

Application Note AN-20

Transitioning to UCA32 Firmware

Copyrights

Copyright © 2009 -2016 Abaco Systems, Inc.

This document is copyrighted and all rights are reserved. The distribution and sale of this product are
intended for the use of the original purchaser only per the terms of the License Agreement.

Confidential Information - This document contains Confidential/Proprietary Information of Abaco
Systems, Inc. and/or its suppliers or vendors. Distribution or reproduction prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS", WITH NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. ALL
OTHER LIABILITY ARISING FROM RELIANCE ON ANY INFORMATION CONTAINED HEREIN IS
EXPRESSLY DISCLAIMED.

Microsoft is a registered trademark of Microsoft Corporation.

Windows is a registered trademark of Microsoft Corporation.

VxWorks is a registered trademark of WindRiver Systems Corporation.

Tornado is a registered trademark of WindRiver Systems Corporation.

Abaco Systems, Inc. acknowledges the trademarks of other organizations for their respective products or
services mentioned in this document.

Abaco Systems, Inc.
26 Castilian Drive, Suite B
Goleta, CA 93117
Main +1 805-965-8000 or +1 805- 883-6101
Support +1 805-965-8000 or +1 805- 883-6097

support@abaco.com (email)

https://www.abaco.com/products/avionics

Additional Resources

For more information, please visit the Abaco Systems website at:

www.abaco.com

mailto:support@abaco.com
https://www.abaco.com/products/avionics
http://www.abaco.com/

AN 020 Transitioning to UCA32 Firmware 5

Contents

Introduction ... 6

V6 Firmware8. ... 6

BusTools/1553-API Version 8 .. 7

Transition Steps ... 8

Install BusTools/1553-API Version 8.x .. 8

Rebuild Your Application ... 8

Changes to Your Application .. 8

Changes to Time Tags ... 9

32-Bit Addressing and 32-Bit Registers .. 10

Directly Accessing Memory and Registers ... 10

Using New V6 Features ... 14

Multiple Bus Controller Buffers ... 14

Programmable input/output triggers. .. 17

External Clock and Time Tag Reset ... 17

Other V6 Changes ... 17

BusTools/1553 Analyzer ... 18

Support and Contact information 19

AN 020 Transitioning to UCA32 Firmware 6

Introduction

The Abaco systems MIL-STD-1553 product line was significantly

enhanced to meet the increasing needs of customers. The Version 6

firmware, hereafter referred to as “V6” or UCA32, offers significant

enhancements over V4/V5 UCA (legacy) firmware. V6 firmware is

recommended for all new applications. Using V6 firmware requires

updating to BusTools/1553-API version 8.x.

V6 Firmware.
V6 Enhancements include:

 Multiple BC buffers per message

 High resolution 64-bit time stamping (nanosecond resolution)

 New sequential BM buffer format optimized for efficient burst

transfer

 More flexible and efficient memory allocation for message buffering

in all modes

 Improved concurrency support for multi-processor and multi-

threaded applications

 Enhanced triggering options

This Application Note describes how to transition an existing software

application from V4/V5 to V6.

This Application Note assumes a basic knowledge of MIL-STD-1553.

For information on the MIL-STD-1553 protocol refer to the “MIL-STD-

1553 Tutorial” document available from Abaco Systems.

This Application Note assumes a working knowledge of Abaco Systems

UCA products and their programming. Related information can be

found in the “MIL-STD-1553 UCA Reference Manual”, the “UCA32

LPU Reference Manual”, and the “UCA32 Global Register Reference

Manual” available from Abaco Systems.

Introduction
 BusTools/1553-API Version 8

AN 020 Transitioning to UCA32 Firmware 7

BusTools/1553-API Version 8

BusTools/1553-API version 8.00 or greater is required to run V6 boards.

BusTools/1553-API hides the majority of V6 firmware changes from the

user application. Most applications can transition from the installed

version of BusTools/1553-API to BusTools/1553-API version 8.x by

recompiling with the new library and include files. BusTools/1553-API

8.x is compatible with all firmware versions. You can run a mix of V6

and V4/V5 boards in the same system using v8.x. However, you cannot

run V6 boards unless BusTools/1553-API v8.x is installed.

