

Software Reference Manual
BusTools/1553-API

Publication No. 1500-038 Rev. 5.12

Supporting Products:

• QPCX-1553 • QCP-1553 • RXMC-1553

• QPMC-1553 • R15-AMC • RXMC2-1553

• R15-EC • Q104-1553P • R15-LPCIE

• RPCC-D1553 • QPCI-1553 • R15-USB

• QVME-1553 • RPCIE-1553 • RAR15-XMC-IT/RAR15XF

• RQVME2-1553

• R15-MPCIE

• QPM-1553

• R15-USB-MON

• R15-PMC

2 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Document History

REVISION DATE DESCRIPTION

5.11 July 2019 BusTools/1553-API Software Revision: 8.24

Hardware Revision: 6.11/6.09/6.08/6.03/5.18/4.6x/4.4x

Rebranding to the Abaco Systems format.

5.12 Dec 2019 BusTools/1553-API Software Revision: 8.28

Updated supported versions of Windows and added Hardware
Revision 6.17

Waste Electrical and Electronic Equipment (WEEE) Returns

Abaco Systems is registered with an approved Producer Compliance Scheme (PCS) and,

subject to suitable contractual arrangements being in place, will ensure WEEE is processed in

accordance with the requirements of the WEEE Directive.

Abaco Systems will evaluate requests to take back products purchased by our customers

before August 13, 2005 on a case-by-case basis. A WEEE management fee may apply.

Publication No. 1500-038 Rev. 5.11 About This Manual 3

About This Manual

Conventions

Notices

This manual uses the following types of notice:

 CAUTION
Cautions alert you to system danger or loss of data.

 NOTE
Notes call attention to important features or instructions.

 TIP
Tips give helpful hints on procedures that may be tackled in a number of ways.

 LINK
Links take you to other documents or websites. The blue link color may also be used within a body of text or
paragraph to indicate a link (or hyperlink) to a different part of the same document.

Terms

Windows – References to “Windows” refer to all supported Microsoft Windows®

Operating Systems.

BusTools/1553 Hardware – Refers to any Abaco Systems 1553 board supported by

BusTools/1553-API.

BusTools/1553 Software – Refers to the Graphical User Interface (GUI) program that

uses the BusTools/1553-API. Using this GUI, you can program a Bus Controller and

Remote Terminals, as well as record 1553 data to disk for post-analysis.

Channel – Refers to a MIL-STD-1553 interface with dual redundant buses. “Dual

Redundant” consists of two 1553 buses, primary and secondary, with one bus active

at a time. The primary bus is bus A, and the secondary bus is bus B. Many Abaco

Systems products have multiple 1553 channels. This document refers to those as

Channel 1, Channel 2, Channel 3, and Channel 4.

Channel Initialization – In the functions provided by the BusTools-1553/API, the

statement “Prior to calling this function, the 1553 channel must be initialized by

calling one of the initialization functions.” This statement refers to the functions

BusTools_API_OpenChannel and BusTools_API_InitExtended. For PCI, PCI

Express, and PCMCIA devices, BusTools_API_OpenChannel is recommended. For

VME and VXI devices, BusTools_API_InitExtended is required.

Device – Represents the Abaco Systems 1553 board installed in the system, which

may be configured with one or more channels. Channels on the board are

independently initialized and programmed except for interrupts, IRIG, discretes and

4 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Differential I/O, which are shared between the channels on the board. The user

application is responsible for coordinating the use of IRIG, discretes, and differential

I/O among the channels on a board. There is a single hardware interrupt for each

Abaco Systems 1553 board, no matter how many channels are actively in use. For

high-level applications, the API determines which channel issued an interrupt and

invokes the appropriate user function(s).

Numbers

All numbers are expressed in decimal, except addresses and memory or register

data, which are expressed in hexadecimal. Where confusion may occur, decimal

numbers have a “D” subscript and binary numbers have a “b” subscript. The prefix

“0x” shows a hexadecimal number, following the ‘C’ programming language

convention. Thus:

 One dozen = 12D = 0x0C = 1100b

The multipliers “k”, “M” and “G” have their conventional scientific and engineering

meanings of x103, x106 and x109, respectively, and can be used to define a transfer

rate. The only exception to this is in the description of the size of memory areas,

when “K”, “M” and “G” mean x210, x220 and x230 respectively.

In PowerPC terminology, multiple bit fields are numbered from 0 to n where 0 is the

MSB and n is the LSB. PCI terminology follows the more familiar convention that bit

0 is the LSB and n is the MSB.

Text

Signal names ending with “#” denote active low signals; all other signals are active

high. “-” and “+” denote the low and high components of a differential signal

respectively.

Additional C Sample Programs

There are additional sample programs included that demonstrate how to use the API

to program and control Abaco Systems 1553 interface boards. These programs are

found in the following folder after the API has been installed:

For Windows 7 and later

C:\Users\Public\Documents\Condor Engineering\BusTools-1553-API\Examples\C\C Example

Code\examples

For Windows XP

 C:\Program Files\Condor Engineering\BusTools-1553-API\Examples\C\C Example Code\examples

Example application source for non-Windows operating systems include tstall.c for

UNIX and Integrity, and VxW_Demo for VxWorks.

Publication No. 1500-038 Rev. 5.11 About This Manual 5

Not all example code compiles and runs directly on every operating system. Refer to

Appendix A, “Sample Programs” for the descriptions of each sample program and

BusTools/1553-API functions used in the sample program.

QuikView1553 – The API distribution provides various installation test example

applications that will execute with installed 1553 board(s). QuikView1553 is an

application executable designed specifically for Windows systems. Execute

QuikView1553 from the desktop on Windows platforms, invoked via the

QuikView1553 icon. QuikView1553 provides the ability to test all installed Abaco

Systems 1553 boards.

Further Information

Abaco Systems Manuals

This document is distributed via the internet. You may register for access to manuals

via the website whose link is given below.

 LINKS
https://www.abaco.com

Abaco Website

You can find information on Abaco products on the following website:

 LINK
https://www.abaco.com/products

Abaco Documents

This document is distributed via the Abaco website. You may register for access to

manuals via the website.

 LINK
https://www.abaco.com/products/avionics

• BusTools 1553-API User’s Manual

 LINK
https://www.abaco.com/download/bustools1553-api-user-manual

• UCA32 LPU Reference Manual

 LINK
https://www.abaco.com/download/uca32-lpu-reference-manual

• UCA32 Global Register Reference Manual

https://www.abaco.com/
https://www.abaco.com/products
https://www.abaco.com/products/avionics
https://www.abaco.com/download/bustools1553-api-user-manual
https://www.abaco.com/download/uca32-lpu-reference-manual

6 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

 LINK
https://www.abaco.com/download/uca32-global-reg-ref-manual

• MIL-STD-1553 UCA Reference Manual

 LINK
https://www.abaco.com/download/mil-std-1553-uca-reference-manual

Technical Support

You can find technical assistance contact details on the web site Support page.

 LINK
https://www.abaco.com/support

Abaco will log your query on the Technical Support database and allocate it a

unique Case number for use in any future correspondence.

Alternatively, you may also contact Abaco’s Technical Support via:

 LINK
avionics.support@abaco.com

Returns

If you need to return a product, there is a Return Materials Authorization (RMA)

form available via the web site Support page.

 LINK
https://www.abaco.com/support

Do not return products without first contacting the Abaco Repairs facility.

https://www.abaco.com/download/uca32-global-reg-ref-manual
https://www.abaco.com/download/mil-std-1553-uca-reference-manual
https://www.abaco.com/support
mailto:avionics.support@abaco.com
https://www.abaco.com/support

Publication No. 1500-038 Rev. 5.11 About This Manual 7

Safety Summary

The following general safety precautions must be observed during all phases of the

operation, service and repair of this product. Failure to comply with these

precautions or with specific warnings elsewhere in this manual violates safety

standards of design, manufacture and intended use of this product.

Abaco assumes no liability for the customer’s failure to comply with these

requirements.

Ground the System

To minimize shock hazard, the chassis and system cabinet must be connected to an

electrical ground. A three-conductor AC power cable should be used. The power

cable must either be plugged into an approved three-contact electrical outlet or used

with a three-contact to two-contact adapter with the grounding wire (green) firmly

connected to an electrical ground (safety ground) at the power outlet.

Do Not Operate in an Explosive Atmosphere

Do not operate the system in the presence of flammable gases or fumes. Operation of

any electrical system in such an environment constitutes a definite safety hazard.

Keep Away from Live Circuits

Operating personnel must not remove product covers. Component replacement and

internal adjustments must be made by qualified maintenance personnel. Do not

replace components with power cable connected. Under certain conditions,

dangerous voltages may exist even with the power cable removed. To avoid injuries,

always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone

Do not attempt internal service or adjustment unless another person capable of

rendering first aid and resuscitation is present.

Do Not Substitute Parts or Modify System

Because of the danger of introducing additional hazards, do not install substitute

parts or perform any unauthorized modification to the product. Return the product

to Abaco for service and repair to ensure that safety features are maintained.

8 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Contents

About This Manual .. 3

List of Tables ... 14

List of Figures .. 15

1 • Introduction .. 16

1.1 Operating Systems Supported .. 16
1.2 Interface to Other Languages ... 16
1.3 API Source Code .. 16
1.4 Supported Hardware.. 17
1.5 Hardware Features .. 18

2 • API Initialization and Global Routines .. 19

2.1 API Initialization ... 19
2.2 API Shutdown... 21
2.3 Global Parameter Routines ... 21

2.3.1 IRIG-B Functions .. 21
2.3.2 Discrete and Differential I/O Functions .. 21

2.4 General Purpose Routines ... 22

3 • Application Development .. 23

3.1 Developing Applications in Supported Environments ... 23
3.2 Common Header Files ... 23
3.3 Developing Windows Applications ... 24
3.4 Developing Linux and LynxOS Applications ... 24
3.5 Developing VxWorks Applications .. 24
3.6 Developing Integrity Applications ... 24
3.7 General Development Notes ... 25

3.7.1 Number of Channels Supported ... 25
3.7.2 API Disk Space Requirements... 26
3.7.3 Operating System Requirements .. 26

3.8 Hints and Tips .. 26

4 • BusTools/1553-API Routines.. 28

4.1 BusTools_API_Close .. 28
4.2 BusTools_API_InitExtended .. 29

4.2.1 User Supplied External Addressing Mode .. 31
4.2.2 Initialization Examples .. 32
4.2.3 RQVME2/QVME : One, Two or Four-channel Native Boards .. 33

4.3 BusTools_API_InitExternal .. 34
4.4 BusTools_API_OpenChannel... 36
4.5 BusTools_API_ShareChannel .. 39
4.6 BusTools_API_JoinChannel .. 40
4.7 BusTools_API_QuitChannel... 42
4.8 BusTools_API_LoadUserDLL .. 43
4.9 BusTools_BC_AperiodicRun .. 44
4.10 BusTools_BC_AperiodicTest... 46
4.11 BusTools_BC_AutoIncrMessageData .. 47
4.12 BusTools_BC_Checksum1760 .. 49
4.13 BusTools_BC_ControlWordRead .. 51
4.14 BusTools_BC_ControlWordUpdate ... 52
4.15 BusTools_BC_DataBufferUpdate .. 54

Publication No. 1500-038 Rev. 5.11 Contents 9

4.16 BusTools_BC_DataBufferWrite ... 55
4.17 BusTools_BC_GetBufferCount .. 56
4.18 BusTools_BC_Init ... 57
4.19 BusTools_BC_IsRunning ... 61
4.20 BusTools_BC_IsRunning2 ... 62
4.21 BusTools_BC_MessageAlloc .. 63
4.22 BusTools_BC_MessageBlockAlloc ... 65
4.23 BusTools_BC_MessageGetaddr ... 67
4.24 BusTools_BC_MessageGetid .. 68
4.25 BusTools_BC_MessageNoop ... 69
4.26 BusTools_BC_MessageRead .. 71
4.27 BusTools_BC_MessageBufferRead .. 72
4.28 BusTools_BC_MessageReadData .. 74
4.29 BusTools_BC_MessageReadDataBuffer .. 75
4.30 BusTools_BC_MessageUpdate ... 76
4.31 BusTools_BC_MessageUpdateBuffer .. 77
4.32 BusTools_BC_MessageWrite .. 79

4.32.1 BC 1553 Data Message ... 80
4.32.2 1553 RT Messages (RT→RT, RT→RT Broadcast) ... 83
4.32.3 Conditional Message... 85
4.32.4 Stop BC .. 88
4.32.5 No-op Message ... 88
4.32.6 Timed No-op Message .. 88
4.32.7 Mode Codes and Dynamic Bus Control .. 89

4.33 BusTools_BC_ReadDataBuffer ... 91
4.34 BusTools_BC_ReadLastMessage ... 92
4.35 BusTools_BC_ReadLastMessageBlock ... 94
4.36 BusTools_BC_ReadNextMessage .. 97
4.37 BusTools_BC_RetryInit .. 99
4.38 BusTools_BC_SelectBufferRead ... 101
4.39 BusTools_BC_SelectBufferUpdate ... 102
4.40 BusTools_BC_SetFrameRate .. 103
4.41 BusTools_BC_Start .. 104
4.42 BusTools_BC_StartStop .. 105
4.43 BusTools_BC_Trigger .. 106
4.44 BusTools_BIT_CableWrap ... 108
4.45 BusTools_BIT_InternalBit .. 110
4.46 BusTools_BIT_TwoBoardWrap ... 111
4.47 BusTools_BIT_StructureAlignmentCheck .. 113
4.48 BusTools_BM_Checksum1760 ... 114
4.49 BusTools_BM_FilterRead .. 115
4.50 BusTools_BM_FilterWrite .. 116
4.51 BusTools_BM_Init .. 118
4.52 BusTools_BM_MessageAlloc ... 120
4.53 BusTools_BM_MessageGetaddr .. 122
4.54 BusTools_BM_MessageGetid ... 123
4.55 BusTools_BM_MessageRead ... 124
4.56 BusTools_BM_MessageReadBlock .. 126
4.57 BusTools_BM_ReadLastMessage .. 128
4.58 BusTools_BM_ReadLastMessageBlock ... 130
4.59 BusTools_BM_ReadNextMessage ... 132
4.60 BusTools_BM_SetRT_RT_INT ... 134
4.61 BusTools_BM_StartStop ... 135
4.62 BusTools_BM_TriggerWrite .. 136

10 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.63 BusTools_BoardHasIRIG ... 139
4.64 BusTools_BoardIsMultiFunction .. 140
4.65 BusTools_BoardIsUSBMon ... 141
4.66 BusTools_BoardIsV6 ... 142
4.67 BusTools_Checksum1760 .. 143
4.68 BusTools_CreateIntFifo ... 145
4.69 BusTools_DestroyIntFifo ... 146
4.70 BusTools_DataGetString ... 147
4.71 BusTools_DiffTriggerOut ... 151
4.72 BusTools_DiscreteGetIO ... 152
4.73 BusTools_PIO_GetIO ... 153
4.74 BusTools_DiscreteRead .. 154
4.75 BusTools_PIO_Read .. 156
4.76 BusTools_DiscreteSetIO .. 157
4.77 BusTools_PIO_SetIO .. 159
4.78 BusTools_DiscreteTriggerIn .. 161
4.79 BusTools_DiscreteWrite .. 162
4.80 BusTools_PIO_Write .. 164
4.81 BusTools_DiscreteTriggerOut ... 165
4.82 BusTools_DMA_Setup ... 166
4.83 BusTools_DumpMemory ... 167
4.84 BusTools_EI_EbufWrite ... 169
4.85 BusTools_EI_EnhEbufWrite (DEPRECATED) .. 171
4.86 BusTools_EI_EbufWriteENH .. 173
4.87 BusTools_EI_Getaddr .. 175
4.88 BusTools_EI_Getid ... 176
4.89 BusTools_ErrorCountClear .. 177
4.90 BusTools_ErrorCountGet... 178
4.91 BusTools_ExtTrigIntEnable ... 180
4.92 BusTools_ExtTriggerOut ... 181
4.93 BusTools_FindDevice .. 182
4.94 BusTools_FirmwareReload ... 184
4.95 BusTools_FlashLogErase .. 185
4.96 BusTools_FlashLogRead ... 186
4.97 BusTools_FlashLogWrite .. 187
4.98 BusTools_GetAddr ... 188
4.99 BusTools_GetBoardType... 190
4.100 BusTools_GetChannelStatus .. 191

4.100.1 API_CHANNEL_STATUS Definition ...191
4.101 BusTools_GetChannelCount ... 193
4.102 BusTools_GetCSCRegs ... 194
4.103 BusTools_GetDevInfo .. 197
4.104 BusTools_GetFWRevision ... 198
4.105 BusTools_GetPulse ... 199
4.106 BusTools_GetRevision .. 200
4.107 BusTools_GetSerialNumber .. 202
4.108 BusTools_GetTermEnable .. 203
4.109 BusTools_GetTimeTagMode .. 204
4.110 BusTools_GetValidDiscrete .. 206
4.111 BusTools_GetValidPio ... 207
4.112 BusTools_GetValidDiff .. 208
4.113 BusTools_InterMessageGap ... 209
4.114 BusTools_InterMessageGap2 .. 210

Publication No. 1500-038 Rev. 5.11 Contents 11

4.115 BusTools_IRIG_Calibration.. 210
4.116 BusTools_IRIG_Config ... 212
4.117 BusTools_IRIG_SetTime .. 214
4.118 BusTools_IRIG_Valid ... 216
4.119 BusTools_ListDevices ... 217

4.119.1 Device List Structure Contents ...217
4.120 BusTools_MemoryAlloc .. 219
4.121 BusTools_MemoryAlloc32 .. 220
4.122 BusTools_MemoryAvailable ... 221
4.123 BusTools_MemoryRead(obsoleted) ... 222
4.124 BusTools_MemoryRead2 .. 223
4.125 BusTools_MemoryWrite(obsoleted) .. 226
4.126 BusTools_MemoryWrite2 .. 227
4.127 BusTools_PCI_Reset/BusTools_VME_Reset ... 230
4.128 BusTools_Playback ... 231
4.129 BusTools_Playback_Check ... 233
4.130 BusTools_Playback_Stop .. 233
4.131 BusTools_ReadBoardTemp .. 235
4.132 BusTools_ReadVMEConfig ... 236
4.133 BusTools_RegisterFunction .. 237
4.134 BusTools_RS485_TX_Enable .. 241
4.135 BusTools_RS485_Set_TX_Data .. 241
4.136 BusTools_RS485_ReadRegs ... 243
4.137 BusTools_RT_AbufRead .. 244
4.138 BusTools_RT_AbufWrite ... 245

4.138.1 The RT Enable Bits ..245
4.138.2 The Inhibit Terminal Flag ..245
4.138.3 The RT Status Word ..246
4.138.4 The RT Last Command Word ..246
4.138.5 The BIT Word ...246
4.138.6 Single RT Mode ...246

4.139 BusTools_RT_AutoIncrMessageData ... 248
4.140 BusTools_RT_CbufbroadRead .. 250
4.141 BusTools_RT_CbufbroadWrite.. 251
4.142 BusTools_RT_CbufRead .. 253
4.143 BusTools_RT_CbufWrite ... 254
4.144 BusTools_RT_Checksum1760 .. 257
4.145 BusTools_RT_Init ... 259
4.146 BusTools_RT_GetRTAddr .. 260
4.147 BusTools_RT_GetRTAddr1760 ... 261
4.148 BusTools_RT_MessageGetaddr ... 262
4.149 BusTools_RT_MessageGetid .. 263
4.150 BusTools_RT_MessageRead .. 264
4.151 BusTools_RT_MessageBufferNext... 265
4.152 BusTools_RT_MessageWrite .. 266
4.153 BusTools_RT_MessageWriteDef .. 268
4.154 BusTools_RT_MessageWriteStatusWord .. 269
4.155 BusTools_RT_MonitorEnable .. 271
4.156 BusTools_RT_ReadLastMessage ... 272
4.157 BusTools_RT_ReadLastMessageBlock .. 274
4.158 BusTools_RT_ReadNextMessage .. 276
4.159 BusTools_RT_StartStop .. 278
4.160 BusTools_Set1553Mode ... 279
4.161 BusTools_SetBroadcast .. 280

12 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.162 BusTools_SetDumpPath ... 281
4.163 BusTools_SetExternalSync ... 282
4.164 BusTools_SetInternalBus .. 283
4.165 BusTools_SetIntVector ... 285
4.166 BusTools_SetIRQ_Lvl .. 286
4.167 BusTools_SetMultipleExtTrig .. 287
4.168 BusTools_SetNRLRTimeout.. 289
4.169 BusTools_SetOptions .. 290
4.170 BusTools_SetPolling ... 292
4.171 BusTools_SetSa31 .. 293
4.172 BusTools_SetTermEnable ... 294
4.173 BusTools_SetTestBus ... 295
4.174 BusTools_SetVoltage .. 297
4.175 BusTools_SetV6TrigIn ... 298
4.176 BusTools_SetV6TrigOut .. 299
4.177 BusTools_StatusGetString .. 300
4.178 BusTools_TimeGetString .. 301
4.179 BusTools_TimeGetFmtString .. 303
4.180 BusTools_TimeTagGet .. 304
4.181 BusTools_TimeTagInit .. 305
4.182 BusTools_TimeTagMode .. 306
4.183 BusTools_TimeTagRead ... 309
4.184 BusTools_TimeTagReset .. 310
4.185 BusTools_TimeTagWrite ... 311
4.186 BusTools_UpdateIntFifo.. 312
4.187 BusTools_UpdateTailPTR ... 313
4.188 BusTools_WriteVMEConfig ... 314

5 • Extending the API ... 315

5.1 Introduction .. 315
5.2 BusTools/1553-API User DLL Interface ... 315
5.3 How Does it Work? .. 315

5.3.1 Support for Multiple User Interface DLLs ...316
5.4 What Can I Do from a User Interface DLL Function? ... 317
5.5 User Interface DLL Function Example .. 317
5.6 BusTools/1553-API User DLL Interface Functions .. 320

5.6.1 UsrAPI_Close ...320
5.6.2 UsrBC_MessageAlloc ..322
5.6.3 UsrBC_MessageRead ..323
5.6.4 UsrBC_MessageUpdate...324
5.6.5 UsrBC_MessageWrite ..325
5.6.6 UsrBC_StartStop ..326
5.6.7 UsrBM_MessageAlloc ...327
5.6.8 UsrBM_MessageRead ...328
5.6.9 UsrBM_StartStop ...329
5.6.10 UsrRT_CbufWrite ...330
5.6.11 UsrRT_MessageRead ..331
5.6.12 UsrRT_StartStop ..332

6 • Return Codes .. 333

7 • Data Structures .. 341

7.1 1553 Command Word (BT1553_COMMAND) .. 342
7.2 1553 Status Word (BT1553_STATUS) .. 342
7.3 BC Retry Parameters (BusTools_BC_Init argument) ... 345
7.4 BC Message Buffer (API_BC_MBUF) .. 347
7.5 BM Filter Buffer (API_BM_CBUF) .. 354

Publication No. 1500-038 Rev. 5.11 Contents 13

7.6 BM Message Buffer (API_BM_MBUF) .. 357
7.7 BM Trigger Buffer (API_BM_TBUF) ... 360
7.8 BM Word Status Bits (8/16 bit) ... 362
7.9 Device List Structure (DeviceList) ... 364
7.10 Error Injection Definitions (API_EIBUF and API_ ENH_EIBUF) .. 366
7.11 Interrupt Enable / Message Status Bits (32 bit) .. 371
7.12 Interrupt Queue Message Block Structure (F/W 5.x or earlier) ... 375
7.13 Interrupt Queue Message Block Structure (F/W 6.0) .. 377
7.14 Interrupt Register/Filter/FIFO Structure (API_INT_FIFO) .. 378
7.15 Playback Data (API_PLAYBACK) .. 382
7.16 Playback Status (API_PLAYBACK_STATUS) ... 384
7.17 RT Address Control Block (API_RT_ABUF) .. 386
7.18 RT Control Buffer (API_RT_CBUF) .. 388
7.19 RT Control Buffer for Broadcast (API_RT_CBUFBROAD) .. 389
7.20 RT Message Buffer (read-only) (API_RT_MBUF_READ) .. 390
7.21 RT Message Buffer (write-only) (API_RT_MBUF_WRITE).. 390
7.22 Time Structure (BT1553_TIME) .. 392
7.23 Device Mapping(DEVMAP_T) ... 393

7.23.1 Device Information (DEVICE_INFO) ..395

A • Sample Programs .. 396

A.1 List .. 396

Glossary ... 421

14 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

List of Tables

Table 1-1 Abaco Systems 1553 Products ... 17

Table 1-2 1553 Board Feature Guide ... 18

Table 3-1 Currently Supported Platforms and Operating Systems ... 23

Table 4-1 Trigger Event Codes ... 137

Table 4-2 wDatatype Constants .. 147

Table 4-3 Interrupt Events .. 239

Table 4-4 TTDisplay Parameter Settings .. 301

Table 4-5 TTDisplay Parameter Settings .. 303

Table 4-6 TTDisplay parameter for BusTools_TimeGetString ... 306

Table 4-7 TTinit Values .. 307

Table 4-8 TTMode Values .. 307

Table 5-1 User DLL Entry and Associated API Functions .. 316

Table 6-1 Return Codes List ... 334

Table 7-1 Playback Status Bits .. 384

Table A-1 Sample Programs .. 396

Publication No. 1500-038 Rev. 5.11 List of Figures 15

List of Figures

Figure 4-1 Cable Wrap Test Connection Example .. 108

Figure 4-2 RQVME2-1553, QVME-1553, QPCI-1553, and QPCX-1553 Bus Options .. 284

Figure 4-3 RQVME2-1553, QVME-1553, QPCI-1553 & QPCX-1553 Bus Options .. 296

16 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

1 • Introduction

This manual is a reference guide for BusTools/1553-API, the software distribution

supporting the Abaco Systems MIL-STD-1553 Application Programming Interface

(API). This software distribution provides high-level software control of the MIL-

STD-1553 products, allowing rapid development of custom applications.

1.1 Operating Systems Supported

This BusTools/1553-API software distribution supports the following products with

a common interface on a range of form factors and operating systems, with

installation instructions provided in the BusTools/1553-API Software User’s Manual:

• 32-bit Windows XP and 32-bit/64-bit Windows 7/2008R2 (SP1 and KB3033929

reqd), 8, 8.1, Window Server 2012 R1/R2 and 10 – all products

• 64-bit/32-bit Linux (kernels 5, 4, 3, 2.6, 2.4) – all products with support for

PCMCIA boards limited to kernels before 2.6.15

• 64-bit/32-bit VxWorks 7, 6.x – all products except PCMCIA boards.

• 64-bit/32-bit Integrity 11, 5.10 – all products except PCMCIA and AMC boards.

Support for the VME and PCMCIA products are only supported on 32-bit operating

systems. The API is also supported with National Instruments® LabVIEW and

LabVIEW R/T via Abaco System’s LV-1553 product.

1.2 Interface to Other Languages

BusTools/1553-API is written in the “C” programming language. Abaco Systems

supplies all source files, example programs, and documentation for using the

BusTools/1553-API with languages other than “C”. The “BusTools/1553-API

Software User’s Manual” provides information regarding use of the API with C#.

1.3 API Source Code

The BusTools/1553-API distribution includes all source code, both for reference and

to allow adaptation to other platforms and operating systems. Programs written for

Windows can link directly to the libraries provided in the distribution. For Linux

and LynxOS, the libraries are built as part of the distribution deployment on the

host. For VxWorks and Integrity, the API source must be built into a library and/or

kernel image for use on the target platform.

https://www.abaco.com/download/bustools1553-api-user-manual

Publication No. 1500-038 Rev. 5.11 Introduction 17

1.4 Supported Hardware

The following table shows the boards supported by BusTools/1553-API. A detailed

description of all products is available at the Abaco link below.

 LINK
https://www.abaco.com/products/avionics

Table 1-1 Abaco Systems 1553 Products

Product Name Bus Number of Channels Latest F/W Version

R15-USB USB 1 or 2 6.11

BT3-USB-MON USB 1 6.11

QPCI-1553 PCI 1, 2 or 4 4.68

QPCX-1553 PCI 1, 2 or 4 6.03

QCP-1553 CompactPCI 1, 2 or 4 6.03

RPCC-D1553 PCMCIA 1 or 2 4.40

R15-EC Express Bus 1 or 2 6.03

RXMC-1553 XMC 1 or 2 6.09

RXMC2-1553 XMC 1, 2 or 4 6.17

RAR15-XMC-IT/RAR15XF XMC 1, 2 or 4 6.17

QPMC-1553 PMC 1, 2 or 4 4.66

QPM-1553 PMC 1, 2 or 4 6.17

RPCIE-1553 PCI Express 1, 2 or 4 6.08

R15-LPCIE PCI Express 1 or 2 6.03

R15-MPCIE PCI Express 1 or 2 6.09

R15-AMC AMC 1, 2, or 4 4.40

R15-PMC PMC 1 or 2 6.03

RQVME2-1553* VME 1, 2, or 4 4.40

QVME-1553 VME 1, 2 or 4 4.40

Q104-1553-P PC/104-Plus 1, 2 or 4 6.03

* The RQVME2-1553 is a RoHS redesign of the QVME-1553

https://www.abaco.com/products/avionics

18 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

1.5 Hardware Features

Abaco Systems MIL-STD-1553 boards have many features such as IRIG, discretes,

DMA and triggers that are optionally available on the 1553 interface boards. The

table below shows some of the features available on each 1553 interface board.

Table 1-2 1553 Board Feature Guide

1553 Board Avionics
Discretes

EIA-485 IRIG-B Hard Wired RT
Addressing

Test
Bus

LRU
Bus

DMA Ext Trig In/Out

R15-USB 8 No Yes No No No No Programmable

QPCI-1553 10 Yes Optional Ch 1 Yes Yes No Programmable
discretes

QPCX-1553 10 Yes optional Ch 1 Yes Yes Yes Program discretes

QCP-1553 18 Yes optional Ch 1 and Ch 2 No No Yes Program discretes

QPMC-1553 18 Yes optional Ch 1 and Ch 2 No No No Program discretes

QPM-1553 18 Yes optional Programmable No No No Program discretes

RPCIe-1553 18 Yes optional Ch 1 and Ch 2 No No No Program discretes

R15-LPCIE 14 Yes optional Programmable No No No Output - Prog Disc.
Input Per channel

MPCIe-1553 2 Yes No Programmable No No No Program Discretes

PCC-D1553 2 No optional No No No No Program discretes

R15-EC 2 No optional No No No No Program Discretes

R15-PMC Optional Optional Optional Optional No No No Optional

RXMC-1553 4 dedicated
+ 8 Discrete
or PIO
(optional)

4
optional

optional Programmable No No No Output - Prog Disc.
Input Per channel

RXMC2-1553 12 Yes optional Programmable No No No Output - Prog Disc.
Input Per channel

RAR15-XMC-IT
RAR15XF

6 No IRIG-IN Programmable No No Yes Order option

QVME-1553

RQVME2-1553

4 No optional All Channels Yes No No Per channel

Q104-1553P 10 Yes optional Ch 1 No No No Program discretes

Publication No. 1500-038 Rev. 5.11 API Initialization and Global Routines 19

2 • API Initialization and Global Routines

This chapter describes the initialization, shutdown, and general setup operations

required by the hardware and API functions. Global functions adjust parameters that

affect the entire board (such as IRIG or Discrete operation) or parameters that affect

the characteristics of an entire channel (such as the 1553 bus coupling method or

enabling external bus communications).

2.1 API Initialization

BusTools_API_OpenChannel and BusTools_API_InitExtended: These functions

are used to open a session and initialize a channel on any Abaco Systems 1553

device. For all PCI-bus, PCI-Express bus and PCMCIA 1553 devices,

BusTools_API_OpenChannel is recommended. For VME and VXI supported

devices, BusTools_API_InitExtended is required.

This respective open session function is the first API function called when

programming a channel on a 1553 device, configuring firmware registers on the

board and hardware interface data structures in the API for the selected channel.

You must verify that BusTools_API_OpenChannel or BusTools_API_InitExtended

returns a status of API_SUCCESS before continuing to program a channel.

The following functions are also commonly called for general channel initialization.

BusTools_SetBroadcast: This function controls how RT address 31 is handled. RT

address 31 is reserved for “broadcast” messages, however, it is possible to operate

the board with “broadcast” operations disabled. In this case, RT address 31 is

treated like a standard RT address.

BusTools_SetInternalBus: This function selects internal or external bus operation.

By default, the API initializes the board to run on its internal 1553 bus to ensure that

no traffic goes out until the application is ready to transmit. Call this function to

enable the external bus after initialization (after invoking the respective

BusTools_XX_Init function but before calling any of the BusTools_XX_StartStop

functions. Note that it is possible to run internally, without using the external bus.

On a multi-function card, you can run a complete 1553 topology on the internal bus.

BusTools_SetOptions: This function is used to set how the board handles various

options. This function has changed significantly since BusTools/1553-API version

5.24. Several previously supported options were deleted, and several new options

were added. This function supports:

• Suppress the Minor-Frame overflow warning

• Memory Dump on BM Stop

• Monitor Invalid Commands (not the same as Monitor Illegal Commands for RT

discussed below). When enabled this option allows the Bus Controller to monitor

20 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

invalid commands. When disabled the Bus Controller will discard invalid

commands. Added to API version 5.90 and later, and available with Firmware

version 4.19 and later.

• BM Trigger on Message

• Trigger on synchronize Mode Code

• RT start on external sync

• Ignore High Word. This setting provides the fastest response time by disabling

the firmware logic checking for high word count errors.

• Monitor Illegal Commands: Removed for API revisions after 5.24. This option

specifies how an RT should respond to an illegal command (one with an invalid

subaddress or word count). If the option is enabled, the RT returns a status word

to the BC with the Message Error bit set (and suppresses or ignores any data

words). If the option is disabled, the RT responds to the command word as

required (receiving or transmitting data), but the data words are invalid. The

Message Error bit is not set. The default setting for this parameter is disabled.

• Interrupt on Illegal Commands: Removed for API revisions after 5.24. This option

specifies the action to take if an RT detects an illegal command (one with an

invalid subaddress or word count). If the option is enabled, the RT generates an

interrupt if an illegal command is detected. The default setting for this

parameter is disabled.

• Treat Illogical Commands as Invalid: Removed for API revisions after 5.24. Illogical

commands are undefined mode code commands. They should never be

transmitted by the BC. If an illogical command is received, it may be treated as

an illegal command or as an invalid command. If this option is enabled, illogical

commands are treated as invalid (the command is ignored, and no message is

processed by the RT). If this option is disabled, illogical commands are treated as

illegal (the RT response depends on the setting of the “Monitor Illegal

Commands” option). The default for this parameter is enabled.

• Reset Time tag on Sync: This option resets the board’s internal timer if a Sync

mode code is detected. Since the timer is global to all components simulated on

the board, this option should only be used if the board is simulating a single RT.

The default for this parameter is disabled (the Sync Mode Code has no effect on

the board timer).

BusTools_SetSa31: According to MIL-STD-1553, the board translates messages to or

from subaddress 0 as mode code messages. The specification provides the option of

translating messages to or from subaddress 31 as mode code messages. The default

setting for this parameter is to translate messages to or from subaddress 31 mode

code messages. The setting for this feature can be modified by invoking this

function after initialization, but before calling the RT initialization function

BusTools_RT_Init.

BusTools_SetVoltage: This function sets the voltage level and electrical coupling for

the board driving the external 1553 bus. The application can use either “direct

Publication No. 1500-038 Rev. 5.11 API Initialization and Global Routines 21

coupling” or “transformer coupling” for driving the 1553 bus. For each of these

possible electrical connections, the board drives the 1553 bus at the specified voltage

level. This option is used to test external hardware with low voltage situations. The

default setting for “direct coupled” is 6.5 volts, for “transformer coupled” is 19.8

volts. Call this function after board initialization but before calling any of the

BusTools_XX_StartStop functions. Not all products support software selectable

coupling or variable transmit amplitude. Refer to the Hardware Installation

Manual’s section on your board for more information.

BusTools_TimeTagMode: This function is used to set the time tag mode and the

display format for message time tags.

2.2 API Shutdown

The BusTools_API_Close function performs all operations necessary to shut down

the API and release resources for the channel referenced. Not calling this function at

the close of your application can leave resources allocated. This could affect other

processes in the system. Multiple calls to BusTools_API_Close are harmless, and

simply return a code indicating that the API has already been closed.

2.3 Global Parameter Routines

Most API function calls affect only the channel referenced by the card number

parameter. However, functions for IRIG, Avionics Discretes, and Differential I/O are

global to the board. There is a single IRIG input, control, and calibration setup. IRIG

is selected on a channel-by-channel basis, but there is only one IRIG timer. All

channels on a board share common Avionics Discretes and Differential I/O lines. All

channels access the same discrete/differential I/O registers so take care in how you

allocate and program these channels. The following list shows these functions.

2.3.1 IRIG-B Functions

BusTools_IRIG_Calibration

BusTools_IRIG_Config

BusTools_IRIG_SetTime

BusTools_IRIG_Valid

2.3.2 Discrete and Differential I/O Functions

BusTools_DiffTriggerOut

BusTools_DiscreteGetIO

BusTools_DiscreteRead

BusTools_DiscreteSetIO

22 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

BusTools_DiscreteTriggerIn

BusTools_DiscreteTriggerOut

BusTools_DiscreteWrite

BusTools_RS485_TX_Enable

BusTooks_RS485_Set_TX_Data

BusTools_RS485_ReadReg

Several parameters control global operation of the hardware and firmware for a

specific channel. These parameters are set or reset by calling the functions described

below. While there are default values for each of these parameters, it is a good idea

to call these functions with the desired settings to ensure known, repeatable

behavior. Call these functions after initializing the board, but before calling any

other BusTools-API function that uses ‘cardnum’ as an input argument.

2.4 General Purpose Routines

BusTools_StatusGetString: All API functions return a status code indicating if the

function executed successfully. Successful completion of the function is indicated by

the code API_SUCCESS (zero). If the status is non-zero, an error was detected. Call

this function to obtain a text string description of the error code. All status codes

returned by BusTools API functions are supported, even those created after this

manual was last updated.

BusTools_DataGetString: This function performs engineering unit conversions and

places the result in a string. This function can be called at any time.

BusTools_TimeGetString: This function is used to convert a BusTools time structure

into an ASCII character string for display. This time structure is contained in BM

and RT message buffers. This function can be called at any time. Note, this function

uses 64-bit arithmetic and may not be compatible with operating systems not

supporting 64-bit arithmetic. Starting with F/W version 6.0, time resolution is 1

nanosecond. In order to convert a nanosecond resolution time-tag you must pass the

characters “NANO” in the string that will receive the converted time.

Publication No. 1500-038 Rev. 5.11 Application Development 23

3 • Application Development

3.1 Developing Applications in Supported Environments

The following table shows all supported environments and the required definitions

to compile BusTools/1553-API for those operation systems.

Table 3-1 Currently Supported Platforms and Operating Systems

Operating System/Platform Compiler Directive Comment

Windows _WIN32 or WIN32 The Microsoft Visual C++ compiler defines WIN32

Linux (x86 platform) _LINUX_X86_ Defined in the Makefile when building the API

VxWorks x86 with PCI/PCIe/PMC/XMC VXW_PCI_X86 All VxWorks x86 BSP’s with PCIbus based boards.

VxWorks x86 with VME VXW_VME_X86 All VxWorks x86 BSP’s with VMEbus based boards.

VxWorks PPC with VME VXW_VME_PPC All VxWorks PowerPC BSP’s with VMEbus based boards.

VxWorks PPC with PCI/PCIe/PMC/XMC VXW_PCI_PPC All VxWorks PowerPC BSP’s with PCIbus based boards.

Integrity PPC with PCI/PCIe/PMC/XMC INTEGRITY_PCI_PPC Green Hills Integrity PowerPC with PCIbus based boards.

Integrity PPC with VME INTEGRITY_VME_PPC Green Hills Integrity PowerPC with VMEbus based boards.

LynxOS PPC with VME LYNXOS_VME_PPC LynxOS PowerPC host with VMEbus based boards.

LynxOS PPC with PCI/PCIe/PMC/XMC LYNXOS_PMC_PPC LynxOS PowerPC host with PCIbus based boards.

LynxOS x86 with PCI/PCIe/PMC/XMC LYNXOS_X86 LynxOS x86 host with PCIbus based boards.

3.2 Common Header Files

The following are files common to all supported operating systems:

• Busapi.h: This is the header file associated with BusTools/1553-API. It contains

all structure definitions, subfunction prototypes, and parameter definitions

required to build applications incorporating the API. Include this file in any “C”

source file that accesses API functions.

• Target_defines.h: Busapi.h includes the file target_defines.h. This file has

target-specific information the API needs to build under different environments.

It requires compiler defines that may or may not be automatically defined in

most enviroments.

• cei_types.h: This include file defines the common data types used across the

Abaco Systems avionics software distributions.

24 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

3.3 Developing Windows Applications

When developing Windows applications, use the following files:

• Target_defines.h: It requires compiler defines of _WIN32 or WIN32 for any

Windows operating system.

• Busapi32.lib/Busapi64.lib: These are the Windows API dynamic link library

(DLL) files for 32-bit and 64-bit Windows operating systems, respectively. They

contain all API function exports contained in the respective DLL file. Follow

your development tool’s directions for adding library files to your application

project.

• Busapi32.dll/Busapi64.dll: These are the 32-bit and 64-bit BusTools/1553-API

DLL files containing the executable version of the API functions. During

installation these files are installed in the corresponding Windows system

directory.

• cei_install.dll: This DLL provides initialization support for Windows

applications. During installation, it is copied into the corresponding Windows

system directory.

3.4 Developing Linux and LynxOS Applications

When developing Linux and LynxOS applications, there are specific defines

applicable to the respective processor (see Table 3-1).

• Libbusapi.so: Link this library file with your application program. There are

two library options, a shared library, libbusapi.so, and a static library,

libbusapi.a. Each link the same way by using -lbusapi as a command line

argument to the compiler or in your Makefile. The only difference between the

two libraries is that the shared library does not require you to re-compile your

application if you re-build the BusTools/1553-API.

• Libceill.so: Linux only. This library contains the common low-level library for

all Abaco Systems APIs. Link this along with libbusapi.so.

3.5 Developing VxWorks Applications

When developing VxWorks applications, there are specific defines applicable to the

respective processor (see Table 3-1). There are also specific device driver options, as

described in the “VxWorks Support” chapter of the BusTools/1553-API User’s Manual.

3.6 Developing Integrity Applications

When developing Integrity applications, there are specific defines applicable to the

respective processor, see Table 3-1. There are also specific device driver options, as

described in the “Integrity Support” chapter of the BusTools/1553-API User’s Manual.

https://www.abaco.com/download/bustools1553-api-user-manual
https://www.abaco.com/download/bustools1553-api-user-manual

Publication No. 1500-038 Rev. 5.11 Application Development 25

3.7 General Development Notes

• Be sure to set your compiler to generate “2-byte alignment” of structures. The

normal default is typically 4- or 8-byte alignment; this alignment does not

interface with the BusTools library correctly.

• Be sure to add the appropriate library in the project link command.

• Be sure to use the latest version of Busapi.h when re-compiling your program,

since various structures and calling sequences may have been changed. Using

the latest version gives the compiler a chance to flag any changes that might

affect your program.

• Make sure that you specify the correct target define block within target_defines.h

before re-compiling the API. See the BusTools/1553-API User’s Manual for details.

This ensures that all the correct defines are set for the target OS. Using the target

define block allows you to customize the API build to include or exclude API

features that you may or may not need.

• When porting to a non-supported system, you can start with a target define block

similar to your target system, then modify according to the description in the

BusTools/1553-API User’s Manual. Define the unique identifier for that target

define block when you build your application. For example, by defining

“VXW_PCI_PPC”, you compile for a PMC or QPMC on a PowerPC by selecting

the block associated with that target.

• Verify that the calling convention that is being used by your program matches

the library (as defined by the Busapi.h file). This is especially important if you

are using another language, such as Visual Basic, which does not use the

Busapi.h interface file. The current Busapi.h file is always up to date, while the

information in this chapter was current only at the time this manual was

released.

• The error codes listed for each function are the most typical errors returned by

that function. Additional error codes are possible. See Chapter 6, “Return

Codes” for a complete listing of all possible error codes. The Busapi.h file from

the API software distribution contains the current list of error codes, since error

codes are regularly added to the API. All error codes can be converted to

printable ASCII messages by calling the BusTools_StatusGetString function.

For more details, see the BusTools/1553-API Software User’s Manual.

3.7.1 Number of Channels Supported

BusTools/1553-API supports the number of channels in any combination of boards

specified by the parameter MAX_BTA. This value is set for each target environment

in target_defines.h. The default value is 64 for Windows and 16 for any other

operating system.

https://www.abaco.com/download/bustools1553-api-user-manual
https://www.abaco.com/download/bustools1553-api-user-manual
https://www.abaco.com/download/bustools1553-api-user-manual

26 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

3.7.2 API Disk Space Requirements

Disk requirements vary depending on the application. You should have ample disk

space to install the API and support software and data. Operation of the

BusTools/1553 GUI requires additional disk space. Bus Topology files (.btd) take

only a few KBytes, but the Bus Monitor files (.bmd or .bmdx) can be large. The size

of these files depends on the complexity and speed of the bus traffic recorded and

can easily grow to several hundred megabytes or more. Make sure there is ample

disk space before recording data with the Bus Monitor. If the recording fills the disk,

disk recording stops, and the data is lost.

3.7.3 Operating System Requirements

BusTools/1553-API supports 32-bit and 64-bit Windows, Linux, LynxOS, VxWorks,

and Integrity. When developing time critical and real-time applications, you must

consider the effect of the operating system on performance. Operating systems such

as Windows or UNIX can cause delays in application processing that can make real-

time programming difficult. If you have requirements for deterministic timing or

want to process high data rates, you may want to consider operating systems with

smaller delays (e.g., Linux) or a real-time operating system (e.g., VxWorks or

Integrity).

3.8 Hints and Tips

• If you have a single-function 1553 interface, you can run only one operational

mode (BC, BM, or RT) for each channel at one time. Any attempt to start

multiple functions results in an API_SINGLE_FUNCTION_ERR (231) warning.

• If you have a dual-function 1553 interface, you can only run the RT or BC along

with the BM. Any attempt to run the BC and the RT together results in

API_DUAL_FUNCTION_ERR (234) warning.

• The function call that initializes the board may return an error if the mode

variable (flag or flag) is set to 0 (API_DEMO_MODE).

• After initialization, “Internal Bus” is selected by default. To ensure that 1553 bus

traffic appears external to the Abaco Systems board, select “External Bus”. See

“BusTools_SetInternalBus”.

• Most API functions affect only the channel addressed by the card number.

However, there are functions for IRIG, Avionics Discretes, and Differential I/O

that are global to the board. There is a single IRIG input, control, and calibration

setup. You can select whether you are using IRIG on a channel-by-channel basis,

but there is only one IRIG timer. Similarly, there are a set number of Avionics

Discretes and Differential I/O lines on a board that are shared by all channels.

When calling these functions, all channels access the same discrete registers so

take care not to allow one channel to overwrite other channels’ configuration.

• There is a single interrupt per device for PCI, PCIe, Mini-PCIe, Express Card, and

AMC devices. When a single application is running all channels on a device, the

BusTools/1553-API and the associated driver determines which channels on the

Publication No. 1500-038 Rev. 5.11 Application Development 27

board are generating interrupts and notifies the corresponding interrupt callback

function, If there are multiple applications running those channels, it is

recommended that only one of those applications utilize hardware interrupts.

The other application(s) should use software (timer-based) interrupts.

• Several parameters control global operation of the hardware and firmware on a

channel. These parameters are set or reset by calling API functions. While there

are default values for each of these parameters, it is a good idea to call these

functions with the desired settings to ensure known, repeatable behavior.

• Each of the message buffers defined for the board (BC/BM/RT) contain a word

called the “interrupt status word”. This 32-bit word is a composite of the status

of all the words in a message. “Interrupt” because it contains information which

is valid after a message is completed. It contains bus errors, information about

the message including message type, retry, error conditions, and message

completion.

• The function BusTools_DumpMemory reads the contents of board memory and

writes it to a text file. This information provides a snapshot of the board setup

and operation for debugging an application. This function is only available for

target systems that have a file system.

• The BusTools/1553-API User’s Manual contains descriptions of code examples for

setting up each mode (BC/BM/RT), as well as many other topics. Refer to the

example source code for demonstrations regarding the use of the data structures

and functions needed to set up each mode of operation.

https://www.abaco.com/download/bustools1553-api-user-manual

28 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4 • BusTools/1553-API Routines

This chapter describes each function in the BusTools/1553-API library. For each

function, its operation is described, the calling sequence is defined, and a list of

return status codes is presented. The status codes are listed mnemonically. A

description of each status or error code is provided in Chapter 6, “Return Codes”.

4.1 BusTools_API_Close

Description

BusTools_API_Close terminates BusTools/1553-API operations by releasing all

resources allocated by the API, terminating interrupt service and timer functions and

stopping any registered user threads. You must call this function before exiting a

program using BusTools/1553-API functions. Failure to call this function can have

unpredictable effects. Multiple calls to this function are harmless.

OS Support

Core API Function

Syntax

wStatus = BusTools_API_Close (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel as defined by the application as the cardnum

parameter in the invocation of BusTools_API_InitExtended, or

as the value returned in the chnd pararmeter upon return from

the invocation of either BusTools_API_OpenChannel or

BusTools_API_OpenDeviceChannel.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 29

4.2 BusTools_API_InitExtended

Description

BusTools_API_InitExtended initializes VME and VXI bus 1553 boards. It supports

the following boards:

• QVME-1553

• RQVME2-1553

• QVXI2-1553X

Initialization allocates the resources required by the API and sets up default

parameters for both the API and the board. Interrupt service processing is set up if

supported.

This initialization function is required to initialize any Abaco Systems 1553 VME/VXI

interface card under the various supported operating systems. The API relies on the

user-supplied values in this function to specify the specific board type used.

The cardnum parameter designates the 1553 interface/channel initialized by

BusTools_API_InitExtended. All subsequent calls to the API use this number as a

logical channel reference to that 1553 channel. The cardnum parameter should start at

0 and increment by 1 for each 1553 channel session initiated in the system. Many

Abaco Systems 1553 boards have multiple 1553 channels and each channel will be

assigned a unique cardnum value.

The flag parameter is used to define one of these states:

a) API_DEMO_MODE (0x0) – “software-only” or H/W simulation.

b) API_SW_INTERRUPT (0x01) – normal operation using software polling. See

BusTools_API_SetPolling to change the poll time.

c) API_HW_INTERRUPT (0x02) – normal operation, enabling hardware

interrupts in addition to software polling.

d) API_HW_ONLY_INT (0x03) – normal operation, enabling hardware

interrupts only.

e) API_MANUAL_INT (0x04) – No interrupt processing

To select MIL-STD-1553A operation, add the value API_A_MODE (0x80) to flag,

(MIL-STD-1553B is the default).

OS Support

Core API function

30 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Syntax

wStatus = BusTools_API_InitExtended (cardnum, base_address, ioaddr, flag,

 platform, boardType, carrier, slot, mapping);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

base_address (BT_U32BIT) the A24 or A32 base address for the memory

window allocated to the VME/VXI device.

ioaddr (BT_UINT) the A16 base I/O address selected by jumpers on

the board.

flag (BT_UINT*) pointer to a flag used to specify the operational

mode for the channel. OR the Operational Mode and

Interrupt Mode from the values below:

 1553 Operational Mode:

 API_A_MODE - MIL-STD-1553A

 API_B_MODE - MIL-STD-1553B

Interrupt Mode:

 API_SW_INTERRUPT - S/W Polled Interrupt

 API_HW_ONLY_INT - H/W Only Mode

 API_HW_INTERRUPT - H/W and S/W Mode

 API_MANUAL_INT - No interrupt processing

platform (BT_UINT) execution platform: PLATFORM_VMIC or

PLATFORM_USER.

boardType (BT_UINT) QVME1553 or RQVME2 (use RQVME2 for the

QVXI2-1553X).

carrier (BT_UINT) NATIVE

slot (BT_UINT) channel select, valid options are:

CHANNEL_1

CHANNEL_2

CHANNEL_3

CHANNEL_4

mapping (BT_UINT) carrier memory map, valid options are:

CHANNEL_1

CARRIER_MAP_DEFAULT

CARRIER_MAP_LARGE

CARRIER_MAP_A32

CARRIER_MAP_A24

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 31

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_INITED

BTD_CHAN_NOT_PRESENT

BTD_ERR_BADCFG

BTD_ERR_BADDETECT

BTD_ERR_PARAM

BTD_NEW_SERIAL_PROM

BTD_NO_SUPPORT

API_OUTDATED_FIRMWARE

API_HARDWARE_NOSUPPORT

Notes

The errors listed above are the most common errors detected by

BusTools_API_InitExtended. This function also detects and reports other errors. See

Chapter 6, “Return Codes”, for a complete listing of all error codes. See the

following section for Initialization Examples and more detailed notes.

Variable Voltage boards are initialized to full output voltage and transformer

coupling by this function. See the function BusTools_SetVoltage to change these

defaults.

The RQVME2-1553 is a RoHS redesign of the QVME-1553. You can use either

QVME1553 or RQVME2-1553 for initialization.

BusTools_API_OpenChannel is recommended for all other form-factors installed on

Windows, Linux, VxWorks, and Integrity platforms.

4.2.1 User Supplied External Addressing Mode

The Windows version of BusTools/1553-API supports an externally supplied

addressing mode. This mode supports hardware interfaces or bus repeaters that are

not supported by the normal API device driver by using a user-supplied board

mapping function in place of the API’s built-in low-level device driver.

You must name this external function “BusTools_API_InitExternal” and locate it in a

user-specified DLL. The API calls this external function during initialization of the

board. The API expects it to return the addresses of the various areas of the specified

board or an error code.

During shutdown of the board, the API again calls the specified DLL function. This

gives the DLL a chance to release any mapping resources and return the system to its

initial state.

32 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

For a complete programming description of this function, see the function definition

“BusTools_API_InitExternal”.

4.2.2 Initialization Examples

This section explains how to set the BusTools_API_InitExtended parameters to

initialize a Abaco Systems 1553 interface channel. Many Abaco Systems 1553 boards

have multiple channels. This function must be called for each channel.

Function Prototype:

wStatus = BusTools_API_InitExtended (cardnum,

base_address, ioaddr, flag, platform,

boardType, carrier, slot, mapping);

1. The cardnum input argument is a channel-based index defined by the application

that represents a handle to the respective 1553 interface channel for

BusTools_API_InitExtended. The value of this parameter should be used as the

“cardnum” handle with all other BusTools/1553-API function calls to program the

respective channel. cardnum should bein with the value 0 and increment by 1 for

each 1553 interface channel initialized, regardless of the number of channels

installed on each of the target 1553 boards.

2. The flag parameter is used to define one of these states:

3. API_DEMO_MODE (0x0) – “software-only” or H/W simulation.

4. API_SW_INTERRUPT (0x1) – normal operation using software polling. See

BusTools_API_SetPolling to change the poll time.

5. API_HW_INTERRUPT (0x2) – normal operation, enabling hardware interrupts

in addition to software polling.

6. API_HW_ONLY_INT (0x3) – normal operation, enabling hardware interrupts

only.

7. API_MANUAL_INT (0x4) – No interrupt processing

8. API_VXW_HLI (0x10) – (VxWorks Only) Use this when initializing VxWorks to

run with high level (BusTools_RegisterFunction) interrupts.

9. ‘OR’ flag with API_A_MODE to select 1553A operation.

10. Setting platform to “PLATFORM_USER” allows you to supply a custom

initialization DLL. The RQVME2-1553/QVME-1553 and QVXI2-1553X use this

option when running with National Instruments VXI libraries. Abaco Systems

supplies the BTVXIMAP.DLL for this option. When you select

“PLATFORM_USER”, pass the DLL name in the mapping parameter.

“PLATFORM_USER” applies to Windows systems only.

11. Use the carrier option to specify the VME address space as A24 or A32; use

NATIVE or NATIVE_24 for A24, NATIVE_32 for A32.

12. For the slot parameter, BusTools/1553-API uses “channel” and “slot”

interchangeably. Use the channel parameter (i.e., CHANNEL_1, CHANNEL_2,

etc.) for most boards. For single channel boards only CHANNEL_1 is valid.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 33

4.2.3 RQVME2/QVME : One, Two or Four-channel Native Boards

The QVME-1553/RQVME2-1553 are native VME boards. The QVXI2-1553X is an

RQVME2-1553 installed in a VXI sleeve. These boards are supported on Windows

systems with the National Instruments MXI-2 interface and on VxWorks systems

using the legacy VxWorks VME driver interface.

base_address The base address of the memory window for the board’s host

interface, either A24 or A32. This is programmable.

ioaddr Address of A16 configuration space (ID * 0x40 +0xc000 where

ID is set by onboard jumpers.

platform Windows systems use PLATFORM_USER; for VxWorks use

PLATFORM_PC.

boardType QVME-1553

carrier NATIVE, NATIVE_24, NATIVE_32 (NATIVE and NATIVE_24

for A24 addressing, NATIVE_32 for A32 addressing).

slot (BT_UINT) the channel on the device to reference, valid

options are:

CHANNEL_1, CHANNEL_2, CHANNEL_3,

CHANNEL_4

mapping (BT_UINT)(“BTVXIMAP.DLL”) for Windows,

CARRIER_MAP_A24 or CARRIER_MAP_A32 for VxWorks.

The following example initializes the first 1553 interface channel on a QVME-1553.

Initializing with BTVXIMAP.DLL uses National Instruments NI-VXI libraries. The

user specifies A32 addressing by using the carrier type NATIVE_32. The address

0x01000000 is programmable and must not interfere with other VME devices. The

wIOaddress value is based on the JB1 jumper settings. In this case, this jumper block

is set to 0x0f.

