

added it in the ExpandModuleBar function:

static void ExpandModuleBar (void)
{
 DASYLAB_INSERT_MENU DlabMenuStruct;
 ...

 DlabMenuStruct.uiNewMenuID = MN_UX_SETUP;
 if (ExpandDASYLabMenu (&DlabMenuStruct) == TRUE)
 {
 // Register the inserted menu item as it is not a module. (Modules are registered
 // calling: RegisterModulClass(&mc)).
 RegisterMenuEntry (DlabMenuStruct.uiNewMenuID , &SetupProc);
 }
}

The function SetupProc has to be a declared as: void SetupProc(void).

For the structure DASYLAB_INSERT_MENU refer to chapter 5.2.

Layout / VI Tool Connections

Extension Toolkit for DASYLab 2016 68 www.dasylab.com

8888 Layout / VILayout / VILayout / VILayout / VI Tool ConnectionsTool ConnectionsTool ConnectionsTool Connections

One of the most new features is the new “DASYLab Layouter” called VITool. The user can build his

special print layout or working desk. Therefore he has to generate connections between the display

modules and the layout window. Look for detailed description and functionality of the VITool in the

DASYLab manual.

The VITool connection is managed with the help of the DASYLab message concept. The display

module has to register the support of a layout connection. All functions for adding a new

connection, updating the complete drawing rectangle and deleting the connection are implemented

as message events inside the Perform_Action message loop.

8.18.18.18.1 Layout example: LAMP.CLayout example: LAMP.CLayout example: LAMP.CLayout example: LAMP.C

8.1.18.1.18.1.18.1.1 ProProProProcessing the cessing the cessing the cessing the DMM_QUERY_PANEL messagemessagemessagemessage

DASYLab asks after creating a new module which panel connections are supported by this module.

Therefore the module has to return with an OR-operation added panel flags:

• PT_METAFILE

The layout object is send as a metafile. This is a slow drawing method, which should be used

for drawings which do not often change. There are also a good solution for exporting the

layout to other drawing programs.

• PT_PAINT

This is a drawing mode, where the drawing happens on a virtual coordinate system and is

stretched into the layout rectangle. So, it could happen that, for example, some drawing

lines are hidden.

• PT_PAINT_SCALED

In this drawing mode the display module get the drawing rectangle in its original size. This

mode is fine for detailed drawings like the Y/t Chart module, or the Chart Recorder module

where i.e. scrolling has to be done.

• PT_TEXT

This drawing mode is only for the output of single data values. The VITool handles the

graphical output itself and gets only the value to be shown.

• PT_WINDOW

This drawing mode is used to include control windows as a Windows slider or control

button. The VITool creates therefore a window inside the link rectangle where the control

can be placed on.

The Lamp.c example supports only the metafile and paint mode.

case DMM_QUERY_PANEL:
 /* Set supported drawing methods */
 wParam &= (PT_METAFILE | PT_PAINT);
 return wParam;

Layout / VI Tool Connections

© National Instruments Ireland Resources Limited 69 Extension Toolkit for DASYLab 2016

8.1.28.1.28.1.28.1.2 Processing the Processing the Processing the Processing the DMM_PANEL_CONNECT messagemessagemessagemessage

This message is received if a user wants to insert a VITool link. Now the module has to register the

connection and setup the connection variables and has to check if a new link is possible, or all

possible copies are in use.

case DMM_PANEL_CONNECT:
 /* active connection */
 return AddPanelConnection (ThisModule, wParam, (HPANEL) lParam);
[...]
static int AddPanelConnection (MODULE *ThisModule, int iType, HPANEL hPanel)
{
 VAR_LAMPE *PrivatVars = ThisModule->TempModuleData;
 int i;

 for (i=0; i<MAX_PANEL_CONNECTIONS; i++)
 {
 /* Is there a new connection possible */
 if (PrivatVars->PanelInfo[i].hPanel == 0)
 {
 /* Then store it here */
 PrivatVars->PanelInfo[i].hPanel = hPanel;
 PrivatVars->PanelInfo[i].iType = iType;
 return i;
 }
 }

 return -1; /* No space, no connection, what a pitty */
}

8.1.38.1.38.1.38.1.3 Processing the Processing the Processing the Processing the DMM_PANEL_SET_SIZE messagemessagemessagemessage

After installing the VITool connection, the module gets the DMM_PANEL_SET_SIZE message. This

message occurs also after every change in the size of the rectangle in the VITool. Store the size of the

output rectangle into the temporary module data, to calculate the display dimensions before

drawing.

case DMM_PANEL_SET_SIZE:
 /* Size of layout rectangle has been changed */
 SetPanelSize (ThisModule, wParam, (SIZE FAR *) lParam);
 return TRUE;
[...]
static void SetPanelSize (MODULE *ThisModule, int PanelIndex, SIZE *lpsize)
{
 VAR_LAMPE *PrivatVars = ThisModule->TempModuleData;

 if (PanelIndex < 0 || PanelIndex >= MAX_PANEL_CONNECTIONS ||
 PrivatVars->PanelInfo[PanelIndex].hPanel == 0)
 return;

 /* Store the size into the private data */
 PrivatVars->PanelInfo[PanelIndex].sz.cx = lpsize->cx;
 PrivatVars->PanelInfo[PanelIndex].sz.cy = lpsize->cy;
}

8.1.48.1.48.1.48.1.4 Processing the Processing the Processing the Processing the DMM_PANEL_REQUEST_METAFILE messagemessagemessagemessage

If the link is build up for metafile (slow) method, the DMM_PANEL_REQUEST is sent out to update the

metafile in the VITool.

case DMM_PANEL_REQUEST_METAFILE:
 /* send new meta file to layout */
 return (unsigned long) (UINT) GetPanelMetaFile (ThisModule, wParam,
 (SIZE FAR *) lParam);

Now the module has to send back the metafile handle. Look for detailed descriptions of creating a

metafile to the Lamp.c example and in any Windows programming manual.

Layout / VI Tool Connections

Extension Toolkit for DASYLab 2016 70 www.dasylab.com

8.1.58.1.58.1.58.1.5 Processing the Processing the Processing the Processing the DMM_PANEL_PERFORM_DRAW messagemessagemessagemessage

After every redraw of the VITool each layout connection has to redraw its contents. So the

DMM_PANEL_PERFORM_DRAW message is sent to every module with a PT_PAINT or PT_PAINT_SCALED

mode connection. The lParam contains the necessary device context handle (HDC).

case DMM_PANEL_PERFORM_DRAW:
 /* completly redraw */
 DrawPanelComplete (ThisModule, wParam, (HDC)(UINT) lParam);
 return TRUE;

The DrawPanelCommplete function should operate as implemented in the Lamp.c example:

• Store window dimensions in temporary data

• Check the output mode (Metafile, Screen, Plotter,…) to do some special setups

• Resize all output dimensions concerning to the VITool rectangle

• Recalculate all used font sizes and request new font handles

• Make the output into the VITool device context

• Restore the old dimensions regarding the display window

• Restore old font handles

8.1.68.1.68.1.68.1.6 Processing the Processing the Processing the Processing the DMM_PANEL_DRAW_NEW_DATA messagemessagemessagemessage

This message occurs only by the display module itself. If the output display (here the state of the

lamp) has changed the module has to inform the VITool, that a new update of the rectangle has to

be done. To avoid a completely redraw, it is better to redraw only the parts that have to change

(Lamp module: state, Y/t Chart: new curves,...). So, send after a window update the message

DMM_PANEL_GOT_NEW_DATA.

for (i=0; i<MAX_PANEL_CONNECTIONS; i++)
{
 if (PrivatVars->PanelInfo[i].hPanel != 0)
 SendPanelMessage (PrivatVars->PanelInfo[i].hPanel, DPM_PANEL_GOT_NEW_DATA, TRUE, 1);
}

For parameter #3 and #4 as shown for synchronous layout connection, use FALSE and 0 for

asynchronous connection!

Now the layout calls back with the DMM_PANEL_DRAW_NEW_DATA. Now, redraw only the changed parts

of the VITool rectangle, to avoid flickering effects (see also the example Lamp.c).

8.1.78.1.78.1.78.1.7 Processing the Processing the Processing the Processing the

DMM_PANEL_DISCONNECT/DMM_PANEL_DISCONNECT_ALL messagemessagemessagemessage

When a module connection is deleted, and when the worksheet gets destroyed, all connections have

to be unregistered first. So, the VITool sends out the DMM_PANEL_DISCONNECT message to delete a

single connection or the DMM_PANEL_DISCONNECT_ALL message to delete all registered connections.

case DMM_PANEL_DISCONNECT:
 /* end of single layout connection, so disconnect it please */
 RemovePanelConnection (ThisModule, wParam);
 return TRUE;

case DMM_PANEL_DISCONNECT_ALL:
 /* end of ALL layout connection, so disconnect them please */
 {
 int i;

 for (i=0; i<MAX_PANEL_CONNECTIONS; i++)
 RemovePanelConnection (ThisModule, i);
 }
 return TRUE;

Layout / VI Tool Connections

© National Instruments Ireland Resources Limited 71 Extension Toolkit for DASYLab 2016

static void RemovePanelConnection (MODULE *ThisModule, int PanelIndex)
{
 VAR_LAMPE *PrivatVars = ThisModule->TempModuleData;
 HPANEL hPanelSave;

 if (PanelIndex < 0 || PanelIndex >= MAX_PANEL_CONNECTIONS ||
 PrivatVars->PanelInfo[PanelIndex].hPanel == 0)
 return;

 hPanelSave = PrivatVars->PanelInfo[PanelIndex].hPanel;
 memset (&PrivatVars->PanelInfo[PanelIndex], 0,
 sizeof(PrivatVars->PanelInfo[PanelIndex]));

 SendPanelMessage (hPanelSave, DPM_PANEL_DISCONNECT, 0, 0);
}

8.1.88.1.88.1.88.1.8 Processing the Processing the Processing the Processing the DMM_PANEL_WM_XXXX mouse messagesmouse messagesmouse messagesmouse messages

Mouse messages can be operated from a VITool object. Therefore the VITool sends all mouse events

to the corresponding modules. The messages which can be processed are:

• DMM_PANEL_WM_LBUTTONDOWN

• DMM_PANEL_WM_LBUTTONUP

• DMM_PANEL_WM_LBUTTONDBLCLK

• DMM_PANEL_WM_RBUTTONDOWN

• DMM_PANEL_WM_RBUTTONUP

• DMM_PANEL_WM_RBUTTONDBLCLK

• DMM_PANEL_WM_MOUSEMOVE

8.1.98.1.98.1.98.1.9 Drawing methodDrawing methodDrawing methodDrawing method PT_PAINT_SCALEDPT_PAINT_SCALEDPT_PAINT_SCALEDPT_PAINT_SCALED