AN 020 Transitioning to UCA32 Firmware 8

Transition Steps

Install BusTools/1553-API Version 8.x

The first step in running with V6 firmware is to install BusTools/1553-

API v8.x. If you have a previous BusTools/1553-API installed on your

system you will need to uninstall that version. If you have a mix of V6

and V4/V5 boards in the system you will need to uninstall each board

and re-install them using the 8.x BusTools/1553-API.

BusTools/1553-API implements the changes required for firmware

compatibility across all supported V6/V5/V4 firmware so there is limited

impact to existing user code. BusTools/1553-API v8.x has the same look

and feel as earlier API versions. It supports the same functions with the

same calling parameters as the earlier version. The structures used to

configure the Bus Controller, Remote Terminal and Bus Monitor are

unchanged (except for the new 64-bit time tag).

Rebuild Your Application

Most existing applications can run BusTools/1553-API version 8.06 with

little or no changes. However, you need to recompile applications with

the new busapi.h and link with the new libraries to run with the new

BusTools/1553-API.

Windows users have pre-compiled libraries busapi32.lib/busapi64.lib and

busapi32.dll/busapi64.dll available in the library directories. UNIX users

(Linux, Solaris, and QNX) will need to rebuild the BusTools/1553-API

library using the Makefiles and scripts that are provided with the

installation. For VxWorks, Integrity and LynxOS you will need to create

a library project with the BusTools/1553-API 8.06 source code according

to instructions in the BusTools/1553-API User’s Manual.

Changes to Your Application

Nearly all existing API functions work the same as in previous

BusTools/1553-API versions. If your application uses these

Transition Steps
 Changes to Your Application

AN 020 Transitioning to UCA32 Firmware 9

BusTools/1553-API application functions without directly accessing the

board’s memory then your code will run with little or no change.

Changes to Time Tags

You may need to change how your application processes time tags. The

API automatically handles the change from 48-bit microsecond to 64-bit

nanosecond time tags. However, if your application is using time tags or

converts time tags to a time string using BusTools_TimeGetString, you

will need to modify that code. Starting with BusTools/1553-API v8.00,

all time tags are stored in a 64-bit time structure. If the board is running

V6 firmware the time tag resolution is 1-nanosecond, otherwise it has

microsecond resolution. V5/V4 board time tags are 48-bits.

typedef struct bt1553_time
{
BT_U32BITmicroseconds; // microseconds since start
BT_U16BITtopuseconds; // Most significant part of microseconds
}

BT1553_TIME; // Note that this is a 48-bit value for F/W 5.x or earlier

typedef struct bt1553_time
{
BT_U32BITmicroseconds; // microseconds since start
BT_U32BITtopuseconds; // Most significant part of microseconds
}

BT1553_TIME; // Note that this is a 64-bit value for F/W 6.0

The above shows the structure changes for BT1553_TIME. For

compatibility with older firmware the LSB can either be micro- or

nanoseconds. When using this structure with V6 firmware the LSB is

nanoseconds even though the structure elements still refers to

microseconds. You can change to a new structure BT1553_TIME64 that

references nanoseconds.

typedef struct bt1553_time64
{
BT_U32BIT nanoseconds; // nanoseconds since start
BT_U32BIT topnseconds; // Most significant part of nanoseconds
}

BT1553_TIME64; // Note that this is a 64-bit value for F/W 6.0

If your code is using or displaying time tags it will need to change.

BusTools_TimeGetString defaults to microseconds. There are two

options for displaying time tags in nanoseconds. The code examples

below show these two options.

Option 1: When using BusTools_TimeGetString you pass a pointer to a

BT1553_TIME structure and a pointer to the string receiving the

converted time string. If you set this string to “NANO”

BusTools_TimeGetString will convert to nanoseconds.

char outbuf[80];
strncpy(outbuf,"NANO",4);
BusTools_TimeGetString(&bcmessage.time_tag,outbuf);

Transition Steps
 Changes to Your Application

AN 020 Transitioning to UCA32 Firmware 10

printf("Tag Time = %s\n",outbuf);

Option 2: Initialize the display option in BusTools_TimeTagMode to

nanosecond. The following options provide microsecond time tag

conversion.
API_TTD_RELM
API_TTD_IRIG
API_TTD_DATE

New options for nanosecond time tag conversion.
API_TTD_RELM_NS
API_TTD_IRIG_NS
API_TTD_DATE_NS

BusTools_TimeTagMode(cardnum,API_TTD_IRIG_NS,API_TTI_IRIG,API_TTM_FREE,0,0,0,0);

32-Bit Addressing and 32-Bit Registers

The internal addressing on the board changes from 19-bit to 32-bit. This

allows a more flexible use of memory and the ability to access more than

1 megabyte per channel. The current default is still 1 megabyte per

channel, but it is possible to have a larger amount of memory dedicated

to a channel.