Example 1: Initialize Channel 1 on a QVME-1553

cardnum = 0; // start at 0

Windows

Status = BusTools_API_InitExtended (0, 0x01000000,

0xc3c0, &flag, PLATFORM_USER, QVME1553,

NATIVE_32, CHANNEL_1,

(BT_UINT)(“BTVXIMAP.DLL”));

VxWorks

Status = BusTools_API_InitExtended (0, 0x08000000,

0xc3c0, &flag, PLATFORM_PC, QVME1553,

NATIVE_32, CHANNEL_1, CARRIER_MAP_A32);

34 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.3 BusTools_API_InitExternal

Description

Supported under Windows only, this function is a user authored function defined in

a user-provided Dynamic Link Library (DLL). This function is used when the built-

in board mapping function supplied by the API is insufficient to access the board.

This provides a mechanism for extending the API to support those cases.

The invocation of this function occurs during the execution of

BusTools_API_InitExtended, when specified by the invoking application. The name

of the DLL that contains the function BusTools_API_InitExternal is passed as a

parameter to BusTools_API_InitExtended.

The cardnum parameter designates the Abaco Systems 1553 board to be opened; the

value passed into BusTools_API_InitExtended is passed to this function.

The address, wIOaddress, platform, cardType, carrier and slot values passed into

BusTools_API_InitExtended are passed transparently to this function.

This function must compute and return the following addresses:

For the PCI/PMC boards:

• PageAddr[0] maps the board base address

• PageAddr[1…3] are not used

For the VME boards:

• PageAddr[0] maps the A24/A32 board base address

• PageAddr[1] maps the A16 base address.

• PageAddr[2…3] are not used.

For all of the IP-D1553/carrier combinations:

• PageAddr[0] maps the IP-D1553 dual-port memory.

• PageAddr[1] points to the I/O register.

• PageAddr[2] contains the ID PROM address, or the ID PROM revision level.

• PageAddr[3] is not used.

The API uses these addresses directly to access the board. It does not attempt to

translate them in any manner. If any of these addresses are incorrect, the result is

undefined.

The API also calls this function when the API function BusTools_API_Close is called.

This gives the function a chance to terminate gracefully and release any resources it

might have allocated. The exact function prototype is contained in the Busapi.h file.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 35

OS Support

Windows

Syntax

wStatus = BusTools_API_InitExternal (cardnum, wOpen, address, wIOaddress,

 cardType, carrier, slot, PageAddr);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) BusTools card number (0-based).

address (BT_U32BIT) base memory address of the board from

BusTools_API_InitExtended.

wIOaddress (BT_U32BIT) base I/O address of the board from

BusTools_API_InitExtended.

wOpen (BT_UINT) Flag, 1=open device, 0=close device.

cardType (BT_UINT) board type from BusTools_API_InitExtended.

carrier (BT_UINT) board type from BusTools_API_InitExtended.

slot (BT_UINT) slot from BusTools_API_InitExtended.

PageAddr[4] *(void *) pointer to an array of pointers to void which receives

the base addresses of the board as computed by this function.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_INITED

BTD_ERR_NOACCESS

API_NO_OS_SUPPORT

Notes

Your program is responsible for returning API_SUCCESS (and correctly setting the

PageAddr pointers) or returning an error code. See Chapter 6, “Return Codes”, for a

listing of all error codes translated to strings by the BusTools_StatusGetString

function. The user function can return one of these error codes, or it may define a

new error code.

36 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.4 BusTools_API_OpenChannel

Description

BusTools_API_OpenChannel opens a session to and initializes a MIL-STD-1553

channel on the specified device. The application must initialize a channel before

invoking other BusTools/1553-API functions containing a cardnum in its parameter

list.

This function supports the following 1553 devices on Windows and Linux, and most

PCI/PCIe devices on VxWorks, and Integrity systems:

• QPCI-1553

• QPCX-1553

• QPMC-1553

• QPM-1553

• QCP-1553

• Q104-1553P

• RPCC-D1553

• R15-EC

• RXMC-1553

• RXMC2-1553

• RPCIE-1553

• R15-LPCIE

• R15-MPCIE

• R15-USB

• RAR15-XMC-IT/RAR15XF

To initialize a MIL-STD-1553 channel on a specific 1553 board, the application will

invoke this function with the assigned device number of the 1553 board and the

desired channel on that board. For Windows systems, the device number of all 1553

boards is assigned during installation. For all other operating systems, the device

number is determined by the device discovery order on the PCI/PCIe bus. If there is

a single Abaco Systems board installed in your system, it is always device 0. If there

are multiple devices installed in your system, use BusTools_FindDevice to obtain the

device number for the respective 1553 board type, or determine the fixed

configuration of the boards and their device index value as installed on the host.

The value in the chnd parameter returned from this function is a logical channel

reference to the session opened for the respective devid (board) and channel values

provided by the application. On subsequent BusTools/1553-API function calls, use

the chnd parameter value as a reference the respective channel via the cardnum

parameter.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 37

During initialization, channels on boards supporting variable voltage are initialized

to maximum output voltage by this function. Channels on boards supporting

programmable transformer/direct coupling are initialized to transformer coupling by

this function.

OS Support

BusTools_API_OpenChannel Core API Function

Syntax

wStatus = BusTools_API_OpenChannel (chnd, mode, devid, channel);

wStatus (BT_INT) status returned from this function.

chnd (BT_UINT *) Pointer to an unsigned integer. If successful, this

value represents a logical channel reference used to reference

the session opened with the specified channel and devid

combination. Use this value for all channel-based

BusTools/1553-API function calls requiring a “card number”

as a parameter. Valid range is 0 to 63.

mode (BT_UINT) a flag used to specify the operational mode for the

channel, defined as a combination of the desired MIL-STD-

1553 Operational Mode and the desired Interrupt Mode. The

mode is defined by the application as a logical OR of the

following field values:

 1553 Operational Mode:

 API_A_MODE - MIL-STD-1553A

 API_B_MODE - MIL-STD-1553B

 Interrupt Mode:

 API_SW_INTERRUPT - S/W Polled Interrupt

 API_HW_ONLY_INT - H/W Only Mode

 API_HW_INTERRUPT - H/W and S/W Mode

 API_MANUAL_INT - No interrupt processing

devid (BT_UINT) the device number of the board on which the

desired 1553 channel is located. For Windows operating

systems the device number is assigned during installation, for

all other operating systems this value is assigned in the

PCI/PCIe bus device discovery order. The valid range for

devid is operating system dependent; see the value assigned to

MAX_BTA in target_defines.h for the respective o/s.

channel (BT_UINT) the channel on devid to reference, valid options are:

CHANNEL_1

CHANNEL_2

CHANNEL_3

38 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

CHANNEL_4

Return Value

API_SUCCESS

API_BUSTOOLS_INITED

API_INIT_NO_SUPPORT

API_INSTALL_INIT_FAIL

API_BAD_PRODUCT_LIST

API_BAD_DEVICE_ID

API_CHANNEL_OPEN_OTHER

API_HARDWARE_NOSUPPORT

API_MAX_CHANNELS_INUSE

API_NO_BUILD_SUPPORT

API_OUTDATED_FIRMWARE

BTD_CHAN_NOT_PRESENT

BTD_ERR_BADCFG

BTD_ERR_BADDETECT

BTD_ERR_INUSE

BTD_ERR_NOMEMORY

BTD_ERR_PARAM

BTD_NEW_SERIAL_PROM

BTD_NO_SUPPORT

Notes

This function detects and reports many other errors related to opening a session and

initializing a board/channel. The errors listed above are the most common. See

Chapter 6, “Return Codes” for a complete listing of all error codes.

The API function BusTools_FindDevice can be used to determine the device number

of a specific Abaco MIL-STD-1553 board. You can embed an invocation of this

function into BusTools_API_OpenChannel invocation as shown below to open a

session to a channel on a specific board type:

mode = API_B_MODE | API_SW_INTERRUPT;

status = BusTools_OpenChannel(&cardnum, mode,

BusTools_FindDevice(PCI1553,2),CHANNEL_1);

where the invocation to BusTools_FindDevice as shown returns the device number

for the second instance of a PCI-1553 installed in your system.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 39

4.5 BusTools_API_ShareChannel

Description

BusTools_API_ShareChannel configures a previously initialized channel for sharing

by other applications/processes. Channel sharing allows one application to initialize

and share a channel, and other applications to join with the shared channel. Only

multi-function boards support channel sharing. This feature is restricted to a single

application/process for each 1553 function, Bus Controller, Remote Terminal and Bus

Monitor, on any single channel, limited to a single instance of each 1553 function.

Channel sharing permits you to create independent applications for Bus Controller,

Bus Monitor, and Remote Terminal functions all running on the same channel.

When a channel is shared, the channel mapping and status data is written to a

common memory location on the board. When other channels join, they initialize

using the memory mapping and status information stored in the common memory.

Once a channel is configured for sharing, another application joins that channel by

calling BusTools_API_JoinChannel. Applications joining a shared channel must not

initialize the channel. Initialization will overwrite the existing mapping and corrupt

the sharing operation.

The application that initializes and shares a channel can use any available interrupt

mode, software, hardware, or hardware only. The joining channels are only allowed

to use software interrupts. Before a channel can be shared it must first be initialized

using one of the initialization functions, BusTools_API_OpenChannel or

BusTools_API_InitExtended.

OS Support

Core API Function

Syntax

wStatus = BusTools_API_ShareChannel (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel. Valid range is 0 to 63.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINTED

API_HARDWARE_NOSUPPORT

API_SINGLE_FUNCTION_ERR

API_CHANNEL_SHARED

40 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.6 BusTools_API_JoinChannel

Description

BusTools_API_JoinChannel allows an application to join a shared channel. The

channel specified by the channel parameter on device wDevice, must already be

initialized by another application prior to calling this function. You need to

coordinate with the initializing application to ensure the channel is initialized.

When opening a session to a shared channel, this function invocation replaces the

open/initialization function. A joining application must not call any initialization

functions; instead, the preexisting channel parameters are acquired from a common

memory location on the board.

Once an application joins a channel, the application can program 1553 functions

using BusTools/153-API. Since applications joining shared channels do not have

access to hardware interrupts, they can only utilize the Software Interrupt mode.

Channel sharing allows only a single instance of each supported 1553 function: Bus

Controller, Remote Terminal and Bus Monitor; with a maximum of three

applications permitted to share a given channel. For example, an application can

initialize and share a channel then configure and execute as a Bus Controller.

Another application can join, configure, and execute as one or more Remote

Terminals, while yet another application can join, configure, and execute as a Bus

Monitor.

OS Support

Core API Function

Syntax

wStatus = BusTools_API_JoinChannel (chnd, device, channel);

wStatus (BT_INT) status returned from this function.

chnd (BT_UINT *) channel reference to the respective 1553

board/channel previously established via prior session open

and initialization and used in an invocation of

BusTools_API_ShareChannel. Valid range is 0 to 63.

device (BT_UINT) The device number of the board on which the

desired 1553 channel is located. For Windows operating

systems his number is assigned during installation, for all

other operating systems this value is assigned in the PCI/PCIe

bus device discovery order. The valid range for devid is

operating system dependent; see the value assigned to

MAX_BTA in target_defines.h for the respective o/s.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 41

channel (BT_UINT) the channel on the device to reference, valid options

are:

CHANNEL_1

CHANNEL_2

CHANNEL_3

CHANNEL_4

Return Value

API_SUCCESS

API_CHANNEL_NOTSHARED

API_HARDWARE_NOSUPPORT

API_MAX_CHANNELS_INUSE

API_NO_INTERRUPT_SUPPORT

BTD_ERR_NOACCESS

BTD_ERR_NOMEMORY

42 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.7 BusTools_API_QuitChannel

Description

BusTools_API_QuitChannel terminates a session with a joined or shared channel,

invoked in place of BusTools_API_Close for all joined channel sessions and prior to

the invocation of BusTools_API_Close for the sharing channel session. When calling

this function, pass an indicator via qFlag that defines the terminating application’s

1553 function implemented on the channel (BC/BM/RT mode). For the initial sharing

channel application reference, it should also indicate termination of the shared

session by adding the value SHARE_QUIT to the implemented function value in the

qFlag parameter.

OS Support

Core API Function

Syntax

wStatus = BusTools_API_QuitChannel (cardnum, qFlag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

qFlag (BT_UINT) termination flag referencing the 1553 function the

application implemented on the shared/joined channel

session:

RT_QUIT

BM_QUIT

BC_QUIT

SHARE_QUIT

Return Value

API_SUCCESS

API_CHANNEL_NOTSHARED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 43

4.8 BusTools_API_LoadUserDLL

Description

This function opens the specified user interface DLL and maps all of the user-defined

entry points. This gives the user “hooks” into the operation of the API, without

having to directly modify the API source code and re-compile the API library.

See Chapter 5 “Extending the API“, for a complete discussion about this function.

OS Support

Windows

Syntax

wStatus = BusTools_API_LoadUserDLL (cardnum, szDLLName);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

szDLLName (const char *) Pointer to a comma-delimited list of DLL names

that are opened sequentially

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_CANT_LOAD_USER_DLL

API_NO_OS_SUPPORT

44 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.9 BusTools_BC_AperiodicRun

Description

All Abaco Systems 1553 boards support aperiodic message transmission by the Bus

Controller function, refer to the manual section “Aperiodic 1553 BC Messages” in the

BusTools/1553-API Software User’s Manual for a detailed explanation of the setup,

transmission, and limitations surrounding aperiodic message transmit queues.

Prior to invoking this function, initialize the channel using one of the Initialization

functions and initialize the Bus Controller with invocations of both

BusTools_BC_Init and BusTools_BC_MessageAlloc. Additionally, invoke

BusTools_BC_MessageWrite for each aperiodic message in the messageid list, to

initialize the messages.

BusTools_BC_AperiodicRun supports two execution methods:

1. Block execution until the aperiodic message queue is empty

2. Return immediately after initiating periodic message processing

When execution is blocked while aperiodic messages are being processed, this

function will not return until the last message in the queue begins transmission.

Since the last message has not completed transmission on return, the application

should refrain from modifying the content within the aperiodic message queue until

transmission is complete. For this reason, it is advised to insert a NO-OP message as

the last message in the aperiodic message queue.

When execution is not blocked, this function will return immediately after initiating

periodic message processing. In this operating mode the function

BusTools_BC_AperiodicTest can be invoked to determine if transmission of the

respective message queue has been completed.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_AperiodicRun (cardnum, messageid, Hipriority, WaitFlag,

wWaitTime);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messageid (BT_UINT) the first BC message number indicating the

beginning of the aperiodic message list (“0” based).

Hipriority (BT_UINT) priority to assign to the aperiodic message, valid

options are: 1 = High Priority, 0 = Low Priority.

https://www.abaco.com/download/bustools1553-api-user-manual

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 45

WaitFlag (BT_UINT) 1 = request this function blocks execution until the

channel’s BC function completes processing the aperiodic

message list; 0 = this function will not block execution; instead,

it will return from processing aperiodic messages immediately

after initiating the transaction.

wWaitTime (BT_UINT) duration to wait for the channel to complete

processing the aperiodic message, in milliseconds. Valid

range is 1 to 4294967295. This parameter is ignored if WaitFlag

is zero.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTRUNNING - BC is not running and wait was specified

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_APERIODIC_RUNNING

API_BC_APERIODIC_TIMEOUT

Notes

The High Priority and Low Priority message lists are independent; both can be active

at the same time.

For current 1553 products, the minor frame counter resolution is 1µs (microsecond).

For legacy V5.x and earlier firmware, the minor frame counter resolution is 25µs.

This should be considered when assigning a value to WaitTime.

The messageid passed to this function is the first message in a list of messages. You

can use any legal message, conditional, Stop BC or No-op in this list. The list can

contain any number of messages. The only restriction in the message list is the value

0xFFFF must be applied the next message pointer in the last message.

Messages passed to this function must NOT have either the

BC_CONTROL_MFRAME_BEG or the BC_CONTROL_MFRAME_END bits set.

See the function definitions for “BusTools_BC_MessageAlloc and

“BusTools_BC_MessageWrite” for additional information.

BusTools_BC_AperiodicRun supports a single instance of low or high priority

messages list at a time. If this function is invoked to process a message list matching

the priority of a currently transmitting list, it will return a status value of

API_BC_APERIODIC_RUNNING. When an application supports multiple

aperiodic messages of the same priority, use WaitFlag or

BusTools_BC_AperiodicTest to ensure transmission of the current aperiodic message

list is complete.

46 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.10 BusTools_BC_AperiodicTest

Description

BusTools_BC_AperiodicTest reports if the Bus Controller has started transmitting

the last BC message in an aperiodic message queue, and if the BC is ready to accept

another set of aperiodic messages.

When an aperiodic message queue is enabled, the Bus Controller inserts the queued

messages into the running bus list when periodic transmission in the minor frame is

inactive, on an individual message basis. This function polls the hardware register

that indicates the status of execution of the aperiodic messages. It returns either

API_BC_APERIODIC_RUNNING if the specified list is still running, or

API_SUCCESS if the aperiodic processing is complete. An application invocation of

BusTools_BC_AperiodicTest is useful when using a long list of low priority

aperiodic messages that require several minor frames to complete transmission.

Prior to calling this function, you must initialize the channel using one of the

BusTools/1553-API Initialization functions, initialize the Bus Controller using the

BusTools_BC_Init function, define an aperiodic message queue via invocation of

BusTools_BC_MessageWrite, and activate that list via BusTools_BC_AperiodicRun.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_AperiodicTest (cardnum, Hipriority);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Hipriority (BT_UINT) aperiodic message queue to query: 1 selects the

High Priority message queue, 0 selects the Low Priority

message queue.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_APERIODIC_RUNNING

API_BC_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 47

4.11 BusTools_BC_AutoIncrMessageData

Description

BusTools_BC_AutoIncrMessageData creates an interrupt invoked thread that

automatically increments a data word in a specified BC→RT receive message. Since

this function creates a thread to increment the data word, upon completion of the

respective data word increment sequence the application must also invoke this

function to stop the respective thread. Note this function is only supported on host

operating systems compatible with BusTools_RegisterFunction.

The application specifies the message number and data word (0 – 31) with respect to

the specific BC message and data word to be modfied. The application also specifies

an increment value, a start value, an increment rate and a maximum value. This

function will set the specified data word to the start value and create a thread that

increments the data word by the increment value, at a periodic occurrence repeated

at rate times the message is transmitted. Setting the rate value to one causes the

thread to increment the data word value for every message transmission. The

specified data word will be incremented from the start value to the maximum value

and then reset back to the start value.

Restrictions in the use of BusTools_BC_AutoIncrMessageData are described in the

following paragraphs.

• Only a single data word in each BC message buffer can be autoincremented. If

an application invokes BusTools_BC_AutoIncrMessageData to auto-increment

more that one data word in a BC message buffer, this function will return the

error code API_BC_AUTOINC_INUSE.

• This function can be used with software interrupts for frame rates slower than 10

milliseconds. For frame rates faster than 10 milliseconds, the hardware interrupt

option must be used. The interrupt method is defined in the call to the respective

BusTools/1553-API Initialization function.

• You can only use auto increment within the first 512 BC message buffers.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Controller using the

BusTools_BC_Init function.

OS Support

Core API Function.

Syntax

wStatus = BusTools_BC_AutoIncrMessageData (cardnum, messno, data_wrd,

start, incr, rate, max, flag);

wStatus (BT_INT) status returned from this function.

48 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

cardnum (BT_INT) channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messno (BT_INT) the BC message number, valid range is 1 to 512.

data_wrd (BT_INT) the data word to increment, valid range is 0 to 31.

start (BT_U16BIT) data word starting value, valid range is 0 to

0xFFFF.

incr (BT_U16BIT) data word increment value, valid range is 0 to

0xFFFF.

rate (BT_INT) data word increment rate, valid range is 1 to

4294967295.

max (BT_U16BIT) data word maximum value, valid range is 0 to

0xFFFF.

sflag (BT_INT) auto-increment thread control flag, valid values are:

0 = terminate the thread, 1 = initiate the thread.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_FIFO_BAD

API_BUSTOOLS_FIFO_DUP

API_BUSTOOLS_NOTINITED

API_BUSTOOLS_NO_OBJECT

API_BUSTOOLS_TOO_MANY

API_BC_AUTOINC_INUSE

API_BC_NOTINITED

API_BC_NOTMESSAGE

API_MEM_ALLOC_ERR

API_REGISTERFUNCTION_OFF

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 49

4.12 BusTools_BC_Checksum1760

Description

BusTools_BC_Checksum1760 calculates a checksum according to the algorithm

described in Appendix B, Section B.4.1.5.2.1 of the Department of Defense Interface

Standard for Aircraft/Store Electrical Interconnect Systems MIL-STD-1760C Manual.

When each data word (including the checksum word) of a message is rotated right

cyclically by a number of bits equal to the number of preceding data words in the

message, and all the resultant rotated data words are summed using modulo 2

arithmetic to each bit (no carries), the sum shall be zero.

The application will pass a pointer to the respective API_BC_MBUF structure and a

pointer to an unsigned short integer in which to store the calculated checksum. Prior

to calling this function, you must fill in the data into the API_BC_MBUF structure.

The function calculates the checksum and writes it into the last location in the

message buffer.

Two examples show messages satisfying the checksum algorithm.

Example 1

Four Word Message:

1st Word 0000-0000-0000-0001 (0001 hex) data

2nd Word 1100-0000-0000-0000 (C000 hex) data

3rd Word 0000-1111-0000-0000 (0F00 hex) data

4th Word 0001-1110-0000-1011 (lE0B hex) checksum word

Example 2

Six Word Message:

lst Word 0001-0010-0011-0100 (1234 hex) data

2nd Word 0101-0110-0111-1000 (5678 hex) data

3rd Word 1001-1010-1011-1100 (9ABC hex) data

4th Word 1101-1110-1111-0000 (DEF0 hex) data

5th Word 0000-0000-0000-0000 (0000 hex) data

6th Word 1000-1111-0010-0000 (8F20 hex) checksum word

OS Support

Core API Function

50 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Syntax

wStatus = BusTools_BC_Checksum1760 (mbuf, cksum);

wStatus (BT_INT) status returned from this function.

mbuf (API_BC_MBUF *) pointer to BC message definition structure.

cksum (BT_U16BIT *) reference to a 16-bit location to store the

calculated checksum.

Return Value

API_SUCCESS

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 51

4.13 BusTools_BC_ControlWordRead

Description

BusTools_BC_ControlWordRead reads the control word for the specified Bus

Controller message buffer. Other message content such as noop, stop, or conditional

buffers, are not supported by the function.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions. Initialize the Bus Controller message buffers using

BusTools_BC_Init, BusTools_BC_MessageAlloc, and BusTools_BC_MessageWrite.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_ControlWordRead (cardnum, messageid, api_control_word

);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messageid (BT_UINT) BC message number (0-based).

api_control_word (BT_U16BIT *) reference to a 16-bit location to store the

control word read.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_NOTMESSAGE

52 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.14 BusTools_BC_ControlWordUpdate

Description

BusTools_BC_ControlWordUpdate allows the application to modify specific

parameters in the control word of a BC message without writing the entire BC

message. Call this function to change the bus (A or B), data buffer (A or B), switch

interrupts on or off, switch retries on or off, set interrupt-queue-only interrupts, and

deactivate (NO-OP) or activate a message.

Prior to calling this function, the application must initialize the channel using one of

the BusTools/1553-API Initialization functions, then initialize the Bus Controller

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_ControlWordUpdate (cardnum, messageid, controlWord,

WaitFlag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messageid (BT_UINT) BC message number (0-based).

controlWord (BT_U16BIT) New control word setting and ORed as follows:

 BC_CONTROL_BUFFERA

BC_CONTROL_BUFFERB

BC_CONTROL_BUSA or

BC_CONTROL_CHANNELA

BC_CONTROL_BUSB or

BC_CONTROL_CHANNELB

BC_CONTROL_RETRY

BC_CONTROL_INTERRUPT

BC_CONTROL_INTQ_ONLY

BC_CONTROL_MESSAGE

BC_CONTROL_MSG_NOP

BC_CONTROL_NOP

(See page 350 for details regarding the control word

definition.)

WaitFlag (BT_UINT) If non-zero, the function assures the Bus Controller

isn’t accessing the selected BC message before updating the

control word. If zero, it updates the BC message immediately.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 53

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_UPDATEMESSTYPE

API_BC_NOTMESSAGE

54 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.15 BusTools_BC_DataBufferUpdate

Description

BusTools_BC_DataBufferUpdate is a method provided for use in updating the data

portion of the specified BC data buffer. The data area to be updated is determined

by the buffer address passed to this function.

While BusTools_BC_DataBufferUpdate can be invoked directly from an application,

its specific purpose is to be used as a method to update a BC data buffer in response

to a BC Message Transaction event when the BC is configured to use multiple BC data

buffers. This application operational scenario is implemented by including an

invocation of BusTools_BC_DataBufferUpdate within a user callback function

created via invocation of BusTools_RegisterFunction. When the specific BC Message

Transaction event occurs, the interrupt queue will contain the address of the data

buffer that generated the interrupt, (the address of that buffer is stored in the

API_INT_FIFO entry fifo[index].buff_off). The callback function would use this

value to designate the data buffer location to modify, specified in the parameter

buf_addr in the invocation of BusTools_BC_DataBufferUpdate.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_BC_DataBufferUpdate (cardnum, buf_addr, dcount, buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

buf_addr (BT_UINT) data buffer address.

dcount (BT_UINT) number of data word to write.

buffer (BT_U16BIT *) array containing the application data to write.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_UPDATEMESSTYPE

API_BC_NOTMESSAGE

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 55

4.16 BusTools_BC_DataBufferWrite

Description

BusTools_BC_DataBufferWrite is a method provided for use in updating the data

portion of the specified BC data buffer. The data area to be updated is determined

by the message ID mblock_id and the Buffer ID buffer_id passed into this function.

BusTools_BC_DataBufferWrite is the preferred method for an application to update

BC data buffer content when when the BC is configured to use multiple BC data

buffers.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_BC_DataBufferWrite (cardnum, mblock_id, buffer_id, buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

mblock_id (BT_UINT) BC message number (0-based).

buffer_id (BT_UINT) BC message data buffer select, (0-based).

buffer (BT_U16BIT *) array containing the application data to write.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_UPDATEMESSTYPE.

56 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.17 BusTools_BC_GetBufferCount

Description

BusTools_BC_GetBufferCount retrieves the number of data buffers that are allocated

for a specific Bus Controller Message.

The application may invoke this function at any time after a channel is initialized

using one of the BusTools/1553-API Initialization functions, the Bus Controller is

initialized via BusTools_BC_Init, and BC Message Buffers are allocated via

invocation of BusTools_BC_MessageAlloc.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_BC_GetBufferCount (cardnum, messno, count);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messno (BT_UINT) BC message number (0-based).

count (BT_U32BIT *) 32-bit location to write the data buffer count.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_UPDATEMESSTYPE

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 57

4.18 BusTools_BC_Init

Description

BusTools_BC_Init initializes Bus Controller operations on a channel. Invoke this

function prior to calling any other functions accessing BC operations or structures.

BusTools_BC_Init can be invoked multiple times to change the BC configuration, but

the BC cannot be actively running. The application must terminate BC operations

via invocation of BusTools_BC_StartStop prior to any attempt to alter the Bus

Controller configuration with BusTools_BC_Init.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_Init (cardnum, bc_options, Enable, wRetry, wTimeout1,

wTimeout2, frame, num_buffers);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

bc_options (BT_UINT) Bus Controller options, (see the description for

”BC Options” in the Notes below for details)

REL_GAP - Relative gap,

FIXED_GAP - Gap time from message start

FRAME_START_TIMING - Frame start timing

MSG_SCHD - Message scheduling

FRAME_MESSAGING - Frame messaging

MULTIPLE_BC_BUFFERS - Multiple BC data buffers (F/W

Version 6.0 or greater).

MFOVFL_INT_ENA - Enable the Minor frame overflow

interrupts (F/W Version 6.0 or greater).

Enable (BT_U32BIT) interrupt enable bits. For the interrupt enable bits

definition, see the description for ”Interrupt Enable Bits” in

the Notes below for details, and Section 7.11, “Interrupt

Enable / Message Status Bits (32 bit)”.

wRetry (BT_UINT) retry enable bits. For the retry enable bits

definition, see the description for ”Retry Enable Bits” in the

Notes below for details, and Section 7.3, “BC Retry Parameters

(BusTools_BC_Init argument)”.

58 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

wTimeout1 (BT_UINT) timeout period for the “No Response” error --

must be between 4 and 31 µs; see the description for ”No

Response Timeout” in the Notes below for details.

wTimeout2 (BT_UINT) time-out period for the “Late Response” error --

must be between 4 and 31 µs; see the description for ”Late

Response Timeout” in the Notes below for details.

frame (BT_U32BIT) minor frame period in microseconds. See the

description for “Minor Frame Period” in the Notes for details.

num_buffers (BT_UINT) number of data buffers associated with each BC

message, either 1 or 2.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_RUNNING

API_BC_BADTIMEOUT1

API_BC_BADTIMEOUT2

API_BC_BADFREQUENCY

Notes

BC Options: The bc_options parameter sets the BC processing options. Currently,

there are five Bus Controller options, Relative Gap timing (default), Fixed Gap

timing, Frame Start timing, Message Scheduling, and Mulitple BC Buffers. Note

only one timing option, Relative Gap, Fixed Gap or Frame Start timing, can be used

on any channel. The following paragraphs provide a more detailed view of these

options, which can be used individually or ORed together.

▪ Relative Gap Timing (REL_GAP) uses the gap-time to from the end of the

message to determine when the next message transacts. That means the next

message is always relative to the “end-of-message”. If there is a no response or

retries, the subsequent message is always the specified gap time from the end of

message.

▪ Fixed Gap Timing (FIXED_GAP) sets the BC message gap timer to start from the

beginning of the message transmission with a fixed timing gap from the previous

message transaction. This option was added for API version 5.90 and greater

using Firmware version 4.19 and greater. When the gap timer starts at the

beginning of the message, the next message always transacts in a fixed time from

the start of the previous message, regardless of any error condition. When the

gap time starts from the end of the message (default), the next message

transaction occurs after a time relative to the completion of the message. That

can vary depending on the RT response. Fixed gap timing requires the

application to consider the transaction time for a message. This includes the

response time and any hardware retries. If the fixed gap time is not sufficient for

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 59

the message and any retries to complete, the next message is offset in time by the

amount of transmission overlap. It is also possible to get a “No Inter-message

Gap” error if the bus list violates the timing requirements.

▪ Frame Start Timing (FRAME_START_TIMING) sets the BC message gap timer

to start from the beginning of the frame. This option was added starting with

firmware version 5.00 and BusTools/1553-API version 6.42. The gap time applies

to the current message. It determines when it starts in relation to the frame start.

All messages have a precise start time within the frame. You can even delay the

first message in the frame.

▪ Frame Messaging (FRAME_MESSAGING) allows the user to write each message

into the frames in which they are to transact. For example, an application could

define three Minor Frames, one with ten messages, one with 25 messages and the

last with one message. If the user needs a message to repeat in each frame, the

application must put that message into each frame.

▪ Message Scheduling (MSG_SCHD) allows you to program a start frame and

repeat rate for each BC messages. It was added in BusTools/1553-API v6.20

running with Firmware version 4.40 or greater. With message scheduling, there

is only a single instance of a message that is scheduled to transact in the specified

frames. Previously, BC messages would need to be placed into the frames in

which they were scheduled to run. This required allocating BC message buffers

for each instance of the message. With message scheduling you use a single

message with a message schedule. There are two changes to how you program a

frame with message scheduling. Each BC message requires start frame and

repeat rate parameters, and the end-of-frame marker

(BC_CONTROL_MFRAME_END) is placed on a No-op message in the last

message written in the frame. A begin-frame marker

(BC_CONTROL_MFRAME_BEG) is still the first message in the frame. You can

have multiple begin-frame messages if the first messages in the frame have

different repeat rates and start frames, so long as there is only a single begin-

frame marker for each frame iteration.

▪ Multiple BC Buffers (MULTIPLE_BC_BUFFERS) is available only with

BusTools/1553-API version 8.00 running F/W version 6.0. When this option set, it

allows an application to allocate any number of buffers for each message, limited

only by memory available on the channel. Refer to the API function

BusTools_BC_MessageBlockAlloc for details.

▪ Minor frame overflow interrupts (MFOVFL_INT_ENA) - Enable Minor Frame

Overflow interrupts. The options available for Minor Frame Overflow interrupts

include:

• Minor frame overflow

• BC_busy bit set on minor frame overflow

• Low priority frame overflow

• High priority frame overflow

60 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Interrupt Enable Bits: The Enable parameter specifies the conditions causing a BC

interrupt for the message to be recorded in the interrupt queue. When an enabled

interrupt condition occurs, the interrupt message address is sent to the thread

specified in BusTools_RegisterFunction.

Retry Enable Bits: The wRetry parameter specifies the conditions under which the

Bus Controller retries a message. Starting with BusTools/1553-API version 6.20 this

variable was changed from a BT_U16BIT (16-bits) to a BT_UINT (32-bits) to

accommodate expanded retry conditions. See BusTools_BC_RetryInit for setting up

multiple retries.

No Response Timeout: The wTimeout parameter specifies the “No Response” time-

out period (in microseconds). If the RT in the BC command does not respond to the

command within this time-out period, the BC logs a “No Response” error (and an

interrupt is generated if that interrupt condition is enabled). This value ranges

between 4 and 31 µs. The normal value for MIL-STD-1553B is 14µs.

Late Response Timeout: The wTimeout2 parameter specifies the “Late Response”

time-out period (in .5-µs increment). If the RT in the BC command responds to the

command after this time-out period, but before the No Response time-out, the BC

logs a “Late Response” error (and an interrupt is generated if that interrupt

condition is enabled). You must specify a value between 4 and 31 µs, but less than

the “No Response” time-out period. The normal value for MIL-STD-1553B is 12µs.

Minor Frame Period: The frame parameter specifies the minor frame period in µs.

Starting with firmware version 5.00 and API version 6.42 this is a 32-bit value with a

1-µs resolution. The BC starts each minor frame in the BC message list according to

this parameter. Use a value between 250 and 4294967295 in 1-µs steps. For F/W

versions earlier than 5.0, use a value between 250 and 1638375 µs in steps of 25µs. If

the time to complete any minor frame is larger than the time specified by the minor

frame period, the global error “Minor Frame Overflow” occurs.

Number of BC Data Buffers: The num_buffers parameter specifies the number of BC

data buffers to use. You can set num_buffers to 1 or 2. If set to 1, the API generates

one Bus Controller Data buffer per message and both pointers in the BC message

structure point to the same data buffer. Selecting one reduces the number of words

required by each BC message by 33 words, enabling the definition and use of more

BC messages.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 61

4.19 BusTools_BC_IsRunning

Description

BusTools_BC_IsRunning returns a flag indicating the active state of the Bus

Controller function on the specified channel. If the returned flag is non-zero, the BC

is running. If the returned flag is zero, the BC is idle.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller via BusTools_BC_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_IsRunning (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_UINT*) location to store the channel BC status:

 0 = not running

 1 = running

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

62 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.20 BusTools_BC_IsRunning2

Description

The BusTools_BC_IsRunning2 function return value indicates the active state of the

Bus Controller function on the specified channel, so applications can embed the

function in another API function call. Successful execution values returned by

BusTools_BC_IsRunning2 are API_BC_IS_RUNNING or API_BC_IS_STOPPED;

otherwise, the returned value is an indication an error was encountered during

execution.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller via BusTools_BC_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_IsRunning2 (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_BC_IS_RUNNING

API_BC_IS_STOPPED

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 63

4.21 BusTools_BC_MessageAlloc

Description

BusTools_BC_MessageAlloc allocates onboard memory for the number of BC

message buffers specified in the parameter count. It numbers the message buffers

from 0 to count-1 and clears the allocated buffers. Create your bus list using

BusTools_BC_MessageWrite to initialize and link these messages into a chain.

This function creates BC message buffers by allocating either 1 or 2 data buffers,

depending on the value of num_buffers passed to BusTools_BC_Init. Specifying one

buffer reduces the size of the BC messages, allowing you to create more messages.

Normally, this function is called only once. After this first call, if you need to

allocate more message buffers you must re-initialize memory management by calling

BusTools_BM_Init and BusTools_BC_Init, and then allocating additional BC message

buffers. It is a good practice to allocate all the buffers you may need at the start of

the application rather than adding more when needed.

If you are using aperiodic messages, make sure you allocate enough messages for

both your periodic bus list and your aperiodic bus list since both reside within

memory allocated for the respective channel. Create the bus lists using

BusTools_BC_MessageWrite to initialize and link these messages into a chain. Leave

the unused message buffers at the end of the list for the aperiodic messages. When

you create the aperiodic messages, use the first of these extra messages for the first

aperiodic message, point it to the next message, initialize that message, and continue

until you complete all aperiodic messages. Ensure that the last aperiodic message

has a next message pointer of 0xFFFF (see BusTools_BC_AperiodicRun).

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller via BusTools_BC_Init.

In addition, this function must be called prior to starting the BC with

BusTools_BC_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageAlloc (cardnum, count);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

count (BT_UINT) number of BC messages to be allocated.

Return Value

64 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_RUNNING

API_BC_MBUF_ALLOCD

API_BC_MEMORY_OFLOW

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 65

4.22 BusTools_BC_MessageBlockAlloc

Description

BusTools_BC_MessageBlockAlloc allocates onboard memory for a single block of BC

message buffers plus the number of data buffers specified for the message. This

function is available only with BusTools/1553-API version 8.00 and an Abaco

Systems 1553 board programmed with F/W version 6.0. Call this function for each

message block in the bus list. It references the BC message buffers starting from the

value “0” and increments the message buffer count for each subsequent invocation.

On the initial invocation, BusTools_BC_MessageBlockAlloc creates a BC message

control block and the number of data buffers passed in the count parameter. At least

one data buffer must be allocated, but there is no upper limit other than what will fit

in the available memory. The application must complete allocating all BC message

blocks before creating the Bus Monitor buffers. You cannot allocate additional BC

message control blocks after allocating the Bus Monitor buffer.

The bus list is created using BusTools_BC_MessageWrite to initialize and link these

messages into a chain, and BusTools_BC_DataBufferWrite to fill in the data buffers.

If you are using aperiodic messages, assure enough messages are allocated for both

the periodic bus list and the aperiodic bus list, as both reside in channel memory.

When utilizing aperiodic messages, reference the first message not previously

allocated for periodic messages as the first aperiodic message, link it to the next

message, initialize that message, and continue until you complete all aperiodic

messages. Ensure that the last aperiodic message has a next message pointer of

0xFFFF (see BusTools_BC_AperiodicRun).

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller via BusTools_BC_Init.

This function must be called prior to starting the BC with BusTools_BC_StartStop.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_BC_MessageBlockAlloc (cardnum, bufID, count);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

bufID (BT_UINT) identifies the buffer:

 BC_BLOCK_NEXT

 BC_BLOCK_LAST

66 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

count (BT_UINT) the number of data buffers assigned to this

message.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_RUNNING

API_HARDWARE_NOSUPPORT

API_BC_MULTI_BUFFER_ERR

API_BC_MEMORY_OFLOW

API_BAD_PARAM

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 67

4.23 BusTools_BC_MessageGetaddr

Description

BusTools_BC_MessageGetaddr provides the board-referenced address offset to the

specified channel’s BC message number. This address offset is a byte offset from the

beginning of board memory and ranges from 0x20000 to the largest memory offset

supported by the board. Pass this address to BusTools_MemoryRead2 or

BusTools_MemoryWrite2 to perform direct access to the BC message structure.

Normally, applications don’t require access to absolute memory addresses on Abaco

Systems 1553 boards. Use this function for debugging or for implementing

operations not provided by the high-level API functions. One example is changing a

1553 message command word without calling BusTools_BC_MessageWrite to re-

write the entire message.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller via BusTools_BC_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageGetaddr (cardnum, messageid, addr);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messageid (BT_UINT) BC message number (0-based).

addr (BT_U32BIT *) location to write the hardware address offset of

the specified BC message.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

68 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.24 BusTools_BC_MessageGetid

Description

BusTools_BC_MessageGetid converts an Abaco Systems 1553 board offset/address to

a BC message number. The specified address is a byte offset from the start of board

memory and ranges from 0x00000000 to 0x0003FFFF.

The typical use of this function is in support of BC message data buffer processing

based on BC interrupt events. An application callback function will acquire the BC

message address from the interrupt queue, then invoke this function to convert that

address to the corresponding message number. With the message number the

application can retrieve the message from the board via BusTools_BC_MessageRead.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller via BusTools_BC_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageGetid (cardnum, addr, messageid);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

addr (BT_U32BIT) board memory offset.

messageid (BT_UINT*) pointer to returned BC message number.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_MBLOCK_NOMATCH

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 69

4.25 BusTools_BC_MessageNoop

Description

BusTools_BC_MessageNoop can toggle the specified BC message transaction

between states of No Operation and Active Message. This is useful when the

application is required to enable or disable a message in a running bus list for a

given period. Prior to calling this function, you must set up the specified message as

a normal 1553 message using BusTools_BC_MessageWrite.

This function can modify the active state of any normal message, including

conditional and stop BC messages; however, this function cannot modify the

definition of a message originally defined as a No-op message. There are two

options when modifying the active state if a message, a standard no-op and a timed

no-op. The standard no-op completely removes the message and message timing

from the corresponding bus list, where the timed no-op removes the message from

the bus list but preserves the message timing.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageNoop (cardnum, messageid, NoopFlag, WaitFlag

);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messageid (BT_UINT) BC message number (0-based).

NoopFlag (BT_UINT) Set message options:

NOOP – Omits the message transaction and any respective

message timing during execution of the bus list.

TIMED_NOOP – Omits the message transaction during

execution of the bus list but preserves the message timing.

MSG_OP – Includes the message transaction and message

timing during execution of the bus list.

WaitFlag (BT_UINT) Unused legacy parameter.

70 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_NOTMESSAGE

API_BC_NOTNOOP

API_BC_CANT_NOOP

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 71

4.26 BusTools_BC_MessageRead

Description

BusTools_BC_MessageRead reads the specified BC message from the channel.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageRead (cardnum, messageid, api_message);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messageid (BT_UINT) BC message number (0-based).

api_message (API_BC_MBUF *) location to store the BC message content.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_ILLEGALMESSAGE

API_BC_MESS1_COND

API_BC_BAD_COND_ADDR

Notes

In addition to BC→RT and RT→BC messages, the BC monitors RT→RT message data

and records it in the BC message data buffer.

For F/W version 4.99 and earlier, message gap time is saved in the gap_time

structure member; otherwise, the message gap time data is stored in the long_gap

structure member.

72 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.27 BusTools_BC_MessageBufferRead

Description

BusTools_BC_MessageBufferRead is a method provided for use in reading a specific

BC Message Buffer from a channel based on its location in channel memory. The

data contained therein is returned in the caller supplied structure.

While BusTools_BC_MessageBufferRead can be invoked directly from an

application, its specific purpose is to be used as a method to read a BC data buffer in

response to a BC Message Transaction event when the BC is configured to use

multiple BC data buffers. This application operational scenario is implemented by

including an invocation of BusTools_BC_MessageBufferRead within a user callback

function created via invocation of BusTools_RegisterFunction. When the specific BC

Message Transaction event occurs, the interrupt queue will contain the address of

the data buffer that generated the interrupt, (the address of that buffer is stored in

the API_INT_FIFO entry fifo[index].buff_off). The callback function would use this

value to designate the data buffer location to read, specified in the parameter addr in

the invocation of BusTools_BC_MessageBufferRead.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_BC_MessageBufferRead (cardnum, addr, api_message);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

addr (BT_U32BIT) address of the data buffer generating an

interrupt.

api_message (API_BC_MBUF *) location to store the BC message content.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_MESS1_COND

API_BC_BAD_COND_ADDR

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 73

Notes

In addition to BC→RT and RT→BC messages, the BC monitors RT→RT message data

and records it in the BC message data buffer.

74 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.28 BusTools_BC_MessageReadData

Description

BusTools_BC_MessageReadData reads the data buffer of the specified BC message

from the Abaco Systems 1553 board. If BusTools_BC_Init was invoked for the

respective channel with a num_buffers parameter value of 2, this function reads the

data from the active buffer designated by the value of the A/B buffer bit in the BC

Message Buffer Control Word; otherwise it reads from the single active buffer.

If the BC Function on the respective channel is configured to use Multiple Data

Buffers, this function will return an error; instead, the application must use the

function BusTools_BC_ReadDataBuffer to read data from a BC message data buffer.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageReadData (cardnum, messageid, buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messageid (BT_UINT) BC message number (0-based).

buffer (BT_U16BIT *) location to store the BC message data buffer

content.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_MESS1_COND

API_BC_BAD_COND_ADDR

Notes

In addition to BC→RT and RT→BC messages, the BC monitors RT→RT message data

and records it in the BC message data buffer.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 75

4.29 BusTools_BC_MessageReadDataBuffer

Description

This function reads the specified BC message data buffer from the specified BC

message on an Abaco Systems 1553 board. If BusTools_BC_Init was invoked for the

respective channel with a num_buffers parameter value of 2, this function reads the

data from the specified A/B buffer; however, if the channel is configured to use a

single channel, this function will read from the respective single BC data buffer.

If the BC Function on the respective channel is configured to use Multiple Data

Buffers, this function will return an error; instead, the application must use the

function BusTools_BC_ReadDataBuffer to read data from a BC message data buffer.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageReadDataBuffer (cardnum, mblock_id, buffer_id,

buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

mblock_id (BT_UINT) BC message number (0-based).

buffer_id (BT_UINT) BC message data buffer index; where

0 = Buffer A

1 = Buffer B

buffer (BT_U16BIT *) location to store the BC message data buffer

content.

Return Value

API_SUCCESS

API_BAD_PARAM

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_NOTINITED

API_BC_UPDATEMESSTYPE

API_BC_MBLOCK_NOMATCH

76 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.30 BusTools_BC_MessageUpdate

Description

BusTools_BC_MessageUpdate is a method provided for use in updating the

specified BC data buffer. The message data buffer updated for the respective

channel is based on the buffer configuration defined in the invocation of

BusTools_BC_Init and indicated via the value of the A/B buffer control bit in the BC

Message Buffer Control Word. If the BC is configured for two buffers, this function

writes the new data to the inactive buffer and changes the active buffer. If the BC is

configured for a single buffer, this function updates the single BC data buffer. The

word count specified by the first 1553-command word in the message indexed by

mblock_id determines the number of words written to the BC message buffer.

If the BC Function on the respective channel is configured to use Multiple Data

Buffers, this function will return an error; instead, the application must use the

function BusTools_BC_DataBufferUpdate to update a BC message data buffer. Any

attempt to update the content of a NO-OP message will result in the error code

API_BC_UPDATEMESSTYPE.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageUpdate (cardnum, mblock_id, buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

mblock_id (BT_UINT) BC message number (0-based).

buffer (BT_U16BIT *) location of the data buffer content to use.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_MULTI_BUFFER_ERR

API_BC_NOTINITED

API_BC_UPDATEMESSTYPE

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 77

4.31 BusTools_BC_MessageUpdateBuffer

Description

BusTools_BC_MessageUpdateBuffer updates the specified BC message data buffer

for the specific BC message. The message data buffer updated for the respective

channel is based on the buffer configuration defined in the invocation of

BusTools_BC_Init and indicated via the value of the A/B buffer control bit in the BC

Message Buffer Control Word. If the BC is configured for two buffers, this function

writes the new data to the buffer referenced via buffer_id. the BC is configured for a

single buffer, this function updates that BC data buffer regardless of the value of

buffer_id. The word count specified by the first 1553-command word in the message

indexed by messageid determines the number of words written to the BC message

buffer.

If the BC Function on the respective channel is configured to use Multiple Data

Buffers, this function will return an error; instead, the application must use the

function BusTools_BC_DataBufferUpdate to update a BC message data buffer. Any

attempt to update the content of a NO-OP message will result in the error code

API_BC_UPDATEMESSTYPE.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageUpdateBuffer (cardnum, messageid, buffer_id,

 buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messageid (BT_UINT) BC message data buffer index; where

0 = Buffer A

1 = Buffer B

buffer_id (BT_UINT) message data buffer to update 0=A, 1=B.

buffer (BT_U16BIT *) location of the data buffer content to use.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

78 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

API_BUSTOOLS_NOTINITED

API_BC_ILLEGAL_MBLOCK

API_BC_MULTI_BUFFER_ERR

API_BC_UPDATEMESSTYPE

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 79

4.32 BusTools_BC_MessageWrite

Description

BusTools_BC_MessageWrite writes a Bus Controller message or control structure to

a specified Bus Controller message buffer on the Abaco Systems 1553 board. After

allocating message buffers via invocation of BusTools_BC_MessageAlloc or

BusTools_MessageBlockAlloc, invoke this function to copy the message or control

information to the respective buffers on the board If the BC Function on the

respective channel is configured to use two or more data buffers, this function can

only be used to define the content in the first data buffer. Invoke the function

BusTools_BC_DataBufferWrite to define message data content in the remaining data

buffers.

There are two types of BC structures supported by the BC Message Buffer structure

(API_BC_MBUF), a BC Control Buffer and BC Message Buffer. A structure defined

by the application as a BC Control Buffer stores the data for No-ops, Timed No-ops,

Stop messages, Conditional branches, Minor Frame start/end, and the logical end of

a BC message list. A structure defined by the application as a BC Message Buffer

stores the parameters associated with a specific 1553 message. Content within a BC

Message Buffer includes RT address, subaddress, word count and data for Mode

Codes, and message data for RT→BC, BC→RT, RT→RT, and Broadcast messages.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller via BusTools_BC_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_MessageWrite (cardnum, messno, api_message);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messno (BT_UINT) BC message number (0-based).

api_message (API_BC_MBUF *) reference to the BC message definition

structure.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_ILLEGAL_MBLOCK

80 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

API_BC_ILLEGAL_NEXT

API_BC_ILLEGAL_PREV

API_BC_ILLEGAL_BRANCH

API_BC_MESS1_COND

API_BC_BAD_COND_ADDR

API_BC_ILLEGAL_TARGET

Notes

This function is used to create all Bus Controller 1553 data and control messages.

The required parameters for each message type are defined as follows:

4.32.1 BC 1553 Data Message

BC 1553 Data Message types support normal RT→BC, BC→RT, RT→RT messages,

broadcast BC→RT and RT→BC messages, and mode codes. The application is

required to define the following structure members in the API_BC_MBUF structure

before invoking BusTools_BC_MessageWrite for a BC 1553 Data Message:

control Should be set to BC_CONTROL_MESSAGE for a normal 1553

message, or BC_CONTROL_MSG_NOP to define the message

in the NO-OP state. Add any of the following attributes to this

initial control value to further define this message:

 BC_CONTROL_MFRAME_BEG: First minor frame message.

 BC_CONTROL_MFRAME_END: Last minor frame message.

 BC_CONTROL_INTERRUPT: Generate an interrupt.

 BC_CONTROL_RETRY: Retries are required for this message.

BC_CONTROL_BUSA: Transmit message on the primary bus.

 BC_CONTROL_BUSB: Transmit message on the secondary bus.

messno Message Number.

messno_next Set to the index of the next BC message. If you are creating an

aperiodic message list, and this is the last message in the list, set

this parameter to 0xFFFF.

messno_prev Not used.

errorid Set to the index of a valid error injection buffer, or to zero for no

error injection.

gap_time Intended for use with F/W V4.66 or earlier only. A 16-bit gap

time, specifying the delay applied after this message transaction

completes before the next transaction is processed. Valid range

is 4µs to 65535µs. This gap time is not applied if the message is

the last message in a minor frame or aperiodic list.

long_gap Intended for use with F/W V6.x or later only. A 24-bit gap time,

specifying the delay applied after this message transaction

completes before the next transaction is processed. Valid range

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 81

is 4µs to 16,777,215µs. This gap time is not applied if the

message is the last message in a minor frame or aperiodic list.

data[0][0-31] Initial values for the first data buffer if this is an RT receive

message.

data[1][0-31] Initial values for the second data buffer if this is an RT receive

message and the BC is using double buffering.

mess_command1 Defined as follows:

mess_command1.rtaddr Set to the RT number (0 TO 30) or 31 for a

broadcast message (if enabled).

mess_command1.tran_rec Set to 1 for transmit, 0 for receive.

mess_command1.subaddr Set to the RT subaddress, or 0 (or 31 if enabled) to

define a mode code.

mess_command1.wcount Set to the number of data words to transfer (0 for 32

words), or the mode code number if this is a mode code.

mess_command2 Not used.

start_frame When Message Scheduling is active, a start frame must be

defined for each message specifying the frame number in which

the message is first processed. A start frame of 1 is a request for

the message to be processed in the first frame. A start frame of 0

disables the message.

rep_rate When Message Scheduling is active, the repeat rate defines how

often a message is processed. A repeat rate of 1 is a request for

the message to be processed in every frame starting with the

start_frame. A repeat rate of n is a request for the message to be

processed every nth frame beginning with the start_frame. If the

repeat rate is 0 and the start frame is greater than 0, then the

message is processed only once in the start_frame.

When the control structure member is defined as a BC_CONTROL_MESSAGE, the

API ignores the remaining items in the API_BC_MBUF structure.

Example 1: First message in a minor frame

API_BC_MBUF bcmessage; //Create a BC Message Structure

bcmessage.messno = messno;

bcmessage.messno_next = (BT_U16BIT)(messno + 1);

bcmessage.control = BC_CONTROL_MESSAGE; //This is a Control msg

bcmessage.control |= BC_CONTROL_INTERRUPT; //Enable Interrupt

bcmessage.control |= BC_CONTROL_BUFFERA; //Use Buffer A

bcmessage.control |= BC_CONTROL_MFRAME_BEG; //Begin Minor Frame

bcmessage.mess_command1.rtaddr = RT_ADDR;

bcmessage.mess_command1.subaddr = SUB_ADDR;

82 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

bcmessage.mess_command1.wcount = MSG_WORD_COUNT;

bcmessage.mess_command1.tran_rec = RECEIVE;

bcmessage.errorid = 0; // Default error injection buffer, no errors

bcmessage.gap_time = 8; // 8-µs inter-message gap.

for (j = 0; j < MSG_WORD_COUNT; j++)

{

 bcmessage.data[0][j] = messageData[j]; //Fill in the data

}

status = BusTools_BC_MessageWrite(cardnum, messno, &bcmessage);

return status;

Example 2: Message in a minor frame

API_BC_MBUF bcmessage; //Define BC Message Structure

bcmessage.messno = messno;

bcmessage.messno_next = (BT_U16BIT)(messno + 1);

bcmessage.control = BC_CONTROL_MESSAGE; //Control msg

bcmessage.control |= BC_CONTROL_INTERRUPT; //Enable Int

bcmessage.control |= BC_CONTROL_BUFFERA; //Use Buffer A

bcmessage.mess_command1.rtaddr = RT_ADDR;

bcmessage.mess_command1.subaddr = SUB_ADDR;

bcmessage.mess_command1.wcount = MSG_WORD_COUNT;

bcmessage.mess_command1.tran_rec = TRANSMIT;

bcmessage.errorid = 0; // Default error injection buffer, no errors

bcmessage.gap_time = 8; // 8-µs inter-message gap.

status = BusTools_BC_MessageWrite(cardnum, messno, &bcmessage);

return status;

Example 3: Mode Code

API_BC_MBUF bcmessage; //Define BC Message Structure

bcmessage.messno = messno;

bcmessage.messno_next = (BT_U16BIT)(messno + 1);

bcmessage.control = BC_CONTROL_MESSAGE; //Control msg

bcmessage.control |= BC_CONTROL_INTERRUPT; //Enable Int

bcmessage.control |= BC_CONTROL_BUFFERA; //Use Buffer A

bcmessage.mess_command1.rtaddr = RT_ADDR;

bcmessage.mess_command1.subaddr = 0; //Also 31 if programmed

bcmessage.mess_command1.wcount = MODE_CODE;

bcmessage.mess_command1.tran_rec = T/R; //Defined by Mode code

bcmessage.errorid = 0; // Default Error Inj. Buffer, no errors

bcmessage.gap_time = 8; // 8-µs inter-message gap.

status = BusTools_BC_MessageWrite(cardnum, messno, &bcmessage);

return status;

Example 4: Message Scheduling

API_BC_MBUF bcmessage; //Define BC Message Structure

bcmessage.messno = messno;

bcmessage.messno_next = (BT_U16BIT)(messno + 1);

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 83

bcmessage.control = BC_CONTROL_MESSAGE; //Control msg

bcmessage.control |= BC_CONTROL_INTERRUPT; //Enable Int

bcmessage.control |= BC_CONTROL_BUFFERA; //Use Buffer A

bcmessage.mess_command1.rtaddr = RT_ADDR;

bcmessage.mess_command1.subaddr = SUB_ADDR;

bcmessage.mess_command1.wcount = MSG_WORD_COUNT;

bcmessage.mess_command1.tran_rec = TRANSMIT;

bcmessage.errorid = 0; // Default error injection buffer, no errors

bcmessage.gap_time = 8; // 8-µs inter-message gap.

bcmessage.start_frame = 1; // Start message in the first frame

bcmessage.rep_rate = 3; // Repeat the message every third frame.

status = BusTools_BC_MessageWrite(cardnum, messno, &bcmessage);

return status;

Example 1 shows how to set up the first message in a minor frame. Notice the

example ORs in the BC control bits including BC_CONTROL_MFRAME_BEG bit.

You can use the same code for setting any 1553 message in the minor frame, omitting

the begin-minor-frame bit. For the last message in the minor frame set the

BC_CONTROL_MFRAME_END bit. In addition, this is a receive command that

sends data from the Bus Controller to the Remote Terminal.

Example 2 shows how to set up a transmit command that requests data from the

remote terminal and no data is filled into the data array.

