

Application Note AN-014
Using External RT Addressing

Copyrights

Document Copyright  2010-2016 Abaco Systems, Inc. All rights reserved.

This document is copyrighted and all rights are reserved.

This document may not, in whole or part, be; copied; photocopied; reproduced; translated; reduced or
transferred to any electronic medium or machine-readable form without prior consent in writing from Abaco
Systems, Inc.

App Note 014: Using External RT Addressing

Document Revision: 1.20

Document Date: 1 November 2016

Abaco Systems, Inc.
26 Castilian Drive, Suite B
Goleta, CA 93117
Main +1 805-965-8000 or +1 805- 883-6101
Support +1 805-965-8000 or +1 805- 883-6097

support@abaco.com (email)

http://www.abaco.com/products/avionics

Additional Resources

For more information, please visit the Abaco Systems website at:

www.abaco.com

mailto:support@abaco.com
http://www.abaco.com/products/avionics
http://www.abaco.com/

Using External RT Addressing, AN014 3

Contents

Introduction .. 4

Hardware Settings for External RT Address 5

Setting the External RT Address Value ... 5

Enabling the External RT Address .. 5

Testing the External RT Address ... 6

Software Usage of External RT Address 7

Initialization .. 7

Reading the External RT Address Value ... 7

Enabling the RT for Normal Operation ... 7

Example Program ... 8

Using External RT Addressing, AN014 4

Introduction

Many MIL-STD-1553 terminals determine their RT address from

external jumpers or signals. This allows the system designer to include

the RT address assignment in the connector attached to the unit. Some

remote terminals used in MIL-STD-1760 applications are required to

respond with the correct status word and BUSY bit set before software

has initialized the RT and assigned the RT address.

Many Abaco Systems MIL-STD-1553 products support the external RT

address feature. This application note describes how to use this feature.

See the Abaco Systems “MIL-STD-1553 Hardware Installation and

Reference Manual” (Publication No. 1500-046) for detailed information

including which products support the external RT address feature, RT

address pin assignments, and other product-specific information. Also,

consult the section entitled “Hardwired RT Address” for additional

information on RT addressing.

Note that many Abaco Systems MIL-STD-1553 products also support

setting the RT address from values stored in on-board flash memory.

See the MIL-STD-1553 Hardware Installation and Reference Manual

(Section entitled “Flash Configurable 1553 Options”) for more

information on flash-based RT address initialization.

Using External RT Addressing, AN014 5

Hardware Settings for External RT Address

Setting the External RT Address Value

For each channel that supports the external RT address, you must set the

five address lines and parity to select the desired RT address.

An external RT address is provided on six input signals – a 5-bit RT

address plus parity (odd). The signals are internally pulled up, so all you

have to do is tie selected lines to GND. Note that connecting a line to

GND is equivalent to a logic “0” and leaving the line OPEN is

equivalent to logic “1”. The following table shows a few examples of

external RT address settings:

 RT Address
0

RT Address
13

RT Address
23

RT Address
30

RTA_0 0 (GND) 1 (Open) 1 (Open) 0 (GND)

RTA_1 0 (GND) 0 (GND) 1 (Open) 1 (Open)

RTA_2 0 (GND) 1 (Open) 1 (Open) 1 (Open)

RTA_3 0 (GND) 1 (Open) 0 (GND) 1 (Open)

RTA_4 0 (GND) 0 (GND) 1 (Open) 1 (Open)

RTA_P 1 (Open) 0 (GND) 1 (Open) 1 (Open)

Enabling the External RT Address

The external RT address must be enabled before it will take effect. The

method for enabling the external RT address is described for each

product in the MIL-STD-1553 Hardware Installation and Reference

Manual.

Using External RT Addressing, AN014 6

Testing the External RT Address

After you have made the appropriate settings to select and enable the

external RT address you can install the board in the system and power it

up. Connect the appropriate channel to a 1553 bus and use another 1553

device (or bus analyzer, like BusTools/1553) as the Bus Controller.

Send a non-broadcast command word to the selected RT address. The

RT should respond with a status word with the BUSY bit set. If you do

not see a status word from the RT, then there is a problem with your

board configuration for external RT address.

NOTE: If you have problems here, check the firmware version on your

board. If your firmware version is less than 3.88, update and try again.

Using External RT Addressing, AN014 7

Software Usage of External RT Address

After power-up, the channel responds with a status word with the BUSY

bit set for the RT address selected until the user software takes over

operation of the RT.

Initialization

The channel is initialized using the API function

BusTools_API_InitExtended. If the external RT address is enabled but

the RT address signals are invalid (parity error), then this function will

return the error code 45 (BTD_RTADDR_PARITY). The channel will

NOT initialize unless a valid external RT address is set.