In addition to the PT_PAINT mode there are only few differences in treatments. The size function

gets a different parameter structure.

case DMM_PANEL_SET_SIZE:
 SetPanelSize (ThisModule, wParam, (TWO_SIZES FAR *) lParam);
 return TRUE;

The TWO_SIZES structure includes an absolute pixel size and a scaled size. Use the absolute size for

all dimension calculations and output operations.

static void SetPanelSize (MODULE *ThisModule, int PanelIndex, TWO_SIZES *lpsize)
{
 VAR_ABC *PrivatVars = ThisModule->TempModuleData;

 if (PanelIndex < 0 || PanelIndex >= MAX_PANEL_CONNECTIONS ||
 PrivatVars->PanelInfo[PanelIndex].hPanel == 0)
 return;

 PrivatVars->PanelInfo[PanelIndex].szAbsolute.cx = lpsize->absolute.cx;
 PrivatVars->PanelInfo[PanelIndex].szAbsolute.cy = lpsize->absolute.cy;
 PrivatVars->PanelInfo[PanelIndex].szScaled.cx = lpsize->scaled.cx;
 PrivatVars->PanelInfo[PanelIndex].szScaled.cy = lpsize->scaled.cy;
}

8.1.108.1.108.1.108.1.10 Drawing method Drawing method Drawing method Drawing method PT_TEXTPT_TEXTPT_TEXTPT_TEXT

In contrast to making the display output by the corresponding module, the PT_TEXT mode offers the

output control to the VITool. Be aware of the fact, that only strings can be displayed! The message

the module has to work on is DMM_PANEL_REQUEST_STRING.

case DMM_PANEL_REQUEST_STRING:
 /* Aktuellen Wert zurückliefern */
 return (unsigned long) GetPanelString (ThisModule, wParam);

The GetPanelString functions builds up the string to be displayed. Use a static string which should

be displayed by the VITool.

Layout / VI Tool Connections

Extension Toolkit for DASYLab 2016 72 www.dasylab.com

static char *GetPanelString (MODULE *ThisModule, int PanelIndex)
{
 MODUL_TEST *PrivatInfo = ThisModule->ModuleParameters;
 VAR_TEST *PrivatVars = ThisModule->TempModuleData;
 static char FAR text[40];

 if (PanelIndex < 0 || PanelIndex >= MAX_PANEL_CONNECTIONS ||
 PrivatVars->PanelInfo[PanelIndex].hPanel == 0)
 return NULL;

 float2str (PrivatInfo->wCharoBeDisplayed, PrivatInfo->wPoints,
 PrivatVars->fDataValue[0], ID_KONV_NRM, text);

 return text;
}

8.1.118.1.118.1.118.1.11 DraDraDraDrawing method wing method wing method wing method PT_WINDOWPT_WINDOWPT_WINDOWPT_WINDOW

To include Windows controls use the PT_WINDOW mode, when registering the supported layout

modes.

 /* Communication to VITool */
 case DMM_QUERY_PANEL:
 {
 wParam &= (PT_WINDOW);
 }
 return wParam;

When adding a new layout link a windows handle created by the VITool. On the message

DMM_PANEL_SET_WINDOW the new windows handle is send to the user extension module. Use this

window to add on your control.

 case DMM_PANEL_SET_WINDOW:
 SetPanelWindow (ThisModule, wParam, (HWND) (UINT)lParam);
 return TRUE;

The function SetPanelWindow members the VITool window handle. The SetWindowLong function

places a long value at the specified offset into the extra window memory of the given window. Extra

window memory is reserved by specifying a nonzero value in the cbWndExtra member of the

WNDCLASS structure used with the RegisterClass function. The placed long value has to be

interpreted as the module pointer and the layout link number. With the help of this variables the

layout can send the messages to the correct module and link ID.

void SetPanelWindow(MODULE *ThisModule, int PanelIndex, HWND hParentWnd)
{
 VAR_CONTROL *PrivatVars = ThisModule->TempModuleData;

 if (PanelIndex < 0 || PanelIndex >= MAX_PANEL_CONNECTIONS ||
 PrivatVars->PanelInfo[PanelIndex].hPanel == 0)
 return;

 /* Parent window to place on the control */
 PrivatVars->PanelInfo[PanelIndex].hParentWnd = hParentWnd;

 /* Add the module pointer and index to have the link to the correct module */
 SetWindowLong (hParentWnd, 0, (long)ThisModule);
 SetWindowLong (hParentWnd, 4, (long)PanelIndex);
 return;
}

Layout / VI Tool Connections

© National Instruments Ireland Resources Limited 73 Extension Toolkit for DASYLab 2016

Add now the controls to the parent window:

void AddPanelControls(HWND hParent, MODULE *ThisModule)
{
 MODUL_CONTROL *PrivatInfo = ThisModule->ModuleParameters;
 VAR_CONTROL *PrivatVars = ThisModule->TempModuleData;
 int wPanelId = (int)GetWindowLong (hParent, 4);
 UINT i;

 if (wPanelId < 0 || wPanelId >= MAX_PANEL_CONNECTIONS ||
 PrivatVars->PanelInfo[wPanelId].hPanel == 0)
 return;

 /* Add controls */
 for (i=0; i<ThisModule->wNumOutChan; i++)
 {
 PrivatVars->PanelInfo[wPanelId].hCombo[i] = CreateWindow("COMBOBOX",
 NULL,
 WS_CHILD | WS_VISIBLE | CBS_DROPDOWNLIST | WS_VSCROLL | WS_TABSTOP,
 PrivatVars->PanelInfo[wPanelId].reChan[i].left,
 PrivatVars->PanelInfo[wPanelId].reChan[i].top,
 PrivatVars->PanelInfo[wPanelId].reChan[i].right,
 PrivatVars->PanelInfo[wPanelId].reChan[i].bottom,
 14,
 hParent,
 (HMENU)(ID_COMBO + i), hInst, NULL);
 }
 }
 return;
}

Multiple Time Bases in DASYLab

Extension Toolkit for DASYLab 2016 74 www.dasylab.com

9999 MultipleMultipleMultipleMultiple Time Bases in DASYLabTime Bases in DASYLabTime Bases in DASYLabTime Bases in DASYLab

9.19.19.19.1 BackgroundBackgroundBackgroundBackground
Over the years, many device drivers for DASYLab have been developed that do not use the standard

driver interface but a special DLL. Especially, these drivers can define their own sample rate and

block size settings, so that multiple data streams with different timing settings can exist within a

DASYLab worksheet.

In DASYLab, a central administration tool for all these timing settings has been created. Drivers that

create their own timing, can register a time base structure within DASYLab. DASYLab offers a central

tabbed dialog box where the user can set up all time base information. When this information

changes, the driver is informed by a callback function.

Also means have been provided for other data generating modules to synchronize to any of the time

bases thus defined. Up to now, this was only possible by using a synchronization input in those

modules. This method still exists for compatibility reasons, but is now necessary only in rare

circumstances.

9.29.29.29.2 Time base identiTime base identiTime base identiTime base identifiersfiersfiersfiers
Each time base in the system is identified by a unique identifier, which is a natural number in the

range of 1 to 999. Note that IDs 1 to 499, and 800 to 849, are reserved by National Instruments for

internal use.

To maintain uniqueness also among distributors of different drivers, new IDs will be assigned by

measX GmbH & Co. KG. If you plan to use a time base of your own, please contact

measX GmbH & Co. KG

Trompeterallee110

D–41189 Mönchengladbach, Germany

to receive an unused ID.

9.39.39.39.3 Using a time base Using a time base Using a time base Using a time base from a driver’s viewfrom a driver’s viewfrom a driver’s viewfrom a driver’s view

9.3.19.3.19.3.19.3.1 Registering and unregisteringRegistering and unregisteringRegistering and unregisteringRegistering and unregistering

A driver that wants to use a time base of its own, must first register this time base with the

RegisterTimeBase function. With this registration following information will be made known to

DASYLab:

• The unique time base identifier.

• A time base name. This will appear on the tab in the tabbed time base dialog.

• A time base description. This will appear in the information field of the time base dialog.

• A callback function which informs the driver when the time base settings have been changed

by the user.

At the end of its life time, the time base should be unregistered with UnregisterTimeBase. Note

that all registered time bases will be unregistered when DASYLab ends. However, it does not harm if

the driver does it itself.

Multiple Time Bases in DASYLab

© National Instruments Ireland Resources Limited 75 Extension Toolkit for DASYLab 2016

9.3.29.3.29.3.29.3.2 Setting the time base informationSetting the time base informationSetting the time base informationSetting the time base information

After registration, the driver should initialize the time base data using the SetTimeBase function.

This function uses an EXT_TIMEBASE data structure to communicate with the time base

administration. The driver can use this function whenever the information for the user interface has

to be updated.

On the contrary, if the user changes the time base settings in the dialog, the callback function

provided in the registration is called to inform the driver about the changes. This function also uses

an EXT_TIMEBASE structure for transfer.

Note that the central time base administration will automatically handle global variable settings and

automatic block size. At the start of the experiment, these are evaluated for each time base and the

driver is informed about the actual settings of block size and sample distance by the callback

function. Normally the driver has no action to take to evaluate this information itself.

9.3.39.3.39.3.39.3.3 Updating the time base timeUpdating the time base timeUpdating the time base timeUpdating the time base time

When the experiment is running, the driver has to periodically update the time information for its

time base according to the data released by its hardware. This information is retrieved by other

modules which synchronize to this time base in order to release their output blocks at certain times.

At experiment start, the time is automatically reset to zero for all time bases. To update the time,

two functions are available: SetTimeBaseTime will set the time to the value given, and

IncTimeBaseTime will increment the time by the amount given. The driver can choose either

method for updating.

9.3.49.3.49.3.49.3.4 Calling the time base dialogCalling the time base dialogCalling the time base dialogCalling the time base dialog

It might be interesting for the driver to provide a means to set up its time base by the user. Instead

of creating a dialog of its own, it can call the central DASYLab time base dialog with the tab of its own

activated. Use the TimeBaseDialog function for this purpose.

9.49.49.49.4 Using a time base from a module’s viewUsing a time base from a module’s viewUsing a time base from a module’s viewUsing a time base from a module’s view

9.4.19.4.19.4.19.4.1 Synchronizing to an existing time baseSynchronizing to an existing time baseSynchronizing to an existing time baseSynchronizing to an existing time base

A module that wants to synchronize to a time base can select from the list of all time bases available.

It can use a Windows Combo Box to do this selection. The Combo Box must be of type Dropdown list

with the Sort option switched off. Two functions are available to support the selection mechanism:

FillTimeBaseCombo will fill the Combo Box with the list of all available time bases and highlight the

item currently selected. GetTimeBaseComboID can be used to retrieve the time base ID from the

current Combo Box selection index.