Example 3 shows the mode code format. You can use either subaddress 0 or 31

depending on the board setup (see BusTools_SetSa31). The word count field

specifies the mode code, (see the mode code definitions in the MIL-STD-1553

Tutorial). The Mode Code defines the Transmit/Receive bit setting, data words and

availability for broadcast.

Example 4 is the same as example 2; however, it uses the start_frame and rep_rate

parameters to schedule the message to start in the first frame and run every third

frame. These two parameters are only valid when the MSG_SCHD option is set in

the call to BusTools_BC_Init. Message scheduling parameters apply to all Bus

Controller messages, but not to control messages such as noop, timed noop, stop, or

conditional branches.

For broadcast commands, set the RT value to 31. Broadcast commands are receive-

only commands. The Remote Terminals do not return status on broadcast

commands. You can also send a broadcast mode code by using the mode code

format described in example 3 and addressing RT 31.

4.32.2 1553 RT Messages (RT→RT, RT→RT Broadcast)

RT→RT and RT→RT Broadcast messages require the following parameters in the

API_BC_MBUF structure be defined before invoking BusTools_BC_MessageWrite:

control Defined the same as the BC 1553 Data Message control structure

member.

84 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

messno Message Number.

messno_next Set to the index of the next BC message. If you are creating an

aperiodic message list, and this is the last message in the list, set

this parameter to 0xFFFF.

messno_prev Not used.

errorid Set to the index of a valid error injection buffer, or to zero for no

error injection.

gap_time Defined the same as the BC 1553 Data Message gap_time

structure member.

long_gap Defined the same as the BC 1553 Data Message long_gap

structure member.

data[0][0-31] does not need initialization.

data[1][0-31] does not need initialization.

mess_command1 1553 RT Rx Command Word, should be defined as follows:

mess_command1.rtaddr set to the RT number (0-30) that RECEIVES the

data, or 31 for a broadcast RT→RT message.

mess_command1.tran_rec must be set to 0.

mess_command1.subaddr set to the receiving RT subaddress.

mess_command1.wcount set to the number of data words to transfer.

mess_command2 1553 RT Tx Command Word, should be defined as follows:

mess_command2.rtaddr set to the RT number (0-30) that TRANSMITS the

data. May not be the same RT number specified

in mess_command1.

mess_command2.tran_rec must be set to 1.

mess_command2.subaddr set to the transmitting RT subaddress.

mess_command2.wcount set to the number of data words to transfer.

bcmessage.start_frame Start message in the first frame

bcmessage.rep_rate Repeat the message every third frame.

The API ignores the remaining elements in the API_BC_MBUF structure.

Example 5: RT→RT message

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 85

API_BC_MBUF bcmessage; //Define BC Message Structure

messno++;

bcmessage.messno = messno;

bcmessage.messno_next = (BT_U16BIT)(messno + 1);

bcmessage.control = BC_CONTROL_MESSAGE; //Control msg

bcmessage.control |= BC_CONTROL_INTERRUPT; //Enable Int

bcmessage.control |= BC_CONTROL_BUFFERA; //Use Buffer A

bcmessage.control |= BC_CONTROL_RTRTFORMAT //RT→RT

bcmessage.mess_command1.rtaddr = RT_ADDR_1;

bcmessage.mess_command1.subaddr = SUB_ADDR_1;

bcmessage.mess_command1.wcount = MSG_WORD_COUNT;

bcmessage.mess_command1.tran_rec = RECEIVE;

bcmessage.mess_command2.rtaddr = RT_ADDR_2;

bcmessage.mess_command2.subaddr = SUB_ADDR_2;

bcmessage.mess_command2.wcount = MSG_WORD_COUNT;

bcmessage.mess_command2.tran_rec = TRANSMIT;

bcmessage.errorid = 0; // Default error injection buffer (no

errors)

bcmessage.gap_time = 8; // 8-µs inter-message gap.

bcmessage.start_frame = 1; // Start message in the first frame

bcmessage.rep_rate=3; // Repeat the message every third frame.

status = BusTools_BC_MessageWrite(cardnum, messno, &bcmessage);

return status;

The above example shows a RT→RT message that commands one RT to receive data

and another RT to transmit data. The code ORs in the RT→RT format bit in the BC

control word. Message command 1 contains the receive RT data and message

command 2 contain the transmit RT data.

You program a broadcast RT→RT message by replacing RT_ADDR_1 in the above

example with the broadcast RT address, 31. This designates a single RT to transmit

data while the other RTs receive this data.

4.32.3 Conditional Message

Conditional messages allow the application to program conditional execution paths

within a bus list. Conditional “messages” do not generate any 1553 bus traffic, nor

do they inject inter-message gaps or generate interrupts. Conditional messages

provide a branch point in the bus list where you can conditionally execute certain

1553 messages based on the value of a data word. That data word can either be a

location in onboard RAM or part of a previous message transaction. The application

is required to define the following structure members in the API_BC_MBUF

structure before invoking BusTools_BC_MessageWrite for a Conditional Message.

control Should be set to one of the following Branch options:

BC_CONTROL_BRANCH branch immediate to a message.

 BC_CONTROL_CONDITION conditional branch on the

previous message.

86 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

 BC_CONTROL_CONDITION2 conditional branch on a

specific address.

 BC_CONTROL_CONDITION3 conditional branch on a

specific message and data word value.

 Optionally BC_CONTROL_INTERRUPT can be added to the

branch if interrupt generation is desired.

data_value Set to the data value the compare matches.

data_mask Enable bits to be tested by setting the data mask bits to 1.

messno_next Set to the message index of the BC message to process if the

condition tested is false (not equal).

messno_branch Set to the message index of a valid BC message that will be

executed next if the condition is true (equal).

cond_count_val Number of times condition is true before processing the

branch. A value of 0 results in a branch on every matching

condition, 1 is every other match. This value is loaded into the

counter whenever the branch occurs. Maximum value is

65,536.

cond_counter Initial counter setting. Usually set the same as

cond_count_val.

For Conditional Branch and Conditional Branch 3

messno_compare Set the index of the message containing the data word

specified in “address”.

address Set to the word number of the previous message or specified

message to compare for BC_CONTROL_CONDITION or

BC_CONTROL_CONDITION3 conditional branch messages.

Where:

0 = Command Word 1

1 = Command Word 2 (RT to RT only)

2 = Status Word 1

3 = Status Word 2 (RT to RT only)

4-35 = Data Words

For Conditional Branch 2

test_address The byte address of the memory word tested by

BC_CONTROL_CONDITIONAL2 conditional branch

message; otherwise, this structure member is ignored by the

API.

spare An unused parameter set to zero for compatibility with future

enhancements.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 87

The API ignores the remaining elements in the API_BC_MBUF structure.

Example 6: Conditional Branch 2

API_BC_MBUF bcmessage; //Define BC Message Structure

messno++;

bcmessage.control = BC_CONTROL_CONDITION2;

bcmessage.messno = messno;

bcmessage.messno_next = (BT_U16BIT)(messno + 1);

bcmessage.messno_branch = (BT_U16BIT)(messno + 3);

bcmessage.test_address = TEST_ADDRESS;

bcmessage.data_value = DATA_VALUE;

bcmessage.data_mask = MASK;

status = BusTools_BC_MessageWrite (cardnum, messno, &bcmessage);

return status;

The above example shows a conditional branch using a memory location,

TEST_ADDRESS. During executions, the BC compares the memory location

TEST_ADDRESS with the data, DATA_VALUE using the mask. If there is a match,

the BC executes the branch message; otherwise, the BC executes the next message.

Example 7: Conditional Branch or Conditional Branch 3

API_BC_MBUF bcmessage; //Define BC Message Structure

messno++;

bcmessage.control = BC_CONTROL_CONDITION3;

bcmessage.messno = messno;

bcmessage.messno_next = (BT_U16BIT)(messno + 1);

bcmessage.messno_branch = (BT_U16BIT)(messno + 3);

bcmessage.address = MSG_ADDR; // value between 0 and 35

bcmessage.messno_compare = PREV_MESS // Message number for a

 // previously transacted message.

 // Condition Branch 3 only

bcmessage.data_value = DATA_VALUE;

bcmessage.data_mask = MASK;

status = BusTools_BC_MessageWrite (cardnum, messno, &bcmessage);

return status;

The above example shows a conditional branch using data from a previous message

transaction. PREV_MESSAGE refers to the message using the assigned message

number (messno) set in a call to BusTools_BC_MessageWrite. MSG_ADDRESS

points to the word within the message. As mentioned previously, this is a 0-based

number with 0 pointing to the command word and 4 pointing to the first data word.

During execution, the BC compares the message word pointed to by

PREV_MESSAGE and MSG_ADDRESS with the data, DATA_VALUE using the

mask. If there is a match, the BC executes the branch message; otherwise, the BC

executes the next message.

88 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

For BC_CONTROL_CONDITION, the API defaults to the previous message and

ignores messno_compare.

4.32.4 Stop BC

The last logical message executed in the BC message list is a stop BC or a

BC_CONTROL_BRANCH specifying the beginning message in the list as the

messno_next. The Stop BC message doesn’t cause an interrupt or create a gap time.

When executed, the Stop BC message turns off the BC RUN bit in the control and

status register. Use the following parameters to setup the Stop BC message:

control Set to BC_CONTROL_LAST. Optionally

BC_CONTROL_INTERRUPT can be added to the branch.

messno_next Should be set to the index of a valid BC message that executes

if the BC RUN bit is set without re-initializing the BC.

The API ignores the remaining elements in the API_BC_MBUF structure.

Example 8: Last BC Message

API_BC_MBUF bcmessage; //Define BC Message Structure

messno++;

bcmessage.control = BC_CONTROL_LAST;

bcmessage.messno_next = NEXT_MESSAGE;

status = BusTools_BC_MessageWrite (cardnum, messno, &bcmessage);

return status;

4.32.5 No-op Message

The NO-OP message is a placeholder; its only function is to transfer processing to

the next message. It does not generate any 1553 traffic, cause an interrupt, or inject a

gap time. The following parameters define a NO-OP message:

control BC_CONTROL_NOP.

messno_next Set to the index of a valid BC message to process next.

The API ignores the remaining elements in the API_BC_MBUF structure.

Example 9: No-op Message

API_BC_MBUF bcmessage; //Define BC Message Structure

messno++;

bcmessage.control = BC_CONTROL_NOP;

bcmessage.messno_next = NEXT_MESSAGE;

status = BusTools_BC_MessageWrite (cardnum, messno, &bcmessage);

return status;

4.32.6 Timed No-op Message

The Timed NO-OP message is a placeholder like the NO-OP. The difference

between Timed NO-OP and NO-OP is that the gap delay from the previous message

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 89

and gap delay programmed for the Timed NO-OP are included in the execution of

the bus list. The Timed NO-OP can be utilized to extend the gap time between

messages, as well as generate an interrupt. The following parameters define a Timed

NO-OP message:

control BC_CONTROL_TIMED_NOP. Optionally

BC_CONTROL_INTERRUPT can be added.

messno_next Set to the index of a valid BC message to run next.

gap_time Intended for use with F/W V4.66 or earlier only. A 16-bit gap

time, specifying the delay applied after this message

transaction completes before the next transaction is processed.

Valid range is 4µs to 65535µs. This gap time is not applied if

the message is the last message in a minor frame or aperiodic

list.

long_gap Intended for use with F/W V6.x or later only. A 24-bit gap

time, specifying the delay applied after this message

transaction completes before the next transaction is processed.

Valid range is 4µs to 16,777,215µs. This gap time is not

applied if the message is the last message in a minor frame or

aperiodic list.

Example 10: Timed No-op Message

API_BC_MBUF bcmessage; //Define BC Message Structure

messno++;

bcmessage.control = BC_CONTROL_TIMED_NOP;

bcmessage.messno_next = NEXT_MESSAGE;

bcmessage.gap_time = 100; // 100-µs inter-message gap.

status = BusTools_BC_MessageWrite (cardnum, messno, &bcmessage);

return status;

4.32.7 Mode Codes and Dynamic Bus Control

The 1553 Message format described above supports Mode Codes and Mode Code 0

(Dynamic Bus Control). When using Mode Code 0, the RT returns the dynamic bus

control acceptance (DBCA) bit in its status word and if properly configured changes

to the Bus Controller. To transfer the BC function to an external RT, program the

Dynamic Bus Control mode code as the last command in a frame and follow it with a

Stop BC command. It is a good idea to precede the Stop BC command with a

conditional command, which tests for the DBCA status word bit before executing the

Stop BC command. See the “Remote Terminals” section in the BusTools/1553-API

Software User’s Manual for more details on Dynamic Bus Control.

The Stop BC command should point to the BC message that you want to execute

when this unit converts back to the Bus Controller. This first message might begin

with a null minor frame to delay putting out the first command, as the two units

https://www.abaco.com/download/bustools1553-api-user-manual
https://www.abaco.com/download/bustools1553-api-user-manual

90 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

aren’t synchronized. Otherwise, the new BC puts out its first command around 10-

20 µs after the mode code status word transmits.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 91

4.33 BusTools_BC_ReadDataBuffer

Description

BusTools_BC_ReadDataBuffer is a method provided for use in reading a specific BC

Message Data Buffer from a channel based on its location in channel memory.

While BusTools_BC_ReadDataBuffer can be invoked directly from an application, its

specific purpose is to be used as a method to read the data portion of a BC data

buffer in response to a BC Message Transaction event when the BC is configured to

use multiple BC data buffers. This application operational scenario is implemented

by including an invocation of BusTools_BC_ReadDataBuffer within a user callback

function created via invocation of BusTools_RegisterFunction. When the specific BC

Message Transaction event occurs, the interrupt queue will contain the address of

the data buffer that generated the interrupt, (the address of that buffer is stored in

the API_INT_FIFO entry fifo[tail].buff_off). The callback function would use this

value to designate the data buffer location to read, specified in the parameter bufaddr

in the invocation of BusTools_BC_ReadDataBuffer.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_BC_ReadDataBuffer (cardnum, bufaddr, buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

bufaddr (BT_UINT) address offset of the data buffer to read.

buffer (BT_U16BIT *) location to store the data buffer contents.

Return Value

API_SUCCESS

API_BC_NOTINITED

API_BUSTOOLS_NOTINITED

API_BUSTOOLS_BADCARDNUM

API_HARDWARE_NOSUPPORT

92 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.34 BusTools_BC_ReadLastMessage

Description

BusTools_BC_ReadLastMessage returns the last Bus Controller message recorded in

the interrupt queue matching the criteria in the argument list. The function

parameter list allows the application to filter the last BC message search using the

message RT address, subaddress, and transmit or receive setting. The rt_addr and

subaddress input arguments are bit-encoded values. For example, to select RT0 or

subaddress 0 use the LSB (0x0001). The function then searches in reverse order

through the interrupt queue for a message matching the settings. It returns

API_BC_READ_NODATA if no matching message was found.

On the initial invocation of this function, it searches the entire contents of the

interrupt queue for a match. Subsequent invocations result in a search of the

interrupt queue for a match between the current queue pointer and the last queue

pointer referenced in the previous invocation. This function must be invoked at a

periodic frequency such that the interrupt queue does not wrap, and queue entries

are lost. There are 296 interrupt queue entries for F/W V4/5, and 512 queue entries

for F/W V6 and later.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, initialize the Bus Controller and message buffer(s) using

BusTools_BC_Init and BusTools_BC_MessageAlloc, and start the Bus Controller

using BusTools_BC_Start or BusTools_BC_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_ReadLastMessage (cardnum, rt_addr_mask, subaddress, tr,

pBC_mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (int) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rt_addr (BT_INT) selects the RT address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

subaddress (BT_INT) selects the subaddress (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

tr (BT_INT) select the transaction type as transmit or receive.

0 = Receive; 1 = Transmit; -1 = don’t care.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 93

pBC_mbuf (API_BC_MBUF *) location where the message buffer contents

will be written if a matching message is detected.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_READ_NODATA

API_BC_MBLOCK_NOMATCH

Notes

This function Bus Controller messages in the interrupt queue, where only those BC

messages configured to generate interrupts will reside.

To generate interrupts on BC messages, perform following BC initialization:

1. Enable BC Interrupts by setting Enable in the call to BusTools_BC_Init. Set at

least BT1553_INT_END_OF_MESS in this word to ensure an interrupt on every

BC message.

2. Set the BC_CONTROL_INTERRUPT bit in the bus message’s control word when

the bus message is written to the BC memory allocated on this channel (see

BusTools_BC_MessageWrite).

Example

The following code demonstrates how to use this function.

API_BC_MBUF bcmessage;

BT_U32BIT BIT = 1;

BT_UINT RT = BIT << 4; // Select RT Address 4

BT_UNIT SA = -1; // Select any subaddress

BT_UINT TX_RX = 1; // Select a transmit transaction type

status = BusTools_BC_ReadLastMessage(cardnum, RT, SA, TX_RX,

 &bcmessage);

if (status == 0)

{

 // bcmessage will contain the new data

The above code returns the last transmit message to RT address 4.

94 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.35 BusTools_BC_ReadLastMessageBlock

Description

This function returns message buffer contents of all Bus Controller messages in the

interrupt queue that fit the criteria provided in the application-supplied argument

list. The function parameter list allows the application to filter the BC message

search using the message RT address, subaddress, and transmit or receive setting.

The rt_addr_mask and subaddr_mask input arguments are bit-encoded values. For

example, to select RT0 or subaddress 0 use the LSB (0x0001). The function then

searches in reverse order through the interrupt queue for all messages matching the

settings. The function returns API_BC_READ_NODATA if a matching message is

not found; otherwise, the function fills an array of BC Message Buffer

(API_BC_MBUF) structures with the messages found. The function also returns a

count of the messages found.

On the initial invocation of this function, it searches the entire contents of the

interrupt queue for matching entries. Subsequent invocations result in a search of

the interrupt queue for matching entries between the current queue pointer and the

last queue pointer referenced in the previous invocation. This function must be

invoked at a periodic frequency such that the interrupt queue does not wrap, and

queue entries are lost. There are 296 interrupt queue entries for F/W V4/5, and 512

queue entries for F/W V6 and later.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, initialize the Bus Controller and message buffer(s) using

BusTools_BC_Init and BusTools_BC_MessageAlloc, and start the Bus Controller

using BusTools_BC_Start or BusTools_BC_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_ReadLastMessageBlock (cardnum, rt_addr_mask,

subaddr_mask, tr, mcount, pBC_mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (int) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rt_addr (BT_INT) selects the RT address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

subaddress (BT_INT) selects the sub address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 95

tr (BT_INT) select the transaction type as transmit or receive.

0 = Receive; 1 = Transmit; -1 = don’t care.

mcount (BT_UINT *) location to store the number of messages found.

pBC_mbuf (API_BC_MBUF *) *) location where the message buffer

contents will be written if a matching message is detected.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_READ_NODATA

API_BC_MBUF_NOMATCH

Notes

This function finds only Bus Controller messages that are in the interrupt queue.

The interrupt queue records only BC messages that are programmed to generate

interrupts.

To generate interrupts on BC messages, perform the following operatios during BC

initialization:

1. Enable BC Interrupts by setting the Enable parameter to the desired interrupt

type for BusTools_BC_Init. Set at least the BT1553_INT_END_OF_MESS bit in

this word to ensure an interrupt on every BC message.

2. Set the BC_CONTROL_INTERRUPT bit in the bus message’s control word when

the bus message is written to BC memory allocated on this channel (see

BusTools_BC_MessageWrite).

An array of API_BC_MBUF structures large enough to hold all the messages found

by this function should be allocated by the application. The worst case is that a call

to this function returns the entire interrupt queue. In that case, you need to pass an

array of API_BC_MBUF structure with enough elements based on the F/W version of

the board.

Example

The following code shows how to use this call.

API_BC_MBUF mbuf[296];

int i;

BT_UINT mess_cnt;

BT_U32BIT bit = 1;

BT_UINT RT = bit << 5; // Select RT address 5

BT_UINT SA = -1; // Select any subaddress

BT_UINT TX_RX = 1 // Select a transmit transaction type

96 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

status = BusTools_BC_ReadLastMessageBlock(cardnum, RT, SA,

 TX_RX, &mess_cnt,

 mbuf);

if (status == 0)

{

 for(i = 0; i < mess_cnt; i++)

 {

 // loop through all messages found

The above code returns all the transmit messages to RT address 5.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 97

4.36 BusTools_BC_ReadNextMessage

Description

BusTools_BC_ReadNextMessage returns the next Bus Controller message recorded

in the interrupt queue that fits the criteria in the argument list. Specify an RT

address, subaddress, and transmit or receive command. The rt_addr and subaddress

input arguments are bit-encoded values. For example, to select RT0 or subaddress 0

use the LSB (0x0001). The function keeps control and continually polls the interrupt

queue until it either finds a message matching the settings or times out. If the

function does not find a matching message and times out, it returns

API_BC_READ_TIMEOUT. Time critical applications should use this function with

caution.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, initialize the Bus Controller and message buffer(s) using

BusTools_BC_Init and BusTools_BC_MessageAlloc, and start the Bus Controller

using BusTools_BC_Start or BusTools_BC_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_ReadNextMessage (cardnum, timeout, rt_addr, subaddress,

tr, pBC_mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (int) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

timeout (BT_UINT) timeout value in milliseconds.

Valid range is 10 to 65,535.

rt_addr (BT_INT) selects the RT address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

subaddress (BT_INT) selects the sub address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

tr (BT_UINT) select the transaction type as transmit or receive.

0 = Receive; 1 = Transmit; -1 = don’t care.

pBC_mbuf (API_BC_MBUF *) location where the message buffer contents

will be written if a matching message is detected.

Return Value

98 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_MBUF_NOMATCH

API_BC_READ_TIMEOUT

Notes

This function will only search for Bus Controller messages in the interrupt queue,

where only those BC messages configured to generate interrupts will reside.

To generate interrupts on BC messages, perform following BC initialization:

1. Enable BC Interrupts by setting Enable in the call to BusTools_BC_Init. Set at

least BT1553_INT_END_OF_MESS in this word to ensure an interrupt on every

BC message.

2. Set the BC_CONTROL_INTERRUPT bit in the bus message’s control word when

the bus message is written to BC memory allocated on this channel (see

BusTools_BC_MessageWrite).

Timing accuracy differs between systems, where PC systems accuracy may be no

better than 10 milliseconds. Timing accuracy of the host system must be considered

when selecting a timeout value, especially when developing a deterministic

application.

Example

The following code shows how to use this function.

API_BC_MBUF mbuf;

BT_UINT timeout;

Timeout = 100; // 100 millisecond timeout

status = BusTools_BC_ReadNextMessage(cardnum, timeout,

 0x40, -1, 1, &mbuf);

if (status == 0)

{

 // mbuf will contain the message

The above code returns the next transmit message to RT address 6.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 99

4.37 BusTools_BC_RetryInit

Description

BusTools_BC_RetryInit configures the hardware retry attribute on a channel BC

function. Hardware retry automatically retransmits a message if any pre-selected

error conditions occur.

Three functions provide a method to configure the hardware retry attribute:

• BusTools_BC_Init wRetry parameter. This function parameter defines the

conditions where a retry will occur. For example, use this parameter to retry on

SRQ. BusTools_BC_Init configures a single retry on either the same bus as the

command causing the retry or on the opposite bus.

• BusTools_BC_MessageWrite. Enables a retry on a message-by-message basis by

setting BC_CONTROL _RETRY in the BC control word. This allows control on

which individual BC messages will attempt a retry. The API allows retry on any

1553 message except for aperiodic messages. See BusTools_BC_MessageWrite

for details of configuring BC messages.

• BusTools_BC_RetryInit. This function can configure from 1 to 8 actions in which

a BC responds to a retry condition, with each action specifying which bus the

channel transmits the retry. The actions are “retry on the same bus”, “retry on

the alternate bus”, and “terminate retry attempt”.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller via BusTools_BC_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_RetryInit (cardnum, bc_retry);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

bc_retry (BT_U16BIT *) location of an array specifying retry options.

Options are:

RETRY_SAME_BUS

RETRY_ALTERNATE_BUS

RETRY_END

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

100 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

API_BC_NOTINITED

BTD_ERR_PARAM

Example

Setting Up A Multiple Retry Operation

The following code example programs three retry operations. The first retry occurs

on the same bus as the original message. The next retry transmits on the alternate

bus, and the last retry transmits back on the original bus. The hardware retry is

programmed to occur only if there is a no-response or the RT returns a status word

with either the busy bit or message error bit set. This example assumes that the bus

list has been programmed to enable retries on all the messages and that the Abaco

Systems 1553 board has been initialized.

BT_UINT retry[8];

wRetry = BC_RETRY_NRSP | BC_RETRY_BUSY | BC_RETRY_ME;

wStatus = BusTools_BC_Init (cardnum, wChannel, Enable, wRetry,

wTimeout1, wTimeout2, frame, num_buffers);

retry[0] = RETRY_SAME_BUS;

retry[1] = RETRY_ALTERNATE_BUS;

retry[2] = RETRY_SAME_BUS;

retry[3] = RETRY_END

wStatus = BusTools_BC_RetryInit(cardnum, retry);

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 101

4.38 BusTools_BC_SelectBufferRead

Description

Abaco Systems 1553 boards programmed with V6 firmware support Bus Controller

message blocks with multiple data buffers. BusTools_BC_SelectBufferRead provides

a method to read message data from a specific Bus Controller data buffer based on

the corresponding message number and buffer number.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_BC_SelectBufferRead (cardnum, messno, buf_num, buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messno (BT_UINT) message number, (“0” based).

buf_num (BT_UINT) buffer number, (“0” based).

buffer (BT_U16BIT *) location to write the message data.

Return Value

API_SUCCESS

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BUSTOOLS_BADCARDNUM

API_HARDWARE_NOSUPPORT

API_BC_ILLEGAL_MBLOCK

API_BC_BAD_DATA_BUFFER

API_BC_UPDATEMESSTYPE

102 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.39 BusTools_BC_SelectBufferUpdate

Description

Abaco Systems 1553 boards programmed with V6 firmware support Bus Controller

message blocks with multiple data buffers. BusTools_BC_SelectBufferUpdate uses

the supplied message number and buffer number to update the data in a specific Bus

Controller data buffer. This function only writes the data portion of the Bus

Controller data buffer.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_BC_SelectBufferUpdate (cardnum, messno, buf_num, dcount,

buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messno (BT_UINT) message number, (“0” based).

buf_num (BT_UINT) buffer number, (“0” based).

dcount (BT_UINT) number of words to write. Valid range is 1 to 32.

buffer (BT_U16BIT *) location of the message data to write.

Return Value

API_SUCCESS

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BUSTOOLS_BADCARDNUM

API_HARDWARE_NOSUPPORT

API_BC_ILLEGAL_MBLOCK

API_BC_BAD_DATA_BUFFER

API_BC_UPDATEMESSTYPE

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 103

4.40 BusTools_BC_SetFrameRate

Description

The initial frame rate assigned to the BC function on a channel is configured via

BusTools_BC_Init. BusTools_BC_SetFrameRate allows the application to modify the

Bus Controller fame rate at any time. If invoked prior to starting the BC, the BC will

use the new frame rate when started. If this function is invoked while the BC is

executing, the new frame rate will take affect at the start of the next frame. With

Abaco Systems 1553 boards programmed with V6 firmware the frame rate change

may require an additional frame to take effect.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller via BusTools_BC_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_SetFrameRate (cardnum, frame);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

frame (BT_U32BIT) minor frame period in microseconds. Valid range

is 250 to 1638375 µs (0.61 and 4000.0 Hz).

Return Value

API_SUCCESS

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BUSTOOLS_BADCARDNUM

API_BC_BADFREQUENCY

API_HARDWARE_NOSUPPORT

Notes

The R15-USB does not support the ability to change BC frame rate while the BC is

actively executing.

104 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.41 BusTools_BC_Start

Description

BusTools_BC_Start initiates BC execution at a specific message in the defined bus

list.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions, and initialize the Bus Controller and message buffer(s)

using BusTools_BC_Init and BusTools_BC_MessageAlloc.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_Start (cardnum, message_num);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

message_num (BT_UINT) a 0-based message number referencing the entry in

the BC message list at which the BC will begin processing

messages. Valid range is 0 to 1 less than the number of

messages allocated to the BC on this channel.

Return Value

API_SUCCESS

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_RUNNING

API_BUSTOOLS_BADCARDNUM

API_BC_ILLEGAL_MBLOCK

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 105

4.42 BusTools_BC_StartStop

Description

BusTools_BC_StartStop controls execution of the Bus Controller function on the

specified channel. The default method to terminate BC execution is BC_STOP,

supported by all firmware versions. As a result of executing the BC_STOP request

the BC waits until the end of a minor frame before terminating processing. If the

minor frame doesn’t end within two seconds, the BC is forced to the stopped state.

For Abaco Systems 1553 boards programmed with Firmware V6.x and later, the

option BC_HALT is available, which will immediately terminate BC processing.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Controller using the

BusTools_BC_Init function.

OS Support

Core API Function

Syntax

wStatus = BusTools_BC_StartStop (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_UINT) requested state for the Bus Controller:

 BC_STOP Stop BC processing at end of minor frame.

 BC_START Start BC processing at beginning of bus list.

 BC_HALT Stop BC processing immediately.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_NOTRUNNING

API_BC_RUNNING

API_BC_HALTERROR

106 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.43 BusTools_BC_Trigger

Description

BusTools/1553-API supports a programmable BC execution trigger option for

software control of the Bus Controller bus list message processing. The function

BusTools_BC_Trigger provides a method for the application to define this BC trigger

mode.

The default BC trigger mode starts the Bus Controller immediately upon invocation

of BusTools_BC_Start or BusTools_BC_StartStop(BC_START). If an application

configures the BusTools/1553-API to any other trigger option, execution of the bus

list will be delayed until receipt of an external trigger(s). An application should use

this function to synchronize the Bus Controller to an external pulse. For information

about hardware triggering of the Bus Controller, see the BusTools/1553-API Software

User’s Manual.

BusTools/1553-API supports four methods of triggering execution:

• BC_TRIGGER_IMMEDIATE: The Bus Controller will begin processing bus list

immediately upon execution of BusTools_BC_Start or BusTools_BC_StartStop.

There is no API control over BC execution with this default method.

• BC_TRIGGER_ONESHOT: Following execution of BusTools_BC_Start or

BusTools_BC_StartStop, the API will initiate Bus Controller processing upon

receipt of a trigger pulse on the hardware trigger input. Thereafter, it will

process the bus list as programmed in the channel’s BC configuration.

• BC_TRIGGER_REPETITIVE: Following execution of BusTools_BC_Start or

BusTools_BC_StartStop, the Bus Controller will be enabled to process a single

minor frame upon receipt of a trigger pulse on the hardware trigger input. The

API will then pause the Bus Controller at the end of the minor frame, until

receipt of the next trigger pulse. For a multi-frame bus list, the receipt of a

trigger pulse will result in execution of each minor frame of the bus list in

sequence. In this case, the frame rate programmed by BusTools_BC_Init must be

greater than the trigger pulse frequency.

• BC_TRIGGER_USER: After the BC Run bit is set, upon receipt of a trigger pulse

on the hardware trigger input, control over execution by the Bus Controller is

defined according to the user frame setup. The user application/callback controls

Bus Controller processing. The subsequent trigger pulse starts the Bus Controller

running again. This mode requires the user application to setup a callback

function via BusTools_RegisterFunction.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Controller using the

BusTools_BC_Init function.

OS Support

Core API Function

https://www.abaco.com/download/bustools1553-api-user-manual
https://www.abaco.com/download/bustools1553-api-user-manual

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 107

Syntax

wStatus = BusTools_BC_Trigger (cardnum, trigger_mode);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

trigger_mode (BT_INT) requested state for BC:

BC_TRIGGER_IMMEDIATE

BC_TRIGGER_ONESHOT

BC_TRIGGER_REPETITIVE

BC_TRIGGER_USER

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_NOTINITED

API_BC_NOTRUNNING

API_BC_RUNNING

API_BC_HALTERROR

108 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.44 BusTools_BIT_CableWrap

Description

BusTools_BIT_CableWrap performs a cable integrity test on the primary and

secondary bus cables for a single 1553 channel. The primary and secondary buses on

a single 1553 channel are referred to as Bus A and Bus B. Prior to executing this test,

connect the primary and secondary bus cables from a single 1553 dual redundant

channel in the manner as shown in Figure 4-1.

 NOTE
Be sure to terminate the cable connection properly.

Figure 4-1 shows an example of a direct-coupled cable wrap test connection. This is

not a legal MIL-STD-1553 configuration; however, transformer coupling may be

used. Use this configuration only for the cable self-test. This test is supported on all

single-, dual-, and multi-function 1553 boards.

Figure 4-1 Cable Wrap Test Connection Example

It is recommended an application execute the BusTools_BIT_InternalBit before

executing BusTools_BIT_CableWrap. This combination of these two invocations will

provide a complete test of 1553-interface integrity and eliminates the chance of an

interface failure causing the cable wrap test to fail.

Do not attach the interface or cabling to any other 1553 interfaces while the test is

running. You can use direct or transformer coupling depending on your channel

termination configuration. Initialize the channel by calling one of the BusTools/1553-

API Initialization functions and select direct or transformer coupling before calling

this function.

This function enables the External Bus and configures the BC and API to execute

NumMessages number of test iterations. For each iteration, the BC sends two

transmit messages, the first on the primary bus and the second on the secondary bus.

The function checks for the BT1553_INT_TWO_BUS status error. If that error is set,

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 109

the function returns API_SUCCESS; otherwise, it returns either API_BIT_FAIL_PRI

or API_BIT_FAIL_SEC.

When this function returns the board is still open, but any previous board setup is

lost. The application must restore all channel configuration to the desired settings.

OS Support

Core API Function

Syntax

wStatus = BusTools_BIT_CableWrap (cardnum, NumMessages);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

NumMessages (BT_INT) number of test iterations to execute.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BIT_FAIL_PRI

API_BIT_FAIL_SEC

110 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.45 BusTools_BIT_InternalBit

Description

BusTools_BIT_InternalBit executes an internal wrap test of a single 1553 channel,

with the number of test iterations desigated by the application via the NumMessages

parameter. When this function completes the session with the board is still open, but

the board configuration is lost. The application must restore all channel

configuration to the desired settings.

Prior to invoking this function, call one of the BusTools/1553-API Initialization

functions to initialize the channel.

OS Support

Core API Function

Syntax

wStatus = BusTools_BIT_InternalBit (cardnum, NumMessages);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

NumMessages (BT_INT) number of messages to test.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BIT_FAIL_PRI

API_BIT_FAIL_SEC

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 111

4.46 BusTools_BIT_TwoBoardWrap

Description

BusTools_BIT_TwoBoardWrap performs an external wrap test between two 1553

devices. You can use two separate 1553 cards or 2-channels on a multi-channel

interface card. Connect the primary bus of one channel to the primary bus of the

other channel and the secondary bus of one channel to the secondary bus of the

other channel. Wire and terminate both buses per MIL-STD-1553 requirements.

Prior to calling this function, call one of the BusTools/1553-API Initialization

functions to initialize each channel.

This function enables the external bus, sets one channel as a BC, and the other

channel as an RT. For each of NumMessages iterations, the BC sends two transmit

messages to the RT, one on the primary bus and one on the secondary bus. The

software compares the data received by the BC to the data in the RT transmit buffers.

If they match, the test passes. The BM data from both channels is also tested, and if

the data match, the test passes. The test is then repeated, swapping the BC and RT

functions. If all iterations of the test pass, this function returns API_SUCCESS;

otherwise, it returns an error code.

When this function returns, the board is still open, but the board setup is lost. It is

necessary the application invoke all setup functions again, beginning with

BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BIT_TwoBoardWrap (FirstCard, SecondCard, TestPrimary,

TestSecondary, NumMessages, RT_addr, RT_subaddr);

wStatus (BT_INT) status returned from this function.

FirstCard (BT_UINT) logical channel reference to the first 1553

board/channel session. Valid range is 0 to 63.

SecondCard (BT_UINT) logical channel reference to the second 1553

board/channel session. Valid range is 0 to 63.

TestPrimary (BT_UINT) Flag, if set test the primary bus, if clear test the

secondary bus

TestSecondary (BT_UINT) Flag, if set test the secondary bus, if clear test

the primary bus

NumMessages (BT_INT) number of messages to test.

RT_addr (BT_INT) RT address to use during test.

112 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

RT_subaddr (BT_INT) RT subaddress to use during test.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BIT_FAIL_PRI

API_BIT_FAIL_SEC

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 113

4.47 BusTools_BIT_StructureAlignmentCheck

Description

BusTools_BIT_StructureAlignmentCheck checks for the correct structure alignment

of critical structures used to transfer data to and from onboard memory. These

structures must have 2-byte alignment and packing. If the alignment is incorrect, the

data will be corrupted during the transfer.

There is also a version of this function for boards running firmware version 6.0 or

greater. This function is BusTools_BIT_StructureAlignmentCheckV6. The version 6

firmware structures require a four-byte alignment. The calling arguments are the

same.

This function is a check used for development on non-supported systems or

modification of the build environment. You do not need to run this test on standard

installation of supported systems.

Run this test at any time. It does not require initialization. As a software check, it

does not require a board installed in the system.

OS Support

Core API Function

Syntax

wStatus = BusTools_BIT_StructureAlignmentCheck (BT_INT flag)

wStatus (BT_INT) status returned from this function.

flag (BT_INT) Print Flag 0 = no print; 1 = print structure sizes.

Return Value

API_SUCCESS

API_STRUCT_ALIGN

114 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.48 BusTools_BM_Checksum1760

Description

BusTools_BM_Checksum1760validates a MIL-STD-1760C implementation of a

message received by the Bus Monitor 1553 function by comparing a calculated

checksum of the buffer to the last location in the buffer (e.g., the received message

checksum data word). The checksum is calculated according to the algorithm

described in Appendix B Section B.4.1.5.2.1 of the Department of Defense Interface

Standard for Aircraft/Store Electrical Interconnect Systems MIL-STD-1760C Manual.

The application is required to provide an API_BM_MBUF structure and a reference

to unsigned short integer to store the calculated checksum.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_Checksum1760 (mbuf, cksum);

wStatus (BT_INT) status returned from this function.

mbuf (API_BM_MBUF) reference to a Bus Monitor message

structure containing a MIL-STD-1760C message.

cksum (BT_U16BIT *) Pointer to an unsigned short integer location to

hold the calculated checksum.

Return Value

API_SUCCESS

API_BM_1760_ERROR

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 115

4.49 BusTools_BM_FilterRead

Description

The BM records messages detected on the 1553 bus subject to a filter on the

command word of each message. Each possible subunit, a combination of RT

address, subaddress, transmit/receive flag, and word count (or mode code), can be

enabled or disabled for BM recording.

BusTools_BM_FilterRead reads the specified BM Filter buffer from channel memory

for the specific RT subunit and returns the information to the caller-supplied

structure. The enable/disable information is in the form of a 32-bit word. Each bit

enables or disables a specific word count (or mode code) for the specified RT

subunit.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using the

BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_FilterRead (cardnum, rtaddr, subaddr, tr, cbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address (0 - 31), not bit-encoded.

subaddr (BT_UINT) RT subaddress (0 - 31), not bit-encoded.

tr (BT_UINT) Transmit/receive flag (0 = receive)

cbuf (API_BM_CBUF*) pointer to BM filter structure.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_ILLEGAL_ADDR

API_BM_ILLEGAL_SUBADDR

API_BM_ILLEGAL_TRANREC

116 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.50 BusTools_BM_FilterWrite

Description

The BM records messages detected on the 1553 bus subject to a filter on the

command word of each message. Each possible subunit, a combination of RT

address, subaddress, transmit/receive flag, and word count (or mode code), can be

enabled or disabled for BM recording.

BusTools_BM_FilterWrite creates or updates the Filter buffer information for the

specified RT subunit. If this is the first call to this function for the specified RT

subunit since the call to BusTools_BM_Init function, the API allocates the Filter

buffer in the channel’s Bus Monitor memory. If you have already allocated this

Filter buffer, the API updates the buffer with the new information.

By default, the API enables all combinations of RT address, subaddress, transmit,

receive, and word count. The API does this by pointing every entry of the filter

buffer to a default BM filter buffer enabling all combinations. The API also creates a

default BM filter buffer that disables all word count combinations. Calling this

function to disable all word counts for a specified RT address, subaddress, and

transmit/receive combination results in the use of this second default buffer.

Since the API enables all Bus Monitor addresses, it is not necessary to call this

function unless you want to filter some RT address combinations. Not calling this

function conserves memory on the Abaco Systems 1553 board.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using the

BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_FilterWrite (cardnum, rtaddr, subaddr, tr, cbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address (0 - 31), not bit-encoded.

subaddr (BT_UINT) RT subaddress (0 - 31), not bit-encoded.

tr (BT_UINT) Transmit/receive flag (0 = receive)

cbuf (API_BM_CBUF*) pointer to BM Filter Buffer

(API_BM_CBUF).

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 117

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_MEMORY_OFLOW

API_BM_ILLEGAL_ADDR

API_BM_ILLEGAL_SUBADDR

API_BM_ILLEGAL_TRANREC

118 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.51 BusTools_BM_Init

Description

BusTools_BM_Init performs initialization of the Bus Monitor function on a channel.

If full initialization is executed (default), this function also initializes and resets the

memory management functions for this channel’s memory. If the application

enables the Bus Monitor function on a channel, this function must be invoked prior

to initializing the Bus Controller or RemoteTerminal. This function also resets all

error counters.

The bm_ctrl1 parameter allows the user to limit the level of initialization performed.

This is useful if the application is required to reinitialize the Bus Monitor without

affecting the RT or BC functions. The application can also elect to have the Bus

Monitor refrain from generating hardware interrupts, where BM message will be

entered in the interrupt queue, but the interrupt is not driven. The default

configuration is for BM message to generate interrupts.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions. In addition, if you call this function after other

BusTools/1553-API activity has occurred, the caller must ensure that the BC, BM, or

RT is not currently running.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_Init (cardnum, bm_ctrl1, bm_ctrl2);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

bm_ctrl1 (BT_UINT) control parameter for initialization.

BM_NO_SEG1_INIT – Omits seg1 initialization.

BM_NO_HW_INT – Disables H/W interrupts (v6 Only)

BM_DISABLE_BUS – Disables Monitoring on Bus A(v4 only)

bm_ctrl2 (BT_UINT) control parameter for initialization

BM_DISABLE_BUS – Disables Monitoring on Bus B (v4 only)

Notes

Previous versions of this function had enable_a and enable_b parameters in place of

bm_ctrl1 and bm_ctrl2. Starting at firmware version 5.0 and BusTools/1553-API

v6.20 those options are no longer available. If you are running a F/W version below

v5.0 and want to disable monitoring on Bus A or Bus B, use BM_DISABLE_BUS in

bm_ctrl1 for bus A and bm_ctrl2 for bus B.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 119

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BC_RUNNING

API_BM_RUNNING

120 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.52 BusTools_BM_MessageAlloc

Description

BusTools_BM_MessageAlloc allocates and initializes the specified number of BM

Message buffers in the channel memory allocated to the Bus Monitor function. If the

specified number of message buffers doesn’t fit, (or the caller specified “1” buffers),

the function allocates as many buffers as will fit into the remaining memory. The

function returns the number of message buffers allocated to the caller.

For Boards running the firmware version 6.x, there are no longer fixed size Bus

Monitor messages. This function converts the requested number of buffers into a

byte allocation by multiplying the requested buffer number by the maximum size

message (32-words). The BM messages are then written end-to-end as they transact.

When a message reaches the last buffer location it wraps to the starting buffer

address. You can no longer use BusTools_BM_MessageGetAddr or

BusTools_BM_MessageGetid since there are no defined message addresses. When

using this function, you must pass a message address rather than message number.

Message addresses are read from the interrupt queue. For a function that

automatically reads the interrupt queue use BusTools_RegisterFunction or

BusTools_BM_ReadLastMessageBlock.

Be sure to allocate enough message buffers or bytes to hold those messages that the

BM receives. This depends on the expected level of 1553 message traffic to monitor.

For the R15-USB board you will to need to allocate considerably more buffers than

for other devices. On heavily loaded buses you may need to allocate 3000 buffers.

This function places the Interrupt Enable Bits specified by the caller into all message

buffers.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor by calling

BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_MessageAlloc (cardnum, mbuf_count, mbuf_actual,

enable);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

mbuf_count (BT_UINT) requested number of BM Message buffers.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 121

mbuf_actual (BT_UINT *) pointer to actual number of buffers allocated

(returned by function).

enable (BT_U32BIT) interrupt enable flags for BM activity.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_RUNNING

122 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.53 BusTools_BM_MessageGetaddr

Description

BusTools_BM_MessageGetaddr converts a BM message number to a 1553 board

hardware address offset. The returned address offset is a byte offset from the

beginning of memory on the Abaco Systems 1553 board. The address offset range is

from 0x00000000 to the largest memory offset supported by the board. Pass this

address to BusTools_MemoryRead or BusTools_MemoryWrite to perform direct

access to the BM message structure.

This function is not supported on boards programmed with F/W version 6.0. The

version 6 firmware uses variable size BM buffers, and there are no fixed address

offsets associated with BM buffers.

Normally, you don’t need to access absolute memory addresses on the Abaco

Systems 1553 board. Use this function for debugging operations. It is also possible

to use this function in implementing operations that are not possible using the

higher-level API functions.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using the

BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_MessageGetaddr (cardnum, mbuf_id, addr);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

mbuf_id (BT_UINT) BM message number (0-based).

addr (BT_U32BIT *) pointer to returned address of specified BM

message.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_ILLEGAL_MBUFID

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 123

4.54 BusTools_BM_MessageGetid

Description

BusTools_BM_MessageGetid converts a BusTools hardware address to a BM

Message buffer number. The passed address is a byte offset from the beginning of

memory on the Abaco Systems 1553 board. The address range is “0-based” and has

a range of 0x00000000 to the number of message buffers allocated by the

BusTools_BM_MessageAlloc function, less one; with a maximum of 0x0003FFFF.

This function is not supported on boards programmed with F/W version 6.0. The

version 6 firmware uses variable size BM buffers, and there are no fixed address

offsets associated with BM buffers.

Typically, the interrupt thread handling the BM interrupt message uses this function.

This function converts the BM message address to a message number. Then, use

BusTools_BM_MessageRead to retrieve the message from the board.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_MessageGetid (cardnum, addr, messageid);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

addr (BT_U32BIT) address of BM Message buffer (as supplied to the

task handling BM interrupts).

messageid (BT_UINT *) address of returned BM Message buffer number

(returned by function).

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_MBUF_NOMATCH

124 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.55 BusTools_BM_MessageRead

Description

BusTools_BM_MessageRead transfers the contents of the specified BM Message

buffer to the caller-supplied structure.

For boards programmed with Firmware V6 or later, the application must specify the

buffer address offset of the buffer to read, (typically acquired from the interrupt

queue). Use either BusTools_RegisterFunction with a user callback or

BusTools_BM_ReadLastMessageBlock to obtain the buffer address offset.

For boards programmed with Firmware V5 or earlier, the application must specify a

message buffer number in the range of the available message buffers as specified by

the call to BusTools_BM_MessageAlloc.

This function returns the data in the API_BM_MBUF message buffer.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_MessageRead (cardnum, mbuf_id, mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

mbuf_id (BT_UINT) (Firmware V5 or earlier) BM Message buffer

number (“0” based).

 (Firmware V6 or Later) BM Message Buffer address offset.

mbuf (API_BM_MBUF *) Address of message buffer structure to be

filled by this function.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_ILLEGAL_MBUFID

Notes

Using BusTools_RegisterFunction with a user callback to get the buffer address:

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 125

messno = sIntFIFO->fifo[tail].bufferID;

 status = BusTools_BM_MessageRead(ch_id, messno, &mbuf);

126 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.56 BusTools_BM_MessageReadBlock

Description

BusTools_BM_MessageReadBlock transfers all BM Message buffers recorded in a

channel Bus Monitor memory since the previous invocation of this function. The

caller supplies a pointer to an array of API_BM_MBUF structures. The function

returns the number of messages read from the buffer and written to that array. In

addition, this function updates the cumulative error counters (to get the current

error counter values, invoke the BusTools_ErrorCountGet function).

The API receives an event every 500 ms or whenever there are 64K bytes of message

data available. This function never returns more than 65535 bytes of data in a single

call. Your application should ensure the supplied array of message buffers is large

enough to handle the volume of messages expected between calls.

You must call BusTools_RegisterFunction using the EVENT_RECORDER option

prior to calling this function, or the API does not collect and save BM messages.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using BusTools_BM_Init.

OS Support

Core API function

Syntax

wStatus = BusTools_BM_MessageReadBlock (cardnum, api_mbuf, size, curpos,

ret_count);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

api_mbuf (API_BM_MBUF *) address of the beginning of the caller’s

message array.

size (BT_UINT) number of message structures in the “pMessages”

array.

curpos (BT_UINT) current position within the “pMessages” array

(this is the message number within the array where this

function stores the first message transferred).

ret_count (BT_UINT *) number of messages transferred returned by

function.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 127

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_WRAP_AROUND

128 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.57 BusTools_BM_ReadLastMessage

Description

BusTools_BM_ReadLastMessage returns the last Bus Monitor message recorded in

the interrupt queue that fits the criteria in the argument list. Specify an RT address,

subaddress, and transmit or receive. The RT address and subaddress input

arguments are bit-encoded values. For example, to select RT0 or subaddress 0 use

the LSB (0x0001). The function then searches backwards in the interrupt queue for a

message matching the settings. The function returns API_BM_READ_NODATA if

no matching message is found.

On the initial call, this function searches the entire interrupt queue for messages. On

later calls, it searches only the section between the current queue pointer and the

queue pointer on the last call. For best results, you must call this function at a high

enough rate to prevent the interrupt queue from overflowing. There are 296

interrupt queue entries for F/W V4/5, and 512 queue entries for F/W V6 and later.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions. Initialize the Bus Monitor by calling BusTools_BM_Init

and start the Bus Monitor by calling BusTools_BM_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_ReadLastMessage (cardnum, rt_addr, subaddress, tr,

pBM_mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (int) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rt_addr (BT_INT) selects the RT address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

subaddress (BT_INT) selects the subaddress (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

tr (BT_INT) select the transaction type as transmit or receive.

0 = Receive; 1 = Transmit; -1 = don’t care.

pBM_mbuf (API_BM_MBUF *) pointer to a BM Message Buffer

(API_BM_MBUF) structure. The function fills this structure if

it finds a matching message.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 129

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_READ_NODATA

API_BM_MBUF_NOMATCH

Notes

This function finds only Bus Monitor messages that are in the interrupt queue. The

interrupt queue records BM messages only if the BM is programmed to generate

interrupts during BM initialization. To do this, set the Enable parameter in the

BusTools_BM_MessageAlloc call to the desired interrupts, including at least

BT1553_INT_END_OF_MESS

Example

The following code shows how to use this call.

API_BM_MBUF mbuf;

BT_U32BIT bit = 1;

BT_UINT RT = bit << 3; // Select RT address 3

BT_UINT SA = -1; // Select any subaddress

BT_UINT TX_RX =1; // Select a transmit transaction type

status = BusTools_BM_ReadLastMessage(cardnum, RT, SA,

 TX_RX, &mbuf);

if (status == 0)

{

 // This is new data

The above code returns the last transmit message to RT address 3.

130 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.58 BusTools_BM_ReadLastMessageBlock

Description

BusTools_BM_ReadLastMessageBlock returns all the Bus Monitor messages in the

interrupt queue that fit the criteria in the argument list. Specify an RT address,

subaddress, and transmit or receive. The RT address and subaddress input

arguments are bit-encoded values. For example, to select RT0 or subaddress 0 use

the LSB (0x0001). The function searches the interrupt queue for all messages

matching the settings. The function returns API_BM_READ_NODATA if a

matching message is not found. Otherwise, the function returns a BM Message

Buffer (API_BM_MBUF) array containing the found messages. The function also

returns a count of the messages found.

On the initial call, this function searches the entire interrupt queue for messages. On

later calls, it searches only the section between the current queue pointer and the

queue pointer on the last call. You must call this function at a rate fast enough so the

interrupt queue pointer or Bus Monitor buffers do not wrap. There are 512 interrupt

queue entries for firmware version 6 and greater and 296 entries for firmware 3.x, 4.x

and 5.x. The BM buffer size is set by BusTools_BM_MessageAlloc.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions. Initialize the Bus Monitor by calling BusTools_BM_Init

and start the Bus Monitor by calling BusTools_BM_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_ReadLastMessageBlock (cardnum, rt_addr_mask,

subaddr_mask, tr, mcount, pBM_mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (int) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rt_addr (BT_INT) selects the RT address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

subaddress (BT_INT) selects the subaddress (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

tr (BT_INT) select the transaction type as transmit or receive.

0 = Receive; 1 = Transmit; -1 = don’t care.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 131

mcount (BT_UINT *) pointer to that holds the count of messages

found.

pBM_mbuf (API_BM_MBUF *) pointer to an array of BM Message

Buffer (API_BM_MBUF) structures. The function fills these

structures if it finds matching messages.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_READ_NODATA

API_BM_MBUF_NOMATCH

Notes

This function will only search for Bus Monitor messages in the interrupt queue,

where only those BM messages configured to generate interrupts will reside. To

confgire this on a channel, set the BusTools_BM_MessageAlloc Enable parameter to

the desired interrupts, including at least BT1553_INT_END_OF_MESS.

You must provide an array of API_BM_MBUF structures large enough to hold all the

messages found by this function. The worst case is that a call to this function returns

the entire interrupt queue. In that case, you need to pass an array of API_BM_MBUF

structure with 512 elements.

Example

The following code shows how to use this call.

API_BM_MBUF mbuf[296];

int i;

BT_U32BIT bit = 1;

BT_UINT RT = bit << 4; // Select RT address 4

BT_UINT mess_cnt;

BT_UINT SA = -1; // Select any subaddress

BT_UINT TX_RX = 1; // Select a transmit transaction type

status = BusTools_BM_ReadLastMessageBlock(cardnum, RT, SA,

 TX_RX, &mess_cnt,

 mbuf);

if (status == 0)

{

 for(i = 0; i < mess_cnt; i++)

 {

 // loop through all messages found

The above code returns all the transmit messages to RT address 4.

132 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.59 BusTools_BM_ReadNextMessage

Description

BusTools_BM_ReadNextMessage returns the next Bus Monitor message recorded in

the interrupt queue that fits the criteria in the argument list. Specify an RT address,

subaddress, and transmit or receive. The RT address and subaddress input

arguments are bit-encoded values. For example, to select RT0 or subaddress 0 use

the LSB (0x0001).

This function continually polls the interrupt queue until the timeout period expires

or it finds a matching message. This function keeps control until it finds a matching

message or times out. If the function does not find a matching message and times

out, it returns API_BM_READ_TIMEOUT. Time critical applications should use this

function with caution.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions. Initialize the Bus Monitor by calling BusTools_BM_Init

and start the Bus Monitor by calling BusTools_BM_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_ReadNextMessage (cardnum, timeout, rt_addr,

subaddress, tr, pBM_mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (int) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

timeout (BT_UINT) timeout value in milliseconds. Valid range is 10 to

65,535.

rt_addr (BT_INT) selects the RT address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

subaddress (BT_INT) selects the subaddress (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

tr (BT_INT) select the transaction type as transmit or receive.

0 = Receive; 1 = Transmit; -1 = don’t care.

pBM_mbuf (API_BM_MBUF *) pointer to a BM Message Buffer

(API_BM_MBUF) structure. The function fills this structure if

it finds a matching message.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 133

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_MBUF_NOMATCH

API_BM_READ_TIMEOUT

Notes

This function will only search for Bus Monitor messages in the interrupt queue,

where only those BM messages configured to generate interrupts will reside. The

interrupt queue records BM messages only if the BM is programmed to generate

interrupts during BM initialization. To do this, set the Enable parameter in the

BusTools_BM_MessageAlloc call to the desired interrupts, including at least

BT1553_INT_END_OF_MESS

Timing accuracy differs between systems. Usually, most PC systems have accuracy

no better than10 milliseconds. You must consider the timing accuracy of your

system when selecting a timeout value, especially if you are developing a

deterministic application.

Example

This function hides the structure of the interrupt queue. The following code shows

how to use this call.

API_BM_MBUF mbuf;

BT_UINT timeout;

Timeout = 100; // 100 millisecond timeout

BT_U32BIT bit = 1;

BT_UINT RT = bit << 8; // Select RT address 8

status = BusTools_BM_ReadNextMessage(cardnum, timeout,

 RT, -1, 1, &mbuf);

if (status == 0)

{

 // Data return

The above code returns the next transmit message to RT address 8.

134 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.60 BusTools_BM_SetRT_RT_INT

Description

BusTools_BM_SetRT_RT_INT allows an application to select which RT on an

RT→RT transaction the Bus Monitor will generate an interrupt. An RT→RT message

has both transmit and receive RTs. The default setting is for the BM to interrupt on

the receiving RT message completion. Using this function, you can select to

interrupt on the transmitting RT.

OS Support

Core API Function.

Syntax

wStatus = BusTools_BM_SetRT_RT_INT (cardnum, iflag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

iflag (BT_UINT) requested state for BM:

 0 = interrupt on the receiving RT.

 1 = interrupt on the transmitting RT.

Return Value

API_SUCCESS

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 135

4.61 BusTools_BM_StartStop

Description

BusTools_BM_StartStop starts and stops the Bus Monitor. The parameter flag

specifies the state. You can also start and reset the time-tag.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_BM_StartStop (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_UINT) requested state for BM:

 BM_STOP = Stop the BM.

 BM_START = Start the BM.

 BM_START_TT_RESET = BM Start + Time-Tag Reset.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_BM_NOTRUNNING

API_BM_RUNNING

136 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.62 BusTools_BM_TriggerWrite

Description

BusTools_BM_TriggerWrite writes the contents of the caller-supplied

API_BM_TBUF structure to the BM Trigger buffer in channel memory. The structure

defines the BM trigger options.