All register access is now 32-bit instead of 16-bit. There is only a single

register region that combines the hardware register and the file registers

that was used in the legacy firmware.

Most applications do not directly access registers or memory locations

thus these changes are transparent. However, when compiling your

application you may get a parameter mismatch warning. If so, change

from 16-bit to 32-bit variables.

32-Bit addressing also impacts each of the internal data structures.

Address pointers change from 16-bit to32-bit. This shifts the location of

data within structures. You will need to review the new structure layouts

as defined in the “UCA32 LPU Reference Manual” and the “UCA32

Global Register Reference Manual” if your code is directly accessing

these structures in memory.

Directly Accessing Memory and Registers

Applications directly accessing the board’s memory using

BusTools_MemoryRead, BusTools_MemoryRead2,

BusTools_MemoryWrite, BusTools_MemoryWrite2 or other methods

may need to change. Version 6 firmware has a different memory layout

and there are changes to many of the internal structures. You will need

to review the “UCA32 LPU Reference Manual”, and the “UCA32 Global

Register Reference Manual” to become familiar with the board’s new

design. BusTools_GetAddr still returns the start and end of the different

memory sections, but offsets for specific data have changed. Both Bus

Transition Steps
 Changes to Your Application

AN 020 Transitioning to UCA32 Firmware 11

Controller and Bus Monitor structures have significantly changed. If

your code directly accesses data in these buffers you will need to change

the location from which you access the data.

Bus Controller Buffer Changes

Bus Controller buffers have changed to provide multiple BC data

buffers. In earlier firmware revisions there were only one or two data

buffers available and the firmware did not automatically switch between

buffers. V6 firmware supports programming multiple data buffers setup

as a circular linked list. The new structure significantly changes the

internal Bus Controller buffers.

With legacy firmware versions, the API configures a Bus Controller

control-buffer followed by one or two data buffers. The control-buffer

contains all the information about the message including time tag and

status. The data buffers contain only the transaction data.

With the new multiple buffers, the BC control-buffer is followed by 1 to

n data buffers. The time tag and status are now part of the data buffer

along with transaction data.

Bus Monitor Buffer Changes

The new Bus Monitor buffer format makes more efficient use of memory

by sequentially storing only the amount of data recorded for each

transaction. The previous Bus Monitor buffer format stored a fixed size

buffer based on a 32 word message. Changing to a variable size buffer

makes it impossible to read a specific Bus Monitor buffer.

BusTools_BM_MessageGetaddr and BusTools_BM_MessageGetid now

return API_NO_BUILD_SUPPORT. You will need to change any code

dependent upon using those functions.

When you allocate BM buffers with BusTools_BM_MessageAlloc:

NOMANGLE BT_INT CCONV BusTools_BM_MessageAlloc(
 BT_UINT cardnum, // (i) card number (0 based)
 BT_UINT mbuf_count, // Message count converted to bytes;
 BT_UINT * mbuf_actual,
 BT_U32BIT enable)

You are not allocating the specific number of buffers in mbuf_count, but

rather the number of bytes it takes to store an mbut_count of 32-word

messages. BusTools_BM_MessageAlloc converts the message count to

the number bytes. A 32-word BM buffer uses 172 bytes. Therefore, if

you allocate 100 BM messages, you are really reserving 17200 bytes for

the Sequential Bus Monitor. When the Bus Monitor records data to this

buffer location, it sequentially writes the data into this location. The data

wraps back to the start when the last word in the buffer is written.

Transition Steps
 Changes to Your Application

AN 020 Transitioning to UCA32 Firmware 12

All other Bus Monitor functions work the same as before and the

API_BM_MBUF structure is unchanged (except for the new nanosecond

time tag).