9.4.29.4.29.4.29.4.2 Setting up a module’Setting up a module’Setting up a module’Setting up a module’s output parameterss output parameterss output parameterss output parameters

Once a time base is selected, the GetTimeBaseSampleDistance and GetTimeBaseBlockSize

functions can be used to retrieve the basic information about the time base. This information can be

used to set up the module’s output parameters like FIFO settings. In former applications, this

information (for the only time base existing: the global one) was available through the global

variables uiGlobalBlockSize and fGlobalMilliSecondsPerSample. Note that new applications

should always use the time base functions instead.

Multiple Time Bases in DASYLab

Extension Toolkit for DASYLab 2016 76 www.dasylab.com

9.4.39.4.39.4.39.4.3 Retrieving the actual timeRetrieving the actual timeRetrieving the actual timeRetrieving the actual time

During an experiment, the module can retrieve the time of the time base with GetTimeBaseTime.

This information replaces the one formerly retrieved by CurrentExperimentTime(1).

More examples

© National Instruments Ireland Resources Limited 77 Extension Toolkit for DASYLab 2016

10101010 More examplesMore examplesMore examplesMore examples

For each base type of module we have an example included:

Data source module: GENERAT.C

contents: - generation of data

 - using global variables and strings

 - handling of asynchronous actions

 - use of a selectable time base

Data processing module: DERIV.C

contents: - processing and calculating the data

 - handling of synchronous actions

Data processing module: DMD_TRIG.C

contents: - processing and calculating the data

Data sink module: LAMP.C

contents: - displaying data

 - using global strings

 - processing window messages

 - VITool functionality

 - handling of synchronous actions

To create your own modules have a look to these examples.

DASYLab's Data Structures

Extension Toolkit for DASYLab 2016 78 www.dasylab.com

11111111 DASYDASYDASYDASYLabLabLabLab's Data Structures's Data Structures's Data Structures's Data Structures

The following describes the constants and data structures found in the included headers which may

be referred to in user created module classes.

Several constants, variables, types, and structure elements are to be used by the DASYLab kernel

only, and are therefore not documented here. We reserve the right to change these any time

without prior notice. The only constants, variables, types, and structuere elements that are allowed

to be used are the ones described in this document.

11.111.111.111.1 General constantsGeneral constantsGeneral constantsGeneral constants
Maximum values for several purposes:

MAX_CHANNEL The maximum number of input or output channels a

module can have.

CHANNEL_NAME_LENGTH The maximum number of characters for a channel name.

MODULE_NAME_LENGTH The maximum number of characters for a module name.

MODULE_STATUS_LENGTH The maximum number of characters for the status line

description text for a module class.

MODULE_DESCRIPTION_LENGTH The maximum number of characters for a modules

description.

MAX_PATH The maximum number of characters for a path name.

MAX_FILENAME The maximum number of characters for a file name.

MAX_SYNC_ACTIONS The maximum number of synchronous actions for each

module.

MAX_PANEL_CONNECTIONS The maximum number of panel connections for each

module.

MAX_UNIT_LEN The maximum number of characters for units.

11.211.211.211.2 Internal representation of dataInternal representation of dataInternal representation of dataInternal representation of data
DLAB_FLOAT Floating point type used internally inside DASYLab. Since

DASYLab 2016, we use double, before we used float. Do

not use the float type in your module classes!

DLAB_FLOAT_MAX Largest number which can be represented in the

DLAB_FLOAT type.

DLAB_FLOAT_MIN Smallest positive number which can be represented in the

DLAB_FLOAT type.

DLAB_FLOAT_EPSILON Smallest number greater than 1.0 which can be

represented in the DLAB_FLOAT type minus 1.0.

ALMOST_ZERO A positive number smaller than DLAB_FLOAT_MIN and thus

equal to zero in the DLAB_FLOAT representation.

11.311.311.311.3 The The The The MODCLASS TypeTypeTypeType

The MODCLASS type describes one module class. It is used in the init function of a module class only

and will not be needed later on. MODCLASS is a structure containing the following elements:

hInst Instance handle of the DLL containing this module class.

Name Internal name of the module class. You must follow the naming

convention found on page 108. This is a language-independent name. If

you prepare different versions of your DLL for different countries, make

sure that this string is the same for all languages.

DASYLab's Data Structures

© National Instruments Ireland Resources Limited 79 Extension Toolkit for DASYLab 2016

DataSize Size of the data ThisModule->ModuleParameters points to. This

structure will be saved en-bloc with the worksheet and should contain

only parameters of the module, but no intermediate data, pointers,

handles and the like.

VarSize Size of the data ThisModule->TempModuleData points to. This structure

will not be saved with the worksheet and should contain module-specific

intermediate data, pointers, handles and the like.

ChannelSize Size of the data ThisModule->TempChannelData[chan] points to. This

structure will not be saved with the worksheet and should contain

channel-specific intermediate data, pointers, handles and the like.

MenuId ID in the SubMenu that this DLL installs. Must be in the range from 2950

to 2974. DASYLab will map this to a different code, so there are no

conflicts when different DLL's use the same MenuId.

IdString Pointer to a string describing the module's default name. This is a

language-specific name. You will have different names here if you

prepare versions of your DLL for different languages.

StatusString Pointer to a string describing the module's purpose. Currently this is not

used, but DASYLab may use this string in the future to display a message

in the status bar while the module is active in the menu bar. This is a

language-specific string. You will have different texts here if you prepare

versions of your DLL for different languages.

HelpId HelpId in your help file that denotes the entry point for the help page for

this module class. Currently not used by DASYLab, but DASYLab may use

this constant someday to call the help system for your module.

HelpFileName Name of the help file that contains the help page for this module class.

Use a plain name without a path name here. Currently not used by

DASYLab, but in the future DASYLab may use this constant to call the help

system for your module.

BBoxId The ID of the black boxes that may contain this module. Currently the

only possible value here is BB_UNIVERSAL.

ModIcon Icon for use inside the module bar, the bar left to the worksheet desk.

BlkIcon Icon to use when displaying the module inside a worksheet.

PerformAction Function to process the messages sent to a module. See the example

above for a detailed description.

ProcessData Function to do the data processing during the experiment. See the

example above for a detailed description.

reserved[30] Reserved space for future extensions. Must be set to zero.

11.411.411.411.4 The The The The MODULE TypeTypeTypeType

The MODULE type describes one instance of a module class. You will often see pointers like

ThisModule pointing to a MODULE type. MODULE is a structure containing elements for use by the

DASYLab kernel only as well as elements for general use by module classes. The following elements

can be accessed from within module classes:

hwndModule Window handle of the representation of the module inside the

worksheet. You will normally not want to look at this.

hwndWindow Window handle of an additional window. Modules like the Y/t

Chart that open an additional window, must save the window

handle of that window here. A module can open only one

additional window, but that additional window may have sub-

windows.

DASYLab's Data Structures

Extension Toolkit for DASYLab 2016 80 www.dasylab.com

wModuleNum Order number of this module relative to the black box it is

contained in. You normally don't need to look at this.

iGlobalModuleClass Order number of this module class this module belongs to. You

normally don't need to look at this.

bModuleIsConnected Flag that is TRUE, if the module has at least one connection to

other modules.

hBlockBmp Bitmap handle copied from the module class. You normally

don't need to look at this.

wBmpWidth Width of the block. You normally will not need to look at this.

wBmpHeight Height of the block. You normally will not need to look at this.

wXpos X-Position of the block inside the worksheet. You normally don't

need to look at this.

wYpos Y-Position of the block inside the worksheet. You normally don't

need to look at this.

ModuleName Name of this module. Maximum length is 12 characters plus one

trailing zero.

ModuleDescription Description text for this module. Maximum length is 40

characters plus one trailing zero.

wNumInpChan The number of input channels for this module.

wNumOutChan The number of output channels for this module.

ChannelRelation Describes how the input channels are related to the output

channels. Must be set on Creation and Loading of a module. The

only legal values are the KZ_* constants listed below.

Fifo[chan] Pointer to a FIFO_HEADER structure for each output channel.

ModuleParameters Pointer to a structure containing the module's parameters. This

structure will be saved en bloc with the worksheet and should

contain only parameters of the module, but no intermediate

data, pointers, handles and the like.

TempModuleData Pointer to a structure containing the module's temporary data.

This structure will not be saved with the worksheet and should

contain module specific intermediate data, pointers, handles

and the like.

TempChannelData[chan] Pointer to a structure containing each channel's temporary

data. This structure will not be saved with the worksheet and

should contain channel-specific intermediate data, pointers,

handles and the like.

The only legal values for the ChannelRelation field are the following constants:

KZ_NORMAL 'Standard' channel relation. The module can be one of the following three

types:

a) The module has no outputs, only inputs.

b) The module has no inputs, only outputs.

c) The module has the same number of inputs and outputs and the first

input is related to the first output, the second input is related to the

second output and so on.

KZ_2_1 The module has twice as many input channels as output channels. The

first two input channels are related to the first output channel, the next

two input channels are related to the second output channel and so on.

KZ_1_2 The module has twice as many output channels as input channels. The

first two output channels are related to the first input channel, the next

two output channels are related to the second input channel and so on.

DASYLab's Data Structures

© National Instruments Ireland Resources Limited 81 Extension Toolkit for DASYLab 2016

KZ_2_2 The module has the same number of input and output channels. They

belong pair-wise to each other. The first two output channels are related

to the first two input channels, the next two output channels are related

to the next two input channels and so on.

KZ_1_ALL The module has any number of input and output channels. All output

channels are related to the first input channel.

KZ_ALL_1 The module has any number of input and output channels. All output

channels are related to all input channels.

KZ_1_LESS The module has one more input than output channels. The first output is

related to the second input, the second output is related to the third

input and so on.

KZ_ALL_ALL The module has any number of inputs and outputs. The input and output

channels don’t have a special relationship to each other.

You are not allowed to use the following constants in your modules:

KZ_DELAY Special. To be used by time delay modules only.

KZ_BBOX Special. To be used by black box modules only.

KZ_BBOXIO Special. To be used by black box I/O modules only.

KZ_BBOXSAT Special. To be used by black box satellite modules only.

KZ_2_1_FIRST Special. Internal use only.

11.511.511.511.5 The The The The FIFO_HEADER TTTTypeypeypeype

The FIFO_HEADER type describes one output FIFO buffer of a module's output channel. FIFO_HEADER

is a structure containing elements for use by the DASYLab kernel only as well as elements for general

use by module classes. The following elements can be accessed from within module classes:

uiMaxBlockSize The maximum size a block in this FIFO can have. A data block contained in

this FIFO may be shorter that the maximum, but not longer.

fSampleDistance The (minimum) time in seconds between two samples on this channel.