Using the API_BM_TBUF structure, you may select different triggering options:

external trigger inputs, external trigger outputs, triggering on a command word

(CW) or combination of command word, status word, or data word. For complete

details, see the BusTools/1553-API Software User’s Manual and MIL-STD-1553

Universal Core Architecture Reference Manual.

When the bus monitor is running, it captures 1553 messages and stores them in BM

buffers. The interrupt queue is updated for each message as long as the BM

interrupt is enabled. BM Triggering allows the user to enable/disable Bus Monitor

interrupts when the specified trigger event occurs. A trigger event may be any

selected command, status or data word on the 1553 bus, a logical AND/OR of

multiple bus events, an ARMING/ARMED bus event combination or an external

pulse.

“Event 1 AND Event 2” implies that both events must happen in any order before

the trigger occurs.

“Event 1 ARMED BY Event 2” implies that Event 2 must happen before Event 1 for

the trigger to occur.

“Event 1 LINKED TO Event 2” or “Event 1 WITH Event 2” indicates that Event 1 is a

command word and Event 2 is a data word or status word in the message specified

by Event 1.

“Event 1 OR Event 2” implies that the trigger occurs when either Event 1 or Event 2

occurs.

A trigger event or event combination can be used as a start trigger or a stop trigger.

When a start trigger is used, no BM messages are inserted into the interrupt queue

until the trigger event occurs. When a stop trigger is used, BM messages stop going

into the interrupt queue when the trigger event occurs. While waiting for the trigger

event, 1553 bus traffic continues, and information is recorded in the BM buffers. The

trigger event affects only the BM interrupt enable bit. Both start and stop triggers

can be set up with the same BusTools_BM_TriggerWrite call.

The API_BM_TBUF structure contains definitions for four start trigger events and

four stop trigger events. Start events are programmed by modifying the four

“capture” array entries (Events 1-4 or A-D) in the API_BM_TBUF. Stop events are

programmed by modifying the four “stop” array entries (Events 1-4 or E-H) in the

API_BM_TBUF. The type of start event is programmed by setting the “control1”

variable to a code from the following table. The type of stop event is programmed

https://www.abaco.com/download/bustools1553-api-user-manual

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 137

by setting the “control2” variable to a code from the following table. Note that these

codes are different from those in the MIL-STD-1553 Universal Core Architecture

Reference Manual. Use these codes when the BusTools/1553-API controls BM

Triggering.

Table 4-1 Trigger Event Codes

Code Trigger Event

0 Start Always

1 If Event1

2 If Event1 AND Event2

3 If Event1 OR Event2

4 If Event1 LINKED TO Event2

5 If Event2 ARMED BY Event1

6 If (Event2 LINKED TO Event1) AND Event3

7 If (Event2 LINKED TO Event1) OR Event3

8 If Event3 ARMED BY (Event1 LINKED TO Event2)

9 If (Event1 LINKED to Event2) ARMED BY Event3

10 If Event 1 OR Event2 OR Event3

11 If Event1 AND Event2 AND Event3

12-15 Reserved

Each “capture” or “stop” array entry contains five variables: type, mask, value,

word, and count.

Trigger Type – Set to 0 (no trigger), 1 (trigger on command word), 2 (trigger on

status word), 3 (trigger on data word), 4 (not used), 5 (trigger on the lsb of the BM

interrupt status word*), or 6 (trigger on the msb of the BM interrupt status word*).

*F/W version 4.22 or higher.

Mask – The data selected by the trigger type is masked using this word.

Value – Value of the command, status or data word for triggering

Word – The number of the data word within the message to test for trigger. To

select the first word in the data buffer, use 0x0.

Count – The number of times the event must occur before the trigger is recognized.

To stop on the first occurrence, this value must be set to 0x1.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using BusTools_BM_Init.

OS Support

Core API Function

Syntax

138 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

wStatus = BusTools_BM_TriggerWrite (cardnum, tbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

tbuf (API_BM_TBUF*) address of the Trigger buffer structure to be

transferred to channel memory allocated to the Bus Monitor

function.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

Notes

Trigger On Data setup requirements:

• You must supply the command word, the data word, data value and the bit

mask to the firmware. The command word is the first event and the data word is

the second event.

• To enable the discrete TTL output trigger, set the “trig_ext_output” variable in

the “API_BM_TBUF” structure to 1 for a single trigger, and 2 for a repetitive

trigger output.

• To enable the external trigger TTL input, set the “trig_ext” variable in the

“API_BM_TBUF” to a one.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 139

4.63 BusTools_BoardHasIRIG

Description

BusTools_BoardHasIRIG determines if the channel reference has access to IRIG

timer/time-stamp functionality on the associated board. It will return the value

API_FEATURE_SUPPORT if the channel is IRIG enabled, API_SUCCESS if the

channel is not IRIG enabled, or an applicable error status code otherwise.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_BoardHasIRIG (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_SUCCESS

API_FEATURE_SUPPORT

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

140 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.64 BusTools_BoardIsMultiFunction

Description

BusTools_BoardIsMultiFunction returns the 1553 channel functionality available

with the specified channel reference. The 1553 channel functionality is defined as

API_SINGLE_FUNCTION, API_DUAL_FUNCTION, or API_MULTI_FUNCTION,

depending on the encompassing board configuration on which the channel

referenced is hosted.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_BoardIsMultiFunction (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_SINGLE_FUNCTION

API_DUAL_FUNCTION

API_MULTI_FUNCTION

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 141

4.65 BusTools_BoardIsUSBMon

Description

BusTools_BoardIsUSBMon reports whether the channel referenced is hosted on an

R15-USB-MON monitor only board. The function return status will be

API_FEATURE_SUPPORT if the board hosting the channel is an R15-USB-MON,

API_SUCCESS if the board hosting the channel is not an R15-USB-MON, or an

applicable error status code otherwise.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_BoardIsUSBMon (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_FEATURE_SUPPORT

API_SUCCESS

142 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.66 BusTools_BoardIsV6

Description

BusTools_BoardIsV6 reports whether the channel referenced is hosted on a board

programmed with UCA32 V6 firmware. The function return status will be

API_FEATURE_SUPPORT for a board running V6 firmware, API_SUCCESS if the

board hosting the channel is not running V6 firmware, or an applicable error status

code otherwise.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_BoardIsV6 (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_FEATURE_SUPPORT

API_SUCCESS

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 143

4.67 BusTools_Checksum1760

Description

BusTools_Checksum1760 calculates a checksum according to the algorithm

described in Appendix B Section B.4.1.5.2.1 of the Department of Defense Interface

Standard for Aircraft/Store Electrical Interconnect Systems MIL-STD-1760C Manual.

When each data word (including the checksum word) of a message is rotated right

cyclically by a number of bits equal to the number of preceding data words in the

message, and all the resultant rotated data words are summed using modulo 2

arithmetic to each bit (no carries), the sum shall be zero.

The application will pass a pointer to the respective generic message data array and

the number of words in the message to include in the calculation. This function will

calculate and return the checksum in the function return value.

The following examples demonstrate messages satisfying the checksum algorithm.

Example 1

Four Word Message:

 1st Word 0000-0000-0000-0001 (0001 hex.) data

 2nd Word 1100-0000-0000-0000 (C000 hex.) data

 3rd Word 0000-1111-0000-0000 (0F00 hex.) data

 4th Word 0001-1110-0000-1011 (lE0B hex.) checksum word

Example 2

Six Word Message:

 lst Word 0001-0010-0011-0100 (1234 hex.) data

 2nd Word 0101-0110-0111-1000 (5678 hex.) data

 3rd Word 1001-1010-1011-1100 (9ABC hex.) data

 4th Word 1101-1110-1111-0000 (DEF0 hex.) data

 5th Word 0000-0000-0000-0000 (0000 hex.) data

 6th Word 1000-1111-0010-0000 (8F20 hex.) checksum word

OS Support

Core API Function

Syntax

wChksum = BusTools_Checksum1760 (mbuf, wdcnt);

wChksum (BT_INT) the calculated checksum value.

mbuf (BT_U16BIT *) pointer to array of message data.

wdcnt (BT_U16BIT) number of elements in the array.

144 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Return Value

1760 Checksum

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 145

4.68 BusTools_CreateIntFifo

Description

BusTools_CreateIntFifo creates an Interrupt Function Structure and assigns the

supplied function reference as the User Interrupt Service Routine instantiated in a

new thread.

The application invokes this function, providing a pointer to the API_INT_FIFO

structure. This function will dynamically allocate memory for the API_INT_FIFO

structure and assign a reference to the supplied callback-function. When the

API_INT_FIFO structure is created, the callback-function reference is stored within

the FIFO structure.

This function is used for C# wrapper compatibility only and is not needed for any

other application.

OS Support

Windows C# compatibility only

Syntax

pFifo = BusTools_CreateIntFifo (*function(cardnum, *pFIFO));

pFifo (API_INT_FIFO *) an API_INT_FIFO handle.

function (BT_INT (_stdcall *function)(BT_UINT cardnum, struct

api_int_fifo *pFIFO)) function pointer designating the ISR

callback function.

Return Value

Pointer to a structure of the type API_INT_FIFO

146 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.69 BusTools_DestroyIntFifo

Description

BusTools_DestroyIntFifo relinquishes the dynamically allocated memory resources

containing a previously created API_INT_FIFO structure via invocation of

BusTools_CreateIntFifo.

This function is used for C# wrapper compatibility only and is not needed for any

other application.

OS Support

Windows C# compatibility only

Syntax

void BusTools_DestroyIntFifo(API_INT_FIFO *pFifo);

pFifo (API_INT_FIFO *) reference to an existing Interrupt Function

Structure.

Return Value

Not Applicable

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 147

4.70 BusTools_DataGetString

Description

BusTools_DataGetString performs engineering unit conversions as specified and

places the result in a string. The input parameter is a structure containing all the

information needed to perform the conversion. This structure is shown below:

typedef struct data_convert

 {

 BT_U16BIT wDatatype;

 BT_U16BIT wDecimals;

 float fFactor;

 BT_U16BIT wFactortype

 float fOffset;

 BT_U16BIT trlateItems;

 UINT *uiTranslateRaw;

 float *fTranslateDis;

 void* value;

 BT_INT status;

 char * string;

 }

DATA_CONVERT;

wDatatype – (Used for ALL conversions) – This field determines what type of

conversion is to be done. The table below shows the constants (defined in busapi.h)

that can be used for this field and describes the associated conversions.

Table 4-2 wDatatype Constants

Constant Conversion

DATATYPE_16_SDEC
16-bit signed decimal. Uses the fields wDatatype, value, status,
string.

DATATYPE_16_UDEC
16-bit unsigned decimal. Uses the fields wDatatype, value, status,
string.

DATATYPE_HEX
16-bit hexadecimal. Uses the fields wDatatype, value, status,
string.

DATATYPE_16_OCTAL 16-bit octal. Uses the fields wDatatype, value, status, string.

DATATYPE_16_BINARY 16-bit binary. Uses the fields wDatatype, value, status, string.

DATATYPE_16_BCD
16-bit binary coded decimal. Uses the fields wDatatype, value,
status, string.

DATATYPE_16_BCD_2
Converts the 16-bit value to a string with the high byte in BINARY
and the low byte in binary coded decimal. Uses the fields
wDatatype, value, status, string.

DATATYPE_16_USCALE
16-bit unsigned scaled value. Uses the fields wDatatype,
wDecimals, fFactor, fOffset, value, status, string.

DATATYPE_16_SSCALE
16-bit signed scaled value. Uses the fields wDatatype, wDecimals,
fFactor, fOffset, value, status, string.

DATATYPE_16_TRANSLATE
Conversion using a 16-bit lookup table. Uses the fields
wDatatype, trlateItems, uiTranslateRaw, fTranslateDis, value,
status, string.

148 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Constant Conversion

DATATYPE_32_SDEC
32-bit signed decimal. Uses the fields wDatatype, value, status,
string.

DATATYPE_32_MSWF_SDEC
32-bit signed decimal with most significant word first. Uses the
fields wDatatype, value, status, string.

DATATYPE_32_UDEC
32-bit unsigned decimal. Uses the fields wDatatype, value, status,
string.

DATATYPE_32_MSWF_UDEC
32-bit unsigned decimal with most significant word first. Uses the
fields wDatatype, value, status, string.

DATATYPE_32_IEEE
32-bit IEEE floating point. Uses the fields wDatatype, value, status,
string.

DATATYPE_32_HEX
32-bit hexadecimal. Uses the fields wDatatype, value, status,
string.

DATATYPE_32_BCD
32-bit binary coded decimal. Uses the fields wDatatype, value,
status, string.

DATATYPE_32_USCALE
32-bit unsigned scaled value. Uses the fields wDatatype,
wDecimals, fFactor, fOffset, value, status, string.

DATATYPE_32_MSWF_USCALE
32-bit unsigned scaled value with most significant word first.
Uses the fields wDatatype, wDecimals, fFactor, fOffset, value,
status, string.

DATATYPE_32_SSCALE
32-bit signed scaled value. Uses the fields wDatatype, wDecimals,
fFactor, fOffset, value, status, string.

DATATYPE_32_MSWF_SSCALE
32-bit signed scaled value with most significant word first. Uses
the fields wDatatype, wDecimals, fFactor, fOffset, value, status,
string.

DATATYPE_32_1750
32-bit MIL-STD-1750 floating point. Uses the fields wDatatype,
value, status, string.

DATATYPE_32_TRANSLATE
Conversion using a 32-bit lookup table. Uses the fields
wDatatype, trlateItems, uiTranslateRaw, fTranslateDis, value,
status, string.

DATATYPE_48_LATLONG
48-bit latitude/longitude. Uses the fields wDatatype, value, status,
string.

wDecimals – (Used for scaled conversions) – This field determines the number of

decimal points to show to the right of the decimal point.

fFactor – (Used for scaled conversions) – This field provides the number that is

multiplied or divided into the raw data (determined by wFactortype, see below).

This is the slope (m) in the linear equation “y = mx + b”.

wFactortype – (Used for scaled conversions) – If this field is a 1, then the input data

is MULTIPLIED by fFactor. If this field is a 2, then the input data is DIVIDED by

fFactor.

fOffset – (Used for scaled conversions) – This value is added to the scaled value.

This is the intercept (b) in the linear equation “y = mx + b”.

trlateItems – (Used in defining the conversion) – This field determines the number of

items in the lookup table.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 149

uiTranslateRaw – (Used in defining the conversion) – This field provides a pointer

to the table of raw data values for the lookup.

fTranslateDis – (Used in defining the conversion) – This field provides a pointer to

the table of data entries corresponding to the raw values.

value – (Used for ALL conversions) – This field provides a pointer to the source data

to be used for the conversion. This normally points to the appropriate location in an

array of 16-bit data words from a 1553 message.

status – (Used for ALL conversions) – This field is used to return a status code

indicating success or failure of the function call. See the explanation ofReturn Value

below.

string – (Used for ALL conversions) – This field provides a pointer to the location

where the user would like the resulting string to be stored.

OS Support

Core API Function

Syntax

pString = BusTools_DataGetString (cdat);

pString (char *) reference to the resulting string.

cdat (DATA_CONVERT *) reference to a structure

containing the conversion parameters.

Return Value

This function returns a reference to the string containing the conversion result, (to

the memory allocated in the DATA_CONVERT structure string member).

The DATA_CONVERT structure also contains a status field, which returns

additional information. This field is one of the following:

API_SUCCESS

API_BADDATATYPE

API_BADBCDDATA

API_BADFACTORTYPE

API_BADTRANSLATE

Example

#include “busapi.h”

#include <stdio.h>

void main

{

 DATA_CONVERT dc_info;

150 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

 int i;

 BT_U16BIT data[32];

 char string[128];

 // Initialize variables.

 memset(&dc_info, 0, sizeof(dc_info));

 for (i = 3; i < 32; i++) {

 data[i] = 0;

 }

 // Setup data conversion info structure.

 data[0] = 0x1234;

 data[1] = 0x0056;

 data[2] = 0x0078;

 dc_info.wDatatype = DATATYPE_48_LATLONG;

 dc_info.value = data;

 dc_info.string = string;

 // Do the conversion.

 printf(“Raw: %04X %04X %04X, String: %s\n”, data[0],

 data[1], data[2], BusTools_DataGetString(&dc_info));

}

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 151

4.71 BusTools_DiffTriggerOut

Description

Select Abaco System’s 1553 boards programmed with Version 4.x or 5.x firmware

provide differential I/O channel trigger capabilities (see Table 1-2). This function

provides a method a configure any available differential I/O channel as an output

driven as “external trigger out”. Invoke this function passing the channel flag,

which connects or disconnects the channel reference to the respective differential I/O

channel. The differential enable flag enables or disables differential I/O output.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the Differential I/O.

OS Support

Core API Function (F/W Version 4.x or 5.x only)

Syntax

wStatus = BusTools_DiffTriggerOut (cardnum, chflag, diffen);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

chflag (BT_INT) 0 = disconnect 1 = connect channel.

diffen (BT_INT) differential enable

 0 = disable output

 1 = enable output

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

152 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.72 BusTools_DiscreteGetIO

Description

BusTools_DiscreteGetIO returns the configuration of the Avionics Discrete I/O on

Abaco Systems 1553 boards supporting Avionics Discretes (see Table 1-2). The

returned discrete state is a bit encoded value with 1 representing an output line and

0 representing an input line. The bit position corresponds to the discrete line, where

bits 0 (0x0001) through 18 (0x20000) represent discrete lines 1 through 18, depending

on discrete count available for your board type.

Discrete I/O lines can be programmed as either input or output via invocation of

BusTools_DiscreteSetIO.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the Avionics Discretes.

OS Support

Core API Function

Syntax

wStatus = BusTools_DiscreteGetIO (cardnum, disDirValue);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

disDirValue (BT_U32BIT *) reference to a value containing the bitwise

representation of the direction assignment for each available

discrete, where 1 = output, 0 = input.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Notes

If the board uses Hardwired RT Addressing on channel 1, the first six discrete lines

(bits 0-5) are the RT Address. The QPMC, QPM, AMC, and RCPIE-1553 also support

Hardwired RT Addressing on Channel 2. In that case, discrete lines 9-14 (bits 8-13)

are the channel 2 RT Address. The application should consider Hardwired RT

addressing when programming the discrete lines. Hardwired RT addressing

overrides any discrete I/O setting.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 153

4.73 BusTools_PIO_GetIO

Description

BusTools_PIO_GetIO returns the configuration of the programmable I/O lines on

Abaco Systems 1553 boards that support PIO (see Table 1-2). The returned PIO state

is a bit encoded value with 1 representing an output line and 0 representing an input

line. The bit position corresponds to the PIO line, where bits 0 through 7 represent

PIO lines 1–8. The actual number of PIO lines available is dependent on the 1553

board type installed.

PIO lines can be programmed as either input or output via invocation of

BusTools_PIO_SetIO.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the Programmable I/O.

OS Support

Core API Function (F/W Version 4.x and Version 5.x only)

Syntax

wStatus = BusTools_PIO_GetIO (cardnum, pDirVal);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

pDirVal (BT_U32BIT *) reference to a value containing a bitwise

representation of the programmable I/O direction assignment,

where 1 = output, 0 = input.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

154 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.74 BusTools_DiscreteRead

Description

BusTools_DiscreteRead returns the current value of the discrete input. The

application can request the API return all input discrete inputs or specify reading

individual discrete inputs. See Table 1-2 for the list of boards that support Avionics

Discretes. If the application selects a single discrete input, the function returns the

disValue parameter with either 0 or 1, corresponding to the state of the input. If the

application selects all discrete inputs, the function returns with a bit-wise value

indicating the state of all input lines. When selecting all discrete inputs, note only

bits corresponding to inputs are valid; bits corresponding to outputs will be zero.

Invoke the function BusTools_GetDiscreteIO to determine the configuration of the

discrete I/O.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the Avionics Discretes.

OS Support

Core API function

Syntax

wStatus = BusTools_DiscreteRead (cardnum, disSel, disvalue);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

disSel (BT_INT) Select the discrete/PIO input to read.

disValue (BT_U32BIT *) reference to the location in which this function

will store the input value. If a single input is specified, this

value reflects the bit value corresponding to the input. If

“read all inputs” is specified, this value is bit encoded with

each input line bit set to either 0 or 1.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BAD_DISCRETE

API_HARDWARE_NOSUPPORT

Notes

If the board uses Hardwired RT Addressing on channel 1, the first six discrete lines

(bits 0-5) are the RT Address. The QPMC, QPM, AMC, and RCPIE-1553 boards can

also have Hardwired RT Addressing on Channel 2. In that case, discrete lines 9-14

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 155

(bits 8-13) are the channel 2 RT Address. The application should consider

Hardwired RT addressing when programming the discrete lines. Hardwired RT

addressing overrides any discrete I/O setting.

156 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.75 BusTools_PIO_Read

Description

BusTools_PIO_Read return sthe current value of the programmable input. The

application can request the API return all input programmable inputs or specify

reading individual programmable inputs. See Table 1-2 for the list of boards that

support Avionics PIO. If the application selects a single programmable input, the

function returns the pioValue parameter with either 0 or 1, corresponding to the state

of the input. If the application selects all programmable inputs, the function returns

with a bit-wise value indicating the state of all input lines. When selecting all

programmable inputs, note only bits corresponding to inputs are valid; bits

corresponding to outputs will be zero. Invoke the function BusTools_PIO_GetIO to

determine the configuration of the programmable I/O.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the Avionics PIO.

OS Support

Core API function

Syntax

wStatus = BusTools_PIO_Read (cardnum, pioSel, pioValue);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

pioSel (BT_INT) Select the PIO input to read. An input select value

of 0 reads all inputs; otherwise, this parameter will specify an

individual input.

pioValue (BT_U32BIT *) reference to the location in which this function

will store the input value. If a single input is specified, this

value reflects the bit value corresponding to the input. If

“read all inputs” is specified, this value is bit encoded with

each input line bit set to either 0 or 1.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BAD_DISCRETE

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 157

4.76 BusTools_DiscreteSetIO

Description

Most of Abaco Systems 1553 boards support Avionics Discrete I/O (see Table 1-2).

BusTools_DiscreteSetIO provides a method to configure Discrete I/O lines as either

inputs or outputs. All channels on a multi-channel board share these discrete lines.

An application must allocate use of the Discrete I/O resources between channels

residing on the same 1553 board.

Discrete I/O direction (input/output) is programmed by setting or clearing the

respective bit in a 32-bit register, where each bit represents a discrete line. Set the

respective bit to 1 to configure a Discrete line as an output or 0 to configure a

Discrete line as an input. The API ignores any bits referenced above the maximum

number of discrete lines on a board.

When invoking this function pass the discrete setting in disFlag and a mask value in

mask that specifies which bits are set/cleared. This allows the application to preserve

the Discrete I/O configuration from prior definition.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the discrete lines.

OS Support

Core API Function

Syntax

wStatus = BusTools_DiscreteSetIO(cardnum, disSet, mask);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

disSet (BT_U32BIT) bitwise configuration of the individual discrete

lines:

 0 = input

 1 = output

mask (BT_U32BIT) Mask specifying the bit(s) to set/clear.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

158 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Notes

If the board uses Hardwired RT Addressing on channel 1, the first six discrete lines

(bits 0-5) are the RT Address. The QPMC, QPM, AMC, and RCPIE-1553 also support

Hardwired RT Addressing on Channel 2. In that case, discrete lines 9-14 (bits 8-13)

are the channel 2 RT Address. The application should consider Hardwired RT

addressing when programming the discrete lines. Hardwired RT addressing

overrides any discrete I/O setting.

Coding Example

The following example code demonstrates various ways to configure a board with 10

discrete I/O channels.

The following invocation configures the discretes as alternating outputs and inputs.

status = BusTools_DiscreteSetIO(cardnum, 0x0155, 0x03FF);

The following invocation configures discretes 5 – 8 to outputs while preserving the

setting of the remaining discretes.

status = BusTools_DiscreteSetIO(cardnum, 0x00F0, 0x00F0);

The following invocation configures discretes 5 – 8 to inputs while preserving the

setting of the remaining discretes.

status = BusTools_DiscreteSetIO(cardnum, 0, 0x00F0);

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 159

4.77 BusTools_PIO_SetIO

Description

Some of Abaco Systems 1553 boards support programmable I/O lines (see Table 1-2).

BusTools_PIO_SetIO provides a method to configure programmable I/O lines as

either inputs or outputs. All channels on a multi-channel board share these PIO

lines. An application must allocate use of the programmable I/O resources between

channels residing on the same 1553 board.

Programmable I/O direction is configured by setting or clearing the respective bit in

a 32-bit register, where each bit represents a PIO line. Set the respective bit to 1 to

configure programmable I/O line as an output or 0 to configure a programmable I/O

line as an input. The API ignores any bits referenced above the maximum number of

PIO lines on a board.

When invoking this function pass the bitwise direction setting in disSet and a mask

value in mask that specifies which bits are set/cleared. This allows you to preserve

the bit settings from previous calls to this function.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the discrete lines.

OS Support

Core API Function

Syntax

wStatus = BusTools_PIO_SetIO (cardnum, disSet, mask);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

disSet (BT_U32BIT) bitwise configuration of the individual

programmable I/O lines:

 0 = input

 1 = output

mask (BT_U32BIT) Mask specifying the bit to set/reset.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

160 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Coding Example

The following example code configures the programmable I/O as alternating outputs

and inputs (on a Board with 8 PIO lines).

status = BusTools_PIO_SetIO (cardnum, 0x0055, 0x00FF);

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 161

4.78 BusTools_DiscreteTriggerIn

Description

Some Abaco Systems boards have Avionics Discrete lines that can be configured for

trigger input signals (see Table 1-2). BusTools_DiscreteTriggerIn provides the

method to select the respective discrete/differential input as the trigger input for the

specified channel. Options available for triggers include single-ended input from

either discrete 7 or discrete 8 (not both), and an RS-485 differential input. When

configuring either discrete line 7 or 8 as an input trigger/clock, the discrete must be

configured as an input via invocation of BusTools_DiscreteSetIO.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the discrete lines.

OS Support

Core API Function

Syntax

wStatus = BusTools_DiscreteTriggerIn (cardnum, trigFlag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

trigFlag (BT_INT) defines the channel trigger/clock input source:

 TRIGGER_IN_485 - RS-485 input

 TRIGGER_IN_DIS_7 - Discrete 7

 TRIGGER_IN_DIS_8 - Discrete 8

 TRIGGER_IN_NONE - remove a previous trigger input

 configuration

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

162 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.79 BusTools_DiscreteWrite

Description

BusTools_DiscreteWrite defines the current state of the discrete output. The

application can request the API configure all outputs or a select individual output. If

the selected option is to configure a single output, the function configures only the

specified output to the respective value of disFlag. If the selected option is to

configure all outputs, the function configures all outputs to the respective value of

disFlag. Multiple outputs cannot be configured other than by configuring all outputs

in a single invocation.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the discrete lines.

OS Support

Core API function.

Syntax

wStatus = BusTools_DiscreteWrite (cardnum, disSel, disFlag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

disSel (BT_U32BIT) This value selects the output to configure. A

value of 0 selects all output lines; otherwise, the value is a

bitwise selection of an individual output.

disFlag (BT_U32BIT) state applied to the output. Setting disFlag value

to 1 turns the low-side switch “on”, completing the circuit by

shorting it to ground. Setting this value to 0 turns the low-side

switch “off”, opening the circuit; in the absence of any external

connection the discrete output will be pulled to 3.3V by a

weak internal pull-up resistor.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BAD_DISCRETE

API_HARDWARE_NOSUPPORT

Notes

If the board uses Hardwired RT Addressing on channel 1, the first six discrete lines

(bits 0-5) are the RT Address. The QPMC, QPM, AMC, and RCPIE-1553 also support

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 163

Hardwired RT Addressing on Channel 2. In that case, discrete lines 9-14 (bits 8-13)

are the channel 2 RT Address. The application should consider Hardwired RT

addressing when programming the discrete lines. Hardwired RT addressing

overrides any discrete I/O setting.

164 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.80 BusTools_PIO_Write

Description

BusTools_PIO_Write defines the current state of the programmable output. The

application can request the API configure all outputs or a select individual output. If

the selected option is to configure a single output, the function configures only the

specified output to the respective value of pioFlag. If the selected option is to

configure all outputs, the function configures all outputs to the respective value of

pioFlag. Multiple outputs cannot be configured other than by configuring all outputs

in a single invocation.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the discrete lines.

OS Support

Core API function.

Syntax

wStatus = BusTools_PIO_Write (cardnum, pioSel, pioFlag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

pioSel (BT_U32BIT) This value selects the output to configure. A

value of 0 selects all output lines; otherwise, the value is a

bitwise selection of an individual output.

pioFlag (BT_U32BIT) state applied to the output. For programmable

outputs: Setting pioFlag to 1 sets the select output line high.

Setting this value to 0 clears the selected output line.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BAD_DISCRETE

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 165

4.81 BusTools_DiscreteTriggerOut

Description

Some Abaco Systems boards have Avionics Discrete lines (discrete output 7 or 8),

that can be configured for external trigger output signals, (see Table 1-2). This

function provides the method to select the respective discrete output as the external

trigger output. The discrete must be configured as an output via invocation of

BusTools_DiscreteSetIO.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before using the discrete lines.

OS Support

Core API Function

Syntax

wStatus = BusTools_DiscreteTriggerOut (cardnum, disflag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

disflag (BT_INT) defines the external trigger output

TRIGGER_OUT_DIS_7 - use Discrete 7 as trigger out

TRIGGER_OUT_DIS_8 - use Discrete 8 as trigger out

TRIGGER_OUT_DIS_NONE – remove a previous trigger

output configuration

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

166 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.82 BusTools_DMA_Setup

Description

BusTools_DMA_Setup configures Direct Memory Access (DMA) for both the QPCX-

1553 and QCP-1553 boards hosting a PLX 9056 PCI bus interface. This function can

only configure the board for host-initiated block DMA, host-side configuration is not

required. For setup by the host application, a virtual address is not allowed for

either the host or the board; the PLX-9056 PCI interface component requires a host

memory physical address and a board address that is a local bus address, (not the

physical address of the board). See the “Universal Core Architecture” manual to

find the local bus offsets to RAM on the respective board.

Besides the host and local addresses, the application must provide a byte count, a

direction of transfer, (either board to host or host to board), and the DMA channel (0

or 1) to use.

Initialize the channel using one of the BusTools/1553-API Initialization functions

before setting up a DMA scenario.

OS Support

VxWorks and Windows. BusTools/1553-API version 5.90 or later.

Syntax

wStatus = BusTools_DMA_Setup (cardnum, dma_channel, host_addr, board_addr,

byte_count, dma_flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

dma_channel (BT_UINT) DMA channel 0 : ch 0; 1 or > : ch 1.

host_addr (BT_U32BIT) physical host address.

board_addr (BT_U32BIT) local board address.

byte_count (BT_U32BIT) Number of bytes to transfer.

dma_flag (BT_U32BIT) Direction of transfer 0 : board to host,

1 or > : host to board.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 167

4.83 BusTools_DumpMemory

Description

BusTools_DumpMemory writes the contents of the specified onboard data buffers

and/or register sets to a specified file in ASCII format. The application selects the

specific items to log by setting a bitwise value in the region_mask parameter, (bit

values not defined are ignored). If the file already exists, this function will overwrite

it.

DUMP_HWREG Hardware Registers

DUMP_RAMREG RAM Registers

DUMP_BCMESS BC Message Buffers

DUMP_BMFILTER BM Filter Buffer

DUMP_BMTRIGGER BM Trigger Buffer

DUMP_BMMESSAGE BM Message Buffers

DUMP_BMCONTROL BM Control Buffers

DUMP_BMDEFCBUF BM Default Control Buffer

DUMP_RTADDRESS RT Address Buffer

DUMP_RTFILTER RT Filter Buffer

DUMP_RTDATA RT Control and Message Buffers

DUMP_EI Error Injection data area

DUMP_IQ Interrupt queue data area

DUMP_RTMBUF_DEF RT Default Message Buffers

DUMP_RTCBUF_DEF RT Default Control Buffers

DUMP_RTCBUF_BRO RT Broadcast Control Buffers

DUMP_PCI_RTDATA RT MBUF

DUMP_DIFF_IO Discrete I/O registers

DUMP_ALL All buffers listed above

This function requires a host operating system that supports a File System. For

operating environments not supporting a file system, this function writes to stdout.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API initialization functions.

OS Support

Requires files system or console output.

168 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Syntax

wStatus = BusTools_DumpMemory (cardnum, region_mask, file_name, heading);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

region_mask (BT_U32BIT) mask of memory regions to dump.

file_name (char *) pointer to the ASCII name of the output file created. If

the API cannot create or write to this file, an error is returned.

heading (char *) pointer to a header string written to the output file.

Return Value

API_SUCCESS

API_BUSTOOLS_NO_FILE

API_BUSTOOLS_NOTINITED

API_BUSTOOLS_BADCARDNUM

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 169

4.84 BusTools_EI_EbufWrite

Description

For boards programmed with firmware version 4.66 or earlier,

BusTools_EI_EbufWrite writes error injection data to the Error Injection buffer. See

the “Error Injection” section in the BusTools/1553-API Software User’s Manual for a

complete description of the Error Injection buffer and its parameters.

This function is deprecated for firmware version 5.00 and greater, with the function

BusTools_EI_EnhEbufWrite as its replacement. If a legacy application calls

BusTools_EI_EbufWrite using BusTools/1553-API version 6.42 or greater, with a

board running firmware 5.00 or greater, BusTools_EI_EnhEbufWrite will be invoked

to perform the desired error injection buffer update. A board running firmware 5.00

or greater will not correctly generate all errors if the host application is built with a

BusTools/1553-API version earlier than 6.42.

BusTools/1553-API normally creates buffer “0” having all elements initialized to

zero, indicating no error injection, and uses this buffer for all BC and RT functions

that support error injection.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using the

BusTools_BM_Init.

OS Support

Core API Function (F/W Version 4.66 or earlier)

Syntax

wStatus = BusTools_EI_EbufWrite (cardnum, errorid, ebuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

errorid (BT_UINT) target board Error Injection buffer number (0-

based).

ebuf (API_EIBUF*) a host application defined Error Injection

Definition structure.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_EI_NOERRORS

https://www.abaco.com/download/bustools1553-api-user-manual

170 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

API_EI_ILLERRORNO

API_EI_BADERRTYPE

API_EI_BADMSGTYPE

EI Buffer Example

The following example code defines an error injection buffer (#1). This error

injection buffer injects a parity error into the command word of an RT Transmit

message transmitted by the Bus Controller.

API_EBUF error_buffer; // Allocate the temp structure

// Setup the command word error injection parameters

error_buffer.buftype = EI_BC_TRANS;

error_buffer.error[0].etype = EI_PARITY;

error_buffer.error[0].edata = 0;

// Clear the error injection parameters

// for the remaining message words.

for (i = 1; i < EI_COUNT; i++)

{

 error_buffer.error[i].etype = EI_NONE;

 error_buffer.error[i].edata = 0;

}

// Write the buffer to the hardware.

wStatus = BusTools_EI_EbufWrite(0, 1, &error_buffer);

if (wStatus)

{

 printf(“Error detected, %s\n”,

 BusTools_StatusGetString(wStatus);

}

When creating the BC message that should inject this error, set the “errorid”

parameter of the “API_BC_MBUF” structure to “1” to reference this error injection

buffer.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 171

4.85 BusTools_EI_EnhEbufWrite (DEPRECATED)

Description

This function should not be used. Use BusTools_EI_EbufWriteENH for all new

applications.

This is a Legacy function for all boards running firmware version 5.00 or greater.

This function writes error injection data to the Error Injection buffer. This function is

the same as BusTools_EI_EbufWrite with the addition of new Bi-phase errors and

enhanced zero-crossing errors. These new error injection features are compatible

with boards running firmware version 5.0 or greater. You must use this function

generate the new Bi-phase and zero-crossing errors. Use BusTools_EI_EbufWrite for

board running firmware less than 5.00.

BusTools normally creates buffer “0” as all zero, indicating no error injection, and

uses this buffer for all BC and RT functions that take a pointer to an error injection

buffer.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using the

BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_EI_EnhEbufWrite(cardnum, errorid, enhData, ebuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

errorid (BT_UINT) Error Injection buffer number (0-based).

enhData (BT_UINT) data for enhanced zero-crossing. See the MIL-STD-

1553 Universal Core Architecture Manual Chapter 7,

“Enhanced Zero-Crossing Error Injection Word” section for a

description of how to set this value.

ebuf (API_EIBUF*) pointer to Error Injection Definition

(API_EIBUF) structure.

172 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_EI_NOERRORS

API_EI_ILLERRORNO

API_EI_BADERRTYPE

API_EI_BADMSGTYPE

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 173

4.86 BusTools_EI_EbufWriteENH

Description

BusTools_EI_EbufWriteENH should be used for programming error injection on all

boards running firmware version 5.00 or greater. See “Error Injection” section in the

BusTools/1553-API Software User’s Manual for a complete description of the Error

Injection buffer and its parameters.

BusTools normally creates error injection buffer “0” having all elements initialized to

zero, indicating no error injection, and uses this buffer for all BC and RT functions

that support error injection.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using the

BusTools_BM_Init.

OS Support

Core API Function (F/W Version 5.0 and greater)

Syntax

wStatus = BusTools_EI_EbufWriteENH (cardnum, errorid, ebuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

errorid (BT_UINT) Error Injection buffer number (0-based).

ebuf (API_ENH_EIBUF *) a host application defined Error Injection

Definition structure.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_EI_NOERRORS

API_EI_ILLERRORNO

API_EI_BADERRTYPE

API_EI_BADMSGTYPE

https://www.abaco.com/download/bustools1553-api-user-manual

174 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

EI Buffer Example

The following example code defines an error injection buffer (#1). This error

injection buffer injects a parity error into the command word of an RT Transmit

message transmitted by the Bus Controller.

API_ENH_EIBUF error_buffer; // Allocate a structure

// Setup the command word error injection parameters

error_buffer.buftype = EI_BC_TRANS;

error_buffer.error[0].etype = EI_PARITY;

error_buffer.error[0].edata = 0;

// Clear the error injection parameters

// for the remaining message words.

for (i = 1; i < EI_COUNT; i++)

{

 error_buffer.error[i].etype = EI_NONE;

 error_buffer.error[i].edata = 0;

}

// Write the buffer to the hardware.

wStatus = BusTools_EI_EbufWrite(0, 1, &error_buffer);

if (wStatus)

{

 printf(“Error detected, %s\n”,

 BusTools_StatusGetString(wStatus);

}

When creating the BC message that should inject this error, set the “errorid”

parameter of the “API_BC_MBUF” structure to “1” to reference this error injection

buffer.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 175

4.87 BusTools_EI_Getaddr

Description

BusTools_EI_Getaddr retrieves the byte offset of an Error Injection buffer from the

beginning of memory on an Abaco Systems 1553 board. The Error Injection buffer is

referenced by its index value, while the returned offset value will be within the

range from 0 to the highest board address within the first segment.

Typically, this function is used only for debugging operations. Normally, you don’t

need to access absolute memory addresses on the Abaco Systems 1553 board.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_EI_Getaddr (cardnum, errorid, addr);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

errorid (BT_UINT) Error Injection buffer number (0-based).

addr (BT_U32BIT *) location to store the offset of the specified Error

Injection buffer

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_EI_ILLERRORNO

176 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.88 BusTools_EI_Getid

Description

BusTools_EI_Getid converts an Abaco Systems 1553 board offset address to the

respective Error Injection buffer number. The specified address is a byte offset from

the beginning of memory on the board. The Address must range from 0x00000000 to

0x0003FFFF.

BusTools/1553-API uses this function internally to convert the memory address

stored in the hardware to the EI buffer number returned in various message

structures. Typically, this API function should not be used by application software.

Prior to invoking this function, initialize the channel using one of the BusTools/1553-

API Initialization functions and initialize the Bus Monitor using BusTools_BM_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_EI_Getid (cardnum, addr, errorid);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

addr (BT_U32BIT) memory address (0x00000000 - 0x0003FFFF).

errorid (BT_UINT *) pointer to returned Error Injection buffer number

(“0” based).

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BM_NOTINITED

API_EI_ILLERRORADDR

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 177

4.89 BusTools_ErrorCountClear

Description

BusTools/1553-API keeps a running count of messages detected while the Bus

Monitor is recording. The API also keeps a cumulative count of each type of error

detected during BM recording. The API resets the counters each time the Bus

Monitor by invoking BusTools_BM_Init. This function allows the application to

reset the API cumulative count of each type of error detected while the Bus Monitor

is actively recording.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions

OS Support

Core API Function

Syntax

wStatus = BusTools_ErrorCountClear (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

178 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.90 BusTools_ErrorCountGet

Description

BusTools/1553-API maintains a running count of messages detected and a

cumulative count of each type of error detected while the Bus Monitor is recording.

The API resets the counters each time you re-initialize the Bus Monitor by calling

BusTools_BM_Init. This function retrieves the current value of all of the counters.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

The counters are all 32-bit values. The buffer supplied by the caller must allocate

memory for at least 32 32-bit entries. The cumulative error count buffer entries are

defined as follows:

• buffer[0]: number of BT1553_INT_HIGH_WORD errors.

• buffer[1]: number of BT1553_INT_INVALID_WORD errors.

• buffer[2]: number of BT1553_INT_LOW_WORD errors.

• buffer[3]: number of BT1553_INT_INVERTED_SYNC errors.

• buffer[4]: number of BT1553_INT_MID_BIT errors.

• buffer[5]: number of BT1553_INT_TWO_BUS errors.

• buffer[6]: number of BT1553_INT_PARITY errors.

• buffer[7]: number of BT1553_INT_NON_CONT_DATA errors.

• buffer[8]: number of BT1553_INT_EARLY_RESP errors.

• buffer[9]: number of BT1553_INT_LATE_RESP errors.

• buffer[10]: number of BT1553_INT_BAD_RTADDR errors.

• buffer[11]: number of BT1553_INT_CHANNEL errors.

• buffer[12]: number of BT1553_INT_UNTERM_BUS errors.

• buffer[13]: number of BT1553_INT_WRONG_BUS errors.

• buffer[14]: number of BT1553_INT_BIT_COUNT errors.

• buffer[15]: number of BT1553_INT_NO_IMSG_GAP errors.

• buffer[16]: number of BT1553_INT_END_OF_MESS conditions

• buffer[17]: number of BT1553_INT_BROADCAST messages.

• buffer[18]: number of BT1553_INT_RT_RT_FORMAT messages.

• buffer[19]: number of BT1553_INT_RESET_RT messages.

• buffer[20]: number of BT1553_INT_SELF_TEST messages.

• buffer[21]: number of BT1553_INT_MODE_CODE messages.

• buffer[22]: number of BT1553_INT_INVALID_CMDW errors.

• buffer[23]: number of Service Requests

• buffer[24]: number of Broadcast Received

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 179

• buffer[25]: number of busy responses

• buffer[26]: not used

• buffer[27]: number of Message Errors

• buffer[28]: number of Subsystem Flags

• buffer[29]: number of Terminal Flags

• buffer[30]: not used

• buffer[31]: message count

OS Support

Core API Function

Syntax

wStatus = BusTools_ErrorCountGet (cardnum, count, buf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

count (BT_U32BIT *) pointer to a variable to receive the total number

of messages processed.

buf (BT_U32BIT *) pointer to a 32-element buffer to receive the 32

error counters.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

180 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.91 BusTools_ExtTrigIntEnable

Description

BusTools_ExtTrigIntEnable enables or disables hardware interrupts on an external

trigger input. When an interrupt is encountered from the external trigger, the user

callback function is invoked as defined by the host application. There is no message

or time data associated with external trigger interrupt.

See the documentation for the function BusTools_RegisterFunction for more details

on assigning a user callback function to an external trigger input.

Some Abaco Systems MIL-STD-1553 boards require configuration of a discrete input

to be utilized as an external trigger. The application must assure the board is

configured for an external trigger input and correctly connect the external trigger

input to the associated discrete input.

Prior to calling this function, the channel must be initialized by calling one of the

BusTools initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_ExtTrigIntEnable (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_U16BIT) Enable/disable flag: Options are

EXT_TRIG_ENABLE

EXT_TRIG_DISABLE

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 181

4.92 BusTools_ExtTriggerOut

Description

BusTools_ExtTriggerOut activates the external trigger output for a specified

duration. The duration of the output pulse is measured using the Time Tag timer, so

the width is accurate to within a few microseconds. For precise width

measurements you may want to calibrate the pulse width with an oscilloscope.

The pulse width range is 1 to 1000 µs.

If your board supports an external trigger on programmable discretes (see Table 1-2),

the application must set up the external trigger on either discrete 7 or 8 by invoking

BusTools_DiscreteSetIO and BusTools_DiscreteTriggerOut prior to invoking this

function.

OS Support

Core API Function

Syntax

wStatus = BusTools_ExtTriggerOut (cardnum, pwidth);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

pwidth (BT_U16BIT) Pulse width in microseconds. Valid range is 1 to

1000.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

182 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.93 BusTools_FindDevice

Description

BusTools_FindDevice finds and returns the device number for the specified

BusToos/1553-API supported board. This function accepts the card type and the

instance of the desired board type as input arguments. The function returns the

device number associated with the selected board. If there is a single Abaco Systems

device installed in your system, it is always device 0. If multiple Abaco Systems

boards are installed in a system, including non-1553 boards, an application can

invoke this function to acquire the device number of the desired type of Abaco 1553

board.

The function returns either the device number if the device is found or -1 if the

device is not found. This function may be invoked at any time.

OS Support

Windows only

Syntax

wDevice = BusTools_FindDevice (device_type, instance);

wDevice (BT_INT) the device number (0 – 63) if the device was

discovered, or -1 if the device was not found.

device_type (BT_UINT) PCI1553, QPCI553, QPCX1553, PMC1553,

QPMC1553, QPM1553, AMC1553, QCP1553, Q1041553,

Q1041553P, ISA1553, R15EC, R15AMC, RXMC1553,

R15XMC2, RPCIe1553, LPCIE1553, MPCIE1553

instance (BT_INT) The instance of the specified device type in the

system. This a 1-based number representing instance of the

specified device_type installed in the system, when multiple

boards of that type are installed. See note below.

Return Value

0 – 63 : the device number of the specified device type

-1 : No device matching the specified device type was found

Notes

If you have two PCI-1553 boards installed in your system, use the following calls to

return the device number for each board:

device1 = BusTools_FindDevice(PCI1553,1);

device2 = BusTools_FindDevice(PCI1553,2);

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 183

You can embed this call into BusTools_API_OpenChannel to initialize a specific

channel/device referenced by this function. See the code below:

status = BusTools_API_OpenChannel(&cardnum, mode,

 BusTools_FindDevice(PCI1553,2), CHANNEL_1);

This line of code initializes the first channel on the second PCI-1553 device installed

in the system and returns a “handle” that must be used with all BusTools/1553-API

calls having a cardnum parameter.

184 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.94 BusTools_FirmwareReload

Description

BusTools_FirmwareReload forces an FPGA program reload from flash memory,

supported only with the RAR15-XMC-IT/RAR15XF boards.

A board’s firmware is normally loaded during board power-up. This function allows

the host application to programmatically force a firmware program reload. After

this function is invoked, a reload command is sent to the board, causing the FPGA to

reload the firmware from flash memory. As a result of reloading firmware, the

board will be uninstalled by the operating system. A restart or reboot is required to

re-install the board’s device driver. Currently, this function only supports the

firmware reload for the RAR15-XMC-IT/RAR15XF boards with firmware build

number greater than 0x200. This function will return an error if invoked for any

other board type or firmware revision.

OS Support

Core API Function

Syntax

wStatus = BusTools_FirmwareReload (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_HARDWARE_NOSUPPORT

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 185

4.95 BusTools_FlashLogErase

Description

BusTools_FlashLogErase is one of the methods provided for user applications to

manage application storage and retrieval of data from the Abaco Systems RAR15

combo-card product line flash memory. This function provides the method to erase

a specific sector of user-accessible flash memory. Prior to calling this function, the

channel must be initialized by invoking one of the BusTools/1553-API initialization

functions.

Each sector is 64 KBytes in size. This function accepts the cardnum channel reference

and a sector number. Currently, only four sectors (1-4) can be selected with this

function. It is recommended that an application record the number of

BusTools_FlashLogErase function calls used for each sector, as the flash component

is limited to 100,000 erases per sector program cycle. After 100,000 erase cycles are

reached, the respective sector on the flash component may or may not function

reliably. Note this function is only valid for RAR15-XMC-IT and RAR15XF boards.

This function will return an error if it invoked for any other board type.

To ensure the integrity of flash operations, execution of the BusTools_FlashLogErase

function must be protected by the critical section in concurrent application

programming environments.

OS Support

Core API Function

Syntax

wStatus = BusTools_FlashLogErase (cardnum, sector);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

sector (BT_INT) flash sector to erase. Valid range is 1 to 4.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_HARDWARE_NOSUPPORT

API_BUSTOOLS_NOTINITED

API_BAD_PARAM

186 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.96 BusTools_FlashLogRead

Description

BusTools_FlashLogRead is one of the methods provided for user applications to

manage application storage and retrieval of data from the Abaco Systems RAR15

combo-card product line flash memory. This function provides the method to read a

specified number of data bytes from an offset in the designated flash sector. Prior to

calling this function, the channel must be initialized by invoking one of the

BusTools/1553-API initialization functions.

Each flash sector is 64 KBytes in size. The BusTools_FlashLogRead function accepts

cardnum channel reference, a sector number (1-4), a byte offset into the sector, and

number of bytes to read. It returns the data from this read operation. Note that this

function is only valid for RAR15-XMC-IT and RAR15XF boards. This function will

return an error if invoked for any other board type.

To ensure the integrity of flash operations, execution of the BusTools_FlashLogRead

function must be protected by the critical section in concurrent application

programming environments.

OS Support

Core API Function

Syntax

wStatus = BusTools_FlashLogRead (cardnum, sector, paddr, bcount, rData);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

sector (BT_INT) flash sector to read. Valid range is 1 to 4.

paddr (BT_UINT) byte offset to begin reading within the sector.

Valid range is 0 to 65534.

bcount (BT_UINT) number of bytes to read. Valid range is 1 to 65535.

rData (BT_U8BIT*) reference to the data buffer to be written by this

function, consisting of a minimum memory allocation of

bcount bytes.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_HARDWARE_NOSUPPORT

API_BUSTOOLS_NOTINITED

API_BAD_PARAM

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 187

4.97 BusTools_FlashLogWrite

Description

BusTools_FlashLogWrite is one of the methods provided to user applications to

manage application storage and retrieval of data from the Abaco Systems RAR15

combo-card product line flash memory. This function provides the method to write

a single page of flash memory (up to 256 bytes) into a designated flash sector using

the data values provided. The write action always occurs at the base location of the

designated page. Prior to calling this function, the channel must be initialized by

invoking one of the BusTools/1553-API initialization functions.

Each flash sector is 64 KBytes in size and contains 256 pages each consisting of 256

bytes. The BusTools_FlashLogWrite function accepts cardnum, flash sector (1-4),

page number (0-255) and data values to be written. The designated flash sector must

be erased first before any write operations can be performed. Note that this function

can only be used for board types RAR15-XMC-IT and RAR15XF. This function will

return an error if invoked for any other board type.

To ensure the integrity of flash operations, execution of the BusTools_FlashLogWrite

function must be protected by the critical section in concurrent application

programming environments.

OS Support

Core API Function

Syntax

wStatus = BusTools_FlashLogWrite (cardnum, sector, pagenum, pageData);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

sector (BT_INT) flash sector to write. Valid range is 1 to 4.

pagenum (BT_INT) page number within sector to write. Valid range is 0-

255.

bcount (BT_UINT) number of bytes to write to the location(s)

specified by sector/pagenum. Valid range is 0-255.

pageData (BT_U8BIT*) application data buffer.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_HARDWARE_NOSUPPORT

API_BUSTOOLS_NOTINITED

API_BAD_PARAM

188 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.98 BusTools_GetAddr

Description

BusTools_GetAddr provides the starting and ending memory addresses for a

specified block of a 1553 board register segment or logical RAM memory block. The

returned values are byte offsets from the beginning of the board host interface. The

offsets range from zero to the highest board offset. Prior to calling this function, the

channel must be initialized by invoking one of the BusTools/1553-API initialization

functions.

The available memory block types available include:

• Hardware registers

• Microcode registers

• BC Message Buffers

• BM Filter Buffer

• BM Trigger Buffer

• BM Message Buffers

• BM Control Buffers

• BM Default Control Buffers

• RT Address Control Blocks

• RT Filter Buffers

• RT Message Buffers

• Error Injection Buffers

• Interrupt Queue

• RT Default Message Buffers

• RT Default Control Buffers

• RT Broadcast Control Buffers

• RT MBUF’s

• Differential I/O registers

OS Support

Core API Function

Syntax

wStatus = BusTools_GetAddr (cardnum, memtype, start, end);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 189

memtype (BT_UINT) memory/register segment to reference:

• GETADDR_HWREG: Hardware registers (1).

• GETADDR_RAMREG: Microcode registers (2)

• GETADDR_BCMESS: BC Message Buffers (3).

• GETADDR_BMFILTER: BM Filter Buffer (4).

• GETADDR_BMTRIGGER: BM Trigger Buffer (5).

• GETADDR_BMMESSAGE: BM Message Buffers (6).

• GETADDR_BMCONTROL: BM Control Buffers (7).

• GETADDR_BMDEFCBUF: BM Default Control Buffers (8).

• GETADDR_RTADDRESS: RT Address Control Blocks (9).

• GETADDR_RTFILTER: RT Filter Buffers (10).

• GETADDR_RTDATA: RT Message Buffers (11).

• GETADDR_EI: Error Injection Buffers (12).

• GETADDR_IQ: Interrupt Queue (13).

• GETADDR_RTMBUF_DEF: RT Default Message Buffers (14).

• GETADDR_RTCBUF_DEF: RT Default Control Buffers (15).

• GETADDR_RTCBUF_BRO: RT Broadcast Control Buffers (16)

• GETADDR_PCI_RTDATA: RT MBUF’s (17)

• GETADDR_DIFF_IO (18)

start (BT_U32BIT*) reference to store the beginning offset of the

specified register segment or memory block.

end (BT_U32BIT*) reference to store the ending offset of the

specified register segment or memory block.

Return Value

API_SUCCESS

API_BAD_ADDR_TYPE

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Notes

The symbol “GETADDR_COUNT” defines the number of available memory block

types.

If programming a loop to get and display the offsets, begin the loop with the value

“1”, and end the loop with the value “GETADDR_COUNT”.

190 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.99 BusTools_GetBoardType

Description

BusTools_GetBoardType returns the board type hosting the specified channel

reference/session. Board types available include:

Mnemonic Value Description

QPMC1553 0x110 QPMC-1553 native PMC board

QPM1553 0x110 QPM-1553 (QPMC1553 variant)

QPCX1553 0x220 QPCX-1553 Native PCI board.

Q1041553P 0x180 PC\104 4-Ch Plus board

QVME1553 0x190 Quad Channel VME-1553

PCCD1553 0x200 Dual Channel PCCard-D1553

R15EC 0x230 Dual Channel Express Card (RoHS)

RXMC1553 0x260 Dual Channel XMC (RoHS)

QCP1553 0x210 Quad-Channel cPCI board

RPCIe1553 0x250 RPCIe-1553 (RoHS PCI-E)

R15XMC2 0x300 RXMC2-1553 (RoHS XMC)

R15-LPCIE 0x320 R15-LPCIE (low profile PCI-E)

MPCIE-1553 0x400 MPCIe-1553 (Mini PCI-E)

R15-USB 0x3000 R15-USB USB interface board

RAR15X(F) 0x360 Any Multi-Protocol XMC board

This function can be invoked after initializing a channel with a call to

BusTools_API_OpenChannel or BusTools_API_InitExtended.

OS Support

Core API Function.

Syntax

wType = BusTools_GetBoardType (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

Board Type value (see Above)

API_BUSTOOLS_NOTINITED

API_BUSTOOLS_BADCARDNUM

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 191

4.100 BusTools_GetChannelStatus

Description

BusTools_GetChannelStatus returns a structure containing a summary of

information about the channel specified by the card number parameter. The

application passes a pointer to an API_CHANNEL_STATUS structure and

BusTools_GetChannelStatus fills in the data.

Call this function periodically to assess the condition of the channel. See the

description of the API_CHANNEL_STATUS structure to see the status information

this function returns.

Prior to calling this function, the 1553 channel must be initialized by calling one of

the BusTools/1553-API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_GetChannelStatus (cardnum, cstat);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

cstat (API_CHANNEL_STATUS *) pointer to a channel status

structure.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

4.100.1 API_CHANNEL_STATUS Definition

Note the following definitions are not presented in structure bit order.

Error Status Bits

mf_ovfl Minor frame overflow: 1 = overflow, 0 = no overflow

wcs_pulse WCS heartbeat counter error: 1 = error, 0 = no error

interr Interrupt error: 1 = error, 0 = no error

addr_err Address error: 1 = error, 0 = no error

byte_cnt_err Byte count error on read or write: 0 = no error, 1 = error

192 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

err_info 3-Bit error value for run time errors

0 = No Error

1 = CHAN_STAT_MF_OVFL

2 = CHAN_MEM_TST_FAIL

4 = CHAN_STAT_INT_ERR

Run Status Bits

bc_run BC: 1 = BC is running, 0 = BC is not running

rt_run RT: 1 = RT is running, 0 = RT is not running

bm_run BM: 1 = BM is running, 0 = BM is not running

Operational Status

int_mode Interrupt mode: 1 = H/W interrupts, 0 = S/W polling

run_mode 1553 mode: 1 = 1553A, 0 = 1553B

extbus External bus: 1 = External, 0 = Internal

coupling Bus Coupling: 1 = Transformer, 0 = Direct

SA_31 SA31 used as Mode Code: 1 = yes, 0 = no

broadcast: RT31 used as Broadcast: 1 = yes, 0 = no

irig_on IRIG_B time source: 1 = internal, 0 = external

int_fifo_count Number of interrupt threads running

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 193

4.101 BusTools_GetChannelCount

Description

BusTools_GetChannelCount reads the 1553 channel configuration from the board on

which the supplied channel reference resides. This function returns the channel

count value of 1, 2, or 4; or in the case of an error it returns a status code value in

excess of 200.