Remote Terminal Buffer Changes

Remote Terminal structures are mostly unchanged with the exception of

32-bit addresses and 64-bit time tags. Check the manuals for the address

and offset of any data you are directly accessing.

The V6 firmware design moves the Remote Terminal Address Buffer

from RAM memory into the register region. This move is transparent to

users, but if your application directly accesses the address buffer, you

need to ensure that all accesses to the address buffer are 32-bits.

Interrupt Queue Changes

The structure and size of the interrupt queue has changed. In the legacy

firmware the interrupt queue is 296 entries and each entry is a 3-word

structure. This structure contains the interrupt mode, a message pointer

and pointer to the next interrupt queue entry.

typedef struct iq_mblock
 {
 union
 {
 BT_U16BIT modeword;
 BT1553_INTMODE mode;
 } t; // Interrupt mode/type bits
 BT_U16BIT msg_ptr; // pointer to message to interrupt message
 BT_U16BIT nxt_int; // points to the next interrupt in the queue
 }
IQ_MBLOCK;

This structure has a limit of 16 interrupt types defined in the following

structure.

typedef struct bt1553_intmode
{
 BT_U16BIT iack:1; // interrupt acknowledge bit (LSB)
 BT_U16BIT timer:1; // timer overflow or load 0x0002
 BT_U16BIT rt:1; // rt interrupt 0x0004
 BT_U16BIT bm:1; // bm interrupt 0x0008
 BT_U16BIT bc:1; // bc interrupt 0x0010
 BT_U16BIT bmtrig:1; // bm trigger has occurred 0x0020
 BT_U16BIT ext_trig:1; // External Trigger 0x0040
 BT_U16BIT bm_swap:1; // BM-Only Buffer Swap* 0x0080
 BT_U16BIT bc_ctl:1; // BC control interrupt 0x0100
 BT_U16BIT unused:7; // unused (MSB)
}
BT1553_INTMODE;

The new interrupt queue is 512 entries of 2 double words defined by the

following structure.

Transition Steps
 Changes to Your Application

AN 020 Transitioning to UCA32 Firmware 13

typedef struct iq_mblock_v6
 {
 BT_U32BIT mode; // Interrupt Mode
 BT_U32BIT msg_ptr; // points to message that generated the interrupt
 }IQ_MBLOCK_V6;

The new interrupt structure eliminates the next entry pointer and the

interrupt mode and message pointer are expanded to 32-bits. The

interrupt mode can now hold over 4 billion interrupt types. There are

several new interrupt mode types. The following list shows the current

interrupt supported by BusTools/1553-API.

NO_INTERRUPT 0 // No interrupt present
TTIMER_LOAD_INTERRUPT 1 // Tag timer load interrupt (BC,RT,BM)
TRIGGER_IN_INTERRUPT 2 // Trigger input interrupt (BC,RT)
BC_MESSAGE_INTERRUPT 3 // BC Message interrupt (BC)
BC_CNTRLWD_INTERRUPT 4 // BC control word interrupt (BC)
RT_MESSAGE_INTERRUPT 5 // RT Message interrupt (RT)
BM_MESSAGE_INTERRUPT 6 // BM Message interrupt (BM)
BM_TRIGGER_INTERRUPT 7 // BM Message and trigger interrupt (BM)
MF_OVFL_INTERRUPT 8 // Minor Frame overflow interrupt (BC)
BC_BSY_MFOVFL_INTERRUPT 9 // BC busy set at start of frame (BC)
LP_MF_OVFL_INTERRUPT 10 // BC low priority aperiodic minor frame overflow (BC)
HP_MF_OVFL_INTERRUPT 11 // BC high priority aperiodic minor frame overflow (BC)
BM_HW_OVRFLW_INTERRUPT 12 // BM overflow detected head=tail

Conditional Branching

If you are using Condition Branch 2 with a memory location allocated by

BusTools_MemoryAlloc, the application will now need to allocate a 32-

bit word allocated on an even DWORD boundary. You can use either

BusTools_MemoryAlloc and specify 4-bytes in the byte count or use

BusTools_MemoryAlloc32. The address returned from these functions

is used as the test address in the conditional branch set up.