Samples contained inside one data block are always exactly

fSampleDistance apart from each other, but it is possible to have holes

(or gaps) between the individual data blocks. See the description of the

KF_HOLES flag below.

ChannelType The type of data contained in this channel. Legal values are the KT_*

constants listed below.

ChannelFlags In addition to a data type, some flags may be present. The value may be

an OR-ed combination of the KF_* constants listed below.

X_Min Used for Histogram data only: First range of the data.

X_Max Used for Histogram data only: Last range of the data.

Unit The unit of this channel.

ModuleName Module name.

The only legal values for the ChannelType field are the following constants:

KT_NORMAL 'Standard' data like sampled analog input, digital input, counter input,

temperature data etc. Use for all channels that display a time axis in the

Y/t Chart.

KT_SPEC Spectral (FFT) data of full length. These data will display a frequency axis

in the Y/t chart.

KT_SPEC2 Spectral (FFT) data of half length. These data will display a frequency axis

in the Y/t chart.

DASYLab's Data Structures

Extension Toolkit for DASYLab 2016 82 www.dasylab.com

KT_SPEC4 Spectral (FFT) data of full length. These data will display a symmetrical

frequency axis in the Y/t Chart from -X_Min to +X_Max.

KT_CLASS2 Histogram data. These data will display a range axis in the Y/t Chart.

The constants KT_BINARY, KT_SPEC3, and KT_CLASS, are obsolete and no longer in use.

The constants KT_DIG_WORD, KT_MUX_CHAN, KT_FMUX_CHAN, KT_TRIG, KT_COUNT, KT_UCOUNT,

KT_THERMO, and KT_VAR, are used internally by the DAP DLL only. You will not see them inside

DASYLab’s modules and should not use them in your modules.

The only legal values for the ChannelFlags field are OR-ed combinations of the following constants:

KF_NORMAL No special flags. This value is zero (contains no flags) so it cannot be used

for testing. Test with KF_HOLES etc. instead.

KF_HOLES There may be time gaps (holes) between the individual data blocks on

this channel. The data inside one data block however may never contain

time gaps.

KF_SHORT_BLK The data inside one data block can contain the declared maximum block

size but can also contain less values than maximum block size. This can

occur on triggered data, where the trigger event does not appear for a

constant time.

The constant KF_ASYNC may be introduced in the near future as well as others. So when checking

flags you should not test equality, but check by AND-ing constants instead.

The constants KF_TRIG_INFO, KF_LONG, and KF_FLOAT are used internally by the DAP DLL only. You

will not see them inside DASYLab’s modules and should not use them in your modules.

The constants KF_COPY_PART, KF_READY, and KF_DELAY are used internally by the DASYLab kernel

only.

11.611.611.611.6 The The The The DATA_BLOCK_HEADER TypeTypeTypeType

The DATA_BLOCK_HEADER type describes one block of data contained in some FIFO.

DATA_BLOCK_HEADER is a structure containing elements for use by the DASYLab kernel only as well as

elements for general use by module classes. The following elements can be accessed from within

module classes:

fStartTime The starting time of this block of data counted in seconds after the

experiment has started.

fSampleDistance The time in seconds between any two samples in this data block. Must

exactly match the value given in the FIFO_HEADER.

uiBlockSize The length (in samples) of this block of data. Must not exceed the

value given in the FIFO_HEADER.

Data[] The data contained in this block. Valid data are in the range from

Data[0] to Data[wBlockSize-1].

11.711.711.711.7 The The The The PARAMETER_INFO TypeTypeTypeType

The PARAMETER_INFO type describes the private variables of a module in ASCII-format to store a

worksheet as ASCII-file. This structure is returned with the DMM_GET_PARAMETERS_INFO message

before loading or saving the module from or to an ASCII-file.

DASYLab's Data Structures

© National Instruments Ireland Resources Limited 83 Extension Toolkit for DASYLab 2016

Its elements are as follows:

szDescription Static description of the variable.

szType Type of the variable, i.e. int.

nOffset Offset in the private data structure of the module. Use the macro

offsetof to calculate this value.

nStructOffset Size of a structure in the private data structure of the module.

See chapter 6.2 Worksheets in ASCII format for detailed information.

11.811.811.811.8 The The The The EXT_TIMEBASE TypeTypeTypeType

The EXT_TIMEBASE type serves as a communication medium between DASYLab’s time base

administration and the driver that defines the time base. Elements:

uiID unique identifier of the time base

bAutoBlockSize Indicates that the block size is computed automatically from the

sample rate.

uiBlockSize Block size used by this time base.

nFreqFormat Indicator for the display format of the sample rate. Values can be:

ID_TIMEBASE_MHZ Sample rate in MHz

ID_TIMEBASE_KHZ Sample rate in kHz.

ID_TIMEBASE_HZ Sample rate in Hz.

ID_TIMEBASE_MS Sample distance in msec.

ID_TIMEBASE_SEK Sample distance in sec.

ID_TIMEBASE_MIN Sample distance in min.

fSampleDistance Sample distance in sec used by the time base.

wVarBlockSize Global variable number for the block size. 0 if not used.

wVarSampleRate Global variable number for the sample rate. 0 if not used. Note that

the variable must contain the sample rate in Hz and not the sample

distance in sec.

See chapter “9 Multiple Time Bases in DASYLab” for detailed information.

11.911.911.911.9 VariabVariabVariabVariablesleslesles
The following variables may be used by user created module classes:

hInst The instance handle of the DLL that contains the module

class. Use this for loading strings from your resource etc.

hInstDlab The instance handle of the DASYLab program. You will

normally not need this.

hBlackPen A black pen for general use. Try to avoid creating dozens

of standard objects over and over again because that

would consume lots of resources. Use the standard

objects instead.

hWhitePen A white pen for general use.

hDkGrayPen A dark gray pen for general use.

hPipePenRed A red pen for general use.

hPipePenGreen A green pen for general use.

hLightRedBrush A light red brush for general use.

hGreenBrush A green brush for general use.

hDkGrayBrush A dark gray brush for general use.

DASYLab's Data Structures

Extension Toolkit for DASYLab 2016 84 www.dasylab.com

wDialCurChan Dialog box handling: The channel number currently

selected.

wDialNumChan Dialog box handling: The number of activated channels.

wDialMaxChan Dialog box handling: The maximum number of channels

this module can have.

wDialLastFocus Dialog box handling: The last focused parameter.

SingleInfo Dialog box handling: Pointer to temporary data.

CurrentModulePtr Dialog box handling: Pointer to the actual module.

ShortTempString A short (100 char) string space for general use.

LongTempString A long (400 char) string space for general use.

fGlobalMilliSecondsPerSample Sample distance in milliseconds, as specified in the global

experiment setup dialog box. Modules like the Generator

or Timer use this rate to produce their data.

uiGlobalBlockSize Data block size, as specified in the global experiment

setup dialog box. Modules like the Generator or Timer

use this block size to produce their data.

dwExperimentStartTimeTicks This is the value of GetTickCount() that windows

reported when the experiment was started. Modules like

the Generator or Timer use this as a time base for real

time release of the data blocks.

ExperimentStartTime Date and time when the experiment was started. The

time is given in seconds since Jan 1, 1970, UTC.

bAnimation TRUE, if the user activated the animation.

bExperimentIsRunning TRUE, while the experiment is running.

bExperimentIsPaused TRUE, while the experiment is paused.

hwndMain Window handle of the DASYLab main window.

hwndDesk Window handle of the DASYLab desk window; this is the

area where the worksheet gets displayed.

MainMenu Handle of DASYLab’s main menu bar.

MENU_EXPAND_POS This is the point where user DLLs are allowed to expand

DASYLab’s menu bar.

wNumberOfModules Number of modules in the currently active black box.

uiHighModuleNumber Last module number in use for the currently active black

box plus one.

NameOfFlowChart Plain name (without path) of the worksheet currently

loaded.

FullNameOfFlowChart Full name (including path) of the worksheet currently

loaded.

InitialStartupDir The DASYLab directory.

wxScreen The screen width in effect.

wyScreen The screen height in effect.

GlobalFlowChartInfo The information the user entered in the info dialog box.

bDateDayLeadingZero Date day format with leading zero

bDateMonthLeadingZero Month day format with leading zero

bDateYearLong Date year format is long (1999)

wDateFormat Date format

bTime24h Time format counts from 0 to 24 hours

bTimeLeadingZero Time format has a leading zero

TimeTrenn Time separator

DezTrenn Decimal separator

bDecLeadingZero Decimal format has a leading zero

DateTrenn Time separator

DefFlowchartDir The default directory for storing worksheets.

DASYLab's Data Structures

© National Instruments Ireland Resources Limited 85 Extension Toolkit for DASYLab 2016

DefStreamingDir The default directory for storing streaming files.

DefDataDir The default directory for storing data values.

DefDeviceDir The default directory for storing device data.

DefUtilityDir The default directory for storing utility and tool data.

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 86 www.dasylab.com

12121212 Functions Functions Functions Functions provided by DASYprovided by DASYprovided by DASYprovided by DASYLabLabLabLab

12.112.112.112.1 Memory ManagementMemory ManagementMemory ManagementMemory Management
DASYLab supplies a set of memory management functions as a replacement for the standard

windows functions. Besides ease of use, the DASYLab functions provide additional checks to detect

bad code that writes over the memory bounds etc.

void *MemAlloc (DWORD nbytes)

Purpose: Allocates nbytes Bytes of zero-filled memory.

Parameters: nbytes = number of bytes to allocate

Return value: Pointer to memory or NULL in case of error.

Remarks: Before returning NULL, MemAlloc displays a dialog box informing the user

of the memory shortage. So the calling function need not display an

additional 'out of memory' dialog box

void MemFree (void *ptr)

Purpose: Free memory block.

Parameters: ptr = a memory block pointer that was allocated using MemAlloc before.

Return value: None.

Remarks: MemFree is implemented as a macro. In addition to releasing the memory

block, it also sets ptr = NULL.

void *MemReAlloc (void *ptr, DWORD nbytes)

Purpose: Increase or decrease the size of a memory block keeping the old contents

intact.

Parameters: ptr = pointer to old memory block

nbytes = number of bytes to allocate

Return value: Pointer to new memory block or NULL in case of error.

Remarks: Before returning NULL, MemReAlloc displays a dialog box informing the

user of the memory shortage. So the calling function need not display an

additional 'out of memory' dialog box.

12.212.212.212.2 FIFO Buffer handlingFIFO Buffer handlingFIFO Buffer handlingFIFO Buffer handling
FIFO buffers are used for data transport between the modules. Each output channel of a module has

its own FIFO buffer. An output FIFO may be connected to the input side of more than one module in

a worksheet.