Reading the External RT Address Value
The API provides the function BusTools_RT_GetRTAddr to allow the

user application to read the value of the external RT address lines. This

value can then be used to setup the appropriate RT configuration.

Enabling the RT for Normal Operation

All RT setup functions work just as they would without the external RT

address option, but you will want to use the RT address value returned

from BusTools_RT_GetAddr for your RT programming.

This is demonstrated in the example program given below.

Using External RT Addressing, AN014 8

Example Program
/*==*

 * FILE: E X A M P L E _ R T 5 . C

 ==

 *

 * COPYRIGHT (C) 2004 BY

 * CONDOR ENGINEERING, INC., SANTA BARBARA, CALIFORNIA

 * ALL RIGHTS RESERVED.

 *

 * THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND

 * COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH

 * THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY

 * OTHER COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE

 * AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE

 * SOFTWARE IS HEREBY TRANSFERRED.

 *

 * THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT

 * NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY CONDOR

 * ENGINEERING.

 *

 ===

 *

 * FUNCTION: EXAMPLE PROGRAM

 * This is a basic example program that sets up a simple

 * RT Simulation. Simulates RTx with two subaddresses,

 * SA1 RECEIVE and SA2 TRANSMIT. The RT address is determined

 * by the EXTERNAL RT ADDRESS inputs, or defaults to 1 if

 * this is not available.

 *

 * NOTE: The external RT address feature is only available

 * on the QPCI-1553, QPMC-1553, and QVME-1553 products.

 *

 ===/

/* $Revision: X.xx Release $

 Date Revision

 ---------- ---

 09/01/04 Initial version. RSW

*/

#include "busapi.h"

#include <stdio.h>

// Constants for device information needed by BusTools_API_InitExtended.

// MODIFY THESE CONSTANTS TO MATCH YOUR CONFIGURATION, refer to documentation

// on the BusTools_API_InitExtended function for help.

#define MY_CARD_NUM 0

#define MY_BASE_ADDR 0

#define MY_IO_ADDR 0

#define MY_PLATFORM PLATFORM_PC

#define MY_CARD_TYPE QPCI1553

#define MY_CARRIER NATIVE

#define MY_SLOT CHANNEL_1

#define MY_MAPPING CARRIER_MAP_DEFAULT

#define DEFAULT_RT_ADDR 1

// Main program

void main() {

 BT_INT status;

 BT_UINT flag = 1;

 API_RT_ABUF Abuf_RTx;

 API_RT_CBUF Cbuf_RTxSA1R;

 API_RT_CBUF Cbuf_RTxSA2T;

 API_RT_MBUF_WRITE msg_buffer_write;

Using External RT Addressing, AN014 9

 API_RT_MBUF_READ msg_buffer_read;

 int i;

 char c;

 unsigned short cmd, sts;

 int rtaddr;

 BT_UINT wRev1, wRev2;

 // Initialize API and board.

 printf("Initializing API . . . ");

 status = BusTools_API_InitExtended(MY_CARD_NUM, MY_BASE_ADDR, MY_IO_ADDR, &flag,

 MY_PLATFORM, MY_CARD_TYPE, MY_CARRIER, MY_SLOT, MY_MAPPING);

 if (status == API_SUCCESS) {

 printf("Success.\n");

 status = BusTools_GetRevision(MY_CARD_NUM, &wRev1, &wRev2);

 if (status != API_SUCCESS) printf("Error %d on BusTools_GetRevision.\n",status);

 printf("Microcode Revision = %x\n",wRev1);

 printf("API Revision = %d\n",wRev2);

 printf("Check External RT Address . . . ");

 status = BusTools_RT_GetRTAddr(MY_CARD_NUM, &rtaddr);

 if (status != API_SUCCESS) printf("ERROR = %d\n",status);

 else printf("EXT RT ADDR = %d\n", rtaddr);

 if ((rtaddr < 0) || (rtaddr > 30)) {

 rtaddr = DEFAULT_RT_ADDR;

 printf("INVALID EXTERNAL RT ADDRESS, USING DEFAULT RT ADDR = %d\n", rtaddr);

 }

 // Initialize and reset memory. Minimum BM setup.

 printf("BM Init . . . ");

 status = BusTools_BM_Init(MY_CARD_NUM, 1, 1);

 if (status != API_SUCCESS) printf("ERROR = %d\n",status);

 // Select External Bus.

 printf("Bus select . . . ");

 status = BusTools_SetInternalBus(MY_CARD_NUM, 0);

 if (status != API_SUCCESS) printf("ERROR = %d\n",status);

 // Now lets set up an RT.