AN 020 Transitioning to UCA32 Firmware 14

Using New V6 Features

Most V6 improvements are hidden by BusTools/1553-API. They are

automatically implemented when you run your application. There are a

few new features that require changes to your code to implement. These

are Multiple BC buffers, External clock (this was first introduced for

some F/W 5.0 boards), and programmable triggers.

Multiple Bus Controller Buffers

Previous versions of BusTools/1553-API and the firmware supported

only one or two BC data buffers switched under application control.

Starting with V6 and BusTools/1553-API v8.x you have the option for

multiple BC data buffers. These buffers are organized as a circular

linked list. This allows applications to buffer data in high load

environments.

Existing applications will work the same way as they did with earlier

API and firmware versions. To use Multiple BC buffers your application

will need to specify multiple buffers when initializing the Bus Controller.

OR in the multiple buffer option (MULTIPLE_BC_BUFFERS) into the BC

Option parameter in BusTools_BC_Init:

NOMANGLE BT_INT CCONV BusTools_BC_Init(
 BT_UINT cardnum, // (i) card number (0 based)
 BT_UINT bc_options, // (i) REL_GAP 0x0

 FIXED_GAP 0xf
 MSG_SCHD 0x10
 NO_PRED_LOGIC 0x40
 FRAME_START_TIMING 0x20
 MULTIPLE_BC_BUFFERS 0x80

 BT_U32BIT Enable, // (i) interrupt enables
 BT_UINT wRetry, // (i) retry enables
 BT_UINT wTimeout1, // (i) no response time out in microseconds
 BT_UINT wTimeout2, // (i) late response time out in microseconds
 BT_U32BIT frame, // (i) minor frame period, in microseconds
 BT_UINT num_buffers) // (i) number of BC message buffers (1 or 2 for legacy)

status = BusTools_BC_Init(cardnum,MULTIPLE_BC_BUFFERS | MSG_SCHD,
BT1553_INT_END_OF_MESS, 0, 16, 14, 1000000, 0);

When the multiple BC buffer option is used the num_buffers parameter

is ignored during Bus Controller initialization.

After selecting multiple buffers, you allocate each BC message buffer

individually to program the number of data buffers for each message.

Using New V6 Features
 Multiple Bus Controller Buffers

AN 020 Transitioning to UCA32 Firmware 15

Use the new function BusTools_MessageBlockAlloc to allocate each

buffer.

NOMANGLE BT_INT CCONV BusTools_BC_MessageBlockAlloc(
 BT_UINT cardnum, // (i) card number (0 based)
 BT_UINT bufID, // (i) BC_BUFFER_NEXT or BC_BUFFER_LAST
 BT_UINT count); // (i) Number of BC data buffer linked to the
 // message buffer

Typically you would allocate each buffer in a loop as shown below.

//New Mechanism to allocate buffers. Each buffer is allocated separately in loop
//Msg No 0 1 2 3 4 5 6 7 8 9 10
BT_INT num_bc_data[]={5, 10, 10,12, 3, 1, 1, 1, 1, 1, 4}; // array with message buffer count
for(index=0;index<11;index++) //loop through all message needed and specify buffer count
{
 status = BusTools_BC_MessageBlockAlloc(cardnum,BC_BLOCK_NEXT,num_bc_data[index]);
 if(status)
 return status;
}
status = BusTools_BC_MessageBlockAlloc(cardnum,BC_BLOCK_LAST,num_bc_data[index]);
if(status)
 return status;

Use BC_BLOCK_NEXT when creating the buffers to link the messages

together. Optionally use BC_BLOCK_LAST to link the last message

block back to link last message back to the first. The array num_bc_data

in the sample code contains a count of the data buffer for each message.

Once the message buffers are allocated you can write the data to the

message control buffer and optionally the first data buffer using

BusTools_BC_MessageWrite. Use the new function

BusTools_BC_DataBufferWrite to fill the data buffers.

NOMANGLE BT_INT CCONV BusTools_BC_DataBufferWrite(
 BT_UINT cardnum, // (i) card number (0 based)
 BT_UINT mblock_id, // (i) BC Message number
 BT_UINT buffer_id, // (i) BC data buffer number
 BT_U16BIT * buffer); // (i) pointer to user's data buffer

The following code shows how to fill in the data for a message and all of

its data buffers.