The following functions handle output of data blocks to an output FIFO:

DATA_BLOCK_HEADER *GetCurrentOutputBlock (FIFO_HEADER *fifo)

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 87 Extension Toolkit for DASYLab 2016

Purpose: Retrieves a pointer to a data block to store new data.

Parameters: fifo = pointer to a FIFO header.

Return value: Pointer to data block or NULL if the FIFO is full.

Remarks: When calling this function often, you will always get the same pointer

again until you call the ReleaseOutputBlock function for the FIFO. After

that you will get a new data block.

BOOL ReleaseOutputBlock (FIFO_HEADER FAR *fifo)

Purpose: Outputs one data block to the FIFO.

Parameters: fifo = pointer to a FIFO header.

Return value: TRUE on success, FALSE in case of error. There is no need to look at the

return code of this function.

Remarks: You should have filled up the block with data and have set the time

information first before calling this function.

The following functions handle input of data blocks from the FIFO connected to the input side of a

module:

FIFO_HEADER *GetInputFifo (MODULE *ThisModule, UINT wChan)

Purpose: Retrieves a pointer to the FIFO connected to a module's input side at a

specific channel.

Parameters: ThisModule = the module in question

wChan = input channel number

Return value: Pointer to FIFO header or NULL if input side is not connected.

Remarks: Typically this function will be called on experiment start time to check if

the input channel data type etc. matches the need of the module.

 We do not allow open input channels at the moment, but we may allow it

in the future, so you'd better check for the NULL before accessing the

data.

DATA_BLOCK_HEADER *GetInputBlock (MODULE *ThisModule, UINT wChan)

Purpose: Retrieves a pointer to an input block for the selected channel.

Parameters: ThisModule = The module in question.

wChan = input channel number.

Return value: Pointer to data block or NULL if either the input side is not connected or

no block is waiting there.

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 88 www.dasylab.com

Remarks: When calling this function often, you will always get the same pointer

again until you call the ReleaseInputBlock function for the channel.

After that you will get a new data block.

void ReleaseInputBlock (MODULE *ThisModule, UINT wChan)

Purpose: Release an input block.

Parameters: ThisModule = The module in question.

wChan = input channel number.

Return value: none.

Remarks: All modules that are connected to a FIFO must call the

ReleaseInputBlock function before they all can access the next data

block.

void TOOLAPI CopyBlock (MODULE *ThisModule, UINT wChan)

Purpose: Copy an input block without change to the output.

Parameters: ThisModule = The module in question.

wChan = input channel number

Return value: none.

Remarks: Used in the Lamp example. The function is used here to copy input

channels to output channels for a better worksheet overview.

12.312.312.312.3 Module class handlingModule class handlingModule class handlingModule class handling
The following two functions are described in detail in the above example.

BOOL RegisterModuleClass (MODCLASS *mc)

Purpose: Register a module class with DASYLab.

Parameters: mc = description of the new module class.

Return value: TRUE on success, FALSE in case of error. There is no need to look at the

return code of this function.

Remarks: mc may well point to a local variable, since the area is no longer needed

after the RegisterModuleClass call.

unsigned long PerformDefaultAction (MODULE *ThisModule, int wMsg,

 int wParam, long lParam)

Purpose: Default module message handler.

Remarks: A module must call this function for every message it does not process on

its own.

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 89 Extension Toolkit for DASYLab 2016

12.412.412.412.4 General utility functionsGeneral utility functionsGeneral utility functionsGeneral utility functions
void DsbHasChanged (void)

Purpose: Tell DASYLab that a worksheet has changed. Use this call i.e. at the IDOK

of a dialog box so that the user is asked to save the worksheet before

leaving the DASYLab session.

Parameters: none.

Return value: none.

void ShowWarning (char *title, char *text)

Purpose: Show a dialog box. Mainly used for warning messages.

Parameters: title = dialog box title.

text = dialog box text.

Return value: none.

void EnableAllWindows (BOOL bEnable)

Purpose: Enable/Disable all module windows.

Parameters: bEnable = TRUE for enable, FALSE for disable.

Return value: none.

void StopExperiment (void)

Purpose: Stop the experiment.

Parameters: none.

Return value: none.

Remarks: Call this function before calling a dialog box from inside the ProcessData

function – otherwise you will get a series of dialog boxes until the stack

overflows.

void PauseExperiment (void)

Purpose: Pause the experiment; can then be resumed later on.

Parameters: none.

Return value: none.

void CopyChannelName (FIFO_HEADER * Fifo, LPSTR *chBezeichnung)

Purpose: Copy the channel name to the connected module(s).

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 90 www.dasylab.com

Parameters: Fifo = pointer to the channel’s FIFO.

chBezeichnung = pointer to the channel name.

Return value: none.

void FillUnitList (HWND hDlg, UINT nListId, LPSTR SetString)

Purpose: Fills a combo box with the default units.

Parameters: hDlg = handle to the dialog box.

nListId = ID of the combo box.

SetString = string to be set in the edit field of the combo box.

Return value: none.

void ExpandUnitString (char *Destination, char *UnitFormula,

 MODULE *ThisModule, UINT wStartChannel);

Purpose: Simplify a unit given in UnitFormula.

Parameters: Destination = string to receive the simplified unit.

ThisModule = pointer to the actual module.

wStartChannel = channel number this unit belongs to.

Return value: none.

void ModalChooseColor (void *colptr)

Purpose: Replacement for the Windows ChooseColor dialog that disables all

module windows first.

Parameters: colptr = pointer to a CHOOSECOLOR structure.

Return value: none.

void ModalChooseFont (void *fntptr)

Purpose: Replacement for the Windows ChooseFont dialog that disables all module

windows first.

Parameters: fntptr = pointer to a CHOOSEFONT structure.

Return value: none.

BOOL LoadInterpolationTable (void FAR *Table, char FAR *FileName,

 int FAR *ErrorCode, char FAR *TableText)

Purpose: Load DASYLab Interpolation Table

Parameters: Table = pointer to structure declared as

typedef struct
{
 UINT Columns;

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 91 Extension Toolkit for DASYLab 2016

 DLAB_FLOAT * xVal;
 DLAB_FLOAT * yVal;
} INTERPOLATION;

 FileName = Table Filename with path description

 ErrorCode = if return value == FALSE, check ErrorCode as String-ID in

DASYLab Instance to get an Error description string

 TableText = if the table is loaded successfully, the table description

string is set to the TableText.

Return value: TRUE on success, FALSE in case of error.

BOOL LoadTableFromFile (void FAR *Table, char FAR *FileName,

 char FAR *FirstLine, int nColumns,

 int FAR *ErrorCode, char FAR *TabellenText)

Purpose: Load DASYLab Interpolation Table from a file

Parameters: Table = pointer to structure declared as

typedef struct
{
 UINT Columns;
 DLAB_FLOAT * xVal;
 DLAB_FLOAT * yVal;
} INTERPOLATION;

 FileName = Table Filename with path description

ErrorCode = if return value == FALSE, check ErrorCode as String-ID in

DASYLab Instance to get an Error description string

TableText = if the table is loaded successfully, the table description string

is set to the TableText.

Return value: TRUE on success, FALSE in case of error.

void SetupInputBitmap (MODULE *ThisModule, UINT wChannel, UINT wIndexNr)

Purpose: Show a custom defined bitmap instead of the default bitmaps in the input

channel

Parameters: ThisModule = selected module address

wChannel = channel number to change bitmap

wIndexNr = Index for bitmap or bitmap handle

Return value: none.

Remark: the bitmap handle has to destroyed by the user DLL

void SetupOuputBitmap (MODULE *ThisModule, UINT wChannel, UINT wIndexNr)

Purpose: Show a custom defined bitmap instead of the default bitmaps in the

output channel

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 92 www.dasylab.com

Parameters: ThisModule = selected module address

wChannel = channel number to change bitmap

wIndexNr = Index for bitmap or bitmap handle

Return value: none.

Remark: the bitmap handle has to destroyed by the user DLL

12.512.512.512.5 String utility functionsString utility functionsString utility functionsString utility functions
void chg_int (char *buf, int val)

Purpose: Converts an integer value into a string.

Parameters: buf = space to hold the result.

val = value to convert.

Return value: Conversion result is stored in buf.

Remarks: buf must be large enough to hold the result string plus one trailing zero.

void chg_float (char *buf, double val, int decimals)

Purpose: Converts a floating point value into a string.

Parameters: buf = space to hold the result.

val = value to convert.

decimals = number of decimal places

Return value: Conversion result is stored in buf.

Remarks: buf must be large enough to hold the result string plus one trailing zero.

double str2float (char *s)

Purpose: Replacement for atof(): Converts a string into a floating point value.

Parameters: s = string to convert.

Return value: Converted value.

Remarks: Within DASYLab we allow both comma and dot (period) to be used as a

decimal separator. Therefore you must use str2float() instead of atof()

when converting values read back from a dialog box into floating point

again.

 Currently we also re-define atof() to be identical to str2float() to be

compatible with old code that used atof(). We may eventually remove

this re-definition someday.

char *strins (char *dest, char *src)

Purpose: Inserts the string src before dest.

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 93 Extension Toolkit for DASYLab 2016

Parameters: dest = pointer to destination string.

src = pointer to source string.

Return value: new string.

Remarks: This function is missing from the MSC libraries.

void sprintf_year (LPSTR cYear, int year, int mon, int day)

Purpose: Format the date string in the way of the country-specific settings.

Parameters: cYear = space to hold the result.

year = actual year to be converted

mon = actual month to be converted

day = actual day to be converted

Return value: none.

Remarks: Get the actual date with the help of the localtime function of windows.

Now convert to string.

Example: struct tm *today;

today = localtime (<ime);

sprintf_year (szString, today->tm_year, today->tm_mon+1,

 today->tm_mday);

void sprintf_clock (LPSTR cTime, int hour, int min, int sec)

Purpose: Format the time string in the way of the country-specific settings.

Parameters: cTime = space to hold the result.

hour = actual hour to be converted

min = actual minute to be converted

sec = actual second to be converted

Return value: none.

Remarks: Get the actual time values with the help of the localtime function of

windows. Now convert to string.

Example: struct tm *today;

today = localtime (<ime);

sprintf_clock (szString, today->tm_hour, today->tm_min, today->tm_sec);

12.612.612.612.6 Math utility functionsMath utility functionsMath utility functionsMath utility functions
BOOL IsNearlyEqual (double a, double b, double tol)

Purpose: Test, if a and b are nearly equal within a given tolerance.

Parameters: a, b = the two numbers to compare

tol = tolerance, i.e. 0.01 = 1 percent deviation

Return value: TRUE, if a and b are nearly equal within the tolerance, else FALSE.