 printf("Initializing RT functionality . . . ");

 status = BusTools_RT_Init(MY_CARD_NUM, 0);

 if (status == API_SUCCESS) {

 printf("Success.\n");

 // Setup RT address buffer for our RT (RTx)

 Abuf_RTx.enable_a = 1; // Respond on bus A

 Abuf_RTx.enable_b = 1; // Respond on bus B

 Abuf_RTx.inhibit_term_flag = 1; // Inhibit terminal flag in status word

 Abuf_RTx.status = rtaddr << 11;

 Abuf_RTx.bit_word = 0x0000; // Set BIT word (for mode code 19)

 status = BusTools_RT_AbufWrite(MY_CARD_NUM, rtaddr, &Abuf_RTx);

 if (status != API_SUCCESS) printf("Error %d on BusTools_RT_AbufWrite.\n",status);

 // Setup a control buffer - RTx, SA1, Receive, 1 buffer.

 Cbuf_RTxSA1R.legal_wordcount = 0xFFFFFFFF; // any word count is legal.

 status = BusTools_RT_CbufWrite(MY_CARD_NUM, rtaddr, 1, 0, 1, &Cbuf_RTxSA1R);

 if (status != API_SUCCESS) printf("Error %d on BusTools_RT_CbufWrite.\n",status);

 // Setup a control buffer - RTx, SA2, Transmit, 1 buffer.

 Cbuf_RTxSA2T.legal_wordcount = 0xFFFFFFFF; // any word count is legal.

 status = BusTools_RT_CbufWrite(MY_CARD_NUM, rtaddr, 2, 1, 1, &Cbuf_RTxSA2T);

 if (status != API_SUCCESS) printf("Error %d on BusTools_RT_CbufWrite.\n",status);

 // Put some data in our transmit buffer

 msg_buffer_write.enable = 0; // No interrupts enabled

Using External RT Addressing, AN014 10

 msg_buffer_write.error_inj_id = 0; // No error injection

 for (i=0; i<32; i++)

 msg_buffer_write.mess_data[i] = 0xAB00 + i;

 status = BusTools_RT_MessageWrite(MY_CARD_NUM, rtaddr, 2, 1, 0, &msg_buffer_write);

 if (status != API_SUCCESS)

 printf("Error %d on BusTools_RT_MessageWrite.\n",status);

 // Now lets turn on our RT

 status = BusTools_RT_StartStop(MY_CARD_NUM, 1);

 if (status != API_SUCCESS) printf("Error %d on BusTools_RT_StartStop.\n",status);

 do {

 printf("\nInput Q to quit, anything else to read RTx SA1 RCV data buffer.\n");

 scanf("%c",&c);

 if (c != 'Q') {

 printf("\nReading data for RTx SA1 RCV . . . \n");

 // Read the data buffer

 status = BusTools_RT_MessageRead(MY_CARD_NUM, rtaddr, 1, 0, 0,

 &msg_buffer_read);

 if (status != API_SUCCESS) {

 printf("ERROR READING RT MESSAGE, Error = %d\n",status);

 }

 else {

 // Print the data buffer.

 printf("RTx SA1 RCV Data Buffer:\n");

 memcpy(&cmd, &msg_buffer_read.mess_command,

 sizeof(msg_buffer_read.mess_command));

 printf("Command word = %04X\n",cmd);

 for (i=0; i<32; i++) {

 printf("%04x ",msg_buffer_read.mess_data[i]);

 if (!((i+1)%8)) printf("\n");

 } // End of for loop to print data

 memcpy(&sts, &msg_buffer_read.mess_status,

 sizeof(msg_buffer_read.status));

 printf("Status word = %04X\n",sts);

 } // End of if (error reading message) else

 } // End of if (c != 'Q')

 } while (c != 'Q'); // End of do-while

 printf("Stopping RT simulation . . . ");

 status = BusTools_RT_StartStop(MY_CARD_NUM, 0);

 if (status != API_SUCCESS) printf("Error = %d.\n", status);

 else printf("Stopped.\n");

 } // End of if (RT init successful)

 else printf("ERROR = %d\n",status);

 // We're done. Close API and board

 printf("\nClosing API . . . ");

 status = BusTools_API_Close(MY_CARD_NUM);

 if (status == API_SUCCESS)

 printf("Success.\n");

 else

 printf("FAILURE, error = %d\n", status);

 } // End of if (initialization successful)

 else {

 printf("FAILURE, error = %d\n", status);

 if (status == BTD_RTADDR_PARITY) {

 printf("INVALID EXTERNAL RT ADDRESS, BAD PARITY.\n");

 }

 }

 printf("FINISHED.\n");

} // End of main