//Write out command data and first data buffer.
messno = 0;
memset((char*)&bcmessage,0,sizeof(bcmessage));
bcmessage.messno = messno;
bcmessage.messno_next = (BT_U16BIT)(messno + 1);
bcmessage.control = BC_CONTROL_MESSAGE; // show as a message
bcmessage.control |= BC_CONTROL_CHANNELA; // Transmit on Channel A
bcmessage.control |= BC_CONTROL_INTERRUPT;
bcmessage.control |= BC_CONTROL_MFRAME_BEG;
bcmessage.mess_command1.rtaddr = 4;
bcmessage.mess_command1.subaddr = 4;
bcmessage.mess_command1.wcount = 4;
bcmessage.mess_command1.tran_rec = 0;
bcmessage.start_frame = 1;
bcmessage.rep_rate = 1;

Using New V6 Features
 Multiple Bus Controller Buffers

AN 020 Transitioning to UCA32 Firmware 16

bcmessage.errorid = 0; // Default error injection buffer (no errors)
bcmessage.long_gap = 10; // 10 microsecond inter-message gap.

status = BusTools_BC_MessageWrite(cardnum,messno,&bcmessage);

//New method to write data buffers. Write data to each buffer
for(j=0;j<num_bc_data[messno];j++)
{
 for(i=0;i<num_bc_data[messno];i++) //file in the data buffer
 bc_data[i] = 0x4000 + j;

 BusTools_BC_DataBufferWrite(cardnum,messno,j,bc_data);
}

When running multiple-buffer mode, you need to process the data buffer

instead of the message buffer. In previous API and firmware versions

you would call BusTools_BC_MessageRead to retrieve the Bus

Controller data using the message number. When running multiple

buffers, use the data buffer address with the new function

BusTools_BC_MessageBufferRead to process message data.

NOMANGLE BT_INT CCONV BusTools_BC_MessageBufferRead(
BT_UINT cardnum, // (i) card number (0 based)
BT_U32BIT addr, // (i) address of BC Data buffer
API_BC_MBUF * api_message); // (i) Pointer to buffer to receive msg

The code below shows a callback function used in conjunction with

BusTools_RegisterFunction to process data from multiple buffers.

BT_INT _stdcall bc_intFunction(BT_UINT cardnum, struct api_int_fifo *sIntFIFO)
{
 API_BC_MBUF bcmessage;
 BT_INT tail, wcount, messno;
 BT_UINT bufaddr;

 tail = sIntFIFO->tail_index;
 while(tail != sIntFIFO->head_index)
 {
 bufaddr = sIntFIFO->fifo[tail].buffer_off; // Address of the data buffer
 messno = sIntFIFO->fifo[tail].bufferID; // Message number
 status = BusTools_BC_MessageBufferRead(cardnum,bufaddr,&bcmessage);// read BC data
 if (status)
 return status;

.

.

.
 tail++;
 tail &= sIntFIFO->mask_index;
 sIntFIFO->tail_index = tail;
 }

 return 0;
}

Using New V6 Features
 Programmable input/output triggers.

AN 020 Transitioning to UCA32 Firmware 17

Programmable input/output triggers.
Each Mil-Std-1553B interface board has different discrete, RS-485 and

triggering capabilities. Refer to the MIL-STD-1553 Hardware

Installation Manual to find out board specific capabilities.

V6 firmware supports programmable input and output triggers. Any

discrete or 485 channel can be programmed as either an input or output

trigger (some boards use dedicated discrete and this section does not

apply). Legacy firmware allowed only discrete 7, 8 and 485 channels as

input or output triggers. The following code shows how to set up a

discrete as an input and output trigger.

status = BusTools_V6_SetDiscreteOut(cardnum,7,DISCRETE_GROUND); //Ground Discrete 7
status = BusTools_SetV6TrigIn(cardnum, DISCRETE,7);

The cardnum parameter determines the input trigger channel. The

following code sets up an output trigger.

status = BusTools_V6_SetDiscreteOut(cardnum,8,DISCRETE_GROUND); //Ground Discrete 8
status = BusTools_SetV6TrigOut(cardnum, DISCRETE,8); //Enable discrete 8 for output trigger

External Clock and Time Tag Reset

The external clock mode was added in V5 firmware. It is fully supported

in V6 and BusTools/1553. External Time Tag reset was added in V6.