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 94 www.dasylab.com

Remarks: When comparing floating point numbers, it is generally not wise to do

exact equality or inequality comparisons. Use this function instead.

void do_fft (DLAB_FLOAT *datar, DLAB_FLOAT *datai, int n, int Direction)

Purpose: Basic FFT calculation.

Parameters: datar = real part of the data

datai = imaginary part of the data

n = number of data; must be a power of 2

Direction = 1 for FFT or = -1 for inverse FFT

Return value: The transformed data replaces the original data in the datar and datai

arrays.

Remarks: This is the working function behind module classes like FFT or Correlation.

Note that it always works complex and always works on the DLAB_FLOAT

basic type.

12.712.712.712.7 Dialog Box HandlingDialog Box HandlingDialog Box HandlingDialog Box Handling
void InitChannelBar (HWND hDlg)

Purpose: Initializes the channel bar for a module dialog box and change all necessary

dialog box texts to small fonts.

Parameters: hDlg = handle of dialog box window.

Return value: none.

Remarks: You must set up the proper values for wDialNumChan, wDialCurChan and

wDialMaxChan first before calling this function.

void HandleChannelClick (HWND hDlg, UINT but)

Purpose: Change the active (green) channel in the channel bar.

Parameters: hDlg = handle of dialog box window.

 but = Button ID of the clicked button

Return value: This function manipulates the global variable wDialCurChan.

void HandleLessMoreButton (HWND hDlg, UINT but)

Purpose: Add/remove one channel from the channel bar.

Parameters: hDlg = handle of dialog box window.

but = ID_LESS to remove a channel

but = ID_MORE to add a channel

Return value: none.

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 95 Extension Toolkit for DASYLab 2016

void HandleLessMoreCountButtons (HWND hDlg, UINT but , UINT wCount)

Purpose: Add/remove wCount channels from the channel bar.

Parameters: hDlg = handle of dialog box window.

 but = ID_LESS to remove channels

 but = ID_MORE to add channels

 wCount = number of added/removed channels

Return value: none.

BOOL ChangeModuleSize (MODULE *ThisModule, UINT NumIn, UINT NumOut)

Purpose: Change the number of input and output channels for a module.

Parameters: ThisModule = the module in question.

NumIn = new number of input channels.

NumOut = new number of output channels.

Return value: TRUE on success, FALSE in case of error.

Remarks: This function needs to be called from inside the IDOK case of the

WM_COMMAND message handling of the module's parameter dialog box

whenever the number of input or output channels may have changed.

BOOL ChangeModuleName (MODULE *ThisModule, LPSTR szNewName)

Purpose: Change the name of a module and make the name change known to all

instances within DASYLab that might use it (Action modules, Layout

objects).

Parameters: ThisModule = the module in question.

 szNewName = new name of the module.

Return value: TRUE on success, FALSE in case of error.

Remarks: This function needs to be called from inside the IDOK case of the

WM_COMMAND message handling of the module's parameter dialog box

whenever the module name may have changed. An error check is made

that the new module name is not yet in use, and information about the

name change is passed to all instances that make use of it. Note that the

module name should no longer be changed directly.

BOOL CenterDialog (HWND hwnd, HWND hwndOwner)

Purpose: Set the dialog box in the center of the referring window and change all

necessary dialog box texts to small fonts.

Parameters: hwnd = window handle of the window which is to be positioned.

hwndOwner =window handle of the „father“ window.

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 96 www.dasylab.com

Return value: TRUE on success, FALSE in case of error.

Remarks: This function needs not to be called in dialog box with channel bars. The

function InitChannelBar calls the CenterDialog function. All other

dialog boxes have to call the CenterDialog function in the WM_INITDIALOG

switch of the dialog box function.

12.812.812.812.8 Print utility functionsPrint utility functionsPrint utility functionsPrint utility functions
BOOL InitPrinter (DruckInfo FAR *di, BOOL bAskBefore)

Purpose: Set all initialization variables before printing.

Parameters: di = print structure.

 bAskBefore = Quit a message box before printing or print at once.

Return value: TRUE on success, FALSE in case of error.

Remarks: Before any printing actions this function is the first one to be called. If the

return value is false leave the printing routine without any printing action.

BOOL PrintHeader (DruckInfo FAR *di, DruckInfo FAR *di,

 char FAR *chModuleName)

Purpose: Print the header defined in the printer layout.

Parameters: di = print structure.

 chModuleName = Name of the printing module

Return value: TRUE on success, FALSE in case of error.

BOOL PrintFooter (DruckInfo FAR *di)

Purpose: Print the bottom defined in the printer layout.

Parameters: di = print structure.

Return value: TRUE on success, FALSE in case of error.

BOOL NextPage (DruckInfo FAR *di)

Purpose: Send the complete page to the printer.

Parameters: di = print structure.

Return value: TRUE on success, FALSE in case of error.

12.912.912.912.9 Functions for global variables and global stringsFunctions for global variables and global stringsFunctions for global variables and global stringsFunctions for global variables and global strings
BOOL ExpandVarNumber (char *Source, int MaxSourceSize, short *Number)

Purpose: Receive the corresponding number to a placeholder string {$VAR_x}.

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 97 Extension Toolkit for DASYLab 2016

Parameters: Source = pointer to the placeholder string

MaxSourceSize = number of characters in the placeholder string

Number = address of the variable to receive the corresponding number

Return value: TRUE on success, FALSE in case of error.

BOOL GlVar_RegisterByNumber (short Number, void *ObjectPtr,

 unsigned long (*UpdateFunction) (void *ObjectPtr, int wMsg,

 int wParam, long lParam))

Purpose: Register the update function which has to be called if the global variable

indicated by Number has changed.

Parameters: Number = number of the global variable.

ObjectPtr = pointer to the current module.

UpdateFunction = address of the PerformAction function of this module.

Return value: TRUE on success, FALSE in case of error.

BOOL GlVar_UnregisterByNumber (short Number, void *ObjectPtr,

 unsigned long (*UpdateFunction) (void *ObjectPtr, int wMsg,

 int wParam, long lParam))

Purpose: Unregister the update function which has to be called if the global variable

indicated by Number has changed.

Parameters: Number = number of the global variable.

ObjectPtr = pointer to the current module.

UpdateFunction = address of the PerformAction function of this module.

Return value: TRUE on success, FALSE in case of error.

BOOL GlVar_Set (short Number, double GlValue)

Purpose: Assign a value to the global variable indicated by Number.

Parameters: Number = number of the global variable.

GlValue = new value.

Return value: TRUE on success, FALSE in case of error.

BOOL GlVar_Get (short Number, double *GlValue)

Purpose: Receive the value of the global variable indicated by Number.

Parameters: Number = number of the global variable.

GlValue = address of the variable to receive the value.

Return value: TRUE on success, FALSE in case of error.

BOOL GlVar_PrefixGet (short Number, char *GlText, int MaxSize)

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 98 www.dasylab.com

Purpose: Receive the prefix string of the global variable indicated by Number.

Parameters: Number = number of the global variable.

GlText = address of the string to receive the prefix string.

MaxSize = max. size of GlText.

Return value: TRUE on success, FALSE in case of error.

BOOL GlVar_VarStringGet (short Number, char *GlText)

Purpose: Receive the value of the global variable indicated by Number as string.

Parameters: Number = number of the global variable.

GlText = address of the string to receive the value as string.

Return value: TRUE on success, FALSE in case of error.

BOOL GlVar_SetSyntax (char* szDest, short nNumber)

Purpose: This function is used to display placeholders for global variables in the

correct syntax. (Often used in dialog boxes.)

Parameters: Number = number of the global variable.

GlText = address of the string to receive the placeholder string.

Return value: TRUE on success, FALSE in case of error.

void SetMenuForGlobalVars (HWND hDlg, UINT wID)

Purpose: Use this function to expand the popup menu of edit fields in dialog boxes.

The appended menu item allows to select global variables via dialog.

Parameters: hDlg = handle of the dialog box.

wID = ID of the edit field.

Return value: none.

BOOL ExpandString (char *Source, int MaxSourceSize, char *Destination,

 int MaxDestSize)

Purpose: Receive the corresponding string to a placeholder string {$STR_x}.

Parameters: Source = pointer to the placeholder string.

MaxSourceSize = number of characters in the placeholder string.

Destination = pointer to the destination string.

MaxDestSize = number of characters in the placeholder string.

Return value: TRUE on success, FALSE in case of error.

BOOL GlStr_RegisterByNumber (short Number, void *ObjectPtr,

 unsigned long (*UpdateFunction) (void *ObjectPtr, int wMsg,

 int wParam, long lParam))

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 99 Extension Toolkit for DASYLab 2016

Purpose: Register the update function which has to be called if the global string

indicated by Number has changed.

Parameters: Number = number of the global string.

ObjectPtr = pointer to the current module.

UpdateFunction = address of the PerformAction function of this module.

Return value: TRUE on success, FALSE in case of error.

BOOL GlStr_RegisterByText (char *theText, void *ObjectPtr,

 unsigned long (*UpdateFunction) (void *ObjectPtr, int wMsg,

 int wParam, long lParam))

Purpose: Register the update function which has to be called if the global string

indicated by the placeholder theText has changed.

Parameters: theText = placeholder of the global string.

ObjectPtr = pointer to the current module.

UpdateFunction = address of the PerformAction function of this module.

Return value: TRUE on success, FALSE in case of error.

BOOL GlStr_UnregisterByNumber (short Number, void *ObjectPtr,

 unsigned long (*UpdateFunction) (void *ObjectPtr, int wMsg,

 int wParam, long lParam))

Purpose: Unregister the update function which has to be called if the global string

indicated by Number has changed.

Parameters: Number = number of the global string.

ObjectPtr = pointer to the current module.

UpdateFunction = address of the PerformAction function of this module.

Return value: TRUE on success, FALSE in case of error.

BOOL GlStr_UnregisterByText (char *theText, void *ObjectPtr,

 unsigned long (*UpdateFunction) (void *ObjectPtr, int wMsg,

 int wParam, long lParam))

Purpose: Unregister the update function which has to be called if the global string

indicated by the placeholder theText has changed.

Parameters: theText = placeholder of the global string.

ObjectPtr = pointer to the current module.

UpdateFunction = address of the PerformAction function of this module.

Return value: TRUE on success, FALSE in case of error.

BOOL GlStr_Set (short Number, char *GlText, int MaxSiz e)

Purpose: Assign a string to the global string indicated by Number.

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 100 www.dasylab.com

Parameters: Number = number of the global variable.

GlText = new string.

MaxSize = length of new string.

Return value: TRUE on success, FALSE in case of error.

BOOL GlStr_Get (short Number, char *GlText, int MaxSize)

Purpose: Receive the string of the global string indicated by Number.