Prior to calling this function, the channel must be initialized by invoking one of the

BusTools/1553-API initialization functions.

OS Support

Core API Function.

Syntax

count = BusTools_GetChannelCount (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

Channel Count (1, 2, or 4)

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

194 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.102 BusTools_GetCSCRegs

Description

BusTools_GetCSCRegs returns the contents of the Control Status Configuration

(CSC) registers located in the first two words on most Abaco Systems 1553 boards.

These registers are not supported with native VME 1553 boards. Use

BusTools_ReadVMEConfig to acquire configuration information for native VME

1553 boards. Prior to calling this function, the channel must be initialized by

invoking one of the BusTools/1553-API initialization functions.

There is a single CSC (and possibly AC register) for each Abaco Systems 1553 board.

There are two variations of the CSC register depending on Abaco Systems 1553

board type.

For actively supported boards programmed with UCA32 firmware, the CSC register

has the following format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

acr undefined irig mod channel_num board_type rst0

rst0

This is to be used for board initialization only and the bit cannot be read back.

board_type:

1 QPMC-1553/QPM-1553

3 QPCI-1553/QPCX-1553

5 Q104-1553P (PCI)

7 QCP-1553

8 AMC-1553

9 R15-EC

11 RXMC-1553

12 RPCIe-1553

14 RXMC2-1553

15 R15-LPCIE

16 R15-USB

18 RAR15X(F) (RAR15-XMC-FIO, RAR15-XMC-IT)

19 R15-PMC

20 R15-MPCIE

channel_num

These five read-only bits determine the number of 1553 channels on the board. The

following are possible values:

1 One 1553 channel

2 Two 1553 channels

4 Four 1553 channels

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 195

mode

This read-only bit determines if the board is single-mode/dual-mode (0) or multi-

mode (1).

irig

This read-only bit determines if IRIG is enabled (1) or not (0).

acr

ACR present. This read-only bit indicates if the Advance Capabilities Register (ACR)

is present (1) or not (0).

For legacy boards the CSC register has the following format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bt[1..0] pr2 pr1 f2 f1 m2 m1 sb2 sb1 su2 su1 rsvd rst2 rst1 rst0

Byte 0: Reset/Power Control

rst0 7K reset (write only)

rst1 reset bus 1 LPU (write only)

rst2 reset bus 2 LPU (write only)

rsvd reserved

su1 CH 1 WCS set-up complete

su2 CH 2 WCS set-up complete

sb1 CH 1 in standby power mode

sb2 CH 2 in standby power mode

Byte 1: Board ID bits

m1 CH 1 multiple mode (read only)

m2 CH 2 multiple mode (read only)

f1 CH 1 1553/1773 (read only)

f2 CH 2 1553/1773 (read only)

pr1 CH 1 present (read only)

pr2 CH 2 present (read only)

bt[1..0] host bus type ID (read only)

OS Support

Core API Function

Syntax

wStatus = BusTools_GetCSCRegs (cardnum, csc, acr);

wStatus (BT_INT) status returned from this function.

196 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

csc (BT_U16BIT *) location to receive the CSC register

information.

acr (BT_U16BIT *) location to receive the AC register information.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 197

4.103 BusTools_GetDevInfo

Description

BusTools_GetDevInfo returns information about an Abaco Systems 1553 device

installed in Windows O/S based host.

For PCI, PCI Express, ExpressCard, and PCMCIA devices, the wDevice parameter is

the board installation device ID (0 – 63).

For VME devices use the A16 address (default 0xC3C0 for VME\VXI) in place of a

board installation ID. If you are checking VME devices, you must have the National

Instruments VXI/VISA libraries installed and use the BTVXIMAP.DLL interface

library.

Invocation of this function does not require board initialization.

OS Support

Core API function

Syntax

wStatus = BusTools_GetDevInfo (device, pInfo);

device (BT_INT) BusTools/1553-API card number. Valid range is 0 to

63.

pInfo (DEVICE_INFO *) location to store the device information

structure content; see Device Information (DEVICE_INFO).

Return Value

API_SUCCESS

API_BAD_PRODUCT_LIST

API_INSTALL_ERROR

BTD_ERR_BADADDRMAP

BTD_ERR_LOAD_CEIINST

BTD_ERR_NOACCESS

BTD_ERR_PARAM

BTD_LL_CLOSE_ERR

BTD_LL_OPEN_ERR

198 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.104 BusTools_GetFWRevision

Description

BusTools_GetFWRevision returns the firmware revision of the board on which the

channel referenced is installed. There are two parts to the firmware: Local

Processing Unit (LPU) and Writeable Control Store (WCS). This function returns

both the LPU and WCS revisions. Additionally, this function returns the Build

number. For firmware V5.x and earlier the build number is the LPU build number;

for firmware V6.x, this is the FPGA build number.

Prior to calling this function, the channel must be initialized by invoking one of the

BusTools/1553-API initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_GetFWRevision (cardnum, wrev, lrev, build);

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

wrev (float *) location to store the WCS revision number (floating

point representation, e.g., 3.88).

lrev (float *) location to store the LPU revision number (floating

point representation, e.g., 6.15).

build (BT_INT *) F/W Build number.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 199

4.105 BusTools_GetPulse

Description

BusTools_GetPulse returns the contents of the WCS Heartbeat Register. Because the

LPU firmware continually increments the value in this register, changes in the value

with successive reads indicate whether the microcode is executing. If the register

contents stop changing, the WCS is no longer executing.

Prior to calling this function, the channel must be initialized by invoking one of the

BusTools/1553-API initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_GetPulse (cardnum, beat);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

beat (BT_U32BIT *) location to which the current

Heartbeat register value is written.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

200 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.106 BusTools_GetRevision

Description

This function returns the revision of the API and the microcode the board on which

the supplied channel reference resides. Prior to calling this function, the channel

must be initialized by invoking one of the BusTools/1553-API initialization functions.

When creating a string to display the revision codes, make sure to display the

ucode_rev in hexadecimal format, and the api_rev in decimal format.

OS Support

Core API Function

Syntax

wStatus = BusTools_GetRevision (cardnum, ucode_rev, api_rev);

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

ucode_rev (BT_UINT*) location to receive the firmware revision number

(hexadecimal).

api_rev (BT_UINT*) location to receive the API revision number

(decimal).

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Notes

The ucode_rev firmware revision number is filled in as follows:

• Firmware version is computed as follows:

o LPU Revision (3 digits) +

o Single Function Flag * 1000 +

o PROM Revision Digit * 10000.

For example, a ucode_rev value of 31321 shows:

o PROM Revision – 3

o Single Function – Yes (1 indicates a single/dual-function board)

o Firmware (WCS and FPGA) – 3.21

• While a ucode_rev value of 40380 shows:

o PROM Revision – 4

o Single Function – No

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 201

o Firmware(fpga) – 3.80

 NOTE
Only a few older products still use the PROM revision. For current boards it is set to zero. The newer
function BusTools_GetFWRevision is recommended.

202 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.107 BusTools_GetSerialNumber

Description

Each Abaco Systems 1553 board has either a four- or five-digit serial number. Some

1553 boards have the serial number stored in flash. BusTools_GetSerialNumber

provides a method to acquire the board’s serial number.

Prior to calling this function, the channel must be initialized by invoking one of the

BusTools/1553-API initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_GetSerialNumber (cardnum, serial_number);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

serial_number (BT_U32BIT *) location to receive the serial number.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 203

4.108 BusTools_GetTermEnable

Description

The RXMC2-1553 and R15-LPCIE have two differential discrete I/O lines supporting

switchable termination. BusTools_GetTermEnable provides the method to read the

setting for the 120-Ω termination on these discrete channels. See the respective 1553

board-specific chapter in the MIL-STD-1553 Hardware Installation and Reference

Manual for information about board features supported and the section titled RS485

Transmit & Control within the Global Register Description chapter of the UCA32

Global Register Reference manual for descriptions of the use of RS485 the

termination.

OS Support

Core API Function

Syntax

wStatus = BusTools_GetTermEnable (cardnum, tEnable);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

tEnable (BT_U16BIT *) location to receive the current termination

setting. Valid range is 0 to 3.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

204 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.109 BusTools_GetTimeTagMode

Description

BusTools_GetTimeTagMode returns the current application defined time and time-

stamp features used within BusTools/1553-API, assigned via invocation of

BusTools_TimeTagMode.

• Time Display Format, valid values are:

API_TT_DEFAULT

API_TTD_RELM

API_TTD_IRIG

API_TTD_DATE

API_TTD_RELM_NS

API_TTD_IRIG_NS

API_TTD_DATE_NS

• Time-Tag Initialization Selection, valid values are:

API_TTI_ZERO

API_TTI_DAY

API_TTI_IRIG

API_TTI_EXT

API_TTI_IRIG64

API_TTI_DAY64

• Operating Mode options, valid values are:

API_TTM_FREE

API_TTM_RESET

API_TTM_SYNC

API_TTM_RELOD

API_TTM_IRIG

API_TTM_AUTO

API_TTM_XCLK

• External Time-tag Synchronization Period. For Version 4/5 firmware, this value

is defined as the current value of the Time Tag Counter Increment Register,

having a resolution of 1µs and a range from 0 to 65535. For Version 6 firmware

this value is defined as the current value of the External Increment Count field

located in the UCA32 Time Tag Counter Control Register, having a resolution of

1ns and a range from 0 to 1023.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 205

OS Support

Core API Function

Syntax

wStatus = BusTools_GetTimeTagMode (cardnum, pTTDisplay, pTTinit, pTTMode,

pTTPeriod);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

pTTdisplay (BT_INT *) the current time display format.

pTTInit (BT_INT *) the current time tag initialization selection.

pTTMode (BT_INT *) the current time tag operation mode.

pTTPeriod (BT_U32BIT *) the current timer increment period selection for

external time sync mode.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

206 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.110 BusTools_GetValidDiscrete

Description

BusTools_GetValidDiscrete returns a 32-bit bitwise encoded value defining the

discrete channels available on the board.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function (F/W version 6.01 or greater).

Syntax

wStatus = BusTools_GetValidDiscrete (cardnum, disSetting);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

disSetting (BT_U32BIT *) location to write the value reflecting the

available discrete channels.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 207

4.111 BusTools_GetValidPio

Description

BusTools_GetValidPio returns a 32-bit bitwise encoded value defining the PIO

channels that are available on the board.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function (F/W version 6.01 or greater).

Syntax

wStatus = BusTools_GetValidPio (cardnum, pioSetting);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

pioSetting (BT_U32BIT *) location to write the value reflecting the

available PIO channels.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

208 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.112 BusTools_GetValidDiff

Description

These functions return a 32-bit bitwise encoded value defining the differential

channels that are available on the board.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function (F/W version 6.01 or greater).

Syntax

wStatus = BusTools_GetValidDiff (cardnum, diffSetting);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

diffSetting (BT_U32BIT *) location to write the value reflecting the

available differential channels.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 209

4.113 BusTools_InterMessageGap

Description

BusTools_InterMessageGap computes the inter-message time gap between two

successive MIL-STD-1553B messages recorded by the Bus Monitor. It first calculates

the difference between the two time tags and then subtracts the time the first

message used on the bus.

Messages are time-stamped at the mid sync of the command word, and the

intermessage gap time is defined as the time between the mid parity of the last word

of the previous message to the mid sync of the command word of the current

message. The mid parity occurs 0.5 us before the end of the word, and the mid sync

occurs 1.5 us after the command word starts, so the intermessage gap time is 2 us

LESS than the bus dead time.... Response times are measured like gap times; 2 us

greater than the bus dead time.

Only use BusTools_InterMessageGap for host configurations where boards with

V4/5 firmware are installed.

OS Support

Core API Function

Syntax

dStatus = BusTools_InterMessageGap (first, second);

dStatus (BT_U32BIT) Inter-message gap time in microseconds.

first (API_BM_MBUF *) pointer to first message.

second (API_BM_MBUF *) pointer to second message.

Notes

This function returns a calculated value since the 1553 firmware does not directly

measure the inter message gap time. If certain undetected bus errors occur, the gap

time returned might be inaccurate. For normal messages (and normal errors such as

no response, message error, etc.), the value returned is accurate. The gap time is not

accurate for MIL-STD-1553A mode codes.

210 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.114 BusTools_InterMessageGap2

Description

BusTools_InterMessageGap2 computes the inter-message time gap between two

successive MIL-STD-1553B messages recorded by the Bus Monitor. It first calculates

the difference between the two time tags and then subtracts the time the first

message used on the bus.

Messages are time-stamped at the mid sync of the command word, and the

intermessage gap time is defined as the time between the mid parity of the last word

of the previous message to the mid sync of the command word of the current

message. The mid parity occurs 0.5 us before the end of the word, and the mid sync

occurs 1.5 us after the command word starts, so the intermessage gap time is 2 us

LESS than the bus dead time.... Response times are measured like gap times; 2 us

greater than the bus dead time.

Use the function BusTools_InterMessageGap2 when using a board with V6 firmware

or a mix of boards having V4/5 and V6 firmware.

OS Support

Core API Function

Syntax

dStatus = BusTools_InterMessageGap2 (flag, first, second);

dStatus (BT_U32BIT) Inter-message gap time in microseconds.

flag (BT_UINT) Time-tag resolution flag; use 0 with any V4/5

firmware-based board (resolution is in µs), or 1 with any V6

firmware-based board (resolution is in ns).

first (API_BM_MBUF *) pointer to first message.

second (API_BM_MBUF *) pointer to second message.

Notes

This function returns a calculated value since the 1553 firmware does not directly

measure the inter message gap time. If certain undetected bus errors occur, the gap

time returned might be inaccurate. For normal messages (and normal errors such as

no response, message error, etc.), the value returned is accurate. The gap time is not

accurate for MIL-STD-1553A mode codes.

4.115 BusTools_IRIG_Calibration

Description

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 211

BusTools_IRIG_Calibration calibrates the external IRIG signal threshold on boards

supporting the IRIG time function (see Table 1-2), setting the input DAC for optimal

reception of IRIG AM signals. Calibration adjusts the peak detection threshold to

82.5% of the maximum peak using the formula Vmin + .825(Vmax – Vmin). Where

Vmax is the maximum peak amplitude detection level and Vmin is the minimum

peak detection level. The external IRIG signal threshold is set to 3 volts by default,

typically a valid threshold for an IRIG DC source.

IRIG-B is common to all channels on a board. Prior to invoking this function,

initialize a channel using one of the BusTools/1553-API Initialization functions.

Subsequently invoke BusTools_TimeTagMode to enable IRIG source timing before

calibration by selecting the API_TTM_IRIG mode.

OS Support

Core API Function

Syntax

wStatus = BusTools_IRIG_Calibration (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_INT) print flag. When set to 0, calibration information is

unreported; when set to 1, this function will print the

calibration information to the console.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

BTD_IRIG_NO_LOW_PEAK

BTD_IRIG_NO_HIGH_PEAK

BTD_IRIG_LEVEL_ERR

212 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.116 BusTools_IRIG_Config

Description

BusTools_IRIG_Config configures the IRIG function on boards supporting the IRIG

time function (see Table 1-2). This function allows an application to select an

internal or external IRIG time source and control the output of the IRIG generator

signal.

IRIG-B is common to all channels on a board. Prior to invoking this function,

initialize a channel using one of the BusTools/1553-API Initialization functions.

Subsequently invoke BusTools_TimeTagMode to enable IRIG source timing before

calibration by selecting the API_TTM_IRIG mode.

If an application is required to use the onboard IRIG time generator, initialize the

current IRIG time via invocation of BusTools_IRIG_SetTime. If an application

requires use of an external IRIG signal source, it is recommended to calibrate the

IRIG receiver to that signal using BusTools_IRIG_Calibration. Invoke

BusTools_IRIG_Valid to determine if the IRIG receiver is detecting a valid IRIG

signal.

OS Support

Core API Function

Syntax

wStatus = BusTools_IRIG_Config (cardnum, intFlag, outFlag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

intFlag (BT_UINT) IRIG source flag. Options are:

IRIG_INTERNAL to internally wrap the onboard IRIG

generator as the IRIG source.

IRIG_EXTERNAL select the IRIG receiver I/O pins for the

IRIG source.

outFlag (BT_UINT) External IRIG generator output flag. Options are:

IRIG_OUT_ENABLE to enable external output of the IRIG

generator signal.

IRIG_OUT_DISABLE to disable external IRIG.

Return Value

API_SUCCESS:

API_BUSTOOLS_BADCARDNUM

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 213

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

214 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.117 BusTools_IRIG_SetTime

Description

BusTools_IRIG_SetTime sets the IRIG encoded time output by the onboard IRIG

generator. If the IRIG generator is not set using this function, time will start

incrementing from 0 at board power-up.

IRIG-B is common to all channels on a board. Prior to invoking this function,

initialize a channel using one of the BusTools/1553-API Initialization functions.

When setting the initial IRIG time, two options for a time base are available:

1. GMTIME (0): This option converts a time in seconds since the Epoch (00:00:00

UTC, January 1, 1970) into a time expressed as Coordinated Universal Time, or

UTC (e.g., the time at the GMT time zone).

2. LOCALTIME (1): This option converts a time in seconds since the Epoch

(00:00:00 UTC, January 1, 1970) into a time expressed as a local system time. The

function corrects for the time zone and any seasonal adjustments.

OS Support

Core API Function

Syntax

wStatus = BusTools_IRIG_SetTime (cardnum, timedate, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

timedate (time_t) a time_t time value. Set to -1 to use system time.

flag (BT_U32BIT) For a value of GMTIME (0), the timedate value is

converted to UTC; for a value of LOCALTIME (1), the timedate

value is converted to local time.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Notes

To set the IRIG to a value other than the system time pass a time_t parameter

containing the encoded time. The following code example shows how to set the

IRIG time to noon 4 July 2005. mktime returns -1 if it cannot convert the struct

tm_data into a time.

struct tm btime;

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 215

time_t tdate;

btime.tm_sec=1;

btime.tm_min=0;

btime.tm_hour=12;

btime.tm_mon=7-1; // Make sure to use “Month-1”

btime.tm_mday=4;

btime.tm_year=2005-1900;

btime.tm_isdst = -1;

tdate = mktime(&btime);

if (tdate == -1) {

 printf(“time conversion error; using system time\n);

}

status = BusTools_IRIG_SetTime(cardnum, tdate, 1);

printf("BusTools_IRIG_SetTime status = %d\n", status);

216 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.118 BusTools_IRIG_Valid

Description

BusTools_IRIG_Valid determines if there is a valid external IRIG signal present. The

function returns API_SUCCESS if the IRIG signal is valid and an error if it is not

valid.

If the application has configured the board to use the internal IRIG clock, this

invocation will always return API_SUCCESS. If an external IRIG source is used and

this function returns API_IRIG_NO_SIGNAL, it is recommended to calibrate the

IRIG receiver to that signal using BusTools_IRIG_Calibration.

Prior to calling this function, the channel must be initialized by calling one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_IRIG_Valid (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

API_IRIG_NO _SIGNAL

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 217

4.119 BusTools_ListDevices

Description

This function returns a list of Abaco Systems MIL-STD-1553 Plug-n-Play devices

installed in your system. This function also returns other device-related information

in a “DeviceList” structure.

 NOTE
The calling application must allocate storage for 16 DeviceList array entries.

This function may be invoked at any time, it does not require a previously opened

session with a board.

OS Support

Core API Function

Syntax

wStatus = BusTools_ListDevices (list);

wStatus (BT_INT) status returned from this function.

list (DeviceList *) Location to store the DeviceList structure.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

API_IRIG_NO _SIGNAL

4.119.1 Device List Structure Contents

Num_devices Number of MIL-STD-1553 devices found in the system.

Device_name Integer Array of device types, valid values are:

QPMC-1553 0x110

QPCI-1553 0x160

Q104-1553P 0x180

QCP-1553 0x210

QPCX-1553 0x220

R15-EC 0x230

QPM-1553 0x110

R15-AMC 0x240

RPCIE-1553 0x250

RXMC-1553 0x260

RXMC2-1553 0x300

R15-LPCIE 0x320

RAR15-XMC 0x360

218 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

R15-PMC 0x380

R15-MPCIE 0x400

R15-USB 0x3000

Device_num Integer Array of device numbers

Name Character Array of device names in ASCII

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 219

4.120 BusTools_MemoryAlloc

Description

BusTools_MemoryAlloc provides a method for the application to allocate a block of

memory on the Abaco Systems 1553 board when it is programmed with version 4.x

or 5.x firmware. Currently, the only use for this block is for referencing one or more

words by conditional BC messages.

Only invoke BusTools_MemoryAlloc after initializing the memory system via

BusTools_BM_Init, and before invoking BusTools_XX_StartStop to start the

execution of the board’s microcode. This function will allocate space in the lower

64K for 16-bit data and ensure an even WORD boundary. The function returns an

API_BUSTOOLS_NO_MEMORY error if the allocated block causes the memory

allocation pointer to exceed 64K words. In this case, the function allocates no

memory.

If an application requires larger amounts of memory than this function is capable of

allocating, use the BC message allocation functions to allocate enough room for both

the messages and the buffer. Invoke BusTools_BC_MessageGetaddr to acquire the

address of the allocated buffer.

Prior to invoking this function, initialize a channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_MemoryAlloc (cardnum, segnum, bcount, addr);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

segnum (BT_UINT) memory segment number (0 indicates SEG1).

bcount (BT_U32BIT) number of bytes to reserve.

addr (BT_U32BIT*) location to store the starting address of the

reserved block.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BUSTOOLS_BADSEGNUM

API_BUSTOOLS_EVENBCOUNT

220 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.121 BusTools_MemoryAlloc32

Description

BusTools_MemoryAlloc32 provides a method for the application to allocate a block

of memory on the Abaco Systems 1553 board when it is programmed with version

6.x firmware. Currently, the only use for this block is for referencing one or more

words by conditional BC messages.

Only invoke BusTools_MemoryAlloc32 after initializing the memory system via

BusTools_BM_Init, and before invoking BusTools_XX_StartStop to start the

execution of the board’s microcode. This function will allocate space in the lower

64K for 16-bit data and ensure an even WORD boundary. The function returns an

API_BUSTOOLS_NO_MEMORY error if the allocated block causes the memory

allocation pointer to exceed 64K words. In this case, the function allocates no

memory.

If an application requires larger amounts of memory than this function is capable of

allocating, use the BC message allocation functions to allocate enough room for both

the messages and the buffer. Invoke BusTools_BC_MessageGetaddr to acquire the

address of the allocated buffer.

Prior to invoking this function, initialize a channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_MemoryAlloc32 (cardnum, segnum, bcount, addr);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

segnum (BT_UINT) memory segment number (0 indicates SEG1).

bcount (BT_U32BIT) number of bytes to reserve.

addr (BT_U32BIT*) location to store the starting address of the

reserved block.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BUSTOOLS_BADSEGNUM

API_BUSTOOLS_EVENBCOUNT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 221

4.122 BusTools_MemoryAvailable

Description

BusTools_MemoryAvailable returns the memory available for programming Bus

Controller, Remote Terminal, or Bus Monitor buffers. Each channel on a 1553

interface board has 1 megabyte of memory available for programming the BC, RT, or

BM functions. BusTools/1553-API allocates the Bus Controller and Bus Monitor

buffers from the bottom of memory up and the Remote Terminal buffer for the top of

memory down. That area between the BC and BM buffer (bottom memory) and the

RT buffers (top memory) is the available memory for the channel.

Prior to invoking this function, initialize a channel using one of the BusTools/1553-

API Initialization functions.

OS Support

Core API Function.

Syntax

wStatus = BusTools_MemoryAvailable (cardnum, bytes);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

bytes (BT_U32BIT *) Pointer to variable to contain the amount of

available memory, in bytes.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

222 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.123 BusTools_MemoryRead(obsoleted)

Description

BusTools_MemoryRead is obsolete and no longer supported in the API; however, it

will remain supported in the API for legacy applications. BusTools_MemoryRead2 is

the replacement function for BusTools_MemoryRead.

OS Support

Core API Function

Syntax

wStatus = BusTools_MemoryRead (cardnum, addr, bcount, buff);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

addr (BT_U32BIT) 1553 board memory address/register offset to

read.

bcount (BT_U32BIT) number of bytes to read.

buff (VOID*) location where data read will be stored.

Return Value

API_SUCCESS

API_BAD_PARAM

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 223

4.124 BusTools_MemoryRead2

Description

BusTools_MemoryRead2 provides direct read access to Abaco Systems 1553 board

memory. It requires the calling application to request a specific memory region to

read, accounting for the firmware version programmed on the respective board.

Refer to either the UCA32 Global Register Reference Manual or the MIL-STD-1553

Universal Core Architecture Manual for the memory map applicable to the respective

firmware host interface.

The calling application will supply the address within the region, the number of

bytes/registers to read, and the address of a host buffer to receive the data. The

address within the region is the offset from the start of the respective memory region

and not the offset from the board’s base address. This function will calculate the

actual board offset based on the memory region.

Although it is normally not necessary to directly read or write board memory, the

API provides this function to allow the application full access to board memory.

This function is useful for optimizing user applications.

Prior to calling this function, the channel must be initialized by calling one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_MemoryRead2(cardnum, region, start, count, buff);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

region (BT_INT) Memory Regions:

RAM (0) Dual port RAM

HWREG (1) Hardware Registers

RAMREG (2) RAM Registers, (F/W 5.x or earlier)

HIF (3) Host Interface

RAM32 (4) Dual port RAM

Region values supported by F/W Version 6.0 or greater only:

RELRAM32 (5) Dual port RAM

RELRAM (6) Dual port RAM

TRIGREG (7) Trigger registers

TTREG (8) Time tag registers

https://www.abaco.com/download/uca32-global-reg-ref-manual

224 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

BMRAM32 (9) Dual port RAM

start (BT_U32BIT) memory address/register to be read

count (BT_U32BIT) number of elements to read (must be less than

64 KBytes). The count parameter is interpreted as different

size memory and register read operations, dependent on the

board’s firmware version. The size of each read access, and

the meaning of count is defined below:

 Region V4/V5 V6

 HIF byte count register count

 HWREG register count register count

 RAMREG register count N/A, error

 RAM byte count 1 byte count1

 RAM32 byte count 2 byte count 2

 RELRAM32 N/A, error byte count 2

 RELRAM N/A, error byte count 1

 TRIGREG N/A, error N/A3

 TTREG N/A, error N/A3

 BMRAM32 N/A, error 32-bit elements2

 NOTES
1: data read is a 16-bit value, so count must be even, (odd byte count will result in an error) count should be
modulo 2, a non-modulo 2 value will be truncated to lower modulo 2 value

2: data read is a 32-bit value, count must be even, (odd byte count will result in an error), count should be
modulo 4, a non-modulo 4 value will be truncated to lower modulo 4 value

3: data read is a single 32-bit register value, the count parameter is not used

buff (VOID*) location to store data read. The size of each read

access is defined as follows, dependent on the board’s

firmware version:

 Region V4/V5 V6

 HIF 16-bit 32-bit

 HWREG 16-bit 32-bit

 RAMREG 16-bit N/A, error

 RAM 16-bit 16-bit

 RAM32 32-bit 32-bit

 RELRAM32 N/A, error 32-bit

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 225

 RELRAM N/A, error 16-bit

 TRIGREG N/A, error 32-bit

 TTREG N/A, error 32-bit

 BMRAM32 N/A, error 32-bit

Return Value

API_SUCCESS

API_BAD_PARAM

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

226 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.125 BusTools_MemoryWrite(obsoleted)

Description

BusTools_MemoryWrite is obsolete but will remain as part of the API for legacy

applications.

OS Support

Core API Function

Syntax

wStatus = BusTools_MemoryWrite(cardnum, addr, bcount, buff);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) busTools board number

addr (BT_U32BIT) busTools memory address to be written

bcount (BT_U32BIT) byte count.

buff (VOID*) buffer from which data is transferred.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 227

4.126 BusTools_MemoryWrite2

Description

BusTools_MemoryWrite2 provides direct write access to channel memory. It

requires the caller to specify the memory region being written. All Abaco Avionics

1553 interface boards have four memory regions, Host Interface, Hardware

Registers, File (RAM) Registers, and dual-port RAM. Each of these regions have a

board dependent offset. Refer to the MIL-STD-1553 Universal Core Architecture

Manual for the memory map for the different Abaco Avionics boards.

Although it is normally not necessary to directly read or write Abaco Systems 1553

board memory, this function is provided where the other API functions are either

awkward to use, too slow, or do not provide the required functionality.

Prior to calling this function, the channel must be initialized by calling one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_MemoryWrite2 (cardnum, region, addr, bcount, buff);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

region (BT_INT) Memory Regions:

RAM (0) Dual port RAM

HWREG (1) Hardware Registers

RAMREG (2) RAM Registers, (F/W 5.x or earlier)

HIF (3) Host Interface

RAM32 (4) Dual port RAM

Region values supported by F/W Version 6.0 or greater only:

RELRAM32 (5) Dual port RAM

RELRAM (6) Dual port RAM

TRIGREG (7) Trigger registers

TTREG (8) Time tag registers

addr (BT_U32BIT) memory address/register to be written

bcount (BT_U32BIT) number of elements to write (must be less than

64K bytes). The count parameter is interpreted as different

size memory and register write operations, dependent on the

board’s firmware version. The size of each write access, and

the meaning of count is defined below:

228 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

 Region V4/V5 V6

 HIF byte count register count

 HWREG register count register count

 RAMREG register count N/A, error

 RAM byte count 1 byte count1

 RAM32 byte count 2 byte count 2

 RELRAM32 N/A, error byte count 2

 RELRAM N/A, error byte count 1

 TRIGREG N/A, error N/A3

 TTREG N/A, error N/A3

 BMRAM32 N/A, error 32-bit elements2

 NOTES
1: data written is a 16-bit value, so count must be even, (odd byte count will result in an error) count should
be modulo 2, a non-modulo 2 value will be truncated to lower modulo 2 value

2: data written is a 32-bit value, count must be even, (odd byte count will result in an error), count should be
modulo 4, a non-modulo 4 value will be truncated to lower modulo 4 value

3: data written is a single 32-bit register value, the count parameter is not used

buff (VOID*) location of data to be written. The size of each

element is defined as follows, dependent on the board’s

firmware version:

 Region V4/V5 V6

 HIF 16-bit 32-bit

 HWREG 16-bit 32-bit

 RAMREG 16-bit N/A, error

 RAM 16-bit 16-bit

 RAM32 32-bit 32-bit

 RELRAM32 N/A, error 32-bit

 RELRAM N/A, error 16-bit

 TRIGREG N/A, error 32-bit

 TTREG N/A, error 32-bit

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 229

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

230 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.127 BusTools_PCI_Reset/BusTools_VME_Reset

Description

These functions enable or disable an Abaco Systems 1553 board’s ability to respond

to a PCI or VME reset request. The default condition after initialization is to ignore a

PCI or VME reset signal; when in this configuration if a PCI or VME reset is initiated

by the host, the board will continue operating. If you enable the PCI or VME reset

with one of these functions, the board responds to a PCI or VME reset and stops

operating, returning to its initial power-up state.

The board reset affects all channels on a PCI or VME device, not just the channel

reference supplied in the cardnum parameter.

BusTools_PCI_Reset supports Abaco Systems PCI-based 1553 devices.

BusToos_VME_Reset only supports the QVME-1553 and RQVME2-1553 boards.

Prior to calling this function, you must initialize the channel by calling one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function (PCI Reset valid for API version 5.90 and F/W version 4.20. VME

Reset valid for API version 6.0 and F/W version 4.23)

Syntax

wStatus = BusTools_PCI_Reset (cardnum, reset_flag);

wStatus = BusTools_VME_Reset (cardnum, reset_flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

reset_flag (BT_UINT) Reset Enable Flag: 1 - Enable Reset; 0 -Disable

Reset

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 231

4.128 BusTools_Playback

Description

The Playback Function allows you to re-play previously captured MIL-STD-1553

data in real time on a standard 1553 bus. This function accepts a file recorded by the

Bus Monitor and recreates the messages stored in the file as actual messages on the

1553 bus. Bus Playback can filter the records in the file by either record number or

RT. When using the record number filter, the caller must define the start and stop

record numbers via the respective parameters. When defining the RT’s to include in

the playback operation, they must be defined in a bit-encoded unsigned 32-bit

integer containing the active and filtered RTs (bit 0=RT0, bit 1=RT1, etc.; 1 = playback

is active for this RT, 0 = playback is inactive for this RT).

Playback uses a bmd or bmdx file recorded by the BusTools/1553-Analyzer or user

application to recreate the bus traffic. Starting with BusTools/1553-API version 8.0

the output of the Bus Monitor must be formatted as a bmdx file. “bmdx” files

contain a header record indicating whether the time-tag units are µs or ns. The

header is followed by API_BM_MBUF records, matching the format of a bmd file;

however, starting with BusTools/1553-API Version 8.0, the definition of the

API_BM_MBUF datatype utilizes a 64-bit time-tag versus previous API revisions

that utilize a 48-bit time-tag. Playback files recorded with API Versions before

Version 8.0 cannot be used with BusTools/1553-API Version 8.0 or later. Bmdx files

can only be used for playback with BusTools/1553-API Version 8.0 or later.

For message playback, the Playback function executes exclusive to the Bus Monitor;

the Bus Controller and/or RT function on the respective channel should be disabled.

If other functionality is active, Playback message content may be corrupted. It is an

application requirement to ensure that all RT and the Bus Controller functionality is

inactive during playback. An invocation of the function BusTools_Playback initiates

playback processing, and that processing will continue executing as long as there are

records remaining in the playback buffer(s). Playback progress can be monitored via

the API_PLAYBACK_STATUS data structure provided in the API_PLAYBACK

structure parameter with the BusTools_Playback invocation. To terminate the

playback operations prior to completion, invoke BusTools_Playback_Stop.

Bus Playback relies on the time-tags in the Playback Input file (.bmd or .bmdx) to

output the records onto the bus at the proper time. Bus Playback expects the time-

tags to be monotonically increasing with record number or cycling every second. If

the time-tags do not match either of these two conditions, Bus Playback will not

function correctly. Bus Playback also has limited error replication ability. Bus

Playback can handle No Response, Low Word Count, Parity, and Inverted Sync

errors. Other message errors have an undetermined effect on Bus Playback.

Prior to calling this function, the channel must be initialized by calling one of the

BusTools/1553-API Initialization functions.

OS Support

232 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Windows and UNIX.

Syntax

wStatus = BusTools_Playback (cardnum, playbackData);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

playbackData (API_PLAYBACK) Structure of playback data.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_PLAYBACK_INIT_ERROR

API_PLAYBACK_BAD_THREAD

API_PLAYBACK_BAD_FILE

API_PLAYBACK_BAD_EVENT

API_PLAYBACK_BUF_EMPTY

API_PLAYBACK_BAD_EXIT

API_PLAYBACK_BAD_MEMORY

API_PLAYBACK_DISK_READ

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 233

4.129 BusTools_Playback_Check

Description

BusTools_Playback_Check searches a Playback input file (file extension .bmd) for

either out of sequence time-tags or large gaps in successive time-tags. Run this check

on an input file prior to running playback to make sure that the file has no problems

that affect how Playback will execute.

The Playback mode uses time-tags to determine when to process the next 1553

transaction. If the Playback Input file has time-tags that are out of sequence (e.g., a

time-tag less than the previous), Playback will “hang” until the Playback timer rolls

over. Playback will stay in this wait state for over 1 hour. Thus, to avoid this “hang-

up”, all time-tags in the Playback Input file must be in ascending order. The

function returns API_PLAYBACK_TIME_ORDER if one or more time-tags is out of

sequence in the file.

This function returns API_PLAYBACK_TIME_GAP if the time between any two

successive time-tags is greater than the wMin parameter value as provided in the

calling sequence.

The input arguments to this function are a Playback Input file name, (normally

generated by the BusTools/1553 Analyzer), and a minimum time gap value. This

function can be called at any time since it does not require an initialized 1553

board/session.

OS Support

Windows and UNIX.

Syntax

wStatus = BusTools_Playback_Check (bmd_file, wMin);

wStatus (BT_INT) status returned from this function.

bmd_file (char *) name of the bmd file to check.

wMin (BT_UINT) number of minutes that define the minimum size

of a time-tag gap.

Return Value

API_PLAYBACK_TIME_ORDER

API_PLAYBACK_TIME_GAP

4.130 BusTools_Playback_Stop

Description

234 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

BusTools_Playback_Stop terminates playback operations. It should be called to

prematurely terminate playback execution or at the end of a successful playback.

See BusTools_Playback for a complete description of the bus playback functions.

Prior to calling this function, the channel must be initialized by invoking one of the

BusTools/1553-API Initialization functions.

OS Support

Windows and UNIX.

Syntax

wStatus = BusTools_Playback_Stop (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 235

4.131 BusTools_ReadBoardTemp

Description

BusTools_ReadBoardTemp reads the temperature sensors on boards equipped with

this feature. The value returned is the internal temperature of the temperature sensor

mounted on the PWB, in °C. Negative temperatures will be the 2’s compliment of

the value.

The RAR15-XMC-IT/RAR15XF boards have five different temperature options.

Other designs have a single option. If this function is called for a board without a

temperature sensor, the function returns API_HARDWARE_NOSUPPORT. If an

application references a temperature location other than INTERNAL for any board

other than an RAR15-XMC-IT/RAR15XF, the selected sensor will default to

INTERNAL.

Prior to calling this function, initialize the channel using one of the BusTools/1553-

API Initialization functions. All channels on a board read the same sensors and

return the same respective values.

OS Support

Core API Function

Syntax

wStatus = BusTools_ReadBoardTemp (cardnum, location, tmp);

wStatus (BT_INT) status returned from this function.

cardnum (BT_INT) channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

location (BT_UINT) Sensor location:

 INTERNAL (0)

 TFPGA (1)

 TZBT (2)

 TCHANNEL (3)

 TBOARD (4)

tmp (BT_INT *) location to store the sensor temperature value, in

°C.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_OVER_TEMP_ALARM

API_HARDWARE_NOSUPPORT

236 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.132 BusTools_ReadVMEConfig

Description

BusTools_ReadVMEConfig returns the contents of the VME configuration registers

in the A16 region on a VME/VXI 1553 interface board. The region contains data on

the setup and version of the board. Reading this data can help with debugging VME

setup problems, such as memory map and interrupts. This function only applies to

the QVME-1553 and RQVME2-1553 boards.

Prior to calling this function, the channel must be initialized by invoking

BusTools_API_InitExtended.

OS Support

Core API Function

Syntax

wStatus = BusTools_ReadVMEConfig (cardnum, vdata);

wStatus (BT_INT) status returned from this function.

cardnum (BT_INT) channel reference to the respective 1553

board/channel session. Valid range is 0 to 15.

vdata (BT_U16BIT *) pointer to an array of unsigned short integers

used to store the contents of the configuration registers. The

destination must be allocated for 12 or more locations.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 237

4.133 BusTools_RegisterFunction

Description

BusTools_RegisterFunction supports application-specific message processing for

specific MIL-STD-1553 protocol events by creating an interrupt processing thread

and an Event Object utilized by the ISR and registering a user callback function

containing the application-specific processing.

1553 Events are detected using interrupt queue polling or hardware interrupts. The

polling/interrupt option is selected in the BusTools/1553-API initialization via the

flag parameter. Refer to BusTools_API_OpenChannel or

BusTools_API_InitExtended for details on this parameter.

Polling/Interrupt Options compatible with BusTools_RegisterFunction:

API_SW_INTERRUPT - S/W Polled Interrupt

API_HW_ONLY_INT - H/W Only Mode

API_HW_INTERRUPT - H/W and S/W Mode

When calling BusTools_RegisterFunction, the application supplies an Interrupt

Register/Filter/FIFO Structure (API_INT_FIFO) as an input argument. This structure

supplies the API with the name of the user callback function, information about how

to handle the interrupt, thread priority, and a list of desired interrupt events. This

list can contain one or many events, specified by the contents of the API_INT_FIFO

filter structure. Table 4-3 provides a list of available events. Both the API and the

user’s callback function globally access the FIFO structure. The application must

ensure that Register/Filter/FIFO structure is global and that no other process

overwrites this FIFO structure.

The interrupt processing thread waits on the Event Object until an interrupt event

occurs matching those specified in the API_INT_FIFO filter structure. For each event

in the interrupt queue matching the events in the event list, the interrupt processing

thread populates an entry in the user-supplied FIFO structure. The thread then

invokes the user callback function, passing it the card number and a pointer to the

FIFO containing the event data. The user callback function should process all entries

in the FIFO, and when complete, return control to the API. The thread continues to

“block” on an enabled event until the API detects another event. The API supports

up to MAX_REGISTER_FUNCTION number of these threads per board (currently

64 threads).

It is important that the user function process all entries in the FIFO. An Event Object

activates the thread only once, and there may be multiple entries in the FIFO. It is

also possible to signal the Event Object while the thread is executing. In that case,

the API might call the user function to process zero entries (because it already

processed the entry added during its current execution cycle).

238 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Set the priority of the interrupt thread as appropriate for the application. Normally,

you adjust the priority of the thread based on importance. For example, a display

thread would have a lower priority than a thread performing 1553 message

processing.

Un-register all threads created by invoking this function before invoking

BusTools_API_Close.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions.

OS Support

Core API Function.

Syntax

wStatus = BusTools_RegisterFunction (cardnum, &sIntFIFO, wFlag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_INT) channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

sIntFIFO (API_INT_FIFO *) Pointer to the Interrupt Register/Filter/FIFO

Structure. This is a Thread Interrupt Filter, Control and FIFO

structure.

wFlag (BT_UINT) flag indicating what to do:

 UNREGISTER_FUNCTION (0) =

 un-register this function.

 REGISTER_FUNCTION (1) =

 register the function, structure and FIFO.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BUSTOOLS_FIFO_BAD

API_BUSTOOLS_TOO_MANY

API_BUSTOOLS_NO_OBJECT

Notes

For programming examples (BC, RT, and BM), see the TST_ALL.C example “C”

program supplied with the BusTools/1553-API. For additional information, see the

discussion on the API_INT_FIFO structure in Chapter 7, “Data Structures”.

The API_INT_FIFO structure definition describes the parameter list used by the API

to define the user callback function. The application callback function definition

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 239

must match this parameter set. The following line of code shows this calling

sequence where FunctionName is the name passed in the API_INT_FIFO structure.

BT_INT stdcall FunctionName(BT_UINT cardnum,

 struct api_int_fifo *sIntFIFO)

The application can update the API_INT_FIFO filtering structure at any time, and

changes take effect immediately. Since the API is interrupt driven, caution should be

taken when modifying the filtering to avoid encountering excessive, unwanted

events.

A feature added to BusTools_RegisterFunction, starting at API Version 4.46, allows

you to refine the events causing interrupts on an RT address, Subaddress, or

Transmit/Receive basis. This allows you to specify interrupts on specific events such

as “message error”. To use the feature, set the API_INT_FIFO member “EventInit”

to “USE_INTERRUPT_MASK”, then select the desired interrupt status bit using the

EventMask. When you set this mask, the API augments the events in Table 4-3 with

the bits specified in the interrupt status word.

For example, select EVENT_BC_MESSAGE to get interrupts on all BC messages,

then set EventMask to BT1553_INT_ME_BIT. You get all Bus Controller Messages

that have the message error bit set. If you set EventMask to NO_ERRORS you get all

messages with only the BT1553_INT_END_OF_MESS set. This allows you to have

separate interrupt functions for error-free messages from messages with errors.

The API_INT_FIFO structure is updated by this function call if flag is

“REGISTER_FUNCTION”. Do not modify any fields marked “RO”, as the API uses

these parameters internally.

Before exiting, the application should invoke BusTools_RegisterFunction a second

time with a flag of UNREGISTER_FUNCTION for each API_INT_FIFO you have set

up. This terminates the thread and releases the objects. Do not invoke

BusTools_RegisterFunction with a flag of zero to terminate the thread within the

thread itself. If the thread function wishes to terminate itself, it should return with

any non-zero return value. This causes the API to terminate the thread and free

allocated resources.

Table 4-3 Interrupt Events

Event Event Description

EVENT_IMMEDIATE Immediately calls user function without processing interrupt queue data.

EVENT_EXT_TRIG External Trigger Event

EVENT_TIMER_WRAP Tag Timer overflow or discrete input

EVENT_RT_MESSAGE RT message transacted

EVENT_BM_MESSAGE BM message transacted

EVENT_BC_MESSAGE BC message transacted

EVENT_BC_CONTROL BC Control transacted

EVENT_BM_TRIG BM trigger event (start/stop)

240 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Event Event Description

EVENT_BM_START BM started (BusTools_BM_StartStop)

EVENT_BM_STOP BM stopped (BusTools_BM_StartStop)

EVENT_BM_OVRFLW BM overflow (head PTR = Tail PTR)

EVENT_BC_START BC started (BusTools_BC_StartStop)

EVENT_BC_STOP BC stopped (BusTools_BC_StartStop)

EVENT_RT_START RT started (BusTools_RT_StartStop)

EVENT_RT_STOP RT stopped (BusTools_RT_StartStop)

EVENT_RECORDER BM recorder buffer has 64K or timeout

EVENT_MF_OVERFLO Minor frame timing overflow

EVENT_LP_MF_OVFL Low Priority aperiodic message list extends beyond a single frame

EVENT_HP_MF_OVFL High Priority aperiodic message list extends beyond a single frame

EVENT_BC_BSY_OVFL BC busy overflow

EVENT_API_OVERFLO BM API Recorder buffer overflowed

EVENT_HW_OVERFLO BM HW Recorder buffer overflowed

Debugging Tips

The following is a list of debugging techniques:

• Do not allocate the FIFO structure on the stack. It will be overwritten when the

function returns. The FIFO structure must be present throughout the execution

of the registered function. Declare the structure “static” if needed.

• Link your application with the “multi-threaded” version of the library or

libraries.

• Make sure that the function registered uses the proper calling sequence and

declaration. It must match the function prototype given in the API_INT_FIFO

structure in the Busapi.h file

• The BusTools_RegisterFunction interface uses standard threads for Windows

and should be compatible with other standard Wndows products that support

multiple threads.

• BusTools_RegisterFunction uses POSIX threads (pthread) for UNIX systems and

is compatible with all UNIX systems supporting POSIX threads.

• VxWorks has the option of using VxWorks threads or POSIX threads. The

default is VxWorks threads. Edit target_defines.h to change this setting to use

POSIX threads.

• BusTools_RegisterFunction has portability to other O/S specific thread by filling

in template common thread functions

• If the BusTools_RegisterFunction call succeeds (returns API_SUCCESS), the new

thread and all of the control structures have been successfully created.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 241

4.134 BusTools_RS485_TX_Enable

Description

BusTools_RS485_TX_Enable enables RS-485 differential discrete output. It allows

the application to specify the respective input/output as an RS-485 differential

output by applying the output enable either individually or to multiple differential

outputs in a single invocation. All differential discretes are automatically set for RS-

485 differential input after initialization.

The function only applies to boards that have RS-485 differential discrete I/O.

Initialize at least one channel using one of the BusTools/1553-API Initialization

functions before using the RS-485 Discrete I/O.

OS Support

Core API Function

Syntax

wStatus = BusTools_RS485_TX_Enable (cardnum, enable, mask);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

enable (BT_U16BIT) the input/output configuration of the differential

discrete I/O.

mask (BT_U16BIT) a data mask to preserve the input/output

configuration of intentionally unmodified RS-485 discretes.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

 NOTE
RS-485 discretes are shared by all 1553-channels on the board. If multiple processes are interacting with
individual 1553-channels on a board, only one process should configure the RS-485 discretes. The remaining
applications can share the discrete I/O channels, but the application must ensure the processes do not
conflict when using global resources.

4.135 BusTools_RS485_Set_TX_Data

Description

242 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

BusTools_RS485_Set_TX_Data sets the state of individual or multiple RS-485

differential discrete outputs with a single invocation. The data and mask parameters

are combined to affect the state of only the specified differential outputs. The

application can only alter the output state of differential discretes previously

configured as outputs using BusTools_RS485_TX_Enable.

The function only applies to boards that have RS-485 differential discrete I/O.

Initialize at least one channel using one of the BusTools/1553-API Initialization

functions before using the RS-485 Discrete I/O.

OS Support

Core API Function

Syntax

wStatus = BusTools_RS485_Set_TX_Data (cardnum, rsdata, mask);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rsdata (BT_U16BIT) the differential discrete state(s).

mask (BT_U16BIT) This variable is a data mask to preserve the state

of intentionally unmodified RS-485 discrete outputs.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

 NOTE
RS-485 discretes are shared by all 1553-channels on the board. If multiple processes are interacting with
individual 1553-channels on a board, only one process should configure the RS-485 discretes. The remaining
applications can share the discrete I/O channels, but the application must ensure the processes do not
conflict when using global resources.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 243

4.136 BusTools_RS485_ReadRegs

Description

BusTools_RS485_ReadRegs reads the RS-485 component registers. This allows the

application to read the differential discrete output enable setting as well as the

current output and input states (respective to the output enable setting for each).

The function only applies to boards that have RS-485 differential discrete I/O.

Initialize at least one channel using one of the BusTools/1553-API Initialization

functions before using the RS-485 Discrete I/O.

OS Support

Core API Function

Syntax

wStatus = BusTools_RS485_ReadRegs (cardnum, regval, rsdata);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

regval (BT_INT) The RS-485 register to read:

RS485_TXEN_REG – Transmit enable register

RS485_TXDA_REG – Transmit data register

RS485_RXDA_REG – Receive data register

rsdata (BT_U32BIT *) location to write the register data.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

 NOTE
The eight RS-485 discrete channels are shared by all 1553-channels on the board. If you have multiple
processes running different 1553-channels, only one process should configure the RS-485 discretes. The
remaining applications can share the discrete channels, but you must ensure that processes do not conflict
in use these channels.

244 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.137 BusTools_RT_AbufRead

Description

BusTools_RT_AbufRead reads the information stored in the RT Address Buffer for

the specified RT address. Prior to invoking this function, the channel must be

initialized by invoking one of the BusTools/1553-API Initialization functions and the

RT initialized using BusTools_RT_Init.

While the RT enable bits in the hardware rt_address_buffer are active low (0 =

enable), the RT enable bits in the API_RT_ABUF structure are active high (1 =

enable).

All four words of the RT Address Buffer are returned by this function:

1. The RT Enables/Dynamic Bus Control/BIT Word location/Inhibit Terminal Flag

2. The RT Status Word

3. The Last Command Word

4. The Bit Word

See the function BusTools_RT_AbufWrite for more information about the RT

Address Buffer parameters.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_AbufRead (cardnum, rtaddress, abuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddress (BT_UINT) RT address. Valid range is 0 to 31.

abuf (API_RT_ABUF*) location to be written with Address Buffer

information.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_ILLEGAL_ADDR

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 245

4.138 BusTools_RT_AbufWrite

Description

BusTools_RT_AbufWrite writes the RT Address Control Block (API_RT_ABUF)

structure to the RT Address Buffer for the specified RT address, controlling the

operation of that RT. Prior to invoking this function, the channel must be initialized

by invoking one of the BusTools/1553-API Initialization functions and the RT

initialized using BusTools_RT_Init. Information contained within the RT Address

Control Block (API_RT_ABUF) structure are described below.

4.138.1 The RT Enable Bits

These bits control whether the specified RT is active on bus A and/or bus B. While

the RT enable bits in the hardware rt_address_buffer are active low (0 = enable), the

RT enable bits in the API_RT_ABUF structure are active high (1 = enable).

4.138.2 The Inhibit Terminal Flag

The application must initialize this multi-function Inhibit Terminal flag. This flag

controls the Inhibit Terminal flag and the Dynamic Bus Control Mode, as well as

other functionality.

 “RT_ABUF_ITF” controls the reporting of the Terminal Flag in the message status

word. When this bit is set, the RT does not set the terminal flag bit, despite the bit

value in the rt_status_word (see RT Status Word Section below). This host clears the

Inhibit Terminal Flag bit during setup. A remote terminal receiving the Inhibit

Terminal Flag Bit mode code (00110) clears this bit. A remote terminal receiving the

Override Inhibit Terminal Flag Bit mode code (00111) sets this bit. The “Override

Inhibit Mode Command” does not affect the status word of the mode command

itself; rather, it allows setting the terminal flag in the status word of subsequent

messages.

 “RT_ABUF_DBC_ENA” controls the enabling Dynamic Bus Control (DBC) mode

codes. When this bit is set, the RT acts on the DBC mode code (0000) by starting the

Bus Controller in accordance with MIL-STD-1553 paragraph 4.3.3.5.1.7.1. You must

also legalize Mode Code 0 with a call to BusTools_RT_AbufWrite (enable word

count 0, transmit, for subaddress 0 and optionally subaddress 31).

 “RT_ABUF_DBC_RT_OFF” controls the operation of the RT when the RT receives

and accepts a DBC mode. This bit only affects multi-function boards. On multi-

function boards, this bit control whether the RT shuts down or continues when the

RT receives a DBC mode code. Setting this bit causes the RT receiving the DBC

mode code to stop. All other RTs continue running. Clearing this bit allows the RT

to continue running. When a single-function or dual-function board receives a DBC

mode code, it shuts down the RT prior to starting the BC.

“RT_ABUF_MBUF_BWD” controls whether mode code 19, Transmit BIT Word, uses

the bit word stored in the Address Buffer or uses the bit word buffered in data word

246 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

zero (0) of the RT Message buffer. If bit 4 (0x10) of the inhibit terminal flag is set, the

data for mode code 19 comes from the RT message buffer. If bit 4 is reset, the data is

stored in the bit word of the Address buffer.

“RT_ABUF_EXT_STATUS” enables extended status mode. Under normal RT

operation, the status word applies to all RT sub-addresses. Enabling extended status

allows the application to set status for a specific message buffer response. Use

BusTools_RT_MessageWriteStatusWord to set the extended status based on RT

address, Sub address, Transmit or Receive and buffer.

“RT_ABUF_MON_ENA” Places the RT into Monitor Mode. This is normally done

through a call to BusTools_RT_MonitorEnable. In Monitor Mode the RT only

monitors bus traffic to the RT specified in RT address. The RT does not respond to

commands. There can be another device or channel responding as the RT. This

function allows the application to process all transaction to the RT address. You can

manually set Monitor Mode using this macro. Note: in older versions of

BusTools/1553-API this parameter was not present and the Inhibit terminal Flag was

sometime set to one (1). Make sure if you have using older applications that the flag

is set to zero (0) or any the parameters above. Otherwise you may inadvertently be

put into monitor mode.

4.138.3 The RT Status Word

This is the status word returned by the RT. It is programmed during initialization,

but it may be altered at any time by the software. The hardware may also set some

of the status word bits in accordance with MIL-STD-1553B. Your software must

initialize this word before running the RT by clearing all of the bits except the RT

address. The API fills in the correct RT address when this function is called. You

can change the RT address by using the error injection features of the API (see

BusTools_EI_EbufWrite).

4.138.4 The RT Last Command Word

When the RT detects a command word on the 1553 bus, it is stored here for use in

the “Transmit Last Command Word” mode command. This is an internal word

used by the hardware but may be initialized by the software prior to running the RT.

4.138.5 The BIT Word

This is the 16-bit word used by the Transmit Built-In-Test (BIT) mode command.

The host normally clears this word during setup and updates it during reception of

an initiate self-test mode command. This capability requires application code to read

the self_test bit in the message_status word or set the self_test bit in the

rt_interrupt_enables word and have a self-test function to exercise the hardware.

4.138.6 Single RT Mode

Starting with F/W version 5.00, there is a channel configuration option that sets the

channel to run in RT Validated (single-RT) mode. In this mode, the RT will pass the

RT Validation Test Plan (1553B Handbook, Appendix A), but only a single RT can

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 247

run at a time. Select the RT address for the single RT mode by calling

BusTools_RT_AbufWrite. If you call this function more than once with a different

RT address, it returns API_SRT_OVERRIDE. This is informational only; to inform

you that the single RT address has changed.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_AbufWrite (cardnum, rtaddress, abuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddress (BT_UINT) RT address. Valid range is 0 to 31.

abuf (API_RT_ABUF*) the application defined RT Address Control

Block structure.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_SRT_OVERRIDE

API_RT_ILLEGAL_ADDR

248 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.139 BusTools_RT_AutoIncrMessageData

Description

BusTools_RT_AutoIncrMessageData creates an interrupt-invoked thread that

automatically increments a data word in a specified RT message. This function is

only applicable to operating systems supporting the function

BusTools_RegisterFunction and requires a subsequent invocation to terminate the

increment thread.

This function can be used with software interrupts for RT message rates slower than

10 milliseconds. If the RT message rate is faster than 10 milliseconds, the hardware

interrupt option must be used. Both software and hardware interrupts are defined

in the invocation of the BusTools/1553-API Initialization function.

BusTools_RT_AutoIncrMessageData only supports auto-increment with a single

data word per RT/SA/TX combination using a single RT message buffer. For this

reason, during setup of the RT the invocation of BusTools_RT_CbufWrite must have

the buffer count set to one. If an application attempts to auto-increment more the

one data word per RT/SA/TX combination, an API_RT_AUTOINC_INUSE error will

be encountered. The application defines the RT address, subaddress, data word (0 –

31) to increment, an increment value, a start value, an increment rate, and a

maximum value for the message. This function sets the specified data word to the

start value and creates a thread that increments the data word by the increment

value, each ‘rate’ times the message is transmitted. Setting the rate parameter to “1”

causes the thread to increment on every message. The specified data word

increments from the start value to the maximum value and then resets to the start

value.

 NOTE
This function works only with the transmit buffer for RT→BC messages.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function.