Check the MIL-STD-1553 Hardware Installation Manual to see which

boards support these features.

The external clock mode switches timing from the internal clock to an

external clock that can run between 1 MHz and 10 MHz. Setup the

external clock mode using BusTools_TimeTagMode.

status = BusTools_TimeTagMode(cardnum, API_TTD_RELM, API_TTI_DAY, API_TTM_XCLK,
NULL,1000000,0,0); //Enable external clock for 1MHZ input clock

Time tags can be reset to zero (0) on an external input pulse. Enable this

feature by calling

NOMANGLE BT_INT CCONV BusTools_TimeTagReset(
 BT_UINT cardnum, // (i) card number (0 - based)card number (0 - based)
 BT_UINT tflag); // (i) EXT_RESET_ENABLE (1) EXT_RESET_DISABLE (0)

Other V6 Changes

The changes described above are the ones that most commonly will

effect applications. The following is a list of other V6 changes.

1. BusTools_SetOptions adds an option to generate interrupts on a

minor-frame-overflow.

Using New V6 Features
 BusTools/1553 Analyzer

AN 020 Transitioning to UCA32 Firmware 18

2. There are new interrupt options for minor-frame-overflows and for

aperiodic message overflows.

EVENT_MF_OVERFLO Minor-frame-overflow interrupt
EVENT_LP_MF_OVFL Minor-frame-overflow on low priority aperiodic list
EVENT_HP_MF_OVFL Minor-frame-overflow on high priority aperiodic list
EVENT_BC_BSY_OVFL BC busy on frame start interrupt

3. There is a new Playback file format. The old format, with a .bmd

extension, is based on a 48-bit microsecond time tag. The new

format for Playback files, created by BusTools/1553-API v8.x, has a

.bmdx file extension. Bmdx files use a 64-bit time tag. The time tag

resolution can be either micro- or nanoseconds. A header record in

the .bmdx defines the resolution. BusTools/1553-API v8.x can run

either .bmd or .bmdx files. You cannot use .bmdx files on earlier

API versions.

4. Conditional Branch on a memory location now uses 32-bit address

and data. Use BusTools_MemoryAlloc32 to allocate a 32-bit

address. Use BusTools_MemoryWrite2 to write and

BusTools_MemoryRead2 to read the address. Use the RAM32

read/write option in those functions.

5. There have been several changes to discrete, RS485 and trigger

configurations. You will need to review the discrete, RS485, and

trigger configuration on your specific board. Check the MIL-STD-

1553 Hardware Installation Manual for the connector descriptions.

BusTools/1553 Analyzer

If you are running BusTools/1553 Analyzer you will need to update to

latest version, v8.0, for V6 support. This version supports operation on

V4/V5 firmware as well as V6 firmware boards.

AN 020 Transitioning to UCA32 Firmware 19

Support and Contact information

If you have any questions or need technical support transitioning from

legacy boards to the new V6 boards please contact us immediately.

Contact Information:

Abaco Systems, Inc.
26 Castilian Drive, Suite B
Goleta, CA 93117
Main +1 805-965-8000 or +1 805- 883-6101
Support +1 805-965-8000 or +1 805- 883-6097

support@abaco.com (email)

https://www.abaco.com/products/avionics

Additional Resources

For more information, please visit the Abaco Systems website at:

www.abaco.com

mailto:support@abaco.com
https://www.abaco.com/products/avionics
http://www.abaco.com/

	Introduction
	V6 Firmware.
	BusTools/1553-API Version 8

	Transition Steps
	Install BusTools/1553-API Version 8.x
	Rebuild Your Application
	Changes to Your Application
	Changes to Time Tags
	32-Bit Addressing and 32-Bit Registers
	Directly Accessing Memory and Registers
	Bus Controller Buffer Changes
	Bus Monitor Buffer Changes
	Remote Terminal Buffer Changes
	Interrupt Queue Changes
	Conditional Branching

	Using New V6 Features
	Multiple Bus Controller Buffers
	Programmable input/output triggers.
	External Clock and Time Tag Reset
	Other V6 Changes
	BusTools/1553 Analyzer

	Support and Contact information