Parameters: Number = number of the global string.

GlText = address of the string to receive the string.

MaxSize = max. length of GlText.

Return value: TRUE on success, FALSE in case of error.

BOOL GlStr_PrefixGet (short Number, char *GlText, int MaxSize)

Purpose: receive the prefix string of the global string indicated by Number.

Parameters: Number = number of the global string.

GlText = address of the string to receive the prefix string.

MaxSize = max. length of GlText.

Return value: TRUE on success, FALSE in case of error.

BOOL GlStr_SetSyntax (char* szDest, short nNumber)

Purpose: This function is used to display placeholders for global strings in the correct

syntax. (Often used in dialog boxes.)

Parameters: Number = number of the global string.

szDest = address of the string to receive the placeholder string.

Return value: TRUE on success, FALSE in case of error.

void SetMenuForGlobalStrings (HWND hDlg, UINT wID)

Purpose: Use this function to expand the popup menu of edit fields in dialog boxes.

The appended menu item allows to select global strings via dialog.

Parameters: hDlg = handle of the dialog box.

wID = ID of the edit field.

Return value: none.

BOOL ChangeNameInString (LPSTR szString, UINT uiStringLength,

 LPSTR szFrom, LPSTR szTo)

Purpose: This function is used to exchange placeholders for global strings or

variables in strings after a name change.

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 101 Extension Toolkit for DASYLab 2016

Parameters: szString = the string in which placeholders are to be exchanged.

uiStringLength = maximum length of this string.

szFrom = old name of the global variable/string.

szTo = new name of the global variable/string.

Return value: TRUE on success, FALSE in case of error. An error can occur if the new name

is longer than the old one and the new string does not fit into

uiStringLength characters.

Remarks: This function usually is called upon receiving a DMM_CHANGE_VAR_NAME

message in a module, when the module contains strings that may contain

global variables (say file names).

12.1012.1012.1012.10 Internal Error HandlingInternal Error HandlingInternal Error HandlingInternal Error Handling
We strongly suggest introducing some validity checks in the code to look for suspicious situations.

You can use the following macros. All of them show the InternalError dialog box on the screen

displaying the source file and line where the error occurred and the error message. They also save

the current worksheet and error message under the name dlab_err.dsb and dlab_err.log.

void InternalError (char *msg)

Purpose: Show an internal error message

Parameters: msg = message to be displayed

Return value: none.

void ImpossibleCase (void)

Purpose: Same as InternalError("Impossible case");

Parameters: none.

Return value: none.

Remarks: Use this one in all default cases of switch statements that 'do not have a

default case'.

void ImpossibleCaseNum (long n)

Purpose: Similar to ImpossibleCase() but in addition displays the number of the

wrong case also.

Parameters: n = number of the wrong case.

Return value: none.

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 102 www.dasylab.com

12.1112.1112.1112.11 Console OutputConsole OutputConsole OutputConsole Output
Starting with DASYLab 11.0, two commands are available to display warnings and texts.

void PASCAL ConsoleOutf (char *szText)

Purpose: Outputs a text with certain formatting.

Parameters: szText = text to be output in the console.

Return value: None

Remarks: Formatting instructions can be integrated in the text. The instructions

always refer to the complete text. All instructions must be at the

beginning of the text.

The following instructions are possible:

\b+ Text is output in bold.

\i+ Text is output in italics.

\cRRGGBB Text is output in color (a letter pair must be replaced by a

hexadecimal number which specifies the respective color intensity, for

example, \cFF0000 for red or \c000000 for black. You also can set a

semicolon behind the color code.

Example: ConsoleOutf (“\\b+\\i+\\cFFFFFF;Example”);

void PASCAL ConsoleOutWarning (LPCTSTR szTitle, LPCTSTR szMsg)

Purpose: Outputs a warning in the console as „Title: Msg“.

Parameters: szTitle = Title, e.g. module name to be displayed in the console

szMsg = Message to be displayed in the console

Return value: None

The display of either function cannot be suppressed in the DASYLab warning options. However, you

can specify in the warning options whether the messages get a time stamp.

12.1212.1212.1212.12 Module independent memory registrationModule independent memory registrationModule independent memory registrationModule independent memory registration
The function RegisterExtraMemory registers exactly one additional memory range. After that it is

necessary to call AddExtMemInstance if one wants to save the registered memory in a worksheet (in

DSB- or ASCII-format) and loading the worksheet reads this memory later.

The pointer to this memory range and its size have to be passed as arguments of the function

RegisterExtraMemory. The memory range consists of an array of structures; it is possible that there

is only one element of the array. The fifth argument determines the count of array-elements for

each identifier. It is also possible to call the function RegisterExtraMemory several times to register

some memory ranges inside of a DLL. The identifier must be unique in order to distinguish the

memory ranges. This identifier should not have too few characters as it must be unique inside of

DASYLab. If the identifier is not unique an error message will appear. Also a pointer to

PARAMETER_INFO for saving in ASCII-format of the memory description should be passed.

All structure elements, which are saved as additionally memory, are described in the memory

description similarly to the description of module parameters. If pParamInfo is NULL the structures

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 103 Extension Toolkit for DASYLab 2016

of the additionally memory is not readable in the ASCII-worksheet file. Trying to save this file in text

format it will result in a warning message.

BOOL TOOLAPI RegisterExtraMemory (char *Identifier, void *pExtMemory,

 int Size, PARAMETER_INFO *pParamInfo, int NumStructures)

Purpose: The function registers exactly one additional memory range.

Parameters: Identifier = unique inside of DASYLab.

pExtMemory = pointer to the additional memory.

Size = size of the additional memory.

pParamInfo = pointer to the memory description.

NumStructures = count of array-elements.

Return value: TRUE on success, FALSE in case of error.

Remarks: You can register a maximum of 32 memory ranges. The length of the

identifier can be 19 characters and the memory range must not be bigger

than 65536 bytes.

BOOL TOOLAPI AddExtMemInstance (char *Identifier)

Purpose: This function call increments the instance counter for the named

identifier by one.

Parameters: Identifier = unique inside of DASYLab.

Return value: TRUE on success, FALSE in case of error.

Remarks: Use the same identifier as in the call to the function

RegisterExtraMemory.

BOOL TOOLAPI RemoveExtMemInstance (char *Identifier)

Purpose: This function call decrements the instance counter for the named

identifier by one, if there is at least one instance of the identifier.

Otherwise the counter of instance is set to zero.

Parameters: Identifier = unique inside of DASYLab.

Return value: TRUE on success, FALSE in case of error.

Remarks: Use the same identifier as in the call to the function AddExtMemInstance.

Example:

char *ExtraMemID = "IDENTIFICATION";
int size = NumStructures*sizeof(EXTRA_MEMORY);
pExtraMemory = MemAlloc (size);
if (pExtraMemory == NULL)
 return FALSE;
if (!RegisterExtraMemory (ExtraMemID, (void*) pExtraMemory, size, ParameterInfo, NumStructures))
 return FALSE;
//Call once AddExtMemInstance to make it possible to save registered memory
//independent of modules
if (!AddExtMemInstance (ExtraMemID))
 return FALSE;

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 104 www.dasylab.com

12.1312.1312.1312.13 Multiple Time Base UsageMultiple Time Base UsageMultiple Time Base UsageMultiple Time Base Usage
These functions provide access to the multiple time bases of DASYLab. For a full description of the

methods, read Chapter 9 Multiple Time Bases in DASYLab.

For an example, refer to the source module GENERAT.C.

void TOOLAPI RegisterTimeBase (LPSTR szName, UINT uiID, LPSTR szDescription,

void (CALLBACK *SetDriver) (EXT_TIMEBASE *pExtBase), BOOL bTemporary)

Purpose: The function registers a time base structure for use within DASYLab.

Parameters: szName = name of the time base. Appears on the tab in the time bases

dialog box.

uiID = unique identifier of the time base.

szDescription = long description of the time base.

SetDriver = pointer to the callback function that is called by DASYLab

when the time base information is changed by the user.

bTemporary = set this always to FALSE.

Return value: none.

void TOOLAPI UnregisterTimeBase (UINT uiID)

Purpose: The function unregisters a time base structure from DASYLab.

Parameters: uiID = unique identifier of the time base.

Return value: none.

Remarks: This function needs not to be called at the end of the program since

DASYLab properly unregisters all time bases.

BOOL TOOLAPI SetTimeBase (EXT_TIMEBASE *pExtBase)

Purpose: The function updates the time base settings within DASYLab.

Parameters: pExtBase = pointer to an EXT_TIMEBASE structure describing the new

settings of the time base.

Return value: TRUE, if the time base was updated successfully, FALSE otherwise.

Remarks: This function must be called if the driver wants to update the time base

information (e.g. if a settings request cannot be fulfilled by the

hardware).

void TOOLAPI SetTimeBaseTime (UINT uiID, double fTime)

Purpose: The function updates the time of the time base.

Parameters: uiID = unique identifier of the time base.

fTime = new time for this time base in seconds.

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 105 Extension Toolkit for DASYLab 2016

Return value: none.

Remarks: The driver should call this function whenever the hardware delivers a new

block of data so that the time information of the time base is

synchronous to the hardware clock.

void TOOLAPI IncTimeBaseTime (UINT uiID, double fAddTime)

Purpose: The function increments the time of the time base.

Parameters: uiID = unique identifier of the time base.

fAddTime = time increment for this time base in seconds.

Return value: none.

Remarks: This function is an alternative to the previous one, so the remarks there

hold here also.

UINT TOOLAPI GetTimeBaseBlockSize (UINT uiID)

Purpose: The function retrieves the actual block size of the time base.

Parameters: uiID = unique identifier of the time base.

Return value: The block size of the time base.

double TOOLAPI GetTimeBaseSampleDistance (UINT uiID)

Purpose: The function retrieves the actual sample distance of the time base.

Parameters: uiID = unique identifier of the time base.

Return value: The sample distance of the time base in seconds.

double TOOLAPI GetTimeBaseTime (UINT uiID)

Purpose: The function retrieves the actual time of the time base.

Parameters: uiID = unique identifier of the time base.

Return value: The time of the time base in seconds.

Remarks: This function is a replacement for CurrentExperimentTime which

retrieves the time of the DASYLab default driver.

void TOOLAPI FillTimeBaseCombo (HWND hDlg, UINT uiIdCombo, UINT uiIDSel)

Purpose: The function sets up a combo box in a dialog for selection of a time base.

Parameters: hDlg = window handle of the dialog

uiIdCombo = resource ID of the combo box

Functions provided by DASYLab

Extension Toolkit for DASYLab 2016 106 www.dasylab.com

 uiIDSel = time base ID of the current time base. This item will be

selected in the combo box.

Return value: none

Remarks: Call this function in the INITDIALOG part of a dialog box function.