Syntax

wStatus = BusTools_RT_AutoIncrMessageData (cardnum, rtaddr, subaddr,

data_wrd, start, incr, rate, max, sflag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 249

rtaddr (BT_INT) The RT address for the message. Valid range is 0 to

31.

subaddr (BT_INT) The subaddress for the message. Valid range is 0 to

31.

data_wrd (BT_INT) The data word to increment (0-31).

start (BT_U16BIT) Start value.

incr (BT_U16BIT) Increment value.

rate (BT_INT) Increment rate

max (BT_U16BIT) Maximum increment value.

sflag (BT_INT) 0 = Stop increment thread, 1 = Start increment

thread.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

250 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.140 BusTools_RT_CbufbroadRead

Description

BusTools_RT_CbufbroadRead reads the Broadcast Control Buffer for the specified

subaddress, applicable to all RT’s. This buffer contains the legalization bits used to

enable or disable broadcast messages for the specified subaddress. The Broadcast

Control Buffer contains a single bit for each possible RT address and each possible

word count (for a total of 32 x 32 entries, or 1024 bits).

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_CbufbroadRead (cardnum, subaddr, tr, apicbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

subaddr (BT_UINT) RT subaddress. Valid range is 0 to 31.

tr (BT_UINT) Transmit/receive flag; 0 = receive, 1 = transmit.

apicbuf (API_RT_CBUFBROAD*) location where the RT Broadcast

Control Buffer content will be written.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_ILLEGAL_SUBADDR

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 251

4.141 BusTools_RT_CbufbroadWrite

Description

BusTools_RT_CbufbroadWrite writes the Broadcast Control Buffer for the specified

subaddress, applicable to all RT’s. This buffer contains the legalization bits used to

enable or disable broadcast messages for the specified subaddress. The Broadcast

Control Buffer contains a 32-bit word for each possible RT address (0 through 30),

with a single bit for each possible word count (for a total of 32 x 32 entries, or 1024

bits). These bits determine if the message is legal, and if so, the firmware sets the

Broadcast Message Received bit in the associated RTs 1553 Status Word. A set bit

indicates that the message is legal.

A clear bit indicates that the word count is not legal. All bits should be clear for any

RTs that are not being simulated by this board.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_CbufbroadWrite (cardnum, subaddr, tr, apicbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

subaddr (BT_UINT) RT subaddress (0 - 31).

tr (BT_UINT) Transmit/receive flag; 0 = receive, 1 = transmit.

apicbuf (API_RT_CBUFBROAD*) location from where the RT

Broadcast Control Buffer content will be read.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_ILLEGAL_SUBADDR

252 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Notes

Invoke this function for each subaddress, transmit/receive combination that is being

enabled for Broadcast Receive or Transmit on this channel.

Broadcast is enabled or disabled by the BusTools_SetBroadcast function.

Each call to this function establishes a buffer of 31, 32-bit control words that are

accessed by the firmware each time a broadcast message is detected (the firmware

accesses this entry through the RT_ADDRESS_BUFFER, for RT=31). The firmware

then sequences through the 31 control words and checks to see if the specified word

count is enabled for the associated RT. If it is, the firmware sets the “Broadcast

Message Received” bit (bit 4) in the 1553 Status Word for the associated RT.

Word counts map to bit numbers as follows:

• Bit 0 (0x00000001) – Word count 32 (LSB)

• Bit 1 (0x00000002) – Word count 1

• Bit 2 (0x00000004) – Word count 2

• …

• Bit 30 (0x40000000) – Word count 30

• Bit 31 (0x80000000) – Word count 31 (MSB)

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 253

4.142 BusTools_RT_CbufRead

Description

BusTools_RT_CbufRead reads the RT Control buffer for the specified RT subunit.

This structure contains a legalization bit for each possible word count for the rt

address/subaddress/transmit/receive subunit. This function also returns the number

of RT Message buffers originally defined for this subunit. This value is ‘0’ for any

subunit which has not yet been defined.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_CbufRead (cardnum, rtaddr, subaddr, tr, mbuf_count,

 apicbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address. Valid range is 0 to 31.

subaddr (BT_UINT) RT subaddress. Valid range is 0 to 31.

tr (BT_UINT) Transmit/receive flag;

0 = receive, 1 = transmit.

mbuf_count (BT_UINT*) number of RT Message buffers originally defined

for this RT subunit returned by function.

apicbuf (API_RT_CBUF *) location to write the RT Control Buffer

information.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_ILLEGAL_ADDR

API_RT_ILLEGAL_SUBADDR

API_RT_ILLEGAL_TRANREC

API_RT_CBUF_BROAD

254 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.143 BusTools_RT_CbufWrite

Description

For each RT there are 32 subaddresses defined for transmit and 32 subaddresses

defined for receive. Each combination of RT/subaddress/TR is called a subunit. A

structure, API_RT_CBUF, defines an RT Control Buffer, which specifies legal word

counts for a subunit.

When invoking BusTools_RT_CbufWrite, the application specifies a subunit, the

number of RT Message Buffers to allocate, and the RT Control Buffer, for the

specified subunit. This function writes the RT Control Buffer for the specified

subunit allocates and clears (fills with zero) the RT Message Buffers. For buffers

used in “transmit” messages, the application should write the desired transmit data

to the RT Message Buffers using the BusTools_RT_MessageWrite function.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

If the application intends to use Dynamic Bus Control (DBC), this function must be

invoked to legalize Mode Code 0 Transmit, which is the DBC mode code.

BusTools_RT_AbufWrite must also be invoked to enable the DBC mode.

This function operates differently depending on how it was previously called for the

specified subunit and the current arguments.

• RT Message Buffer Allocation for SA0 and SA31: If either subaddress 0 or 31 is

specified, or SA31 as a mode code is enabled, then the call is processed as if SA0

was specified. The SA31 entry in the RT Message Buffer is modified to point to

the SA0 buffer.

This takes care of the MIL-STD-1553B option of responding to a mode code on

either SA0 or SA31.

• Using the Default RT Message Buffers (Data Wrap). Data wrap is the state

where the subunit's data is transmitted or received via the default RT Message

Buffer. Enable this state by calling this function with a buffer count of zero.

Disable this state by calling this function with a buffer count that is not zero.

Ensure that the RT Control Buffer structure legalizes all wordcounts. Load the

default RT Message Buffers with BusTools_RT_MessageWriteDef. There is one

default buffer for each RT. This default buffer is used to implement the MIL-

STD-1553 Notice 2 paragraph 30.7 requirement to support “Data Wrap”.

• RT Message Buffers as a circular linked list or single-pass linked list: If

mbuf_count is negative, mbuf_count buffers are created and initialized and the

buffers are linked into a one-shot list. If mbuf_count is positive, the buffers are

linked into a circular list.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 255

• Update wordcount mask and/or reset the RT data buffer list pointer to a

specified buffer: If the RT Message Buffers for this subunit are NOT the default

Message Buffers, MODIFY the current RT Control Buffer with the specified

wordcount mask.

o If the count parameter is less than the number of RT Message Buffers

allocated, change the current RT Message Buffer pointer to the MBUF

specified by the count parameter.

o If the count parameter is equal to the number of RT Message Buffers

allocated, do not modify the current MBUF pointer in the RT Control

Buffer.

o If the count parameter is greater than the number of RT Message

Buffers allocated, return an error.

If none of the above conditions is true, this function allocates a new RT Control

Buffer and the specified number of RT Message Buffers.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_CbufWrite (cardnum, rtaddr, subaddr, tr, mbuf_count,

apicbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address. Valid range is 0 to 31.

subaddr (BT_UINT) RT subaddress. Valid range is 0 to 31.

tr (BT_UINT) Transmit/receive flag; 0 = receive, 1 = transmit.

mbuf_count (BT_INT) number of RT Message buffers allocated (see

description).

apicbuf (API_RT_CBUF*) location of the application defined RT

Control Buffer.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_ILLEGAL_ADDR

API_RT_ILLEGAL_SUBADDR

256 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

API_RT_ILLEGAL_TRANREC

API_RT_CBUF_BROAD

API_RT_TOOMANY_MBUFS

API_RT_MEMORY_OFLOW

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 257

4.144 BusTools_RT_Checksum1760

Description

BusTools_RT_Checksum1760 calculates a checksum according to the algorithm

described in Appendix B Section B.4.1.5.2.1 of the Department of Defense Interface

Standard for Aircraft/Store Electrical Interconnect Systems MIL-STD-1760C Manual.

When each data word (including the checksum word) of a message is rotated right

cyclically by a number of bits equal to the number of preceding data words in the

message, and all the resultant rotated data words are summed using modulo 2

arithmetic to each bit (no carries), the sum shall be zero.

Two examples show messages satisfying the checksum algorithm.

Example 1

Four Word Message:

1st Word 0000-0000-0000-0001 (0001 hex.) data

2nd Word 1100-0000-0000-0000 (C000 hex.) data

3rd Word 0000-1111-0000-0000 (0F00 hex.) data

4th Word 0001-1110-0000-1011 (lE0B hex.) checksum word

Example 2

Six Word Message:

lst Word 0001-0010-0011-0100 (1234 hex.) data

2nd Word 0101-0110-0111-1000 (5678 hex.) data

3rd Word 1001-1010-1011-1100 (9ABC hex.) data

4th Word 1101-1110-1111-0000 (DEF0 hex.) data

5th Word 0000-0000-0000-0000 (0000 hex.) data

6th Word 1000-1111-0010-0000 (8F20 hex.) checksum word

Pass a pointer to the API_RT_MBUF_WRITE structure, a pointer to unsigned short

(BT_U16BIT) to hold the calculated checksum and the number of data words in the

RT message. Prior to calling this function, the application must define the data in the

API_BC_MBUF structure. This function calculates the checksum and writes it into

the last data location.

OS Support

Core API Function

258 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Syntax

wStatus = BusTools_RT_Checksum1760 (mbuf , cksum, wdcnt);

wStatus (BT_INT) status returned from this function.

mbuf (API_RT_MBUF_WRITE *) pointer to RT message write

structure.

cksum (BT_U16BIT) location to write the checksum.

wdcnt (int) word count for the RT message.

Return Value

API_SUCCESS

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 259

4.145 BusTools_RT_Init

Description

BusTools_RT_Init performs full initialization of RT functionality for the specified

channel. The following actions are performed:

• Check for any illegal conditions (exit with error if these conditions aren’t true).

• Initializes board memory.

• Assures available memory starts at the beginning of a segment (address = 10000).

• Allocates the filter buffer.

• Allocates the address control blocks.

• Allocates the default message buffer.

• Allocates a broadcast control buffer (if broadcast is enabled).

• Allocate a default control buffer (non broadcast).

• Setup PC data structures.

• Show no RTs running.

Prior to invoking this function, initialize the channel using one of the BusTools/1553-

API initialization functions.

The testflag parameter must be set to zero. The non-zero state is used by the BusTools

GUI program to perform a “wrap-around” test and is not directly applicable to a

user-written program.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_Init (cardnum, testflag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

testflag (BT_UINT) Test Flag. Must be set to zero.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_RUNNING

API_MEMORY_OFLOW

260 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.146 BusTools_RT_GetRTAddr

Description

BusTools_RT_GetRTAddr returns the hardwired RT address for boards supporting

this feature, see Table 1-2. 1553 Board Feature Guide. The QVME-1553 and

RQVME2-1553 boards support hardwired RT addressing for all channels. The

QPMC-1553, QPM-1553, RPCIe-1553, and QCP-1553 have hardwired RT addressing

available on channels 1 and 2. Other boards allow hardwired RT addressing on

channel 1.

If the board is using hardwired RT addressing for the selected channel, this function

will return a status of API_SUCCESS, with rtaddr containing the RT address. You

must use that RT address when configuring the RT if you want that channel to

operate as the hardwired RT. You can override the RT address by ignoring that RT

address and using any other RT address when you configure the channel. If the

hardwire RT address equals BTD_RTADDR_PARITY, that is an indication of invalid

parity in the RT address detected during initialization.

This function returns API_HARDWARE_NOSUPPORT for any board or channel not

supporting hardwired RT addressing, and API_NO_HARDWIRE_RT with rtaddr set

to -1 for any supported channel not using hardwired RT addressing.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_GetRTAddr (cardnum, rtaddr);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_INT *) location to receive the hardwired RT address

value.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_NO_HARDWIRE_RT

BTD_RTADDR_PARITY

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 261

4.147 BusTools_RT_GetRTAddr1760

Description

BusTools_RT_GetRTAddr1760 returns the hardwired RT address in the same

manner as BusToolsGetRTAddr; however, an option is provided to read the latched

data or the current value of the hardwired address line. On power-up the board

latches the state of the hardwired RT address lines into a register. After the

firmware is operational, the hardwired RT address lines can change based on

external input, but the latched data remains fixed. This function provides the option

to read either the latched or current hardwired RT address line values.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions.

OS Support

Core API Function (F/W V4 and V5 only)

Syntax

wStatus = BusTools_RT_GetRTAddr1760 (cardnum, aflag, rtaddr);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

aflag (BT_UINT) flag to determine the read options

LATCH_DATA (0) latched data

CURRENT_DATA (1) current data

rtaddr (BT_INT *) location to receive the hardwired RT address

value.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_NO_HARDWIRE_RT

BTD_RTADDR_PARITY

API_HARDWARE_NOSUPPORT

262 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.148 BusTools_RT_MessageGetaddr

Description

BusTools_RT_MessageGetaddr returns the physical board offset of the specified

channel’s RT Message buffer. The application must specify the message buffer

(MBUF) number for a specific RT subunit (combination of RT/subaddress/TR) to

reference.

Typically, this function is used by an application that repeatedly updates a specific

RT message using the BusTools_MemoryWrite function instead of the

BusTools_RT_MessageWrite function.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_MessageGetaddr (cardnum, rtaddr, subaddr, tr, mbuf_id,

mbuf_offset);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address. Valid range is 0 to 31.

subaddr (BT_UINT) RT subaddress. Valid range is 0 to 31.

tr (BT_UINT) Transmit/receive flag; 0 = receive, 1 = transmit.

mbuf_id (BT_UINT) RT Message buffer number (“0” based).

mbuf_offset (BT_U32BIT *) location to receive the memory offset to the

specified RT_MBUF structure on the board, as defined in the

Hardware Reference Manual (RT_MESSAGE_BUFFER).

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_ILLEGAL_ADDR

API_RT_ILLEGAL_SUBADDR

API_RT_ILLEGAL_TRANREC

API_RT_ILLEGAL_MBUFID

API_RT_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 263

4.149 BusTools_RT_MessageGetid

Description

This function converts a physical board offset of the specified channel’s RT Message

buffer to an RT subunit (combination of RT/subaddress/TR) and message buffer

number. The specified hardware address is a byte offset from the beginning of

memory on the Abaco Systems 1553 board. The address must be in the range

0x00000000 to 0x0003FFFF.

Typically, this function is used to process RT messages in the interrupt queue. The

RT message buffer address supplied as a parameter to this function is converted to

an RT subunit address and message number, supporting subsequent message

retrieval via BusTools_RT_MessageRead.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_MessageGetid (cardnum, addr, rtaddr, subaddr, tr,

mbuf_id);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

addr (BT_U32BIT) physical board offset of the specified channel’s

RT Message buffer.

rtaddr (BT_UINT *) location to receive the RT address for the

referenced message. Valid range is 0 to 31.

subaddr (BT_UINT *) location to receive the RT subaddress for the

referenced message. Valid range is 0 to 31.

tr (BT_UINT *) location to receive the RT transmit/receive flag

for the referenced message; 0 = receive, 1 = transmit.

mbuf_id (BT_UINT *) location to receive the RT Message buffer number

for the specified RT subunit (“0” based).

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_MBUF_NOMATCH

264 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.150 BusTools_RT_MessageRead

Description

BusTools_RT_MessageRead reads the specified RT Message buffer from board

memory. Prior to invoking this function, the channel must be initialized by invoking

one of the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_MessageRead (cardnum, rtaddr, subaddr, tr, mbuf_id,

 mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address. Valid range is 0 to 31.

subaddr (BT_UINT) RT subaddress. Valid range is 0 to 31.

tr (BT_UINT) Transmit/receive flag; 0 = receive, 1 = transmit.

mbuf_id (BT_UINT) RT Message buffer number (“0” based).

mbuf (API_RT_MBUF_READ *) address of structure to be populated

by BusTools_RT_MessageRead.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_ILLEGAL_ADDR

API_RT_ILLEGAL_SUBADDR

API_RT_ILLEGAL_TRANREC

API_RT_ILLEGAL_MBUFID

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 265

4.151 BusTools_RT_MessageBufferNext

Description

BusTools_RT_MessageBufferNext returns the next RT Message Buffer number from

the respective channel memory. Prior to invoking this function, the channel must be

initialized by invoking one of the BusTools/1553-API Initialization functions and the

RT initialized using BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_MessageBufferNext (cardnum, rtaddr, subaddr, tr,

mbuf_id);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address. Valid range is 0 to 31.

subaddr (BT_UINT) RT subaddress. Valid range is 0 to 31.

tr (BT_UINT) Transmit/receive flag; 0 = receive, 1 = transmit.

mbuf_id (BT_UINT*) RT Message buffer number (0-based).

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

266 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.152 BusTools_RT_MessageWrite

Description

BusTools_RT_MessageWrite writes the specified information to the specified RT

Message buffer in the respective channel’s memory. Prior to invoking this function,

the application must allocate Message Buffers for the specified RT subunit

(combination of RT/subaddress/TR) using BusTools_RT_CbufWrite.

The data for transmit messages and the Interrupt Enable Bits are the major parts of

the RT Message buffer that you must initialize in channel memory when using the

RT function. The Interrupt Enable bits control whether the firmware will generate

interrupts when the RT processes this message. The API (and the application) can

use this interrupt to trigger message processing functions. For example, you must

generate an interrupt when you enable Dynamic Bus Control. This triggers the user

process that starts the Bus Controller and optionally switches off the RT after

receiving the DBC mode code. In that case, you must enable at least

“BT1553_INT_END_OF_MESS” interrupts in the “enable” control word.

On Big Endian systems defining the WORD_SWAP macro in target_defines.h, the

contents of the RT data buffer is word swapped. If you need to maintain the

message data endian format you should save a local copy.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_MessageWrite (cardnum, rtaddr, subaddr, tr, mbuf_id,

 mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address. Valid range is 0 to 31.

subaddr (BT_UINT) RT subaddress. Valid range is 0 to 31.

tr (BT_UINT) Transmit/receive flag; 0 = receive, 1 = transmit.

mbuf_id (BT_UINT) RT Message buffer number (“0” based).

mbuf (API_RT_MBUF_WRITE *) address of the RT Message Buffer

structure.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 267

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_ILLEGAL_ADDR

API_RT_ILLEGAL_SUBADDR

API_RT_ILLEGAL_TRANREC

API_RT_ILLEGAL_MBUFID

268 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.153 BusTools_RT_MessageWriteDef

Description

Abaco Systems 1553 boards maintain a default (or “garbage collection”) message

buffer for each RT. The default message buffer is used for any messages to or from

any subaddresses that do not have specific RT Message buffers allocated using the

BusTools_RT_CbufWrite function. This function is used to write information into

the default message buffer for the specified RT.

Typically, the data portion of this message buffer is not significant, but the API still

copies it into the hardware buffer. The main reason that this function is called is to

specify the Interrupt Enable Bits for the default message buffer. By setting the

Interrupt Enable Bits properly, the application could get an interrupt anytime this

message buffer is used, thereby receiving notice anytime an undefined subaddress is

used.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_MessageWriteDef (cardnum, rtaddr, mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address. Valid range is 0 to 31.

mbuf (API_RT_MBUF_WRITE *) address of structure to be

transferred to the default message buffer.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_ILLEGAL_ADDR

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 269

4.154 BusTools_RT_MessageWriteStatusWord

Description

BusTools_RT_MessageWriteStatusWord stores a status word in the respective

channel RT message buffer that is logically ‘OR’d into the firmware generated status

word. There are two status modes available for a channel starting with firmware

version 5.00 and API version 6.44. These are Default Status and Extended Status.

How this function affects a status word depends on the status mode. For firmware

version 5.06 and thereafter, only the Extended Status mode is supported.

In Default Status mode, status is set based on the RT address. The RT transmits this

Status Word in response to any messages sent to any RT subaddress. When in this

mode the status value returned by this function is updated after a message to the RT

address, subaddress, transmit/receive, buffer combination specified in the

parameters occurs. Until then, the RT transmits the previous status. Once this

change occurs all commands to the RT will return this same status.

In Extended Status mode, status is set based on RT address, subaddress,

transmit/receive and buffer. Extended Status mode is set in

BusTools_RT_AbufWrite and allows differing status based on subaddress,

transmit/receive, and buffer. Call this function to set a unique status value for each

RT/SA/TX/RX/buffer combination.

In Default Status mode, the following bits in the 1553 status word may be set using

this function. The symbols listed are defined in the Busapi.h file:

• Terminal Flag – API_1553_STAT_TF

• Subsystem Flag – API_1553_STAT_SF

• Busy Bit – API_1553_STAT_BY

• Service Request – API_1553_STAT_SR

• Instrumentation – API_1553_STAT_IN

In the Extended Status mode, any status word bit other than the RT Address bits can

be modified. If the Busy or Message Error status bits are set the data on transmit

command is suppressed. An application must use the error injection feature to

modify RT Address bits.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions, the Bus Monitor must be initialized

via BusTools_BM_Init, and the Remote Terminal must be initialized via

BusTools_RT_Init.

OS Support

Core API Function

270 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Syntax

wStatus = BusTools_RT_MessageWriteStatusWord (cardnum, rtaddr, subaddr, tr,

mbuf_id, wStatusWord, wFlag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT) RT address. Valid range is 0 to 31.

subaddr (BT_UINT) RT subaddress. Valid range is 0 to 31.

tr (BT_UINT) Transmit/receive flag;

0 = receive, 1 = transmit.

mbuf_id (BT_UINT) RT Message buffer number (“0” based).

wStatusWord (BT_UINT) New RT Status word

wFlag (BT_UINT) modify flag; RT_NOCHANGE = do not modify

the status word; RT_SET = modify the status word using the

Default Status (for all firmware prior to v5.06, use this option);

RT_EXT_STATUS = modify the status word using Extended

Status (for all firmware v5.06 and after use this option only).

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_ILLEGAL_ADDR

API_RT_ILLEGAL_SUBADDR

API_RT_ILLEGAL_TRANREC

API_RT_ILLEGAL_MBUFID

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 271

4.155 BusTools_RT_MonitorEnable

Description

BusTools_RT_MonitorEnable enables or disables the specified RT to run in Monitor

Mode. RT Monitor Mode is a mode that allows the RT to record all transactions to

an RT address. An RT in monitor mode does not respond to any 1553 messages.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions, the Bus Monitor must be initialized

via BusTools_BM_Init, and the Remote Terminal must be initialized via

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_MonitorEnable (cardnum, rtaddress, mode);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddress (BT_UINT) RT address. Valid range is 0 to 31.

mode (BT_UINT) requested mode for RT:

 0 = Disable RT Monitor.

 1 = Enable RT Monitor.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

272 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.156 BusTools_RT_ReadLastMessage

Description

BusTools_RT_ReadLastMessage returns the last Remote Terminal message recorded

in the interrupt queue that fits the criteria in the argument list. Specify an RT

address, subaddress, and transmit or receive command. The RT address and

subaddress input arguments are bit-encoded values. For example, to select RT0 or

subaddress 0 use the LSB (0x0001). The function then searches the interrupt queue

for a message matching the settings. If it does not find a matching message, the

function returns API_RT_READ_NODATA.

On the initial call, this function searches the entire interrupt queue for messages. On

later calls, it searches only the section between the current queue pointer and the

queue pointer on the last call. For best results, you must call this function at a

periodic rate such that the interrupt queue pointer does not wrap. There are 296

interrupt queue entries for firmware versions 3.x, 4.x and 5.x, while firmware 6.x has

512 interrupt queue entries.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions, the RT initialized via

BusTools_RT_Init, and the RT activated via BusTools_RT_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_ReadLastMessage (cardnum, rt_addr, subaddress, tr,

pRT_mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (int) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rt_addr (BT_INT) selects the RT address (0-31). This value is bit

encoded, where RT0 is selected by the LSB (0x0001). –1 = don’t

care.

subaddress (BT_INT) selects the sub address (0-31). This value is bit

encoded, where subaddress 0 is selected by the LSB (0x0001).

–1 = don’t care.

tr (BT_INT) select transmit or receive. 0 = receive; 1 = transmit; -

1 = don’t care.

pRT_mbuf (API_RT_MBUF_READ *) pointer to an RT Message Buffer

(read-only) structure populated if

BusTools_RT_ReadLastMessage finds a matching message.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 273

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_READ_NODATA

API_RT_MBUF_NOMATCH

Notes

RT messages are recorded in the interrupt queue if the RT address / subaddress /

transmit / receive combination was programmed to generate interrupts during RT

setup. The RT message buffer contains the interrupt enable/disable word. Use

BusTools_RT_MessageWrite to load the RT message buffer.

Example

This function hides the structure of the interrupt queue. The following code shows

how to use this call.

API_RT_MBUF_READ mbuf;

BT_UINT ndflg;

status = BusTools_RT_ReadLastMessage(cardnum,

 0x10, -1, 1, &mbuf);

if(status==0)

{

 if(ndflag)

 {

 // This is new data

The above code returns the last transmit message to RT address 4.

274 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.157 BusTools_RT_ReadLastMessageBlock

Description

BusTools_RT_ReadLastMessageBlock returns all the Remote Terminal messages in

the interrupt queue that fit the criteria in the argument list. You can specify a RT

address, sub address, and transmit or receive command. The RT address and

subaddress input arguments are bit-encoded values. For example, to select RT0 or

subaddress 0 use the LSB (0x0001). The function then searches backwards in the

interrupt queue for all messages matching the settings. The function returns

API_RT_READ_NODATA if it does not find a matching message, or a count of the

messages found.

On the initial call, this function searches the entire interrupt queue for messages. On

later calls, it searches only the section between the current queue pointer and the

queue pointer on the last call. For best results, you must call this function at a

periodic rate such that the interrupt queue pointer does not wrap. There are 296

interrupt queue entries for firmware versions 3.x, 4.x and 5.x, while firmware 6.x has

512 interrupt queue entries.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions, the RT initialized via

BusTools_RT_Init, and the RT activated via BusTools_RT_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_ReadLastMessageBlock (cardnum, rt_addr_mask,

 subaddr_mask, tr, mcount, pRT_mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (int) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rt_addr_mask (BT_INT) selects the RT address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

subaddr_mask (BT_INT) selects the subaddress (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

tr (BT_INT) select the transaction type as transmit or receive.

0 = Receive; 1 = Transmit; -1 = don’t care.

mcount (BT_UINT *) pointer to that holds the count of messages

found.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 275

pRT_mbuf (API_RT_MBUF_READ *) pointer to an array of RT Message

Buffer structures populated if

BusTools_RT_ReadLastMessageBlock finds a matching

message.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_READ_NODATA

API_RT_MBUF_NOMATCH

Notes

BusTools_RT_ReadLastMessageBlock returns only Remote Terminal messages

stored in the interrupt queue. RT messages are recorded in the interrupt queue if the

RT address/subaddress/transmit/receive combination was programmed to generate

interrupts during the RT setup. The RT message buffer contains the interrupt

enable/disable word. Use BusTools_RT_MessageWrite to load the RT message

buffer. Select the interrupt event options from the Interrupt Enable / Message Status

Bits (32 bit) definition in Chapter 7, “Data Structures”.

The application must allocate an array of API_RT_MBUF_READ structures large

enough to hold all the messages found by this function. The worst case is that a call

to this function returns the entire interrupt queue. In that case, allocation should

provide enough allocation for API_RT_MBUF_READ structures having 296

interrupt queue entries for firmware versions 3.x, 4.x and 5.x, or 512 interrupt queue

entries for firmware version 6.x or later.

Example

This function hides the structure of the interrupt queue. The following code shows

how to use this call.

API_RT_MBUF_READ mbuf[296];

int i;

BT_UINT mess_cnt;

status = BusTools_RT_ReadLastMessageBlock(cardnum, 0x20, -1,

1, &mess_cnt, mbuf);

if(status==0)

{

 for(i=0;i<mess_cnt;i++)

 {

 // loop through all messages found

The above code returns all the transmit messages to RT address 5.

276 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.158 BusTools_RT_ReadNextMessage

Description

BusTools_RT_ReadNextMessage returns the next Remote Terminal message

recorded in the interrupt queue that fits the criteria in the argument list. Specify an

RT address, subaddress, and transmit or receive command. The RT address and

subaddress input arguments are bit-encoded values.

This function continually polls the interrupt queue until the timeout period expires

or it finds a matching message. If the function does not find a matching message

and times out, it returns API_RT_READ_TIMEOUT. Time critical applications

should use this function with caution.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions, the RT initialized via

BusTools_RT_Init, and the RT activated via BusTools_RT_StartStop.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_ReadNextMessage (cardnum, timeout, rt_addr, subaddress,

tr, pRT_mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (int) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

timeout (BT_UINT) timeout value in milliseconds. Valid range is 10 to

65,535.

rt_addr (BT_INT) selects the RT address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

subaddress (BT_INT) selects the sub address (0-31) via bitwise encoded

value, where RT0 is selected by the LSB (0x0001) and –1

indcates “don’t care”.

tr (BT_INT) select the transaction type as transmit or receive.

0 = Receive; 1 = Transmit; -1 = don’t care.

pRT_mbuf ((API_RT_MBUF_READ *) pointer to an RT Message Buffer

(read-only) structure populated if

BusTools_RT_ReadNextMessage finds a matching message.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 277

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_MBUF_NOMATCH

API_RT_READ_TIMEOUT

Notes

RT messages are recorded in the interrupt queue if the RT address / subaddress /

transmit / receive combination was programmed to generate interrupts during the

RT setup. The RT message buffer contains the interrupt enable/disable word. Use

BusTools_RT_MessageWrite to load the RT message buffer.

Timing accuracy differs between systems. Usually, most PC systems have accuracy

no better than 10 milliseconds. You must consider the timing accuracy of your

system when selecting a time-out value, especially if you are developing a

deterministic application.

Example

This function hides the structure of the interrupt queue. The following code shows

how to use this call.

API_BM_MBUF_READ mbuf;

BT_UINT timeout;

timeout = 100; // 100 millisecond timeout

status = BusTools_RT_ReadNextMessage(cardnum, timeout,

 0x10, -1, 1, &mbuf);

if(status==0)

{

 // Data returned

The above code returns the next transmit message to RT address 4.

278 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.159 BusTools_RT_StartStop

Description

BusTools_RT_StartStop is used to turn the RT on or off with the requested state

specified by the flag parameter.

This function starts all enabled RTs. The RT Address buffer enables and disables

individual RTs, see BusTools_RT_AbufWrite. The RT Control buffer enables and

disables individual subaddresses, transmit/receive, and word count combinations.

See the BusTools_RT_CbufWrite function.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions and the RT initialized using

BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_RT_StartStop (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_UINT) requested state for RT:

 RT_STOP (0) = Stop the RT.

 RT_START (1) = Start the RT.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

API_RT_NOTRUNNING

API_RT_RUNNING

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 279

4.160 BusTools_Set1553Mode

Description

BusTools_Set1553Mode provides the method for the application to select 1553A or

1553B mode protocol processing by a specific RT address. This setting applies to the

Remote terminal, Bus Controller, and Bus Monitor. To mix 1553A and 1553B modes

on the same bus you must initialize the channel in 1553B mode and then call this

function to set which RT addresses run 1553A mode. If you initialize the channel to

run 1553A mode, all RT address will respond with the 1553A protocol and they

cannot be overwritten by this function.

This function uses a bit-encoded flag to set the RT address to 1553A mode. Each bit

in this flag corresponds to an RT address, (e.g., bit 0 is RT0, bit 1 is RT1, etc.). For

Example, to set RT 2 and RT 4 to run in 1553A mode you would pass the following:

0000 0000 0000 0000 0000 0000 0001 0100 = 0x00000014

This function must be called after BusTools/1553-API Initialization; however, after

starting the Bus Controller, Remote Terminal or Bus Monitor, the application cannot

change 1553 mode until those functions are terminated.

OS Support

Core API Function

Syntax

wStatus = BusTools_Set1553Mode (cardnum, rtmode);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtmode (BT_U32BIT) bit-encoded flag indicating 1553 mode:

 0 = 1553B.

 1 = 1553A.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_RUNNING

API_BM_RUNNING

API_BC_RUNNING

API_HARDWARE_NOSUPPORT

280 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.161 BusTools_SetBroadcast

Description

BusTools_SetBroadcast is used to set the broadcast message operational mode with

the Abaco Systems 1553 boards. There are two modes of operation with respect to

broadcast messages:

• Broadcast Enabled: This mode supports broadcast messages. Any receive

command sent to RT address 31 is treated as a message that is to be sent to all

RTs. The BT1553_INT_BROADCAST bit is set in the Message Status word for

any such messages. A transmit command sent to RT address 31 is treated as an

illegal command.

• Broadcast Disabled: In this mode, broadcast messages are not used. RT address

31 is available to be defined like any other RT address.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions; however, BusTools_SetBroadcast

must be invoked prior to initializing the RT via BusTools_RT_Init. If this function is

invoked after BusTools_RT_Init, it clears the channel initialization and

BusTools_RT_Init will have to be invoked again.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetBroadcast (cardnum, bcast);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

bcast (BT_UINT) flag indicating broadcast mode:

 0 = RT address 31 is not used as broadcast code.

 1 = RT address 31 is used as broadcast code.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 281

4.162 BusTools_SetDumpPath

Description

BusTools_SetDumpPath sets a directory path for the memory dump-to-file feature

provided via BusTools_DumpMemory, certain BIT tests, or when errors are

encountered during certain operations specifically designed to generate memory

dumps. This function sets the environment variable, CONDOR_HOME, with the

path to the directory where memory dumps are stored. If CONDOR_HOME is

NULL (not set), memory dump output is written to the working directory. This

function is only required to direct memory dump output to a specific location. On

Windows o/s versions after Windows 7, this function must be invoked if the

application is executing in a protected directory.

There are two methods for setting CONDOR_HOME. You can globally set it using

the environment variables in the Systems Properties of the Control Panel. You need

administrator privileges do this. The other option is to use this function to set

CONDOR_HOME locally. If globally set, dump files generated from all applications

invoking BusTools_DumpMemory are written into the same directory. When locally

set, each application can direct memory dump output to a different location.

UNIX systems can set CONDOR_HOME from the command line according the shell

method for setting and exporting environment variables or using this function.

This function can be invoked at any time and is recommended before executing any

application that incorporates BusTools_DumpMemory.

OS Support

Windows and UNIX (Requires file system support)

Syntax

wStatus = BusTools_SetDumpPath (dpath);

wStatus (BT_INT) status returned from this function.

 API_BAD_PARAM indicates the path provided is not valid.

dpath (char *) path name. On windows systems you must use the

double slash (\\) as the directory separator. For Example

(C:\\temp\\MyFiles)

Return Value

API_SUCCESS

API_BAD_PARAM

282 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.163 BusTools_SetExternalSync

Description

All Abaco Systems 1553 boards have a common counter to time-tag all messages

recorded by the board. BusTools_SetExternalSync enables the external reset of that

counter by a TTL input signal.

Since the common counter is global to all components simulated on the board, this

option should be used carefully. For more information, see the BusTools_SetOptions

function.

The API is not notified of the fact that the time-tag counter has been reset.

This function performs a subset of the BusTools_TimeTagMode function.

Prior to invoking this function, the channel must be initialized by invoking one of

the BusTools/1553-API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetExternalSync (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_UINT) flag indicating operation:

 0 = external sync is disabled

 1 = external sync is enabled

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Notes

This function is duplicated by the BusTools_TimeTagMode function as follows: For

flag == 0 specify:

wStatus = BusTools_TimeTtagMode(cardnum, API_TT_DEFAULT,

API_TT_DEFAULT, API_TTM_FREE, NULL, 0, 0, 0);

else, for flag == 1 specify:

wStatus = BusTools_TimeTagMode(cardnum, API_TT_DEFAULT,

API_TT_DEFAULT, API_TTM_RESET, NULL, 0, 0, 0);

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 283

4.164 BusTools_SetInternalBus

Description

Abaco Systems MIL-STD-1553 boards provide a feature to make it possible to

transmit and receive messages internally, without requiring an external bus cable or

termination. BusTools_SetInternalBus is used to set the bus operation mode of the

board. The two modes of operation are:

• External Bus Enabled: In this mode of operation, the external 1553 bus is driven

according to the loaded mode (BC, BM, and RTs). The BM monitors all activity

on the external bus. Any bus messages, even between two locally defined

components, are transmitted on the external bus. This is the default state after

Initialization.

• Internal Operation Only: In this mode of operation, the external bus is ignored.

All messages are simulated internally with no output to or input from the

external bus.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetInternalBus (cardnum, busflag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

busflag (BT_UINT) external or internal bus operation mode:

 EXTERNAL_BUS (0) = external bus enabled

 INTERNAL_BUS (1) = external bus disabled (internal

 operation)

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Notes

The RQVME2-1553, QVME-1553, QPCI-1553, and QPCX-1553 have a Test Bus in

addition to the internal and external bus options. The figure below shows how these

three options operate. To use the Test Bus, select the external bus by calling

BusTools_SetInternalBus and enable the Test Bus by calling BusTools_SetTestBus.

The Test Bus connects the channels on multi-channel boards. You must use direct

coupling with the test bus. The QPCI-1553 and QPCX-1553 has an additional LRU

connector that allows you to connect to an external transformer coupled bus.

284 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Once you select the Test Bus, the CH1 – CH4 connectors are not available. You must

disable the Test Bus before you can use the connectors.

Figure 4-2 RQVME2-1553, QVME-1553, QPCI-1553, and QPCX-1553 Bus Options

FPGA

XCVR

TX

TERMINATION

NORMAL

TEST/NORMAL

SWITCH

INTERNAL
TEST
BUS

TERMINATION

CH 1 CONNECTOR

INTERNAL/EXTERNAL

SWITCH

RX

EXT

INT

INT

EXT

INTERNAL/EXTERNAL

SWITCH

RX
EXT

INT

INT

EXT TX

XCVR

SWITCH

NORMAL

CH 2 CONNECTOR

TEST/NORMAL

INTERNAL/EXTERNAL

SWITCH

RX

EXT

INTERNAL/EXTERNAL

SWITCH

TX

RX

INT

INT

EXT

EXT

INT

INT

XCVR

XCVR

TXEXT

TEST/NORMAL
SWITCH

COUPLING
XFMR

TEST
BUS

NORMAL

TEST/NORMAL

SWITCH

NORMAL

CH 4 CONNECTOR

CH 3 CONNECTOR

LRU CONNECTOR

ISOLATION
XFMR

ISOLATION
XFMR

ISOLATION
XFMR

ISOLATION
XFMR

QPCI ONLY

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 285

4.165 BusTools_SetIntVector

Description

BusTools_SetIntVector sets the interrupt vector for VME interrupts. The vector

ranges from 1 to 255. Use this function to select a vector for each channel to override

the default API setting. Prior to calling this function, the channel must be initialized

by invoking one of the BusTools/1553-API Initialization functions.

OS Support

VxWorks VME boards only

Syntax

wStatus = BusTools_SetIntVector (cardnum, wVector);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 15.

wVector (BT_UINT) interrupt vector (1-255).

Return Value

API_SUCCESS

API_BAD_PARAM

API_BUSTOOLS_BADCARDNUM

286 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.166 BusTools_SetIRQ_Lvl

Description

BusTools_SetIRQ_Level sets the IRQ level for VME interrupts. The IRQ level ranges

from 1 to 7. Use this function to select an IRQ level for each VME device to override

the default API setting. There is only one IRQ per device. Each channel on that

device gets the same IRQ.

This function must be called prior to initialization. This is different than most other

BusTools/1553-API functions which require an initialized board. Pass the card

number and IRQ value as input arguments. Call this function only once for each

1553 VME device in your system. You must be sure that the card number you use

for this call matches the card number in the call to BusTools_API_InitExtended.

Also, make sure that the cardnum you select matches a card number for the device

for which you intend to set the IRQ.

OS Support

VxWorks VME boards only

Syntax

wStatus = BusTools_SetIRQ_Level (wDevice, pwIRQ);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 15.

pwIRQ (BT_UINT) pointer to array of 16 IRQ values ranging from 1-7.

Return Value

API_SUCCES

API_BAD_PARAM

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_INITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 287

4.167 BusTools_SetMultipleExtTrig

Description

BusTools_SetMultipleExtTrig enables external triggers for each channel on the

RXMC-1553, RXMC2-1553 and R15-LPCIE boards.

For the RXMC-1553, the possible number of trigger outputs depends on the board

configuration. The table below lists the different configuration options and the

output lines available for triggers.

Configuration PIO Discrete EIA485

PIO_OPN_GRN 8 4 -

PIO_28V_OPN 8 4 -

DIS_OPN_GRN - 12 -

DIS_28V_OPN - 12 -

EIA485_OPN_GRN - 4 4

EIA485_28V_OPN - 4 4

The RXMC-1553 can route the output trigger to any PIO, discrete, or 485 output. The

RXMC2-1553 and R15-LPCIE can route the output trigger to any discrete output.

The application can configure multiple output triggers for a channel and channels

can share the same output trigger.

Call this function any time after the application initializes the channel. The PIO,

Discrete, and EIA-485 lines are shared resources. Your application must coordinate

the use of these channels so not to interfere with application use of other channels on

the same board.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetMultipleExtTrig (cardnum, trigOpt, tvalue, enableFlag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

trigOpt (BT_INT) Select trigger type PIO, DISCRETE, or EIA485 (for

R15-LPCIE and RXMC2-1553 only DISCRETE is used).

tvalue (BT_UINT) trigger channel. Valid range is 1 to 12.

enableFlag (BT_INT) EXT_TRIG_ENABLE; EXT_TRIG_DISABLE

288 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Return Value

API_SUCCES

API_BAD_PARAM

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_INITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 289

4.168 BusTools_SetNRLRTimeout

Description

BusTools_SetNRLRTimeout sets the time-out values for late response and no-

response. The late response time is the time allowed after the BC transmits a

message before declaring the RT response late. The response must occur between

the late response time and the no-response time. If this happens, then late response

bit in the Interrupt Status Word is set. If the response exceeds the no-response time

then, even if an RT does respond, the no-response bit in the Interrupt Status Word is

set.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetNRLRTimeout (cardnum, wTimeout1, wTimeout2);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

wTimeout1 (BT_UINT) timeout period for the “No Response” error, in µs.

Valid range is 4 to 31.

wTimeout2 (BT_UINT) time-out period for the “Late Response” error, in

µs. Valid range is 4 to 31.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

290 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.169 BusTools_SetOptions

Description

BusTools_SetOptions supports the following channel configuration options:

• Suppressing the Minor-Frame overflow warning

• Memory Dump on BM stop

• BM Trigger on Message

• Monitor Invalid Commands

• Reset TT on synchronize Mode Code

• Trigger on synchronize Mode Code

• RT start on external sync

• Ignore High Word errors

• Undefined Mode Codes are Illegal

Prior to invoking this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions. The Bus Monitor must be initialized

using the BusTools_BM_Init function.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetOptions (cardnum, intflag, resettimer, trig_on_sync,

enable_rt);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

intflag (BT_UINT) 0x0001 - Suppress MF OFlow message

 0x0002 - Monitor invalid commands

 0x0004 - Dump on BM Stop

 0x0008 - BM trigger on message

 0x0010 - Ignore High Word errors

 0x0040 - Undefined Mode Code illegal

resettimer (BT_UINT) “Reset Time tag on Sync” option:

 0 = Disabled.

 1 = Enabled.

trig_on_sync (BT_UINT) Trigger output on Sync Mode Code

 0 = Disabled

 1 = Enabled

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 291

enable_rt (BT_UINT) RT start on trigger input

 0 = Disabled

 1 = Enabled.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_RT_NOTINITED

292 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.170 BusTools_SetPolling

Description

BusTools/1553-API supports a software-polling mode. This mode is set up when

you initialize using either Software or Hardware interrupt mode. Hardware Only

mode is the only mode that does not set up polling. The default-polling interval is

10 milliseconds. BusTools_SetPolling allows you to change the default polling rate.

BusTools_SetPolling can be invoked any time after a channel is initialized. The

polling interval is set using a timer assigned to the application from the operating

system. There is only one timer per application, so modifying the polling interval for

one channel it will modify the interval for all channels controlled by the application.

The lowest timing interval is one millisecond. The accuracy of the timer is a function

of the operating system. Setting a timing interval does not guarantee that the

operating system meets that interval in all cases. This is particularly true for non-

real-time operating system like Windows and UNIX. Your application may need to

set operating system timing parameters to achieve the desired timing.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetPolling (polling);

wStatus (BT_INT) status returned from this function.

polling (BT_UINT) The polling interval in milliseconds (1 – 2000).

Return Value

API_SUCCESS

API_NO_POLLING

BTD_TIMER_FAIL

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 293

4.171 BusTools_SetSa31

Description

All Abaco Systems 1553 boards can support two RT function modes of operation

with respect to subaddress 31 and mode codes. BusTools_SetSa31 provides a

method to select which mode to use. The two modes of operation are:

• Subaddress 31 is not used for mode codes.

• Subaddress 31 is used for mode codes.

This function must be invoked after initializing the channel with one of the

BusTools/1553-API Initialization functions but before invoking BusTools_RT_Init.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetSa31 (cardnum, sa31);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

sa31 (BT_UINT) flag indicating subaddress 31 operation mode:

 0 = subaddress 31 is not used for mode codes

 1 = subaddress 31 is used for mode codes

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

294 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.172 BusTools_SetTermEnable

Description

The RXMC2-1553 and R15-LPCIE have two differential discrete I/O lines supporting

switchable termination. BusTools_SetTermEnable provides the method to enable or

disable 120-Ω termination on these discrete channels. Setting bits 0 and 1 of the

tEnable parameter enable termination. If those bits are cleared, termination is

disabled.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetTermEnable (cardnum, tEnable);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

tEnable (BT_U16BIT) enable or disable termination. Valid range is 0 to

3.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 295

4.173 BusTools_SetTestBus

Description

The QVME-1553, RQVME2-1553 and QPCX-1553 boards support a 1553 Test Bus.

This function enables the Test Bus mode of the Abaco Systems 1553 board. The Test

Bus allows communication between different channels on a multi-channel board.

When you enable the Test Bus, the firmware routes the 1553 signal to an onboard

bus connecting the different channels. This differs from setting the internal bus in

that the internal bus setting allows only communication within a single channel. The

Test Bus also differs from the internal bus in that the internal bus connects before the

transformer and transceiver, while the test bus connects after these components.

Prior to calling this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions.

The advantage of this design is that you test all components in the 1553 path, and

you can connect two independent 1553 channels without any connectors, couplers,

tees, and terminators.

When the Test Bus is enabled, the 1553 signal is switched from the external

connector (front or rear panel) to the onboard Test Bus. You must select direct

coupling in BusTools_BC_Init to use the Test Bus between two channels on a multi-

channel board. To return the 1553 signal to the external connectors, disable the Test

Bus.

The QPCI-1553 and QPCX-1553 have an additional LRU connector that allows you to

connect to an external transformer coupled bus.

The two modes of operation are:

• Test Bus Enabled: In this mode, the 1553 output for the selected channel is

switched onto the onboard Test Bus.

• Test Bus Disabled: In this mode, the 1553 output for the selected channel is

switched to the external connector.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetTestBus (cardnum, busflag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

busflag (BT_UINT) Test bus operation mode:

 TEST_BUS_ENABLE = Test bus enabled

 TEST_BUS_DISABLE = Test bus disabled

296 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Note

To use the Test Bus, select the external bus by calling BusTools_SetInternalBus and

enable the Test Bus by calling BusTools_SetTestBus. The Test Bus connects the

channels on multi-channel boards. You must use direct coupling with the Test Bus.

Once you select the test bus, the CH1 – CH4 connectors are not available. You must

disable the test bus before you can use the connectors.

Figure 4-3 RQVME2-1553, QVME-1553, QPCI-1553 & QPCX-1553 Bus Options

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 297

4.174 BusTools_SetVoltage

Description

The Abaco Systems MIL-STD-1553 boards can drive the 1553 bus with direct

coupling or transformer coupling. In addition, variable voltage boards can adjust

transmit voltage levels. This function is used to set these parameters.

For direct coupling, the legal voltage range is 0.0V to 6.5V. For transformer

coupling, the legal voltage range is 0.0V to 19.8V. For both types of coupling, the

available resolution is approximately 0.1V.

The value of voltage passed to this function is an integer, which is the value of the

voltage in volts multiplied by 100.

If coupling is set to DAC_VALUE the coupling is left unchanged and the voltage

value set between 0 and 255 is written directly to the DAC.

This API function assumes the boards are configured to support variable voltage

output. It responds to API calls for Output level, regardless of hardware. Calls

made to fixed amplitude boards have no effect on the board’s transmit level.

Prior to calling this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function

Syntax

wStatus = BusTools_SetVoltage (cardnum, voltage, voltflag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

voltage (BT_UINT) output voltage -- in volts*100

voltflag (BT_UINT) flag indicating coupling:

 DIRECT (0) = direct coupling

 TRANSFORMER (1) = transformer coupling

 DAC_VALUE (255) = DAC to wVoltage (0-255)

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_BUSTOOLS_BADCOUPLING

API_BUSTOOLS_BADVOLTAGE

API_HARDWARE_NOSUPPORT

298 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.175 BusTools_SetV6TrigIn

Description

This function selects a discrete to use as an external input trigger for a channel on a

board running with F/W Version 6.0 or greater. The logical channel referenced via

cardnum uses the selected discrete as an input trigger.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_SetV6TrigIn (cardnum, trigOpt, tvalue);

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

trigOpt (BT_U16BIT) Trigger Option:

 DISCRETE (1)

 EIA485 (2)

 PIO (3)

tvalue (BT_UINT) trigger channel (1-18). Select a valid trigger

channel for the board in use.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 299

4.176 BusTools_SetV6TrigOut

Description

This function selects a discrete to use as an output trigger for a channel on a board

running with F/W Version 6.0 or greater. The logical channel referenced via cardnum

uses the selected discrete as an output trigger.

OS Support

Core API Function (F/W Version 6.0 or greater)

Syntax

wStatus = BusTools_SetV6TrigOut (cardnum, trigOpt, tvalue);

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

trigOpt (BT_U16BIT) Trigger Option:

 DISCRETE (1)

 EIA485 (2)

 PIO (3)

tvalue (BT_UINT) trigger channel (1-18). select a valid trigger channel

for the board in use.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

300 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.177 BusTools_StatusGetString

Description

This function is used to convert a BusTools API error number into an ASCII string

suitable for display to a user. The string informs you that there was an unexpected

condition with respect to the BusTools hardware and/or software. See Chapter 6,

“Return Codes”, for a complete listing of all error codes.

All error codes returned by the BusTools/1553-API are supported by this function.

For the most recent list, see the current file “Busapi.h”.

OS Support

Core API Function

Syntax

pString = BusTools_StatusGetString (status);

pString (char *) returned address of ASCII string. This string is a

“static” string in the BusTools API functions – just the address

is returned – don’t attempt to modify this string.

status (BT_INT) BusTools API status code from some function.

Return Value

Pointer to a string containing the ASCII definition of the status parameter.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 301

4.178 BusTools_TimeGetString

Description

BusTools_TimeGetString is used to convert a BusTools/1553-API time structure into

a string suitable for display. The time structure is contained in all Bus Controller,

Bus Monitor and Remote Terminal messages.

The TTDisplay parameter passed to the BusTools_TimeTagMode function defines

how time tags are converted by this function as follows:

Table 4-4 TTDisplay Parameter Settings

TTDisplay Display Type:

API_TTD_IRIG*

API_TTD_IRIG_NS**

IRIG Format “(ddd)hh:mm:ss.uuuuuu”. Supported by all
board variants. Formatting:

ddd = number of days if required;

hh = number of hours if required;

mm = minutes (0 – 59);

ss = seconds (0 – 59);

uuuuuu = microseconds (000000 – 999999).

All parameters are displayed, even if zero.

API_TTD_DATE*

API_TTD_DATE_NS**

Date Format “(MM/dd)hh:mm:ss.uuuuuu” where

MM = month (1 - 12)

dd = day of month (1 – 31)

API_TTD_RELM*

API_TTD_RELM_NS**

Relative to midnight format “(ddd)hh:mm:ss.uuuuuu”.
Only the needed parameters are displayed (leading zero
parameters are suppressed).

* String conversion based on µs lsb
**String conversion based on ns lsb

The BusTools API Time Tag Counter “BT1553_TIME” structure has a 1-µs resolution

and a range of 407.23 days for V5 and earlier boards.

Starting with BusTools/1553-API version 8.0 this function uses a 64-bit time tag. In

addition, the time tag can have either a micro- or nano-second resolution. If you are

converting a nanosecond (ns) time tag you must set the pString parameter to

“NANO” prior to calling this function or use the _NS display format when calling

BusTools_TimeTagMode.

OS Support

Core API Function (Not support by VxWorks 5.4 or earlier).

Syntax

BusTools_TimeGetString (curtime, string);

curtime (BT1553_TIME *) pointer to a time structure

string (char*) pointer to output string (should be at least 25

characters long, depending on the selected format, and the

current value of the time tag). If you pass a string set to

302 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

“NANO” the string conversion expects the time value to have

a resolution of 1 nanosecond.

Return Value

None.

Notes

The format of the conversion is set by the previous call to the

BusTools_TimeTagMode function. Unlike the other parameters set by the

BusTools_TimeTagMode function, the conversion mode is a global parameter

affecting all open boards, it is not retained on a per-board basis.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 303

4.179 BusTools_TimeGetFmtString

Description

This function converts a BusTools time structure into a string suitable for display.

The BusTools time structure is contained in all BC, BM, and RT messages. This

function allows the user to pass the display format. If API_TTD_DEFAULT is used,

the current global format setting is used.

Table 4-5 TTDisplay Parameter Settings

TTDisplay Display Type:

API_TTD_IRIG

API_TTD_IRIG_NS

IRIG Format “(ddd)hh:mm:ss.uuuuuu”. Supported by all
board variants. Formatting:

ddd = number of days if required;

hh = number of hours if required;

mm = minutes (0 – 59);

ss = seconds (0 – 59);

uuuuuu = microseconds (000000 – 999999).

All parameters are displayed, even if zero.

API_TTD_DATE

API_TTD_DATE_NS

Date Format “(MM/dd)hh:mm:ss.uuuuuu” where

MM = month (1 - 12)

dd = day of month (1 – 31)

API_TTD_RELM

API_TTD_RELM_NS

Relative to midnight format “(ddd)hh:mm:ss.uuuuuu”.
Only the needed parameters are displayed (leading zero
parameters are suppressed).

The BusTools API Time Tag Counter “BT1553_TIME” structure has a 1-µs resolution

and a range of 407.23 days. Starting with BusTools/1553-API version 8.0 this

function takes a 64-bit time tag. In addition, the time tag can have either a micro- or

nanosecond resolution. If you are converting a nanosecond time tag use the _NS

display format.

OS Support

Core API Function (Not support by VxWorks 5.4 or earlier).

Syntax

BusTools_TimeGetFmtString (tFormat, curtime, string);

tFormat (BT_INT) Display format API_TDD_RELM,

API_TTD_RELM_NS, API_TTD_IRIG, API_TTD_IRIG_NS,

API_TTD_DATE, API_TTD_DATE_NS, API_TTD_DEFAULT.

curtime (BT1553_TIME*) pointer to time structure.

string (char*) pointer to output string (should be at least 25

characters long, depending on selected format, and value of

the time tag).

Return Value

None.

304 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.180 BusTools_TimeTagGet

Description

This function is not a part of the BusTools/1553-API; rather it is a user-written

function in a user-provided Dynamic Link Library (DLL).

This function (and its containing DLL) is only used when the built-in time-tag

initialization function supplied by the API is insufficient. This provides a

mechanism for extending the API to support those cases.

The API loads the DLL containing this function when the BusTools_TimeTagMode

function is called, and the parameter “TTInit” is set to “API_TTI_EXT”. The API

calls this function when the Time Tag Counter is to be initialized. The exact function

definition is given in the function prototype contained in the Busapi.h file.

This function must compute and return the value to be loaded into the Time Tag

Counter whenever it is called.

Prior to calling this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions.

OS Support

Windows.

Syntax

wStatus = BusTools_TimeTagGet (cardnum, pTime);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

pTime (BT1553_TIME *) pointer to time structure

Return Value

API_SUCCESS if no errors were detected.

Notes

This function can return any error code desired if a failure is detected. The API

returns the error code API_TIMETAG_USER_ERROR if a non-zero return code is

detected from this function.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 305

4.181 BusTools_TimeTagInit

Description

BusTools_TimeTagInit initializes both the hardware and the software time-tag

counters. All board types support this function call.

The API calls this function in BusTools_TimeTagMode to initialize the Time Tag

Counter. A user program can also call this function at any time to initialize the Time

Tag Counter. BusTools API uses a Time Tag Counter with a 1-µs resolution. The 45-

bit time tag can record up to 407.23 days.

The exact behavior of this function depends on the underlying board type and the

Time Tag Counter initialization mode specified by the TTInit argument in the most

recent call to BusTools_TimeTagMode.

If you set TTInit to API_TTI_ZERO or API_TT_DEFAULT, or you have not set the

Time tag mode by calling BusTools_TimeTagMode, then calling this function clears

the Time Tag Counter. The API also sets the base time to zero. This is the default

behavior for the Time Tag Counter.

If you set TTInit to API_TTI_DAY, this function reads the current time of day,

relative to midnight, from the host clock and loads the value into the Time Tag

Counter.

If you set TTInit to API_TTI_IRIG, the function reads the current time of year from

the host clock and loads the value into the Time Tag Counter.

If you set TTInit to API_TTI_EXT, this function calls the user-function

BusTools_TimeTagGet in the specified user DLL. The function loads the returned

value into the hardware Time Tag Counter.

Prior to calling this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function.