UINT TOOLAPI GetTimeBaseComboID (UINT uiSel)

Purpose: The function returns the time base ID of the selected entry of a combo

box created with the previous function.

Parameters: uiSel = selection index of the combo box.

Return value: The unique identifier of the time base selected.

BOOL TOOLAPI TimeBaseDialog (HWND hwndParent, UINT uiID)

Purpose: The function opens the DASYLab time base dialog.

Parameters: hwndParent = window handle of the actual window. The dialog will be

displayed as a sub-window of this one. It can be NULL.

uiID = the time base identifier of the tab that is brought to front in the

dialog.

Return value: TRUE if the new settings are valid (user has clicked OK), FALSE if settings

are invalid (user has clicked Cancel).

Remarks: Note that the driver is informed about the new settings by a call to the

SetDriver callback function (see RegisterTimeBase).

12.1412.1412.1412.14 Extra MemoExtra MemoExtra MemoExtra Memory Block handling across data connectionsry Block handling across data connectionsry Block handling across data connectionsry Block handling across data connections
For versions auf DASYLab released after DASYLab 2016, we provide a new API for data transport at

start time (we call this static) and data transport with the data blocks at process time (we call that

dynamic). A first version of this API is included in the Extension Toolkit for DASYLab 2016, but all

functions (except one) are subject to change. To provide compatibility with future versions of

DASYLab (as far as we can look into the future) add a call of EmemBlock_PROCESS_MsgCopyPlain to

your code before the call of ReleaseOutputBlock.

BOOL TOOLAPI EmemBlock_PROCESS_MsgCopyPlain (

 FIFO_HEADER* OutFifo, DATA_BLOCK_HEADER* OutBlock,

 FIFO_HEADER* InFifo, DATA_BLOCK_HEADER* InBlock);

Purpose: The function copies the dynamic extra memory block from the input to

the output of a module.

Parameters: OutFifo = Pointer the output FIFO.

OutBlock = Pointer to the actual output block.

InFifo = Pointer to the FIFO on the input of a channel, NULL if the same

FIFO setting are used for input and output (block size and sample rate).

InBlock = Pointer to the actual Input Block.

Functions provided by DASYLab

© National Instruments Ireland Resources Limited 107 Extension Toolkit for DASYLab 2016

Return value: TRUE if the operation was successful.

Example (from deriv.c):

// TK2016, for future compatibility: Copy extra memory (per data block) from the "Father" block
// to the block we filled with data above
// - This will have no effect in DASYLab 2016 but your module/dll will support a new feature in
// later versions of DASYLab without recompiling
// - The cpu cost for DASYLab 14 is near zero - the call of this funtion is optional for DASYLab 2016
// and mandatory for the following DASYLab versions.
// - If the InFifo parameter is NULL, the function assumes
// that the maximum blocksize of the input fifo is equal to the maximum blocksize of
// the output fifo (what is "the normal behaviour").
//
// If you are unsure (what you shouldn't be because you wrote/modified the SetupFifo_xxx routine)
// or the maximum blocksize of OutFifo and InFifo is not equal, then provide the InFifo as parameter.

EmemBlock_PROCESS_MsgCopyPlain (OutFifo, OutputBlock, NULL, InputBlock);
// Add this Data Block to the FIFO, so that a "Son" FIFO can get Access to it
ReleaseOutputBlock (OutFifo);

General Conventions

Extension Toolkit for DASYLab 2016 108 www.dasylab.com

13131313 General ConventionsGeneral ConventionsGeneral ConventionsGeneral Conventions

New module classes should match the general look and feel of DASYLab. In the ideal case the end

user cannot (or very hardly) decide what modules are original DASYLab ones and what modules were

provided from different sources.

To achieve this it is usually best to use the supplied examples as a starting point for own projects. To

avoid conflicts with DASYLab modules and between different DLL extension each newly created

module class also has to follow certain naming conventions etc.

13.113.113.113.1 Creating new module classesCreating new module classesCreating new module classesCreating new module classes
Any module class used by DASYLab must have a unique name set up in the mc.Name field of the

MODCLASS structure before calling the RegisterModuleClass function. DASYLab will use this name

for identification when loading saved worksheets.

The name string should consist of the following components:

• two or three characters to identify the supplier of the module class. We suggest using the

initials of the company or the programmer there.

• a colon

• the internal name of the module class.

All names starting with DAP: or DL: or EVA: and all names containing no colon (:) are reserved for

use by National Instruments Ireland Resources Limited.

As mentioned before, the Menu ID in the mc.MenuId field must lie within the range of 2950 to 2974

for all module classes defined inside a DLL extension. The ID must be unique within one DLL

extension but you may use the same ID codes in different DLLs since DASYLab remaps all ID codes of

a DLL to an internal code.

No module class should try to extend any of DASYLab's internal structures, use reserved fields, send

messages to modules, or define new messages other than the ones listed above. No module class

should assume any special behavior of DASYLab 's function that is not documented here.

13.213.213.213.2 Creating new project files / makefilesCreating new project files / makefilesCreating new project files / makefilesCreating new project files / makefiles
When creating new project files/makefiles for projects containing DASYLab extensions, you have to

follow these rules for the project setup:

a) First, select Project Defaults for making a Windows DLL. Then check/change these default

settings like listed below.

b) Set the general function calling convention to C, or C/C++.

c) Change the Structure Member Alignment to 1 Byte. This ensures structures are packed

tight.

d) Change the Memory Model to Large (default for code and data pointers is use FAR pointers)

and set up for SS not equal to DS.

e) Add STRICT to the predefined constants.

f) Select generating Windows Prolog/Epilog code for protected mode DLL functions.

General Conventions

© National Instruments Ireland Resources Limited 109 Extension Toolkit for DASYLab 2016

g) Select automatic generation of Windows Prolog/Epilog code for all FAR functions.

h) Set up environment variables (include path), etc. to allow the compiler find the toolkit files:

Add ..\inc, ..\bmp and ..\rc to the include path.

Make sure that all of these settings apply to both: Generating code for debug or for release versions.

13.313.313.313.3 Dialog box style guideDialog box style guideDialog box style guideDialog box style guide
Below are suggestions for dialog box design that should be followed when designing dialog boxes for

DASYLab extensions.

Generally speaking, DASYLab extension dialog boxes should exactly match the style of DASYLab's

internal (new style) dialog boxes. When designing new dialog boxes, it is usually best to copy an

existing dialog box first and make modifications to it, rather than starting from scratch each time. All

dialog boxes should be tested (and must look good) in at least the following screen resolutions:

• 640x480, small fonts

• 800x600, small fonts

• 1024x768, small fonts

• 1024x768, large fonts

We suggest that you use 800x600 to create dialog boxes because dialog boxes created while using

large fonts often look bad in other resolutions.

Text fields will generally vary in size when viewed in different resolutions. You should leave space

after each text field and avoid lengthy text fields where possible.

Below are suggestions for how the individual elements of a dialog box should look.

13.3.113.3.113.3.113.3.1 Global dialog boxGlobal dialog boxGlobal dialog boxGlobal dialog box

• Use the font MS Sans Serif in 8pt size and FAT style.

• Combine controls that belong to a common group into one group box.

• Use a grid setting of 5 in both directions and create/modify your dialog box with grid turned

on.

• All items except group boxes are 10 units vertically and 5 units horizontally apart from the

border of the dialog box.

13.3.213.3.213.3.213.3.2 Group boxesGroup boxesGroup boxesGroup boxes

• The edges of group boxes should lie exactly on a grid point. The items inside a group box are

positioned relatively to that group box.

• Group boxes are 5 units vertically and 10 units horizontally apart from each other.

• If the group box contains a title (recommended), the title must have a blank as first and last

characters.

• Group boxes are 5 units vertically and 5 units horizontally apart from the border of the dialog

box.

General Conventions

Extension Toolkit for DASYLab 2016 110 www.dasylab.com

13.3.313.3.313.3.313.3.3 Static and edit controlsStatic and edit controlsStatic and edit controlsStatic and edit controls

• Edit controls are preceded (or surrounded) by a static text that explains the input field.

• This static text is 15 units apart from the top of the group box and 5 units apart from the left

border of the dialog box. The edit controls are vertically 2 units higher than the static text

describing it.

• Static text fields are 12 units high.

• Text and edit controls are vertically 15 units apart from each other.

13.3.413.3.413.3.413.3.4 Radio and cRadio and cRadio and cRadio and check buttonsheck buttonsheck buttonsheck buttons

• Any group of radio or check buttons should normally be surrounded by a separate titled group

box.

• Radio and check buttons are 5 units apart from the left border of the dialog box.

• The first radio/check button is 12 units apart from the top of the group box.

• Radio and check buttons are vertically 13 units apart from each other.

13.3.513.3.513.3.513.3.5 PushPushPushPush BBBButtonsuttonsuttonsuttons

• Push buttons (including the default push button) are always 50 units wide and 14 units high.

• Push buttons are normally the rightmost items of the dialog box.

• Push buttons are horizontally 10 units apart from other items or from the border of the

dialog box.

• Push buttons are vertically 20 units apart from each other. This may be increase to 30 units

where you want to group push buttons.

• The push buttons included in every dialog box are (from top to bottom): OK, Cancel, Help.

• If a dialog box gets too wide, the push buttons may be placed at the lower border of the

dialog box.

Version History of the Changes

© National Instruments Ireland Resources Limited 111 Extension Toolkit for DASYLab 2016

14141414 Version History of the ChangesVersion History of the ChangesVersion History of the ChangesVersion History of the Changes

DASYLab 7.0

• DQM_CHECK_REPLACE, DMM_CREATE_REPLACE, and DMM_REPLACE_MODULE

• ChangeModuleName

DASYLab 8.0

• DMM_REQUEST_GLOB_VARS

DASYLab 9.0

• Procedure for including modules in DASYLab menus simplified

• Changing the color density of the symbols to 24 bit

DASYLab 10.0

• Dialog to display Module Times

DASYLab 11.0

• Procedure for calling the help with TKCallOnlineHelp

• Console Output

• DMM_PREPARE_STOP message, DMM_IS_DEBUG message

• DMM_PREPARE_START_MODULE

• DMM_NORMALIZE_ALL_WINDOWS, DMM_HIDE_ALL_WINDOWS,

DMM_SHOW_ALL_WINDOWS, DMM_MINIMIZE_ALL_WINDOWS message

DASYLab 2016

• DLAB_FLOAT changed from float to double

• MAX_BLOCKSIZE is now 1048576 (2^20)

• Sysinfo changed to SerialOpt

• Removed old functions that are no longer used.

• New module message DMM_GET_TIMEBASE_ID

• New functions for handling of Extra Memory Blocks across the data

connections in a worksheet.