Syntax

wStatus = BusTools_TimeTagInit (cardnum);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

306 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.182 BusTools_TimeTagMode

Description

BusTools/1553-API has many time tag modes (see tables below). These modes define

the time-tag format in messages the Bus Monitor records, and the Remote Terminal

function sends. It also defines the active time-tag display format.

Prior to calling this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions.

All Abaco 1553 boards programmed with version 4/5 firmware base the onboard

timer on a 1-MHz clock, with the time-tag counter defined as a 45-bit counter. All

Abaco 1553 boards programmed with version 6 firmware support a time-tag counter

defined as 64-bit counter having a resolution of 1ns. This counter is used in all time

tagging of messages recorded by the Bus Monitor or transacted by the Remote

Terminal function.

The “Reset Time tag on Sync” option also controls the same time tag. Enabling this

option sets the hardware Time Tag Counter to a value in the Time Tag Counter Load

Register whenever the board receives a Synchronize Mode Code. Since the time tag

is global to all components, use this option carefully. For more information, see the

BusTools_SetOptions function.

The API is not notified on time tag reset, and when the Time Tag Counter overflows.

It uses this notification information to extend, in software, the Time Tag Counter to

48 bits. A 48-bit time tag, counting a 1-MHz clock, does not wrap around for 3257.81

days.

The TTDisplay parameter defines the way time tags appear by the

BusTools_TimeGetString function as follows:

Table 4-6 TTDisplay parameter for BusTools_TimeGetString

TTDisplay Display Type:

API_TTD_RELM

API_TTD_RELM_NS

Relative to midnight format “(ddd)hh:mm:ss.useconds”.

Only those components necessary are displayed (e.g., if days
is zero it is not displayed). Default display mode.

API_TTD_IRIG

API_TTD_IRIG_NS

IRIG Format “(ddd)hh:mm:ss.uuuuuu”. Formatting:

ddd = days; hh = hours; mm = minutes;

ss = seconds; uuuuuu = microseconds.

All components displayed; fixed format.

API_TTD_DATE

API_TTD_DATE_NS

Date Format “(MM/dd)hh:mm:ss.uuuuuu”.

This parameter is global to all boards being controlled by the current instance of the

API. The other mode parameters apply on a per-board basis (or a per-channel basis,

for multi-channel boards). Use the _NS parameter on V6 boards that have 64-bit ns

time tags.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 307

For further information about the format of the time tag ASCII string, see the

function BusTools_TimeGetString.

The table below defines how the API initializes the Time Tag Counter.

Table 4-7 TTinit Values

TTInit Time tag Initialization Mode:

API_TT_DEFAULT Unchanged from previous call.

API_TTI_ZERO Time tag initialized to zero. Supported by all board variants.
(Default) This happens at the call to BusTools_TimeTagInit.
Time that elapses between this call and the start of traffic will
be reflected in the time tag reported in the messages.

API_TTI_DAY Time of day, relative to midnight, is loaded into the Time Tag
Counter, when Bus Monitor Started (Host Clock reference)

API_TTI_IRIG Time of year (IRIG format) (Host clock reference)

API_TTI_EXT External time reference (provided by the user-supplied
function “BusTools_TimeTagGet” in the DLL specified by
“DLLname”)

TTMode specifies how the Time Tag Counter operates as follows:

Table 4-8 TTMode Values

TTMode Time Tag Counter operating mode:

API_TT_DEFAULT Unchanged from previous call.

API_TTM_FREE Free running Time Tag Counter, supported by all board
variants (Default).

API_TTM_RESET Time Tag Counter reset to zero on external TTL input discrete
active. Supported by all board variants.

API_TTM_SYNC Synchronize the time tag to the external TTL input. The
TTPeriod parameter sets the period of the external TTL input
in microseconds.

API_TTM_RELOD Time Tag Counter is reset to the value previously loaded into
the Time tag Load register (see BusTools_TimeTagWrite) by
external TTL input pulse.

API_TTM_IRIG Time Tag Counter is reset to the IRIG time from either an
external or internal IRIG source. Board must have IRIG
firmware to support this option.

API_TTM_AUTO Time Tag Counter is automatically set to the increment of the
value store in the Time Tag Counter load register on an
external sync pulse

API_TTM_XCLK Time Tag Counter is updated using an external 1-MHz clock.
Default is to use rising edge. Set lparm1 to TIME_EXT_EDGE
to use the falling edge. Requires firmware version 5.00 or
higher.

OS Support

Core API Function.

Syntax

308 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

wStatus = BusTools_TimeTagMode (cardnum, TTDisplay, TTInit, TTMode,

DLLname, TTPeriod, lParm1, lParm2);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

TTDisplay (BT_UINT) time tag display format.

TTInit (BT_UINT) time tag initialization mode.

TTMode (BT_UINT) flag indicating time tag mode.

DLLname (char *) name of the DLL containing an application-defined

time-tag retrieval function.

TTPeriod (BT_U32BIT) the duration to increment time when used in

conjunction with the external TTL sync input, defined with a

1-µs resolution.

lParm1 (BT_U32BIT) spare parameter.

lParm2 (BT_U32BIT) This flag is used to enable or disable the

invocation of BusTools_TimeTagInit within execution of the

function BusTools_TimeTagMode. A value of zero enables

invocation of BusTools_TimeTagInit. Any other value disables

that invocation.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

API_NO_OS_SUPPORT

API_TIMETAG_BAD_DISPLAY

API_TIMETAG_BAD_INIT

API_TIMETAG_BAD_MODE

API_TIMETAG_NO_DLL

API_TIMETAG_NO_FUNCTION

API_TIMETAG_USER_ERROR

Notes

If the parameter lParm2 is non-zero, the invocation of BusTools_TimeTagInit will not

occur within execution of BusTools_TimeTagMode; in this case the application must

invoke BusTools_TimeTagInit before invoking BusTools_BM_StartStop or

BusTools_RT_StartStop.

The firmware reads the hardware Time Tag Counter and the value saved in the

message buffer at the beginning of each message recorded by the Bus Monitor,

Remote Terminal, and Bus Controller.

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 309

4.183 BusTools_TimeTagRead

Description

BusTools_TimeTagRead reads the current value of the hardware Time Tag Counter

on all current Abaco Systems MIL-STD-1553 boards. The definition of the Time Tag

Counter differs between F/W version 4/5 and F/W version 6.0.

For F/W version 4/5 the Time Tag Counter is a 45-bit counter with a resolution of

1-µs. For F/W version 6.x the Time Tag Counter is a 44-bit counter with a resolution

of 1ns.

Each channel on a 1553 board contains an independent Time Tag Counter on each

channel (e.g., two Time Tag Counters on dual channel boards). The operation of the

Time Tag Counter is specified via invocation of the BusTools_TimeTagMode

function.

Prior to calling this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function.

Syntax

wStatus = BusTools_TimeTagRead (cardnum, timetag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

timetag (BT1553_TIME *) pointer to time structure

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

310 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.184 BusTools_TimeTagReset

Description

This function enables an external reset of the time-tag counter to zero (0). This is

either a 48-bit counter for V5 and earlier firmware or a 64-bit counter for V6

firmware. The Time Tag Counter operates in the mode specified by the

BusTools_TimeTagMode function. This function requires firmware version 5.00 or

higher.

Each board has a Time Tag Counter per channel. When enabled by this function, an

external pulse resets the current contents of the Time Tag Counter. Check the MIL-

STD-1553 Hardware Installation Manual for the external reset input pin.

Prior to calling this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function.

Syntax

wStatus = BusTools_TimeTagReset (cardnum, tflag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

tflag (BT_UINT) reset flag:

 EXT_RESET_ENABLE (1)

 EXT_RESET_DISABLE (0)

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 311

4.185 BusTools_TimeTagWrite

Description

BusTools_TimeTagWrite writes the specified value to the 45-bit hardware Time Tag

Counter on all current Abaco Systems 1553 boards. The value is written to a time-

tag load register, after which the firmware loads the contents of the load register into

the Time Tag Counter. The value in the load register is preserved and may be re-

loaded into the Time Tag Counter again (when enabled) by a positive-going

transition on the discrete input line. See BusTools_TimeTagMod for more

information.

Each of these boards provides one Time Tag Counter per channel (e.g., two Time Tag

Counters on dual channel boards). Each Time Tag Counter has an associated time

tag load register.

The BT1553_TIME structure is different depending on the firmware version. For

F/W version 5.x or before the size and resolution are 48-bits and microseconds

(although only 45 bits are used). For F/W version 6.0 with BusTools/1553-API version

8.0 and later, the size and resolution are 64-bits and nanoseconds.

Prior to calling this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function.

Syntax

wStatus = BusTools_TimeTagWrite (cardnum, timetag, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

timetag (BT1553_TIME *) pointer to time structure

flag (BT_INT) if zero the value is written to the time tag holding

register only. If one, the value is also transferred into the Time

Tag Counter.

Return Value

API_SUCCESS

API_BUSTOOLS_BADCARDNUM

API_BUSTOOLS_NOTINITED

API_HARDWARE_NOSUPPORT

312 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.186 BusTools_UpdateIntFifo

Description

BusTools_UpdateIntFifo stores the contents of the local API_INT_FIFO into the

global API_INT_FIFO.

This function is used for C# wrapper compatibility only and is not needed for any

other application.

OS Support

Windows C# compatibility.

Syntax

void = BusTools_UpdateIntFifo (LPVOID uFifo, LPVOID nFifo);

uFiFo (LPVOID)pointer to global API_INT_FIFO structure.

nFifo (LPVOID)pointer to local API_INT_FIFO structure.

Return Value

None

Publication No. 1500-038 Rev. 5.11 BusTools/1553-API Routines 313

4.187 BusTools_UpdateTailPTR

Description

BusTools_UpdateTailPTR updates the API_INT_FIFO tail pointer.

OS Support

Windows C# compatibility.

This function is used for C# wrapper compatibility only and is not needed for any

other application.

Syntax

void = BusTools_UpdateTailPTR (LPVOID uFifo, BT_INT tail);

uFiFo (LPVOID)pointer to API_INT_FIFO structure.

nFifo (BT_INT)value for the tail pointer.

Return Value

none

314 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

4.188 BusTools_WriteVMEConfig

Description

BusTools_WriteVMEConfig writes data to a selected offset in the VME A16

configuration space on the RQVME2-1553 and QVME-1553. This allows you to write

the Interrupt vectors to the vector addresses for each channel. It also allows

diagnostic testing.

Use care when calling this function not to overwrite any configuration setting. See

the MIL-STD-1553 Universal Core Architecture Manual for a full description of these

Configuration Registers.

Prior to calling this function, the channel must be initialized using one of the

BusTools/1553-API Initialization functions.

OS Support

Core API Function.

Syntax

wStatus = BusTools_WriteVMEConfig (cardnum, offset, vdata);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

offset (BT_UINT) Offset to A16 base address.

vdata (BT_U16BIT) data written to offset

Return Value

API_SUCCESS

API_HARDWARE_NOSUPPORT

Publication No. 1500-038 Rev. 5.11 Extending the API 315

5 • Extending the API

5.1 Introduction

The BusTools/1553-API is a powerful programming tool, providing access to all

features of the BusTools/1553 MIL-STD-1553 interface boards. The API provides

board-independent programming at a high level, freeing the programmer from

many details like memory management that would consume a large portion of your

programming effort.

However, there are cases when the API may not meet your exact needs. There may

be cases where the API’s Bus Controller memory allocation scheme does not provide

the required capability, even though the underlying hardware is capable of

providing the buffering. Alternatively, when using the API through the

BusTools/1553 GUI interface you find that you need additional capabilities.

Before the implementation of the User DLL Interface, your only options were to:

• Rewrite the API to suit your needs or

• Write the entire application, including the complete user interface, to implement

a possibly very small function that was not provided by BusTools/1553-API.

5.2 BusTools/1553-API User DLL Interface

The Abaco Systems BusTools/1553-API now includes a User DLL Interface. Use this

interface to extend and enhance the API, without re-writing the current API or

creating your own GUI interface. The standard BusTools/1553 GUI (available as a

separate product) can now use applications that include your own custom code.

5.3 How Does it Work?

The user DLL interface executes the user-supplied functions when calls to specified

API function are made. The return value from the user supplied function controls

whether the API function is bypassed or executes after the user-supplied function.

Enabling the user DLL feature requires the application to load the user specified

DLL by calling “BusTools_API_LoadUserDLL.”

Call the API function BusTools_API_LoadUserDLL to load a specified DLL. If the

API finds the DLL, it is loaded, and the API looks to see if any function name within

the DLL matches the user DLL entry points. If the API finds any of these functions,

the API saves their addresses in a table.

There is a one-to-one relationship between API functions and User Interface DLL

functions. For example, the API function BusTools_BC_MessageWrite calls the user

interface function UsrBC_MessageWrite, if it is defined, at the beginning of the API

function. The user interface function can perform any action it wishes, it then

316 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

returns a code that indicates whether the API function should continue normal

operation or return to the calling function immediately. It can also indicate to the

API that it should never be called again (useful for one-time initialization code).

The table below shows the user DLL entry and associated API functions:

Table 5-1 User DLL Entry and Associated API Functions

User DLL Entry Associated API Function

UsrAPI_Close BusTools_API_Close

UsrBC_MessageAlloc BusTools_BC_MessageAlloc

UsrBC_MessageWrite BusTools_BC_MessageWrite

UsrBC_MessageRead BusTools_BC_MessageRead

UsrBC_MessageUpdate BusTools_BC_MessageUpdate

UsrBC_StartStop BusTools_BC_StartStop

UsrRT_CbufWrite BusTools_RT_CbufWrite

UsrRT_MessageRead BusTools_RT_MessageRead

UsrRT_StartStop BusTools_RT_StartStop

UsrBM_MessageAlloc BusTools_BM_MessageAlloc

UsrBM_MessageRead BusTools_BM_MessageRead

UsrBM_StartStop BusTools_BM_StartStop

5.3.1 Support for Multiple User Interface DLLs

The API repeats this process whenever BusTools_API_LoadUserDLL is called. This

function extracts the addresses of any user DLL entry points from the DLL and adds

them to the table of function addresses.

For any given user function there is only one slot in the API address table, so the

table retains the address of the last function found. This means that if you define a

function in two user DLLs, the API only calls the function from the last DLL you

load.

When a user application calls an API function, the API then calls the corresponding

user interface functions. There are now “hooks” into the application by the user

interface DLLs, without needing to modify either the application or the API.

Publication No. 1500-038 Rev. 5.11 Extending the API 317

5.4 What Can I Do from a User Interface DLL Function?

The API calls User Interface DLL functions at the beginning of the corresponding

API function. Here are some of the things a user interface function can do:

• It can modify the arguments to that function and return to allow the function to

execute normally with the new arguments.

• It can perform the action itself, including the use of API functions, and then

return to the calling function without executing the API function.

• It can perform some other function, perhaps not related to the API function, then

return to the API to allow it to complete the requested action.

5.5 User Interface DLL Function Example

Suppose that you are using the BusTools/1553 GUI to control a PCI-1553 board that

is acting as the Bus Controller. You are using the Bus Monitor function to record the

1553 data, and the various features of the BM to display the data while the bus is

running.

The Bus Controller list consists of several messages that retrieve data from an

external RT that you are trying to test. Those messages are static in nature but

repetitive; you are reading out the position data from the navigational system and

recording the drift over time.

However, there is one small problem. This device requires a message from the BC

containing a “stale data” indicator. This message word changes every time the BC

transfers the data to the Navigation system.

Therefore, what would normally be a simple BusTools/1553 GUI setup now requires

programming.

Look at the actual code needed to implement this function using the User Interface

DLL. To reduce the size of the listing the function headers have been removed, but

the full source of this example is provided on the software distribution disks as

“btuser1.c”:

/*===*

 * User API ENTRY POINT: U s r B C _ M e s s a g e W r i t e

 ===

 * FUNCTION: This User Interface function is called when BusTools_BC_MessageWrite is called.

 * DESCRIPTION: This function intercepts all BusTools_BC_MessageWrite function calls and

 * clears the Interrupt Enable on all BC messages except the last message in the minor frame.

 * It returns API_CONTINUE - API function should continue execution normally

 ===/

NOMANGLE BT_INT CCONV UsrBC_MessageWrite

(

 BT_UINT cardnum, // (i) card number (0 - based)

 BT_UINT *messno, // (i) index of BC message to write to

 API_BC_MBUF *api_message // (i) pointer to user-specified BC message

)

{

 // Determine if this message is the one that triggers the data update. If so, set the interrupt

 // enable bit, otherwise clear the interrupt enable. We will trigger off of the first message in the

 // minor frame. Since this is the message that we update, triggering on it gives us the maximum time

 // to update the message before it is transmitted again.

318 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

 api_message->control &= ~BC_CONTROL_INTERRUPT; // Turn off the interrupt

 // Not a message?

 if ((api_message->control & BC_CONTROL_TYPEMASK) != BC_CONTROL_MESSAGE)

 return API_CONTINUE; // Have the API function continue normally

 // Not the beginning of the frame?

 if ((api_message->control & BC_CONTROL_MFRAME_BEG) == 0)

 return API_CONTINUE; // Have the API function continue normally

 api_message->control |= BC_CONTROL_INTERRUPT; // Turn on the interrupt

 return API_CONTINUE; // Have the API function continue normally

}

/*===*

 * User ENTRY POINT demo_bc_watch_function

 ===

 * FUNCTION: This register function is called whenever a BC message interrupt is detected.

 ===/

BT_INT _stdcall demo_bc_watch_function

(

 BT_UINT cardnum,

 struct api_int_fifo *sIntFIFO

)

{

 /***

 * Local variables

 ***/

 BT_U16BIT data[33]; // Data buffer we update

 BT_INT tail; // FIFO Tail index

 BT_UINT messno; // Message number to be updated

 /***

 * Loop on all entries in the FIFO. Get the tail pointer and extract

 * the FIFO entry it points to. When head == tail, FIFO is empty

 ***/

 tail = sIntFIFO->tail_index;

 while (tail != sIntFIFO->head_index)

 {

 // Extract the buffer ID from the FIFO and read the message from the board

 messno = sIntFIFO->fifo[tail].bufferID;

 BusTools_BC_MessageReadData(cardnum, messno, data);

 // sample data buffer update per some algorithm:

 data[0] = (BT_U16BIT)(data[0] + data[1]);

 data[2] += (short)1;

 // Now write the data back to the message buffer:

 BusTools_BC_MessageUpdate(cardnum, messno, data);

 // Now update and store the tail pointer.

 tail++; // Next entry

 tail &= sIntFIFO->mask_index; // Wrap the index

 sIntFIFO->tail_index = tail; // Save the index

 }

 return API_SUCCESS;

}

/*===*

 * User API ENTRY POINT U s r B C _ S t a r t S t o p

 ===

 * FUNCTION: This User Interface function is called whenever BusTools_BC_StartStop is called.

 * DESCRIPTION: This function is called by the API whenever the BC is started or stopped.

 * This function sets up a BusTools_RegisterFunction that monitors the BC for the first

 * message in the minor frame. When that message occurs the thread runs and modifies the data

 * in the BC message.

 * It will return API_CONTINUE - API function should continue execution normally

 ===/

static API_INT_FIFO sIntFIFO1; // Thread FIFO structure

NOMANGLE BT_INT CCONV UsrBC_StartStop

(

 BT_UINT cardnum, // (i) card number (0 - based)

 BT_UINT *flag // (i) 1 -> start BC (at message 0), 0 -> stop BC

)

{

 int rt, tr, sa;

Publication No. 1500-038 Rev. 5.11 Extending the API 319

 /***

 * If the BC is starting, register a thread for the board.

 * If the BC is shutting down, unregister the thread.

 **/

 if (*flag)

 {

 // Setup the FIFO structure for this board.

 memset(&sIntFIFO1, 0, sizeof(sIntFIFO1));

 sIntFIFO1.function = demo_bc_watch_function;

 sIntFIFO1.iPriority = THREAD_PRIORITY_ABOVE_NORMAL;

 sIntFIFO1.dwMilliseconds = INFINITE;

 sIntFIFO1.iNotification = 0; // Dont care about startup or shutdown

 sIntFIFO1.FilterType = EVENT_BC_MESSAGE;

 for (rt=0; rt < 32; rt++)

 for (tr = 0; tr < 2; tr++)

 for (sa = 0; sa < 32; sa++)

 sIntFIFO1.FilterMask[rt][tr][sa] = 0xFFFFFFFF; // Enable all messages

 // Call the register function to register and start the BC thread.

 BusTools_RegisterFunction(cardnum, &sIntFIFO1, 1);

 }

 else

 {

 // Call the register function to unregister and stop the BC thread.

 BusTools_RegisterFunction(cardnum, &sIntFIFO1, 0);

 }

 return API_CONTINUE; // Have the API function continue normally

}

Compile the above code with the Windows DLL interface functions (provided in the

file “bt-wep.c”) and link the resulting object files with the BusTools/1553-API library

to create a user interface DLL.

Copy the resulting DLL (named “btuser1.dll” in the examples supplied with the

API) into the folder from which you are running BusTools/1553 (or into the system

directory) then run BusTools normally. From the Card Setup window, enter the

name of the user DLL interface. The user interface code is automatically called, and

when you monitor the BC data, you see the data being changed per the code in the

“demo_bc_watch_function” above.

320 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

5.6 BusTools/1553-API User DLL Interface Functions

The current version of the BusTools/1553-API contains user interfaces for the

following API functions:

• BusTools_API_Close calls UsrAPI_Close

• BusTools_BC_MessageAlloc calls UsrBC_MessageAlloc

• BusTools_BC_MessageRead calls UsrBC_MessageRead

• BusTools_BC_MessageUpdate calls UsrBC_MessageUpdate

• BusTools_BC_MessageWrite calls UsrBC_MessageWrite

• BusTools_BC_StartStop calls UsrBC_StartStop

• BusTools_BM_MessageAlloc calls UsrBM_MessageAlloc

• BusTools_BM_MessageRead calls UsrBM_MessageRead

• BusTools_BM_StartStop calls UsrBM_StartStop

• BusTools_RT_CbufWrite calls UsrRT_CbufWrite

• BusTools_RT_MessageRead calls UsrRT_MessageRead

• BusTools_RT_StartStop calls UsrRT_StartStop

These are the first functions that have been implemented; other functions will be

added in the future. These interfaces provide the ability for your code, written as a

stand-alone DLL, to interface with the API functions, and actually change the way

these API functions operate.

The following section gives the exact interface to each of these user interface

functions. You must code the interface exactly as given, so that the API can correctly

call the function. The function prototypes are listed in the BUSAPI.H file included

with the BusTools/1553-API software.

5.6.1 UsrAPI_Close

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function BusTools_API_Close is

called.

The board has not been closed when this user interface function is called. It does not

matter what status code the User Interface function returns, the API closes the board

once the function returns.

OS Support

Windows.

Syntax

wStatus = UsrAPI_Close (cardnum);

Publication No. 1500-038 Rev. 5.11 Extending the API 321

wStatus (BT_INT) status returned from this function.

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

322 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

5.6.2 UsrBC_MessageAlloc

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function BusTools_BC_MessageAlloc

is called.

The BC messages have not been allocated when this function is called.

OS Support

Windows.

Syntax

wStatus = UsrBC_MessageAlloc (cardnum, count);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

count (BT_UINT *) number of BC messages to allocate

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

Publication No. 1500-038 Rev. 5.11 Extending the API 323

5.6.3 UsrBC_MessageRead

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function BusTools_BC_MessageRead

is called.

The BC message has not been yet read when this user interface function is called.

OS Support

Windows.

Syntax

wStatus = UsrBC_MessageRead (cardnum, messno, api_message);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messno (BT_UINT *) index of BC message to read

api_message (API_BC_MBUF *) buffer to read message into

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

324 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

5.6.4 UsrBC_MessageUpdate

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function

BusTools_BC_MessageUpdate is called.

The BC message has not been changed when this user interface function is called.

OS Support

Windows.

Syntax

wStatus = UsrBC_MessageUpdate (cardnum, mblock_id, buffer);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

mblock_id (BT_UINT *) index of BC message to update

buffer (BT_U16BIT *) array of data for BC message

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

Publication No. 1500-038 Rev. 5.11 Extending the API 325

5.6.5 UsrBC_MessageWrite

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function BusTools_BC_MessageWrite

is called.

The BC message has not been altered when this user interface function is called.

OS Support

Windows.

Syntax

wStatus = UsrBC_MessageWrite (cardnum, messno, api_message);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

messno (BT_UINT *) message number of message to alter

api_message (API_BC_MBUF *) buffer containing new BC message

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

326 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

5.6.6 UsrBC_StartStop

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function BusTools_BC_StartStop is

called.

The run state of the BC has not been altered when this user interface function is

called.

OS Support

Windows.

Syntax

wStatus = UsrBC_StartStop (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_UINT *)

1 = Start BC (at message 0),

0 = Stop BC

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

Publication No. 1500-038 Rev. 5.11 Extending the API 327

5.6.7 UsrBM_MessageAlloc

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function

BusTools_BM_MessageAlloc is called.

The no BM messages have been allocated when this user interface function is called.

OS Support

Windows.

Syntax

wStatus = UsrBM_MessageAlloc (cardnum, mbuf_count, mbuf_actual, enable);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

mbuf_count (BT_UINT *) requested number of BM messages

mbuf_actual (BT_UINT *) number of BM messages allocated

enable (BT_U32BIT *) BM interrupt enable mask

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

328 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

5.6.8 UsrBM_MessageRead

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function

BusTools_BM_MessageRead is called.

The BM message has not been read when this user interface function is called.

OS Support

Windows.

Syntax

wStatus = UsrBM_MessageRead (cardnum, mbuf_id, mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

mbuf_id (BT_UINT *) ID number of the BM message to read

mbuf (BT_U32BIT *) BM message buffer

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

Publication No. 1500-038 Rev. 5.11 Extending the API 329

5.6.9 UsrBM_StartStop

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function BusTools_BM_StartStop is

called.

The run state of the bus monitor had not been changed when this user interface

function is called.

OS Support

Windows.

Syntax

wStatus = UsrBM_StartStop (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_UINT *)

1 = Start BM

0 = Stop BM

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

330 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

5.6.10 UsrRT_CbufWrite

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function BusTools_RT_CbufWrite is

called.

The RT Cbuf has not been altered when this user interface function is called.

OS Support

Windows.

Syntax

wStatus = UsrRT_CbufWrite (cardnum, rtaddr, subaddr, tr, mbuf_count, apicbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT *) RT address. Valid range is 0 to 31.

subaddr (BT_UINT *) RT subaddress. Valid range is 0 to 31.

tr (BT_UINT *) Transmit/Receive flag; 0 = receive, 1 = transmit.

mbuf_count (BT_UINT *) Number of buffers to allocate. If negative, make

one pass through buffers only

apicbuf (API_RT_CBUF *) pointer to API RT control buffer

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

Publication No. 1500-038 Rev. 5.11 Extending the API 331

5.6.11 UsrRT_MessageRead

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function BusTools_RT_MessageRead

is called.

The RT message buffer has not been read when this user interface function is called.

OS Support

Windows.

Syntax

wStatus = UsrRT_MessageRead (cardnum, rtaddr, subaddr, tr, mbuf_id, mbuf);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

rtaddr (BT_UINT *) RT address (0 - based)

subaddr (BT_UINT *) RT subaddress (0 - based)

tr (BT_UINT *) Transmit/Receive flag (1 = rt transmit)

mbuf_id (BT_UINT *) RT message buffer to read

mbuf (API_RT_CBUF *) pointer to RT message buffer

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

332 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

5.6.12 UsrRT_StartStop

Description

This function is not a part of the API; you provide this function in a User Interface

DLL. The API calls this function when the API function BusTools_RT_StartStop is

called.

The run status of the RT has not been altered when this user interface function is

called.

OS Support

Windows.

Syntax

wStatus = UsrRT_StartStop (cardnum, flag);

wStatus (BT_INT) status returned from this function.

cardnum (BT_UINT) logical channel reference to the respective 1553

board/channel session. Valid range is 0 to 63.

flag (BT_UINT *)

1 = Start RT

0 = Stop RT

Return Value

API_CONTINUE API function should continue execution normally.

API_RETURN_SUCCESS API function should return immediately with

API_SUCCESS.

API_NEVER_CALL_AGAIN User function is never to be called again.

Publication No. 1500-038 Rev. 5.11 Return Codes 333

6 • Return Codes

This chapter lists the BusTools/1553-API return codes and provides a description for

each code. Return codes are listed with both the numeric value and the mnemonic

for that code. The manual provides the numeric as a quick reference. However,

when programming an application, use the mnemonics instead of the actual numeric

value. The numeric value can change between revisions.

Use BusTools_StatusGetString or BusTools_StatusGetStringLV to convert any of the

BusTools/1553-API return code mnemonics to an ASCII string that describes the

return condition. The include file busapi.h defines the return codes.

Most BusTools/1553-API functions have return codes. API_SUCCESS (0), indicates

an error free execution of the function. A non-zero return code indicates an error or

event has occurred that the user should know about. Each return code has with

severity information. The return-code severity levels are:

CEI-INFO – This code type informs the user of the status of the operation and does

not mean that an error occurred. The return code has information the user may need

to know. An example of this type of return code is API_BM_READ_NODATA; "CEI-

INFO -- No BM data in interrupt queue"; This error is returned on a call to

BusTools_BM_ReadLastMessageblock. The information that there was no data in

the interrupt queue is not an error condition, rather provides the the user’s

application with information about the status of BM messages in the interrupt

queue. The application can act on this information according the it’s requirements.

CEI-WARN – This code means there is a problem with parameters passed to a

BusTools/1553-API function or there is problem in performing that function. The

user should examine board configuration or parameters passed to make sure they

are correct. An example of this type of return code is API_BUSTOOLS_NOTINITED;

"CEI_WARN -- BusTools API has not been initialized". This code is return when an

application attempts to call a BusTools function without first initializing the channel.

The user should examine their code to make sure initialize the board prior to calling

most BusTools/1553-API functions.

CEI-ERROR – This code is return when the execution of a function results in and

error. This a problem where execution of the code results in an error. Bad software,

hardware, or setup can cause this type of error. An example of this type of error

condition is API_BC_HALTERROR; "CEI-ERROR -- BC error detected during stop,

bus is probably un-terminated". This error occurs when shutting down the BC with

BusTools_BC-StartStop. This error may be due to un-terminated bus or a hardware

problem.

CEI-CRIT-ERR – This type of code means a critical error occurred during execution

and that the 1553 operation have failed. An example of this type of error is

API_HW_IQPTR_ERROR; "CEI-CRIT-ERROR -- Hardware Interrupt Pointer register

334 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

error". The interrupt point register contains the current position of the interrupt

queue pointer. This value must lie within the bound of the interrupt queue. If the

API detects a value outside this range, then this error is reported. This indicates a

serious hardware problem. This error is also reported in the channel_status

structure err_info member.

List of Return Codes

The following table lists all API and API driver return codes. The API return codes

are grouped into General, BC, BM, RT, Error Injection, LabView, Playback, Time Tag

and Low-level categories. The list is arranged numerically.

Table 6-1 Return Codes List

Return Code Mnemonic Value Return Code String

Low Level Return Codes

BTD_OK 0 CEI-INFO – success

BTD_ERR_PARAM 1 CEI-WARN -- invalid parameter

BTD_ERR_NOACCESS 2 CEI-ERROR -- unable to map/access adapter

BTD_ERR_INUSE 3 CEI-WARN -- adapter already in use

BTD_ERR_BADADDR 4 CEI-ERROR -- invalid address

BTD_ERR_NODETECT 5 CEI-ERROR -- I/O or Config register ID invalid, board detect fail

BTD_ERR_NOTSETUP 7 CEI_ERROR -- adapter has not been setup

BTD_ERR_FPGALOAD 8 CEI-ERROR -- FPGA load failure

BTD_ERR_NOMEMORY 10 CEI-ERROR -- error allocating memory in SW version

BTD_ERR_BADADDRMAP 12 CEI-ERROR -- bad initial mapping of address

BTD_ERR_BADEXTMEM 13 CEI-ERROR -- bad extended memory mapping

BTD_ERR_BADBOARDTYPE 14 CEI-ERROR -- Unknown board type

BTD_ERR_BADWCS 15 CEI-ERROR -- Verify failure reading Writable Control Store

BTD_NO_PLATFORM 18 CEI-ERROR -- Platform specified unknown or not supported

BTD_BAD_MANUFACTURER 19 CEI-ERROR -- IP ID PROM Manufacturer code not 0x79

BTD_BAD_MODEL 20 CEI-ERROR -- IP ID PROM Model number not 0x05(MF) or 0x08(SF)

BTD_BAD_SERIAL_PROM 21 CEI-ERROR -- IP Serial PROM needs update, no support for this version

BTD_NEW_SERIAL_PROM 22 CEI-ERROR -- Serial PROM too new, not supported by this software

BTD_CHAN_NOT_PRESENT 23 CEI-WARN -- Channel not present (on multi-channel board)

BTD_NON_SUPPORT 24 CEI-WARN -- Bus/Carrier/OS combination not supported by API

BTD_BAD_HW_INTERRUPT 25 CEI-ERROR -- Hardware interrupt number bad or not defined in registry

BTD_FPGA_NOT_CLEAR 26 CEI-ERROR -- The FPGA configuration failed to clear

BTD_NEW_PCCARD_FW 27 CEI-ERROR -- PCC-1553 firmware is too new for this version of the API

BTD_OLD_PCCARD_FW 28 CEI-ERROR -- PCC-1553 firmware is too old, use the JAM Player to update it

BTD_BAD_CONF_FILE 29 CEI-ERROR -- Unable to open ceidev.conf

BTD_NO_DRV_MOD 30 CEI-ERROR -- No Driver Module found

Publication No. 1500-038 Rev. 5.11 Return Codes 335

Return Code Mnemonic Value Return Code String

BTD_IOCTL_DEV_ERR 31 CEI-ERROR -- Error in ioctl get device

BTD_IOCTL_SET_REG 32 CEI-ERROR -- Error in ioctl set region

BTD_IOCTL_REG_SIZE 33 CEI-ERROR -- Error in getting ioctl region size

BTD_IOCTL_GET_REG 34 CEI-ERROR -- Error in ioctl get region

BTD_BAD_SIZE 35 CEI-ERROR -- Region size is 0

BTD_BAD_PROC_ID 36 CEI-INFO -- Unable to set process ID

BTD_HASH_ERR 37 CEI-INFO -- Unable to setup hash table

BTD_NO_HASH_ENTRY 38 CEI-INFO -- No hash table entry found

BTD_WRONG_BOARD 39 CEI-INFO -- Wrong board type for command

BTD_MODE_MISMATCH 40 CEI-INFO -- IPD1553 mismatch in the mode.

BTD_IRIG_NO_LOW_PEAK 41 CEI-INFO -- No lower peak on IRIG DAC calibration

BTD_IRIG_NO_HIGH_PEAK 42 CEI-INFO -- No upper peak on IRIG DAC calibration

BTD_IRIG_LEVEL_ERR 43 CEI-WARN -- Delta between MAX and MIN DAC peak values less than required

BTD_IRIG_NO_SIGNAL 44 CEI-INFO -- No IRIG Signal Detected

BTD_RTADDR_PARITY 45 CEI-ERROR -- Parity Error on Hardwired RT address lines

BTD_BAD_BYTE_COUNT 47 CEI-ERROR -- Byte count not on 4-byte boundary

BTD_TIMER_FAIL 48 CEI-ERROR -- failed to create a timer

BTD_ERR_NOWINRT 50 CEI-ERROR -- WinRT driver not loaded/started

BTD_ERR_BADREGISTER 51 CEI-ERROR -- WinRT parameters don't match registry

BTD_ERR_BADOPEN 52 CEI-ERROR -- WinRT device open failed

BTD_UNKNOWN_BUS 53 CEI-ERROR -- Bus is not PCI, ISA or VME

BTD_BAD_LL_VERSION 54 CEI-ERROR -- Unsupported lowlevel driver installed

BTD_BAD_INT_EVENT 55 CEI-ERROR -- Unable to create interrupt event

BTD_ISR_SETUP_ERROR 56 CEI-ERROR -- Error setting up the ISR driver

BTD_CREATE_ISR_THREAD 57 CEI-ERROR -- Error creating the ISR thread

BTD_NO_REGIONS_TO_MAP 58 CEI-ERROR -- No regions requested in call to vbtMapBoardAddresses

BTD_RESOURCE_ERR 60 CEI-ERROR -- Integrity Resource Error

BTD_READ_IODEV_ERR 61 CEI-ERROR -- Integrity I/O Device Read Error

BTD_MEMREG_ERR 62 CEI-ERROR -- Integrity error getting memory region

BTD_MEM_MAP_ERR 63 CEI-ERROR -- Integrity Memory Mapping error

BTD_CLK_RATE_NOT_SET 64 CEI-ERROR -- Error setting clock rate

BTD_VIOPEN_FAIL 70 CEI-ERROR -- viOpen Error

BTD_VIMAPADDRESS_FAIL 71 CEI-ERROR -- viMapAddress Error

BTD_VIOPENDEFAULTRM 72 CEI-ERROR -- viOpenDefaultRM Error

BTD_VIUNMAP_ERR 73 CEI-ERROR -- viUnMapAddress Error

BTD_SEM_CREATE 80 Error Creating semaphore

BTD_TASK_CREATE 81 Error spawning task

336 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Return Code Mnemonic Value Return Code String

BTD_EVENT_WAIT_FAILED -82 CEI-ERROR -- Event Wait Failure

BTD_EVENT_WAIT_ABANDONED -83 CEI-ERROR -- Event Wait Abandoned

BTD_EVENT_WAIT_TIMEOUT 84 CEI-INFO -- Timeout on Event Wait

BTD_EVENT_WAIT_UNKNOWN -85 CEI-ERROR -- Unknown Event Error

BTD_EVENT_SIGNAL_ERR 86 CEI-ERROR -- Error Occurred During Event Signal

BTD_SET_PRIORITY_ERR 87 CEI-ERROR -- Error Setting Thread Priority

BTD_THRD_CREATE_FAIL 88 CEI-ERROR -- Thread Create Failure

BTD_CLOSE_ERR 90 CEI-ERROR -- Failed to close 1553 device

BTD_OPEN_ERR 91 CEI-ERROR -- Failed to open 1553 device

BTD_VBT_OPEN_ERR 92 CEI-ERROR -- Failure in vbtOpen1553Channel

BTD_FIND_DEV_ERR 93 CEI_ERROR -- Failure in BusTools_FindDevice

BTD_LIST_DEV_ERR 94 CEI_ERROR -- Failure in BusTools_ListDevices

General BusTools/1553-API Return Codes

API_SUCCESS 0 CEI-INFO -- No error detected

PI_FEATURE_SUPPORT 120 CEI-INFO -- Feature supported by board

API_CONTINUE 121 CEI-INFO -- API function should continue execution normally

API_RETURN_SUCCESS 122 CEI-INFO -- API function should return immediately with API_SUCCESS

API_NEVER_CALL_AGAIN 123 CEI-INFO -- User function is never to be called again

API_INIT_NO_SUPPORT 124 CEI-WARN -- Cannot initialize board type with this function

API_NO_CHANNEL_MAP 125 CEI_WARN -- Channel mapping not supported for current card type

API_BUSTOOLS_INT_USED 170 CEI-WARN -- Interrupt on card already in use

API_NULL_PTR 171 CEI-WARN -- NULL Pointer passed to function

API_MAX_CHANNELS_INUSE 180 CEI-WARN -- Maximum 1553 channels already in use

API_CARDNUM_INUSE 181 CEI-WARN -- cardnum in already in use

API_BAD_PRODUCT_LIST 182 CEI-WARN -- Unable to build the Abaco Systems Product list

API_BAD_DEVICE_ID 183 CEI-WARN -- Bad device ID

API_INSTALL_INIT_FAIL 184 CEI-ERROR -- CEI_INSTALL init failure

API_NO_POLLING 190 CEI-WARN -- Polling is not enabled

API_TIMER_ERR 191 CEI-ERROR -- Error setting up polling timer

API_BUSTOOLS_INITED 201 CEI-WARN -- This card has already been init'ed

API_BUSTOOLS_NOTINITED 202 CEI-WARN -- BusTools API not initialized

API_BUSTOOLS_BADCARDNUM 203 CEI-WARN -- Bad card number specified

API_BUSTOOLS_BADCOUPLING 206 CEI-WARN -- Bad coupling specified in BusTools_SetVoltage

API_BUSTOOLS_BADVOLTAGE 207 CEI-WARN -- Bad voltage specified in BusTools_SetVoltage

API_BUSTOOLS_EVENBCOUNT 209 CEI_ERROR -- Even byte count required for this function

API_BUSTOOLS_BADMEMORY 210 CEI_ERROR -- BusTools Board Dual-Port Memory Self-Test Failed

API_BUSTOOLS_TOO_MANY 211 CEI-WARN -- Too many user interrupt functions registered

Publication No. 1500-038 Rev. 5.11 Return Codes 337

Return Code Mnemonic Value Return Code String

API_BUSTOOLS_FIFO_BAD 212 CEI_ERROR -- User API_INT_FIFO structure corrupted or bad entry

API_BUSTOOLS_NO_OBJECT 213 CEI_ERROR -- Error creating event object or thread

API_BUSTOOLS_NO_FILE 215 CEI-WARN -- Could not open the specified file

API_BUSTOOLS_NO_MEMORY 216 CEI-WARN -- BusTools_MemoryAlloc request overflows first 64 Kw of board memory

API_HW_IQPTR_ERROR 217 CEI-CRIT-ERR -- Hardware Interrupt Pointer register error.

API_BIT_BC_RT_FAIL_PRI 218 CEI-ERROR -- BIT failure/data error detected on BC-RT primary bus

API_BIT_BC_RT_FAIL_SEC 219 CEI-ERROR -- BIT failure/data error detected on BC-RT secondary bus

API_BUSTOOLS_FIFO_DUP 220 CEI-ERROR -- Specified API_INT_FIFO structure is already in use.V4.35.ajh

API_BIT_BM_RT_FAIL_PRI 221 CEI-ERROR -- BIT failure/data error detected on BM-RT primary bus

API_BIT_BM_RT_FAIL_SEC 222 CEI-ERROR -- BIT failure/data error detected on BM-RT secondary bus

API_HARDWARE_NOSUPPORT 225 CEI-WARN -- Function not supported by current hardware

API_OUTDATED_FIRMWARE 226 CEI-WARN -- Firmware version no longer supported, contact factory for upgrade

API_NO_OS_SUPPORT 227 CEI-WARN -- Function not supported by underlying Operating System

API_NO_BUILD_SUPPORT 228 CEI-WARN -- Function not supported by API as built

API_CHANNEL_OPEN_OTHER 229 CEI-WARN -- Board or channel already opened as another cardnum

API_SINGLE_FUNCTION_ERR 231 CEI-WARN -- Attempted to start multiple functions on a single function board

API_CANT_LOAD_USER_DLL 232 CEI-WARN -- Cannot load specified user DLL

API_REGISTERFUNCTION_OFF 233 CEI-WARN -- RegisterFunction operations not enabled

API_BAD_PARAM 240 CEI-WARN -- Bad parameter for the function call

Error Injection Return Codes

API_EI_BADMSGTYPE 252 CEI-WARN -- Bad message type specified in EbufWrite

API_EI_ILLERRORNO 253 CEI-WARN -- Error injection buffer num > number of buffers avail

API_EI_ILLERRORADDR 254 CEI-WARN -- Illegal error buffer address

Discrete and Data Conversion Return Codes

API_BAD_ADDR_TYPE 271 CEI-WARN -- Bad address type for BusTools_GetAddr

API_BAD_DISCRETE 280 CEI-WARN -- Attempting to configure invalid discrete

API_OUTPUT_DISCRETE 281 CEI-WARN -- Attempting to read from an output

API_INPUT_DISCRETE 282 CEI-WARN -- Attempting to write to an input

API_MEM_ALLOC_ERR 283 CEI-ERROR -- Error allocating memory

API_BADDATATYPE 284 CEI-WARN -- Bad data type for EU conversion.

API_BADBCDDATA 285 CEI-WARN -- Bad data for BCD EU conversion.

API_BADTRANSLATE 286 CEI-WARN -- Bad translation table data, for translate EU conversion.

API_BADFACTORTYPE 287 CEI-WARN -- Bad factor type for scaled EU conversion.

Bus Controller Return Codes

API_BC_NOTINITED 301 CEI-WARN – BusTools_BC_Init not yet called

API_BC_INITED 302 CEI-WARN – BusTools_BC_Init already called

338 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Return Code Mnemonic Value Return Code String

API_BC_RUNNING 303 CEI-WARN -- BC currently running

API_BC_NOTRUNNING 304 CEI-WARN -- BC not currently running

API_BC_MEMORY_OFLOW 305 CEI-ERROR -- BC memory overflow

API_BC_ILLEGAL_MBLOCK 306 CEI-WARN -- BC illegal memory block number specified

API_BC_MBLOCK_NOMATCH 307 CEI-WARN -- BC specified address is not a BC message block

API_BC_MBUF_NOT_ALLOC 308 CEI-WARN -- BC message buffers have not been allocated

API_BC_MBUF_ALLOCD 309 CEI-WARN -- BC message buffers already allocated

API_BC_ILLEGAL_NEXT 310 CEI-WARN -- BC illegal next message number

API_BC_ILLEGAL_PREV 311 CEI-WARN -- BC illegal previous message number

API_BC_ILLEGAL_BRANCH 312 CEI-WARN -- BC illegal branch message number

API_BC_MESS1_COND 313 CEI-WARN -- BC first message in buffer is conditional

API_BC_BAD_COND_ADDR 314 CEI-WARN -- BC bad address value in conditional message

API_BC_BADTIMEOUT1 315 CEI-WARN -- BC illegal "No Response" timeout

API_BC_BADTIMEOUT2 316 CEI-WARN -- BC illegal "Late Response" timeout

API_BC_BADFREQUENCY 317 CEI-WARN -- BC illegal minor frame frequency

API_BC_HALTERROR 318 CEI-ERROR -- BC error detected during stop, bus is probably un-terminated

API_BC_BOTHBUFFERS 323 CEI-WARN -- BC cannot specify both buffers

API_BC_BOTHBUSES 324 CEI-WARN -- BC cannot specify both buses

API_BC_UPDATEMESSTYPE 326 CEI-WARN -- BC message update must operate on a message (not branch)

API_BC_ILLEGALMESSAGE 327 CEI-ERROR -- BC message in memory is not legal

API_BC_ILLEGALTARGET 328 CEI-WARN -- BC branch data message number not legal

API_BC_NOTMESSAGE 329 CEI-WARN -- BC message is not a proper 1553-type message

API_BC_NOTNOOP 330 CEI-WARN -- BC message is not a proper noop-type message

API_BC_APERIODIC_RUNNING 331 CEI-WARN -- BC Aperiodics still running, cannot start new msg list

API_BC_APERIODIC_TIMEOUT 332 CEI-ERROR -- BC Aperiodic messages did not complete in time

API_BC_CANT_NOOP 333 CEI-WARN -- BC cannot noop or un-noop a noop message

API_BC_READ_TIMEOUT 335 CEI-INFO -- RT timeout when attempting to read data.

API_BC_READ_NODATA 336 CEI-INFO -- No RT data in int queue

API_BC_AUTOINC_INUSE 337 CEI-WARN -- Auto-Increment in use for message

Bus Monitor Return Codes

API_BM_NOTINITED 401 CEI-WARN – BusTools_BM_Init or BusTools_BM_MessageAlloc not called

API_BM_INITED 402 CEI-WARN – BusTools_BM_Init already called

API_BM_RUNNING 403 CEI-WARN -- BM currently running

API_BM_NOTRUNNING 404 CEI-WARN -- BM not currently running

API_BM_MEMORY_OFLOW 405 CEI-ERROR – BM memory overflow

API_BM_ILLEGAL_ADDR 408 CEI-WARN -- BM illegal RT address specified

API_BM_ILLEGAL_SUBADDR 409 CEI-WARN -- BM illegal subaddress specified

Publication No. 1500-038 Rev. 5.11 Return Codes 339

Return Code Mnemonic Value Return Code String

API_BM_ILLEGAL_TRANREC 410 CEI-WARN -- BM illegal transmit/receive flag specified

API_BM_ILLEGAL_MBUFID 411 CEI-WARN -- BM illegal mbuf_id for specified subunit

API_BM_MBUF_NOMATCH 412 CEI-ERROR -- BM no match for specified address

API_BM_WRAP_AROUND 413 CEI-ERROR -- BM API message buffer has overflowed, data has been lost

API_BM_MSG_ALLOC_CALLED 415 CEI-WARN – BusTools_BM_MessageAlloc has already been called

API_BM_HW_WRAP_AROUND 416 CEI-ERROR -- BM HW message buffer has overflowed, data has been lost

API_BM_POINTER_REG_BAD 417 CEI-ERROR -- BM HW pointer register contents invalid

API_BM_READ_TIMEOUT 418 CEI-INFO -- BM timeout when attempting to read data.

API_BM_READ_NODATA 419 CEI-INFO -- No BM data in int queue

API_BM_1760_ERROR 420 CEI-INFO -- Checksum error on MIL-STD-1760 message.

Remote Terminal Return Codes

API_RT_NOTINITED 501 CEI-WARN – BusTools_RT_Init not yet called

API_RT_INITED 502 CEI-WARN -- BusTools_RT_Init already called

API_RT_RUNNING 503 CEI-WARN -- RT currently running

API_RT_NOTRUNNING 504 CEI-WARN -- RT not currently running

API_RT_MEMORY_OFLOW 505 CEI-ERROR -- RT memory overflow

API_RT_CBUF_EXISTS 506 CEI-ERROR -- RT subunit MBUFs already allocated

API_RT_ILLEGAL_ADDR 508 CEI-WARN -- RT illegal address specified

API_RT_ILLEGAL_SUBADDR 509 CEI-WARN -- RT illegal subaddress specified

API_RT_ILLEGAL_TRANREC 510 CEI-WARN -- RT illegal transmit/receive flag specified

API_RT_ILLEGAL_MBUFID 511 CEI-WARN -- RT illegal mbuf_id for specified subunit

API_RT_CBUF_BROAD 513 CEI-WARN -- RT 31 is broadcast only

API_RT_CBUF_NOTBROAD 514 CEI-WARN -- specified rt address is non-bro only

API_RT_MBUF_NOMATCH 515 CEI-WARN -- RT message buffer not found at specified address

API_RT_BROADCAST_DISABLE 516 CEI-WARN -- RT 31 Broadcast is disabled

API_RT_SELF_TEST_MODE 517 CEI-WARN -- RT Self Test Wrap-Around Mode selected, normal operation inhibited

API_RT_READ_TIMEOUT 518 CEI-INFO -- RT timeout when attempting to read data.

API_RT_READ_NODATA 519 CEI-INFO -- No RT data in interrupt queue

API_NO_HARDWIRE_RT 520 CEI-INFO -- RT hardwired address not enabled.

LabView Return Codes

API_LV_BADARRAY 700 CEI-WARN -- LabView array structure not correctly setup

API_NO_LV_SUPPORT 701 CEI-WARN -- Function not supported in LabView

Playback Return Codes

API_PLAYBACK_INIT_ERROR 801 CEI-ERROR -- Error initializing Playback

API_PLAYBACK_BAD_THREAD 802 CEI-ERROR -- Attempt to create thread failed

API_PLAYBACK_BAD_FILE 803 CEI-ERROR -- File open failed

340 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Return Code Mnemonic Value Return Code String

API_PLAYBACK_BAD_EVENT 804 CEI-ERROR -- Event creation error

API_PLAYBACK_BUF_EMPTY 805 CEI-ERROR -- Playback Buffer empty

API_PLAYBACK_BAD_EXIT 806 CEI-ERROR -- Unexpected Exit from Playback

API_PLAYBACK_BAD_MEMORY 807 CEI-ERROR -- Unable to allocate memory on Host

API_PLAYBACK_DISK_READ 808 CEI-ERROR -- Disk read Error during playback

API_PLAYBACK_RUNNING 809 CEI-WARN -- Playback is already running

API_PLAYBACK_BAD_ALLOC 810 CEI-ERROR -- Failure to allocate enough BusTools Memory for PB

API_PLAYBACK_TIME_GAP 811 CEI-INFO -- There larger gaps in time tags in playback file.

API_PLAYBACK_TIME_ORDER 812 CEI-ERROR -- Time tags in playback file out of sequence.

Time Tag and IRIG Return Codes

API_TIMETAG_BAD_DISPLAY 901 CEI-WARN -- Unknown or unsupported Time Tag display format

API_TIMETAG_BAD_INIT 902 CEI-WARN -- Unknown Time Tag Initialization method

API_TIMETAG_BAD_MODE 903 CEI-WARN -- Unknown Time Tag Operating Mode

API_TIMETAG_NO_DLL 904 CEI-WARN -- DLL containing BusTools_TimeTagGet could not be loaded

API_TIMETAG_NO_FUNCTION 905 CEI-WARN -- Could not get the address of the BusTools_TimeTagGet function

API_TIMETAG_USER_ERROR 906 CEI-WARN -- User function BusTools_TimeTagGet returned an error

API_TIMETAG_WRITE_ERROR 907 CEI-ERROR -- Cannot write to time tag load register when in API_TM_IRIG mode

API_IRIG_NO_SIGNAL 908 CEI-INFO -- No external IRIG signal present

Publication No. 1500-038 Rev. 5.11 Data Structures 341

7 • Data Structures

This section describes the data structures and other definitions used throughout the

BusTools API. For each structure or topic, a high-level description and a detailed

definition of each element is provided.

The topics discussed in this section are:

• 1553 Command Word (BT1553_COMMAND)

• 1553 Status Word (BT1553_STATUS)

• BC Retry Parameters (BusTools_BC_Init argument)

• BC Message Buffer (API_BC_MBUF)

• BM Filter Buffer (API_BM_CBUF)

• BM Message Buffer (API_BM_MBUF)

• BM Trigger Buffer (API_BM_TBUF)

• BM Word Status Bits (8/16 bit)

• Error Injection Definition (API_EIBUF)

• Interrupt Enable / Message Status Bits (32 bit)

• Interrupt Queue Message Block Structure (iq_mblock)

• Interrupt Register/Filter/FIFO Structure

• Playback Data (API_PLAYBACK)

• Playback Status (API_PLAYBACK_STATUS)

• RT Address Control Block (API_RT_ABUF)

• RT Control Buffer (API_RT_CBUF)

• RT Control Buffer for Broadcast (API_RT_CBUFBROAD)

• RT Message Buffer (read-only) (API_RT_MBUF_READ)

• RT Message Buffer (write-only) (API_RT_MBUF_WRITE)

• Time Structure (BT1553_TIME)

• Device Mapping (DEVMAP_T)

• Device Information (DEVICE_INFO)

342 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.1 1553 Command Word (BT1553_COMMAND)

Code Definition

typedef struct bt1553_command

 {

 #ifdef NON_INTEL_BIT_FIELDS

 BT_U16BIT rtaddr:5; // rt address field (MSB)

 BT_U16BIT tran_rec:1; // transmit/receive bit

 BT_U16BIT subaddr:5; // subaddress field

 BT_U16BIT wcount:5; // word count or mode code field (LSB)

 #else /* INTEL-Compatible bit field ordering */

 BT_U16BIT wcount:5; // word count or mode code field (LSB)

 BT_U16BIT subaddr:5; // subaddress field

 BT_U16BIT tran_rec:1; // transmit/receive bit

 BT_U16BIT rtaddr:5; // rt address field (MSB)

 #endif

 }

BT1553_COMMAND;

Description

This structure is used to define a 1553 Command Word as it would appear on the

bus. The fields of the Command Word are defined as individual elements of this

structure. When the structure is completed, the resulting 16-bit value can be used

directly on the 1553 bus.

Data Elements

wcount: This is the word count (or mode code) field of the Command Word. It

should be a value from 0 to 31. Per the 1553 specification, a value of 0 implies

a word count of 32 words.

subaddr: This is the RT subaddress field of the Command Word. It should be a

value from 0 to 31. Note that a value of 0 (or 31, if subaddress 31 as a mode

code is enabled) means that the wcount field should be interpreted as a mode

code.

tran_rec: This is the transmit / receive bit of the Command Word. It should be a

value of 1 or 0. A 0 indicates that the Command Word is for a “receive”

command. A 1 indicates that the Command Word is for a “transmit”

command.

rtaddr: This is the RT address field of the Command Word. It should be a value

from 0 to 31. A value of 31 typically means that the command is a broadcast

command.

7.2 1553 Status Word (BT1553_STATUS)

Code Definition

Publication No. 1500-038 Rev. 5.11 Data Structures 343

typedef struct bt1553_status

 {

 #ifdef NON_INTEL_BIT_FIELDS

 BT_U16BIT rtaddr:5; // rt address field (MSB)

 BT_U16BIT me:1; // message error

 BT_U16BIT inst:1; // instrumentation bit

 BT_U16BIT sr:1; // service request

 BT_U16BIT res:3; // unused bits

 BT_U16BIT bcr:1; // broadcast received bit

 BT_U16BIT busy:1; // busy flag bit

 BT_U16BIT sf:1; // subsystem flag bit

 BT_U16BIT dba:1; // dynamic bus acceptance flag bit

 BT_U16BIT tf:1; // terminal flag bit (LSB)

 #else /* INTEL-Compatible bit field ordering */

 BT_U16BIT tf:1; // terminal flag bit (LSB)

 BT_U16BIT dba:1; // dynamic bus acceptance flag bit

 BT_U16BIT sf:1; // subsystem flag bit

 BT_U16BIT busy:1; // busy flag bit

 BT_U16BIT bcr:1; // broadcast received bit

 BT_U16BIT res:3; // unused bits

 BT_U16BIT sr:1; // service request

 BT_U16BIT inst:1; // instrumentation bit

 BT_U16BIT me:1; // message error

 BT_U16BIT rtaddr:5; // rt address field (MSB)

 #endif

 }

BT1553_STATUS;

Description

This structure is used to define a 1553 Status Word as it would appear on the bus.

The fields of the Status Word are defined as individual elements of this structure.

When the structure is completed, the resulting 16-bit value can be used directly on

the 1553 bus.

Data Elements

tf: Terminal Flag Bit

dba: Dynamic Bus Acceptance Flag Bit

sf: Subsystem Flag Bit

busy: Busy Flag Bit

bcr: Broadcast Received Bit

res: Unused Bits

sr: Service Request

inst: Instrumentation Bit

me: Message Error

344 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

rtaddr: RT Address Field

Publication No. 1500-038 Rev. 5.11 Data Structures 345

7.3 BC Retry Parameters (BusTools_BC_Init argument)

Code Definition

#define BC_RETRY_ALTB 0x00001

#define BC_RETRY_NRSP 0x00002

#define BC_RETRY_ME 0x00004

#define BC_RETRY_BUSY 0x00008

#define BC_RETRY_TF 0x00010

#define BC_RETRY_SSF 0x00020

#define BC_RETRY_INSTR 0x00040

#define BC_RETRY_SRQ 0x00080

#define BC_RETRY_INV_WRD 0x00100

#define BC_RETRY_INV_SYNC 0x00200

#define BC_RETRY_MID_BIT 0x00400

#define BC_RETRY_TWO_BUS 0x00800

#define BC_RETRY_PARITY 0x01000

#define BC_RETRY_CONT_DATA 0x02000

#define BC_RETRY_EARLY_RSP 0x04000

#define BC_RETRY_LATE_RSP 0x08000

#define BC_RETRY_BAD_ADDR 0x10000

#define BC_RETRY_WRONG_BUS 0x20000

#define BC_RETRY_BIT_COUNT 0x40000

#define BC_RETRY_NO_GAP 0x80000

Description

This constants are used in the call to BusTools_BC_Init to enable the various Bus

Controller message retry conditions.

Data Elements

BC_RETRY_ALTB: Retry on Alternate Bus.

BC_RETRY_NRSP: Retry on No Response.

BC_RETRY_ME: Retry on Message Error

BC_RETRY_BUSY: Retry on Busy Bit Set.

BC_RETRY_TF: Retry on Terminal Bit Set.

BC_RETRY_SSF: Retry on Subsystem Flag Set.

BC_RETRY_INSTR: Retry on Instrumentation Bit Set.

BC_RETRY_SRQ: Retry on Service Request Bit Set.

BC_RETRY_INV_WRD Retry on Invalid Word Error*

RETRY_INV_SYNC Retry on Inverted Sync**

346 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

BC_RETRY_MID_BIT Retry on Mid Bit Zero Crossing Error**

BC_RETRY_TWO_BUS Retry on Two-Bus error**

BC_RETRY_PARITY Retry on Parity Error**

BC_RETRY_CONT_DATA Retry on Non-Contiguous Data**

BC_RETRY_EARLY_RSP Retry on Early Response

BC_RETRY_LATE_RSP Retry on Late Response

BC_RETRY_BAD_ADDR Retry on Bad RT Address

BC_RETRY_WRONG_BUS Retry on Wrong Bus Error***

BC_RETRY_NO_GAP Retry on no Inter-Message Gap

* Use Invalid word retry in place of sync, parity, non-contiguous data, and mid-bit for F/W 6.10 and greater.
** Not supported by F/W v6.10 and greater
*** Not supported in f/W v5.0 and greater

Publication No. 1500-038 Rev. 5.11 Data Structures 347

7.4 BC Message Buffer (API_BC_MBUF)

Code Definition

typedef struct api_bc_mbuf

{

 BT_U16BIT messno; // Message number (0-based) 'FFFF' indicates end of aperiodic

list

 BT_U16BIT control; // Bus Controller Control Word. Defines this

 // message to be either a 1553 data transfer

 // msg (BC_CONTROL_MESSAGE) or a list management

 // msg (conditional branch or noop).

 BT_U16BIT messno_next; // Next message number

 BT_U16BIT messno_prev; // Previous message number (Not used, V2.51 and up)

 // This group is for standard bc messages (not conditional messages)

 // Any given message may NOT be both a 1553 message and a conditional message

 // at the same time. Data in this section is ignored for conditional msgs,

 // and data in the following section is ignored for 1553 messages.

 BT1553_COMMAND mess_command1; // 1553 command word (Receive for RT→RT msgs)

 BT1553_COMMAND mess_command2; // 1553 cmd word #2 (Transmit, RT→RT msgs)

 BT_U16BIT errorid; // error injection buffer id number

 BT_U16BIT gap_time; // time to delay after end of current msg

 BT1553_STATUS mess_status1; // 1553 status word

 BT1553_STATUS mess_status2; // 1553 status word #2 (for RT→RT msgs)

 BT_U32BIT status; // interrupt status from h/w

 BT_U16BIT data[2][BT1553_BUFCOUNT]; // data buffers A and B

 // This group is for BC_CONTROL_CONDITION, #2 and #3 list management messages

 BT_U16BIT data_value; // Data value to compare

 BT_U16BIT data_mask; // Bit mask for compare

 BT_U16BIT address; // Word number of the previous or specified msg

 // to compare for BC_CONTROL_CONDITION or

 // BC_CONTROL_CONDITION3 Conditional branch msgs.

 BT_U16BIT messno_branch; // If '==' branch to this message

 BT_U16BIT messno_compare; // Msg # containing data word in “address”

 // These variables are only used by the extended BC message function calls.

 BT_U16BIT start_frame; // Start frame for message scheduling

 BT_U32BIT test_address; // Byte address of word to be tested by

 // BC_CONTROL_CONDITION2 conditional branch msg.

 BT_U16BIT cond_count_val; // Conditional counter reload value

 BT_U16BIT cond_counter; // Conditional counter initial value

 BT_U16BIT data_buf_num1; // Buffer number of the first BC data buffer

 BT_U16BIT data_buf_num2; // Buffer number of the second BC data buffer

 BT1553_TIME time_tag; // Tag Time for F/W version 3.97 and above

 BT_U16BIT rep_rate; // repeat rate for message scheduling.

}

API_BC_MBUF;

Description

348 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

This structure contains all information required to define a BC message. The

specified information is used to create a BC message on the board. Six types of BC

message can be defined by this structure, only one of which may be specified for any

given message:

• Conventional 1553 message: This message includes the standard command

word, and one or two data buffers for transmit/receive data. Mode codes, RT to

BC, BC to RT, and broadcast messages may be defined using this format. To

specify this type of message, you set BC_CONTROL_MESSAGE or

BC_CONTROL_MSG_NOP in the “control” word.

• Branch message: This message transfers control to another location in the BC

message list. To specify this type of message, the BC_CONTROL_BRANCH bit

of the “control” word must be set.

• Conditional branch message (BC_CONTROL_CONDITION): This message

transfers control to another message in the BC message list if a specified

condition in the previous message is met. To specify this type of message, the

BC_CONTROL_CONDITION bit of the “control” word must be set.

• Conditional branch message (BC_CONTROL_CONDITION2): This message

transfers control to another message in the BC message list if the specified

location if the conditions of the contents at that location meet the specified

conditions. To specify this type of message, the BC_CONTROL_CONDITION2

bit of the “control” word must be set.

• Conditional branch message (BC_CONTROL_CONDITION3): This message

transfers control to another message in the BC message list if a specified word in

a specified message meets the specified conditions. To specify this type of

message the BC_CONTROL_CONDITION3 bit of the “control” word must be

set. See above when specifying the previous message as the source of the test

word.

• No-op message: This message performs no function; it just jumps to the next

message. To specify this type of message, the BC_CONTROL_NOP bit of the

control word must be set.

Data Elements

messno: This is the message number of this BC message in the message list. The

first message in the list is message #0.

control: This is the control word used to determine the contents of the BC message.

It has two parts: (1) a message type field and (2) message control bits. The

first seven entries below are message type definitions. The control word can

only specify a single message type. The remaining entries are message control

bits.

Publication No. 1500-038 Rev. 5.11 Data Structures 349

Message Types:

BC_CONTROL_BRANCH: This code indicates that this BC message is a branch

message. When the microcode “executes” this message, it jumps to another

position within the BC message list.

BC_CONTROL_CONDITION: This code indicates that this BC message structure

defines a conditional branch message. This message transfers control to

another position within the BC message list based on the contents of a

specified word in the previous message.

BC_CONTROL_CONDITION2: This code indicates that this BC message structure

defines a condition branch message. This message transfers control to another

position within the BC message list based on the contents of a user-specified

location in memory, as specified by the test_address parameter.

BC_CONTROL_CONDITION3: This code indicates that this BC message structure

defines a conditional branch message. This message transfers control to

another position within the BC message list based on the contents of a

specified word in the message in the messno_compare parameter, rather than

the previous message.

BC_CONTROL_MESSAGE: This code indicates that this BC message structure

defines a standard BC message. It instructs the BC to generate a message on

the bus (either transmit or receive). You can noop this message by calling

BusTools_BC_MessageNoop. This results in a message type that is different

from the BC_CONTROL_NOP.

BC_CONTROL_MSG_NOP: This code indicates that this BC message structure is a

standard BC message. The message is put into the Noop state when it is

written to the BC data buffer. You can activate this message by calling

BusTools_BC_MessageNoop.

BC_CONTROL_LAST: This code indicates the last message to be executed in the BC

message list. When the BC executes this message, it turns off the BC Run and

Busy bits and stops. No further BC messages are output until the

BusTools_BC_StartStop function is called to start the BC.

BC_CONTROL_HALT. This code indicates the last message to be executed in the BC

message list. When the BC executes this message, it turns off the BC Run and

clears the BC Enable External Sync Bit. This stops the BC and ensures that an

external trigger pulse will not restart the BC. No further BC messages are

output until the BusTools_BC_StartStop function is called to start the BC.

BC_CONTROL_NOP: This code indicates that this is a noop message (this message

does nothing). It can be used to branch back to the beginning of the bus list

when repeating a bus list.

350 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

BC_CONTROL_TIMED_NOP: This code indicates that this is a timed no-op

message. It will execute inter-message gap timing but does not transmit data

on the bus.

Message Control Bits:

BC_CONTROL_BUFFERA: This bit is set to indicate that Buffer A is to be used for

data transfers. This bit is valid only for microcode revision 1.04 or later (all

currently shipping hardware is above revision 1.04) (see the

BusTools_GetRevision function. This bit is valid only for messages of type

BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP.

BC_CONTROL_BUFFERB: This bit is set to indicate that Buffer B is to be used for

data transfers. This bit is valid only for microcode revision 1.04 or later (see

the BusTools_GetRevision function. This bit is valid only for messages of type

BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP.

BC_CONTROL_CHANNELA or BC_CONTROL_BUSA: This bit is set to indicate

that this message should be transmitted on the primary bus (Bus A). This bit

is valid only for microcode revision 1.04 or later (see BusTools_GetRevision

function). This bit is valid only for messages of type

BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP.

BC_CONTROL_CHANNELB or BC_CONTROL_BUSB: This bit is set to indicate that

this message should be transmitted on the secondary bus (Bus B). This bit is

valid only for microcode revision 1.04 or later (see BusTools_GetRevision

function). This bit is valid only for messages of type

BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP.

BC_CONTROL_INTERRUPT: This bit is set, if the BusTools hardware needs to check

the results of this message against the enabled BC interrupt conditions. If the

bit is set and one of the enabled interrupt conditions is met, an interrupt

record is added to the interrupt queue.

BC_CONTROL_MFRAME_BEG: This bit must be set for the first message in each

minor frame. Note that the first message of a minor frame cannot be a

conditional or branch message.

BC_CONTROL_MFRAME_END: This bit must be set for the last message in each

minor frame. The last message of a minor frame cannot be a conditional or

branch message.

BC_CONTROL_RETRY: This bit is set to indicate that retries are enabled for this

message. This bit is valid only for BC_CONTROL_MESSAGE or

BC_CONTROL_MSG_NOP.

BC_CONTROL_RTRTFORMAT: This bit is set to indicate that this BC message is an

RT to RT format message. In this case, both mess_command1 and

mess_command2 must be defined. The first command must be a “receive”

Publication No. 1500-038 Rev. 5.11 Data Structures 351

and the second command must be a “transmit”. On reading a BC message

from the BusTools hardware, both mess_status1 and mess_status2 are valid.

This bit is valid only for BC_CONTROL_MESSAGE or

BC_CONTROL_MSG_NOP.

BC_CONTROL_USEBUFFA: If this bit is set, Buffer A should be used for data

transfers for this message. If this bit is clear, Buffer B should be used for data

transfers for this message. This bit is valid only for microcode revision 1.03 or

earlier.

messno_next: This is the message number of the next message in the BC message list

to be executed after this message. Using this entry, a conventional message

can actually be combined with a branch message in a single entry. Note that

message numbers are “0” based (the first message in the list is message #0).

messno_prev:: Was the message number of the previous message in the BC message

list. Currently this parameter is unused.

mess_command1: This is the first MIL-STD-1553 command word to be placed onto

the 1553 bus by this message.

mess_command1.rtaddr: This is the RT address to be placed in the first command

word. This entry should be in the range 0 to 31 (inclusive). This entry is used

only for BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP. If

Broadcast is enabled (see the BusTools_SetBroadcast function), an RT address

of 31 is automatically a broadcast message.

mess_command1.subaddr: This is the RT subaddress to be placed in the first

command word. This entry should be in the range 0 to 31 (inclusive). This

entry is used only for BC_CONTROL_MESSAGE or

BC_CONTROL_MSG_NOP. A RT subaddress of 0 is automatically a mode

code command. In addition, if SA31 is enabled (see the BusTools_SetSa31

function), an RT subaddress of 31 is also a mode code command.

mess_command1.tran_rec: This is the transmit/receive bit to be placed in the first

command word. This entry should be either 0, for receive, or 1, for transmit.

This entry is used only for BC_CONTROL_MESSAGE or

BC_CONTROL_MSG_NOP.

mess_command1.wcount: This is the word count (or mode code, if applicable) to be

placed in the first command word. This entry should be in the range 0 to 31

(inclusive).

mess_command2: This is the second MIL-STD-1553 command word to be placed

onto the 1553 bus by this message. It is used only by RT-to-RT messages. It is

ignored for all other 1553 messages.

mess_command2.rtaddr: This is the RT address to be placed in the second command

word. This entry should be in the range 0 to 31 (inclusive). This entry is used

352 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

only if the BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP. If

Broadcast is enabled (see the BusTools_SetBroadcast function), an RT address

of 31 is automatically a broadcast message.

mess_command2.subaddr: This is the RT subaddress to be placed in the second

command word. This entry should be in the range 0 to 31 (inclusive). This

entry is used only for BC_CONTROL_MESSAGE or

BC_CONTROL_MSG_NOP. A RT subaddress of 0 is automatically a mode

code command. In addition, if SA31 is enabled (see the BusTools_SetSa31

function), a RT subaddress of 31 is also a mode code command.

mess_command2.tran_rec: This is the transmit/receive bit to be placed in the second

command word. This entry should be either 0, for receive, or 1, for transmit.

This entry is used only for BC_CONTROL_MESSAGE or

BC_CONTROL_MSG_NOP.

mess_command2.wcount: This is the word count (or mode code, if applicable) to be

placed in the second command word. This entry should be in the range 0 to

31 (inclusive).

errorid: This is the error injection buffer id to be used with this message. If no errors

are to be injected with this message, the id of a no-error error injection buffer

must be supplied. Typically, the first error injection buffer (buffer 0) is

defined to be the no-error buffer. This entry is used only for

BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP.

gap_time: This is the time from the mid-parity bit of the last word of the current

message to the mid-sync bit of the next message. The delay is in

microseconds, with a range of 5 – 65535. This entry is only for

start_frame: This the starting frame number for the message when message

scheduling is enabled.

rep_rate: This the repeat rate for the message when message scheduling is enabled.

 BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP. Gap time is not applied

to BC_CONTROL_MSG_NOP messages until they are operational. Use

BusTools_BC_MessageNoop to activate noop messages.

mess_status1: This is the 1553 status word returned by the RT because of executing

this message. It is only valid after reading the BC message, using the

BusTools_BC_MessageRead function. This entry is used only for

BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP.

mess_status2: This is the 1553 status word returned by the receiving RT as part of an

“RT to RT” message. For non-”RT to RT” messages, this parameter is not

valid and its value is indeterminate. It is only valid after reading the BC

message, using the BusTools_BC_MessageRead function. This entry is used

only for BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP

Publication No. 1500-038 Rev. 5.11 Data Structures 353

status: This is the 32-bit message status from the Abaco Systems 1553 board. The

definition of the individual bits in this parameter can be found in Section 7.11,

“Interrupt Enable / Message Status Bits (32 bit)”. This entry is used only for

BC_CONTROL_MESSAGE or BC_CONTROL_MSG_NOP.

data: This is a data buffer portion of the message. There are two data buffers, each

with 33 “BT1553_BUFCOUNT” words. There are 33 words to allow for the

possibility of a 32-word message with a high word count error. The two

buffers are provided to support the “Ping-Pong” buffering for BC messages.

On writing a message, both buffers are stored in channel memory. On

reading a message, both buffers are read from channel memory.

data_value: This is the 16-bit data value used for comparison in conditional branch

instructions (BRANCH_CONDITION, BRANCH_CONDITION2 or

BRANCH_CONDITION3 bits set)

data_mask: This is the 16-bit mask applied to the bus data prior to the comparison

for conditional message. This entry is used only if BRANCH_CONDITION,

BRANCH_CONDITION2 or BRANCH_CONDITION3 bits set bit are set.

address: This parameter indicates what data word should be used for the

conditional message comparison. For type #1 or #3 conditional messages, this

parameter specifies a word from the previous message. For type #2

conditional messages, this parameter is not used (see “test_address”). For

type #1 messages, possible values are as follows:

0 Command word.

1 Command word #2 (for “RT to RT” messages only).

2 Status word.

3 Status word #2 (for “RT to RT” messages only).

4-35 Data words #1 through #32.

test_address: This parameter specifies the byte address of the word to be tested by a

BC_CONTROL_CONDITION2 type #2 conditional message.

messno_branch: This is the destination message number in the BC message list

executed if the specified comparison is true. Note that message numbers are

“0” based (the first message in the list is message #0). If the comparison is

false, the message specified in “messno_next” is executed next. This entry is

used only if BRANCH_CONDITION, BRANCH_CONDITION2 or

BRANCH_CONDITION3 bits set bit are set.

messno_compare: If BC_CONTROL_CONDITION3 is set, this word contains the

message number of the message containing the “address” data word to be

used for the conditional message comparison.

Time_tag: This is the BT1553_TIME structure for recording the 45-bit time tag for

each BC message. Only BC message blocks and stop block report time tag.

This feature is only available for F/W version 3.97 or higher.

354 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.5 BM Filter Buffer (API_BM_CBUF)

Code Definition

typedef struct api_bm_cbuf

{

 union

 {

 DWORD wcount; // enabled word counts (bit field)

 DWORD modecode; // enabled mode codes

 };

 WORD pass_count; // number of passes before interrupt

}

API_BM_CBUF;

/**

* BM control buffer “mode_code” bits

**/

#define BM_FILTER_MC_DBC 0x00000001L // dynamic bus control

#define BM_FILTER_MC_SYNC 0x00000002L // synchronize

#define BM_FILTER_MC_TSWS 0x00000004L // transmit status word

#define BM_FILTER_MC_STST 0x00000008L // initiate self-test

#define BM_FILTER_MC_XSD 0x00000010L // transmitter shutdown

#define BM_FILTER_MC_OXSD 0x00000020L // override transmitter shutdown

#define BM_FILTER_MC_ITF 0x00000040L // inhibit terminal flag bit

#define BM_FILTER_MC_OITF 0x00000080L // Override inhibit terminal flag bit

#define BM_FILTER_MC_RRT 0x00000100L // Reset remote terminal

#define BM_FILTER_MC_TVWC 0x00010000L // Transmit vector word

#define BM_FILTER_MC_SWO 0x00020000L // Synchronize with data word

#define BM_FILTER_MC_TLC 0x00040000L // Transmit last command

#define BM_FILTER_MC_TBW 0x00080000L // Transmit bit word

#define BM_FILTER_MC_SXSD 0x00100000L // Selected transmitter shutdown

#define BM_FILTER_MC_OSXS 0x00200000L // Override selected tx shutdown

Description

The BM microcode records messages as they appear on the 1553 bus. When a

message is recorded, information about the message (including content and error

status) is placed in one of the BM Message buffers allocated in the channel’s Bus

Monitor memory.

The BM filter provides the ability to specify that only certain messages be recorded.

The filter operates based on the command word (CW) of the message (which is a

combination of the RT address, RT subaddress, transmit / receive flag and word

count or modecode for the message). When the CW is received, the BM filter

determines if messages with that specific CW are to be recorded or ignored by the

BM microcode. If the BM filter bit for the CW in a specific message is reset (0), then

the message is ignored by the BM microcode and the message is not stored in one of

the BM Message buffers.

If the BM filter bit for a specific CW is set (1), the filter checks a filter counter for that

CW. The counter is initialized by the application to indicate the fraction of BM

Publication No. 1500-038 Rev. 5.11 Data Structures 355

messages with a specific CW to be recorded. A counter set to n indicates that every

nth message should be recorded; the other n-1 messages should be ignored.

This structure contains the BM filter enable / disable bits for various word count and

modecode possibilities for a specific RT subunit (RT address, subaddress, and

transmit / receive flag combination). If the specified bit is not set, the BM ignores

messages with the specified CW. If the specified bit is set, messages are recorded

subject to the specified counter. The application can independently specify the BM

filter bits for each RT subunit using the BusTools_BM_FilterWrite function.

If the RT subaddress is a non-modecode subaddress, then the 32-bit wcount

parameter is used. In this case, each bit in the parameter is used to enable or disable

BM recording for a specific word-count for the specified RT subunit. If the specified

bit is 0, the BM ignores messages with the specified RT address, subaddress and

word count. If the specified bit is “1”, a message with the specified RT address,

subaddress and word count is stored in the BM Message buffers by the BM. The bit

assignments are as follows:

0x00000001L: control word count = 0 (32 words)

0x00000002L: control word count = 1

0x00000004L: control word count = 2

• • •

0x80000000L: control word count = 31

If the RT subaddress is a modecode subaddress, then the 32-bit modecode parameter

is used. Bits are set in this parameter to enable / disable BM operations with the

associated mode codes. The bit assignments for each modecode are provided in the

BM_FILTER_MC_XXX parameters listed above.

Data Elements

wcount: This is the 32-bit enable / disable word for non-modecode subaddresses.

The bit assignments are described above. Note that this parameter is a union

with modecode. The BusTools BM hardware does not differentiate between

modecode subaddresses and normal subaddresses with respect to filter

operations.

modecode: This is the 32-bit enable / disable word for modecode subaddresses.

These bit assignments are specified in the BM_FILTER_MC_XXX parameters.

Note that this parameter is a union with “wcount”. The BusTools BM

hardware does not differentiate between modecode subaddresses and normal

subaddresses with respect to filter operations.

pass_count: The counter parameter used by the BM filter. If this value is set to n,

then every nth message with the specified command word is recorded. If the

application wants every message recorded, set this parameter to 1.

356 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Publication No. 1500-038 Rev. 5.11 Data Structures 357

7.6 BM Message Buffer (API_BM_MBUF)

Code Definition

typedef struct api_bm_mbuf

{

 BT_U32BIT messno; // Message number (generated by API, 1-based)

 BT_U32BIT int_status; // Interrupt status from board

 BT1553_TIME time; // Time of message (48-bits, 1 us LSB)

 BT1553_COMMAND command1; // 1553 command word #1 (Rx for RT→RT)

 BT_U16BIT status_c1; // 1553 command word #1 error status

 BT1553_COMMAND command2; // 1553 command word #2 (Tx for RT→RT)

 BT_U16BIT status_c2; // 1553 command word #2 error status

 BT1553_BMRESPONSE response1; // 1553 response time #1 (byte)

 BT1553_BMRESPONSE response2; // 1553 response time #2 (byte)

 BT1553_STATUS status1; // 1553 status word #1 (Transmit for

 // RT→RT or Broadcast RT→RT)

 BT_U16BIT status_s1; // 1553 status word #1 error status

 BT1553_STATUS status2; // 1553 status word #2 (Receive for

 // RT→RT, NULL for Broadcast RT→RT)

 BT_U16BIT status_s2; // 1553 status word #2 error status

 BT_U16BIT value[BT1553_MBUFCOUNT]; // 1553 data words

 BT_U8BIT status[BT1553_MBUFCOUNT]; // 1553 status for data words

}

API_BM_MBUF;

Description

This structure contains all information provided by the Abaco Systems 1553 board

when a message is detected on the 1553 bus. This information includes all command

words, data words, and status words as they appeared on the bus. The RT response

time (the time required for the RT to provide its status word) is provided. In the case

of an “RT to RT” message, the second RT response time is also provided. Finally, a

message number and time stamp are provided.

Errors information detected for the message is provided in two ways:

• for each word appearing on the bus, a 16-bit error status is provided. See “BM

Word Status Bits (8/16 bit)”.

• for the entire message, a 32-bit error status is provided. See “Interrupt Enable /

Message Status Bits (32 bit)”.

The low order 16 bits of the 32-bit error status is a logical “OR” of the 16 bit error

status words from all words of the message.

The structure contains value and status information for up to 32 data words,

however, only the number of data words specified in the command word (and

actually present on the bus) are valid. The remaining value and status information is

indeterminate.

Certain elements of this structure (command2, status_c2, response2, status2, and

status_s2) are valid only in the case of an RT to RT message. You can determine

358 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

whether this message is RT to RT by checking the BT1553_INT_RT_RT_FORMAT bit

of the int_status parameter of this structure.

Data Elements

messno: This is the buffer number for this message. Buffer number corresponds to

the buffers created on the call to BusTools_BM_MessageAlloc.

int_status: This is the 32-bit Interrupt Status Word from the BusTools channel for

this message. See Section 7.11, “Interrupt Enable / Message Status Bits (32

bit)”.

time: The time at which this message was detected on the bus. It is measured from

when the BM was started using the BusTools_BM_StartStop function. Each

time the BM is restarted, the time counters are reset.

command1: This is the command word as it appeared on the bus. The components

of the command word (RT address, subaddress, word count, and

transmit/receive flag) can be accessed using the elements of this structure.

status_c1: This is the 16-bit error (or quality) word associated with the command

word. For the bit definitions in this word, see “BM Word Status Bits (8/16

bit)”.

command2: (valid only for “RT to RT” messages): This is the second command

word as it appeared on the bus. The components of the command word (RT

address, subaddress, word count and transmit/receive flag) can be accessed

using the elements of this structure.

status_c2 (valid only for “RT to RT” messages): This is the 16-bit error (or quality)

word associated with the second command word. For the bit definitions in

this word, see Section 7.8, “BM Word Status Bits (8/16 bit)”.

response1: The time delay that was measured prior to the RT providing its status

word.

status1: This is the 1553 status word provided by the RT in response to this message.

The components of the status word (individual status bits) can be accessed

using the elements of this structure.

status_s1: This is the 16-bit error (or quality) word associated with the status word.

For the bit definitions in this word, see Section 7.8, “BM Word Status Bits (8/16

bit)”.

response2 (valid only for “RT to RT” messages): The time delay that was measured

prior to the second RT providing its status word.

status2: (valid only for “RT to RT” messages): This is the 1553 status word provided

by the second RT in this message.

Publication No. 1500-038 Rev. 5.11 Data Structures 359

status_s2: (valid only for “RT to RT” messages): This is the 16-bit error (or quality)

word associated with the second status word. For the bit definitions in this

word, see Section 7.8, “BM Word Status Bits (8/16 bit)”.

value[i]: This is the “i”th data word as it appeared on the 1553 bus. Only

command1.wcount data entries are valid in this message.

status[i]: This is the 8-bit error (or quality) word associated with the “i”th data

word. For the bit definitions in this word, see Section 7.8, “BM Word Status

Bits (8/16 bit)”.

user1/user2: These two conditionally-defined data elements are for the Bus Monitor

User data option. They are set by calling BusToos_BM_SetUserData to write

data into onboard registers. The firmware updates the BM message buffer

with the contents of these two registers. Define the macro

_BM_USER_DATA_ to use these two values. Using BM User Data is not

compatible with playback or BusTools/1553 User Interface Software.

360 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.7 BM Trigger Buffer (API_BM_TBUF)

Code Definition

/**

* BM Trigger Buffer definition

*

* 4 - Start Trigger Events (only 3 Active) A - B - C - D(Not Used)

* 4 - Stop Trigger Events (only 3 Active) E - F - G - H(Not Used)

*

* control: dialog box entries for order of events:

* START SIDE STOP SIDE

* 0 -> unconditionally never

* 1 -> if A if E

* 2 -> if A AND B if E AND F

* 3 -> if A OR B if E OR F

* 4 -> if A with B (same message) if E with F (same msg)

* 5 -> if B armed by A if F armed by E

* 6 -> if A with B and C if E with F and G

* 7 -> if A with B or C if E with F or G

* 8 -> if C armed by A with B if G armed by E with F

* 9 -> if A with B armed by C if E with F armed by G

* 10 -> if A and B and C if E and F and G

* 11 -> if A or B or C if E or E or G

*

* type: trigger type:

* 0 -> none

* 1 -> command

* 2 -> status

* 3 -> data

* 4 -> Not used

* 5 -> Interrupt status lsb

* 6 -> Interrupt status msb

*

* mask: 16 bit mask (applied prior to compare)

* value: 16 bit value to compare

* word: word number (data trigger - 3) or offset (user offset trigger - 5)

* count: number of times event must occur before event_occurred bit is set

*

**/

typedef struct api_bm_tbuf

{

 BT_U16BIT trig_ext; // 1 -> external trigger input enabled

 // 2 -> external output on every BM interrupt

 // (rest of structure is ignored unless zero)

 BT_U16BIT trig_err; // 1 -> trigger on errors

 BT_U16BIT trig_ext_output; // 1 -> external output on trigger

 // 2 -> repetitive external output on trigger

 BT_U16BIT control1; // control of trigger start

 BT_U16BIT control2; // control of trigger stop

 struct

 { // Start events programmed here

 BT_U16BIT type; // Event type which causes trigger

 BT_U16BIT mask; // Specified 1553 word compared with “word” under this mask

 BT_U16BIT value; // Value of the command, status or data word for trigger

 BT_U16BIT word; // Word number within message to test

 BT_U16BIT count; // Number of times event occurs before Start declared

 }

 capture[4]; // Two Start events are supported by the old firmware.

 struct

 { // Stop events programmed here

 BT_U16BIT type; // Event type which causes trigger

 BT_U16BIT mask; // Specified 1553 word compared with “word” w/this mask

 BT_U16BIT value; // Value of the cmnd, status or data word for trigger

 BT_U16BIT word; // Word number within message to test

 BT_U16BIT count; // Number of times event occurs before Stop declared

 }

 stop[4]; // Two Stop events are supported by the old firmware.

} API_BM_TBUF;

Description

Publication No. 1500-038 Rev. 5.11 Data Structures 361

Different versions of the hardware support different combinations of triggering:

external inputs, external outputs, one-shot, and repetitive modes. For a complete

description, see the hardware reference manual for the particular board of interest.

Data Elements

See the description of the BM Trigger buffer definition above.

362 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.8 BM Word Status Bits (8/16 bit)

Code Definition

#define BT1553_INT_HIGH_WORD 0x0001

#define BT1553_INT_INVALID_WORD 0x0002

#define BT1553_INT_LOW_WORD 0x0004

#define BT1553_INT_INVERTED_SYNC 0x0008

#define BT1553_INT_MID_BIT 0x0010

#define BT1553_INT_TWO_BUS 0x0020

#define BT1553_INT_PARITY 0x0040

#define BT1553_INT_NON_CONT_DATA 0x0080

#define BT1553_INT_EARLY_RESP 0x0100

#define BT1553_INT_LATE_RESP 0x0200

#define BT1553_INT_BAD_RTADDR 0x0400

#define BT1553_INT_CHANNEL 0x0800

#define BT1553_INT_WRONG_BUS 0x2000

#define BT1553_INT_BIT_COUNT 0x4000

#define BT1553_INT_NO_IMSG_GAP 0x8000

Description

The Bus Monitor Word Status is a 16-bit parameter, with each bit indicating a

different condition that can be detected and reported by the Abaco Systems 1553

board for an individual word (either command, data or status) of a 1553 message.

The Word Status is reported as part of the BM Message buffer for every word

detected on the bus. The bit definitions for the BM Word Status match the first 16

bits of the Interrupt Enable / Message Status parameter.

The Bus Monitor records 8 bits of error status information for each data word

logged. These 8 bits are the first 8 bits in the above list.

Data Elements (in alphabetical order)

• BT1553_INT_BAD_RTADDR: This bit indicates that the RT address in the status

word response is not identical to the RT addressed in the command word.

• BT1553_INT_BIT_COUNT: This bit indicates that the bit count of one or more

words in the message was not the expected value (a value of 16). This condition

also sets the BT1553_INT_INVALID_WORD bit.

• BT1553_INT_BIT_COUNT_DATA: This bit indicates that the bit count of the

associated data word in the message was not the expected value (a value of 16).

This bit is only defined for data words within a API_BM_MBUF structure. This

condition also sets the BT1553_INT_INVALID_WORD bit.

• BT1553_INT_CHANNEL: This bit indicates the bus on which the message was

detected. If this bit is set, the message was detected on bus B. If this bit is not set,

the message was detected on bus A.

• BT1553_INT_EARLY_RESP: This bit indicates that the 1553 decoder detected a

command sync with < 2µs of bus dead time when a status word is expected.

Publication No. 1500-038 Rev. 5.11 Data Structures 363

• BT1553_INT_HIGH_WORD: This bit indicates that the message contained more

data words than was indicated in the word count field of the command word.

• BT1553_INT_INVALID_WORD: This bit indicates that any of the following was

detected on one or more words of the message: inverted sync, invalid

Manchester II encoding (including zero and crossing errors), bit count error or

parity error.

• BT1553_INT_INVERTED_SYNC: This bit indicates that the sync field was

inverted from what was expected by the message transfer format on one or more

of the words in the message. This condition also sets the

BT1553_INT_INVALID_WORD bit.

• BT1553_INT_LATE_RESP: This bit indicates that the 1553 decoder did not detect

a command sync within the specified “Late Response Timeout” time when a

status word is expected. This time is set with the wTimeout2 parameter to the

BusTools_BC_Init function.

• BT1553_INT_LOW_WORD: This bit indicates that the message contained less

data words than were indicated in the word count field of the command word.

• BT1553_INT_MID_BIT: This bit indicates that successive mid-zero crossings were

not within 150ns of the expected time for any successive bits in any word of the

message (except the sync bit – see below). This condition also sets the

BT1553_INT_INVALID_WORD bit.

• BT1553_INT_MID_SYNC: This bit indicates that successive mid-zero crossings

were not within 150ns of the expected time for any mid-sync or end-sync bit

time. This condition also sets the BT1553_INT_INVALID_WORD bit. Not

currently in use.

• BT1553_INT_NO_IMSG_GAP: This bit indicates that the mid-sync zero crossing

of the next command sync was detected prior to 4µs preceding the mid-zero

crossing of the parity bit of the last word of the current message. The next

command sync may or may not produce a valid command word.

• BT1553_INT_NON_CONT_DATA: This bit indicates that a gap was detected

between successive data words in the message. The hardware allows a 4-µs gap

before declaring a Low Word error.

• BT1553_INT_PARITY: This bit indicates that a parity error was detected in one or

more words of the message. Odd parity is used (per the MIL-STD-1553

Specification). This condition also sets the BT1553_INT_INVALID_WORD bit.

• BT1553_INT_TWO_BUS: This bit indicates that both buses (bus A and bus B)

were active sometime during the message.

• BT1553_INT_WRONG_BUS: This bit indicates that the RT responded on a

different bus than the one on which the command word was transmitted.

364 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.9 Device List Structure (DeviceList)

Code Definition

typedef struct devicelist

{

 BT_INT num_devices;

 BT_UINT device_name[MAX_BTA];

 BT_INT device_num[MAX_BTA];

 char name[MAX_BTA][256];

}

DeviceList;

Description

This structure holds information about the Abaco Systems MIL-STD-1553 devices

installed in the system. A pointer to this structure is passed for

BusTools_ListDevices to fill in the information.

Data Elements

nm_devices: The number of MIL-STD-1553 devices found in the system.

Device_name: An array of unsigned integers containing the device name

value.

#define PMC1553 0x20 /* This is the PMC-1553 native PCI board */

#define PCI1553 0x40 /* This is the PCI-1553 native PCI board */

#define CPCI1553 0x50

#define ISA1553 0x80 /* This is the ISA-1553 native ISA board */

#define DT1553 0x90

#define PCC1553 0xA0 /* This is the PCC-1553 PCMCIA board */

#define VME1553 0x100 /* This is the VME-1553 Native VME Board */

#define QPMC1553 0x110 /* This is the QPMC-1553 native PMC board */

#define IPD1553 0x120 /* This is the Dual Channel single wide IP */

#define VXI1553 0x140 /* This is the Native Plug-n-Play VXI-1553 */

#define QPCI1553 0x160 /* This ia the QPCI-1553 Native PCI board */

#define Q1041553 0x170 /* This is a PC\104 4-Ch ISA board */

#define Q1041553P 0x180 /* This is a PC\104 4-Ch PCI board */

#define QVME1553 0x190 /* This is a Quad Channel VME-1553 New Arch */

#define PCCD1553 0x200 /* This is a Dual Channel PCCard-D1553 */

#define QCP1553 0x210 /* This is the Quar-Channel cPCI-1553 board */

#define QPCX1553 0x220 /* This is the QPCX-1553 Native PCI board */

#define R15EC 0x230 /* This is the R15-EC express card board */

#define RXMC1553 0x260 /* This is the RXMC-1553 */

#define R15AMC 0x240 /* This is the R15-AMC (QPM1553 variant) */

#define QPM1553 0x110 /* This is the QPM-1553 (QPMC1553 variant) */

#define AMC1553 0x110 /* This is the AMC-1553 (QPMC1553 variant) */

#define R15AMC 0x240 /* This is the RoHS AMC board */

#define RPCIe1553 0x250 /* This is the RoHS PCI-E board */

Publication No. 1500-038 Rev. 5.11 Data Structures 365

#define RXMC1553 0x260 /* This is the RoHS XMC board */

#define AR15VPX 0x280 /* This is the AR15-VPX (1553/429) */

#define R15XMC2 0x300 /* Same as above */

#define LPCIE1553 0x320 /* This is the low profile PCI express */

#define RAR15XMCXT 0x360 /* This is the RAR15XMC extended Temp XMC */

#define R15USB 0x3000 /* USB Board */

#define MPCIE1553 0x400 /* This is the Mini PCI express */

These are legacy boards that are no longer available.

device_num: Array containing the installation device number for each

board found.

Name: An array of strings holding the name of the board type.

366 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.10 Error Injection Definitions (API_EIBUF and API_ ENH_EIBUF)

Code Definition

typedef struct api_eibuf

{

 BT_U16BIT buftype; // error injection buffer type struct

 {

 BT_U8BIT etype; // error code (EI_NONE, EI_PARITY …

 BT_U8BIT edata; // error data (if req'd)

 }

 error[EI_COUNT];

}

API_EIBUF;

typedef struct api_enh_eibuf

{

 BT_U16BIT buftype; // error injection buffer type struct

 {

 BT_U8BIT etype; // error code (EI_NONE, EI_PARITY, etc)

 BT_UINT edata; // error data (if req'd)

 }

 error[EI_COUNT];

}

API_ENH_EIBUF;

Description

This structure is used to control Error Injection by the BusTools microcode. Error

Injection is defined on a word-by-word basis for a message. The device putting

words out to the bus injects the errors. Thus, in typical operation, the Bus Controller

would inject some errors (e.g., errors on the control word and any data transmitted

by the BC). The Remote Terminal would inject other errors (e.g., errors on the status

word and any data transmitted by the RT).

There are five types of Error Injection buffers defined. The different types are used

in different situations. The types are:

• EI_BC_REC (BC: Receive): Error Injection buffer type used to define the errors to

be injected by the BC into a Receive Message. This buffer contains error

specifications for 34 words that can be transmitted by the BC in a Receive

Message. The first error spec is for errors to be injected in the command word.

The next 33 error specs are for errors to be injected in the data words. An extra

word is reserved in case a Word Count Error is requested.

• EI_BC_TRANS (BC: Transmit): Error Injection buffer type used to define the

errors to be injected by the BC into a Transmit Message. Since the BC generates

only one word in a Transmit Message (the control word), there is only one error

specification in this type of buffer.

• EI_RT_REC (RT: Receive): Error Injection buffer type used to define the errors to

be injected by a RT into a Receive Message. Since the RT only generates one

Publication No. 1500-038 Rev. 5.11 Data Structures 367

word in a Receive Message (the status word sent to the BC after the data has been

received), there is only one error specification in this type of buffer.

• EI_RT_TRANS (RT: Transmit): Error Injection buffer type used to define the

errors to be injected by a RT into a Transmit Message. This buffer contains error

specifications for 34 words that can be transmitted by the RT in a Transmit

Message. The first error spec is for errors to be injected in the status word. The

next 33 error specs are for errors to be injected in the data words. An extra word

is reserved in case a Word Count Error is requested.

• EI_BC_RTTORT (BC control of a RT-to-RT message): Error Injection buffer type

used to define the errors to be injected by a BC into a RT-to-RT Message. This

buffer contains error specifications for two words that are transmitted by the BC

in a RT-to-RT Message (the two command words).

Data Elements

buftype: The Error Injection buffer type (one of EI_BC_REC, EI_BC_TRANS,

EI_RT_REC, EI_RT_TRANS, or EI_BC_RTTORT as defined above).

error[i].etype: Error Injection specification for a single word transmitted onto the

bus. The following shows possible errors.

• EI_NONE- (no error): This entry is used when there is to be no error injected for

this particular word of the message. The error[i].edata element is ignored.

• EI_BADADDR- (Respond with Wrong Address: RT): Normally, the RT status

word contains the address of the RT. This error forces the status word to contain

a different address. The address you use is specified in the error[i].edata element

of the structure. You can use address 0 to 31. This error can be specified only for

RT: Receive and RT: Transmit EI buffer types.

• EI_BITCOUNT- (Bit Count Error: RT, BC): Use this entry to inject a bit count

error into a specific word of a message. The hardware normally transmits a sync

pulse followed by 16 data bits ending with a parity bit for each word sent out on

the 1553 bus. When you select this error, the actual number of data bits to be

transmitted in the word must be specified in the error[i].edata entry. While the

low-level hardware format allows values from 1 to 32, it is recommended that

values in the range 14 to 19 be used (as specified in the MIL_STD_1553 RT

validation test plan). Values outside of this range may cause other parts of the

hardware to function improperly. This error can be specified for any entry in

any EI buffer type. When bit count is injected, the parity bit is counted as a bit.

Thus, injecting 17 bits may produce a parity error, but is not a bit count error.

• EI_PARITY- (Parity Error: RT, BC): This entry injects a parity error into a

particular word of the message. This error does not use error[i].edata. You can

specify this error for any entry in any EI buffer type.

• EI_SYNC- (Inverted Sync Error: RT, BC): This entry injects an inverted sync

error into a particular word of the message. This error does not use

error[i].edata. You can specify this error for any entry in any EI buffer type.

368 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

• EI_DATAWORDGAP- (Data word Gap Error: RT, BC): This inject a data word

gap from .5 to 2.5 µs depending on the programming.

• EI_WORDCOUNT- (Word Count Error: RT, BC): Normally, the command word

specifies the number of words in a message. This error forces the actual number

of words in the message to differ from that in the command word. Use any word

count from 1 to 33. Specify this error condition on the command word of a BC

message (error[0].edata) for BC Receive messages. Specify this error on the status

word of an RT message (error[0].edata), for RT Transmit messages.

• EI_MIDBIT, EI_MIDPARITY and EI_MIDSYNC (Mid-Bit and Mid-Sync Errors:

RT, BC) - These error injection codes delay the zero crossing point by 300ns from

where it is expected. For mid-bit zero-crossing errors, you use error[i].edata to

select the bit, 0 through 15. Bit 0 is the LSB of the 16-bit word, however it is the

last bit to be transmitted in the serial stream. Similarly, bit 15, the MSB is the first

bit transmitted. The Mid-Sync and Mid-Parity errors do not use error[i].edata.

• EI_RESPWRONGBUS (Response on Wrong Bus: RT) - This bit set causes the RT

to respond with the status word using the address programmed in the five LSBs

of the error[0].edata.

• EI_BIPHASE – (Bi-Phase Error: RT, BC) - A bi-phase bit error is when there is no

zero crossing for the entire bit time. Use error[i].edata to select the bit. It is not

predictable how a 1553 decoder interprets a word when this error is injected on

one of the first two bits, as it depends on timing and the states of the first two

bits. When the bit doesn’t cross zero, it may stay in one state for 1½ µs and the

decoder might try to reestablish sync. Therefore, the API does not support

injection in either of the first two bits, but you should be aware of the possible

behavior should this case occur.

• EI_LATERESPONSE (Programmable Response: RT) – This RT selection allows

the application to enter a programmable response time of up to 31½µs,

programmed as a binary number in error[0].edata, with the LSB equal to 500ns.

An entry less than 4µs constitutes an early response. An entry greater than 14µs

constitutes a late response according to the MIL-STD-1553B Specification. Values

of less than 8µs are not guaranteed to be attainable by the hardware. This error

only applies to the RT status word.

Publication No. 1500-038 Rev. 5.11 Data Structures 369

• EI_ENH_ZEROXNG – EI_TCENH_ZEROXNG (Enhanced Zero Crossing: BC-

RT) – This selection is only available when using firmware version 5.x or greater

and requires using the function BusTools_EI _EbufWriteENH. This error offsets

the zero crossing transition by the amount set in edata of the API_ENH_EIBUF

structure. Setting the edata’s three MSB's to either 111 or 101 determines

whether use transmitter compensated zero-crossing.

Bit Field Definition

5-0 ZC_HalfBit Half bit time of the selected word

7-6 reserved

11-8 ZC_Offset Offset of the transition

12 ZC_Early Transition is early or late

13 1 Must be binary "1"

14 TC Transmitter compensated (active low)

15 1 Must be binary "1"

Applying Zero-Crossing to a word offsets the selected transition by the amount

determined in the ZC_Offset field. The four-bit ZC_Offset resolution (LSB) is 25ns,

which allows for a range of 400ns.

The transition may be programmed to occur before the expected transition by setting

the ZC_Early bit, or after the expected transition by clearing the ZC_Early bit.

Each 1553 word consists of forty half-bit times of 500ns. The ZC_HalfBit field

determines which half-bit time contains the injected zero crossing error..

Early and late transitions may be programmed in the half-bit time indicated:

ZC_HalfBit = 4; // mid-sync

ZC_HalfBit = 7; // end-sync

ZC_HalfBit = ((BitCount x 2) + 6); // mid-bit*

ZC_HalfBit = ((BitCount x 2) + 7); // end-bit*

ZC_HalfBit = 40; // mid-parity

ZC_HalfBit = 41; // end-parity/start data sync

*The first bit transmitted on the bus is BitCount = 1 up to the last bit before parity is

BitCount = 16.

Only one transition per message may be injected with a zero-crossing error.

• When using zero-crossing for RT validation, the affected half bit might require

adjustment for differences of the MIL-STD-1553 transmitter outputs when the

inputs are stable for greater than 500ns (1.0, 1.5 or 2.0 us). Programming the TC

bit to a logic zero determines Transmitter Compensated Zero-Crossing which adjusts

370 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

the early transition or the transition following a late transition by moving it 25ns

later so that plus or minus 150ns is met at the UUT. Generally, compensation is

required if testing an RT near the receiver margins of plus or minus 150ns,

Setting the TC bit to a logic one does not apply transmitter compensation

error[i].edata: If the error injection spec requires data, this is the data value. See

above for the definition of this value. If the specified error does not require

this data than set this word to zero.

Publication No. 1500-038 Rev. 5.11 Data Structures 371

7.11 Interrupt Enable / Message Status Bits (32 bit)

Code Definition

/**

* Bit definitions for BusTools Interrupt Enable

* and Interrupt Status entries (8-/16-/32-bit interrupt/status masks)

**/

#define BT1553_INT_HIGH_WORD 0x00000001L // high word error

#define BT1553_INT_INVALID_WORD 0x00000002L // invalid word error **

#define BT1553_INT_LOW_WORD 0x00000004L // low word error

#define BT1553_INT_INVERTED_SYNC 0x00000008L // inverted sync **

#define BT1553_INT_MID_BIT 0x00000010L // mid bit error **

#define BT1553_INT_TWO_BUS 0x00000020L // Two bus error V4.25

#define BT1553_INT_PARITY 0x00000040L // parity error **

#define BT1553_INT_NON_CONT_DATA 0x00000080L // non-contiguous data **

#define BT1553_INT_EARLY_RESP 0x00000100L // early response

#define BT1553_INT_LATE_RESP 0x00000200L // late response

#define BT1553_INT_BAD_RTADDR 0x00000400L // incorrect rt address

#define BT1553_INT_CHANNEL 0x00000800L // Bus (0=A, 1=B)

#define BT1553_INT_WRONG_BUS 0x00002000L // response on wrong bus

#define BT1553_INT_BIT_COUNT 0x00004000L // bit count error **

#define BT1553_INT_NO_IMSG_GAP 0x00008000L // no intermessage gap

// Note: In the above list, "**" means the bit can be set for a

// data word (vs. a command or status word, or a message),

#define BT1553_INT_END_OF_MESS 0x00010000L // end of message

#define BT1553_INT_BROADCAST 0x00020000L // broadcast message

#define BT1553_INT_RT_RT_FORMAT 0x00040000L // rt-to-rt message format

#define BT1553_INT_RESET_RT 0x00080000L // reset rt

#define BT1553_INT_SELF_TEST 0x00100000L // self test

#define BT1553_INT_MODE_CODE 0x00200000L // message is a Mode Code

 // (wcs > 3.07, was BIT FAIL)

#define BT1553_INT_NOCMD 0x00400000L // No command seen by decoder

#define BT1553_INV_RTRT_TX 0x00800000L // Invalid RTRT TX CMD2

#define BT1553_RTRT_RCV_NRSP 0x01000000L //

#define BT1553_INT_RETRY 0x02000000L // retry N/A for BM

#define BT1553_INT_NO_RESP 0x04000000L // no response (for RT→RT, set

 // if EITHER was no response)

#define BT1553_INT_ME_BIT 0x08000000L // 1553 status wd msg error bit

#define BT1553_INT_ALT_BUS 0x80000000L // retry on alternate bus.

// ***** SOFTWARE ONLY BITS ***** (not set by the hardware)

#define BT1553_INT_TRIG_BEGIN 0x10000000L // message with trigger begin

#define BT1553_INT_TRIG_END 0x20000000L // message with trigger end

#define BT1553_INT_BM_OVERFLOW 0x40000000L // message at buffer overflow

Description

The Interrupt Enable / Message Status are each 32-bit parameters, with each bit

indicating a different condition which can be detected and/or reported by the Abaco

Systems 1553 board. In the case of the Interrupt Enable parameter, each bit tells the

Abaco Systems 1553 board that if the specified condition is detected, an interrupt

record should be added to the interrupt queue on the board. In the case of the

372 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Message Status parameter, each bit indicates a condition that was detected by the

Abaco Systems 1553 board.

There are three situations where the Interrupt Enable parameter is used:

• BC Interrupt Enable (specified in the BusTools_BC_Init function and stored

globally in one of the RAM registers).

• BM Interrupt Enable (specified as one of the parameters in each BM message

buffer).

• RT Interrupt Enable (specified as one of the parameters in each RT message

buffer).

While the same Interrupt Enable format is used for each of these situations, there

may be certain conditions that can’t be detected or do not make sense for a particular

situation. See the table below for where each defined condition is applicable.

The Message Status parameter appears in three message buffers:

• BC Message buffer

• BM Message buffer

• RT Message buffer

In each case, the BusTools microcode fills in the value based on the conditions

detected for that particular message. It should be noted that the Interrupt Enable

bits set separately do not affect the status bits set in the status word. The status bits

are set for all conditions detected by the microcode for that message.

Data Elements (in alphabetical order)

• BT1553_INT_BAD_RTADDR: This bit indicates that the RT address in the status

word response is not identical to the RT addressed in the command word.

• BT1553_INT_BIT_COUNT: This bit indicates that the bit count of one or more

words in the message was not the expected value (16). This condition also sets

the BT1553_INT_INVALID_WORD bit.

• BT1553_INT_BM_OVERFLOW: This bit indicates that the BM overflowed at this

point and some messages were lost. The number lost can be determined by

examining the message numbers.

• BT1553_INT_BROADCAST: This bit indicates that the message was a broadcast

message. This is set in BC, BM and RT messages.

• BT1553_INT_CHANNEL: This bit indicates the channel on which the message

was detected. If this bit is set, the message was detected on Bus B; otherwise, the

message was detected on Bus A.

• BT1553_INT_EARLY_RESP: This bit indicates that the 1553 decoder detected a

command sync with less than 2µs of bus dead time when a status word is

expected.

Publication No. 1500-038 Rev. 5.11 Data Structures 373

• BT1553_INT_END_OF_MESS: This bit indicates that the parity bit of the last

word of the message has been transmitted or received on the 1553 bus. This bit is

set on every legal message with a valid command word, regardless of any other

detected error conditions.

• BT1553_INT_HIGH_WORD: This bit indicates that the message contained more

data words than was defined in the word count field of the command word.

• BT1553_INT_INVALID_WORD: This bit indicates that any of the following was

detected on one or more words of the message: inverted sync, invalid

Manchester II encoding (including zero and crossing errors), bit count error, or

parity error.

• BT1553_INT_INVERTED_SYNC: This bit indicates that the sync field was

inverted from what was expected by the message transfer format on one or more

of the words in the message. This condition also sets the

BT1553_INT_INVALID_WORD bit.

• BT1553_INT_LATE_RESP: This bit indicates that the 1553 decoder did not detect

a command sync within the specified Late Response Timeout when a status word

is expected. This time is set with the “wTimeout2” parameter of the

BusTools_BC_Init function.

• BT1553_INT_LOW_WORD: This bit indicates that the message contained fewer

data words than were indicated in the word count field of the command word.

• BT1553_INT_ME_BIT: This bit indicates that the 1553 Status Word response had

the Message Error bit set.

• BT1553_INT_MID_BIT: This bit indicates that successive mid-zero crossings were

not within 150ns of the expected time for any successive bits in any word of the

message (except the sync bit – see below). This condition also sets the

BT1553_INT_INVALID_WORD bit.

• BT1553_INT_MODE_CODE: This bit is set to indicate a mode code message.

• BT1553_INT_NOCMD: This bit is set when the decoder does not see any

message on the bus after a BC command is sent. This is probably the result of an

improperly terminated bus. The BT1553_INT_NO_RESP bit is set as well.

• BT1553_INT_NO_IMSG_GAP: This bit indicates that the mid-sync zero crossing

of the next command sync was detected prior to 4µs preceding the mid-zero

crossing of the parity bit of the last word of the current message. The next

command sync may or may not produce a valid command word.

• BT1553_INT_NO_RESP: This bit indicates that the 1553 decoder did not detect a

command sync within the specified No Response Timeout time when a status

word is expected. This time is set with the wTimeout1 parameter to the

BusTools_BC_Init function.

• BT1553_INT_NON_CONT_DATA: This bit indicates that a gap was detected

between successive data words in the message. The hardware allows a 4-µs gap

before declaring a Low Word error and beginning a search for the next command

word.

374 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

• BT1553_INT_PARITY: This bit indicates that a parity error was detected in one or

more words of the message. Odd parity is used (per the MIL-STD-1553

Specification). This condition also sets the BT1553_INT_INVALID_WORD bit.

• BT1553_INT_RESET_RT: This bit indicates that a valid Reset Terminal mode

code command was received. The application must reset this RT to an initialized

state.

• BT1553_INT_RETRY: This bit indicates that an automatic retry was executed by

the BC. This bit doesn’t indicate whether the retry was successful. Failure of the

retry results in the No Response error bit set or the Message Error bit in the RTs

status word being set.

• BT1553_INT_RT_RT_FORMAT: This bit indicates that the message is an RT¬ to

RT message. It is detected in hardware by two consecutive words with a

command sync.

• BT1553_RTRT_RCV_NRSP: This bit indicates which message on a RT→RT

message is not responding. If BT1553_INT_NO_RESP is set for a RT→RT

message check this bit. If set the receive command did not respond. If reset the

transmit command did not respond.

• BT1553_INT_SELF_TEST: This bit indicates the reception of a Built-In-Test

modecode command.

• BT1553_INT_TRIG_BEGIN: This bit indicates that the BM trigger enable

condition was met in this message. BM message gathering begins at this time.

This bit is generated by the API interrupt service function.

• BT1553_INT_TRIG_END: This bit indicates that the BM trigger disable condition

was met in this message. BM message gathering terminates at this time. This bit

is generated by the API interrupt service function.

• BT1553_INT_TWO_BUS: This bit indicates that both buses (Bus A and Bus B)

were active sometime during the message. This is a 1553 protocol error.

• BT1553_INT_WRONG_BUS: This bit indicates that the RT responded on a

different bus than the one on which the command word was transmitted. This is

a 1553 protocol error.

Publication No. 1500-038 Rev. 5.11 Data Structures 375

7.12 Interrupt Queue Message Block Structure (F/W 5.x or earlier)

Code Definition

typedef struct iq_mblock

{

 union

 {

 BT_U16BIT modeword;

 BT1553_INTMODE mode;

 } t; // Interrupt mode/type bits

 BT_U16BIT msg_ptr; // msg that caused the interrupt

 BT_U16BIT nxt_int; // next interrupt in the queue

}

IQ_MBLOCK;

Description

This structure has all the data for a single entry in the interrupt queue. Read the

interrupt queue data into this structure to determine the type and address of the

message in the queue.

The interrupt queue is 296 records long. The firmware writes the data into the

queue. The user application can process this data to read the messages. There are

three entries in this structure, the interrupt mode, the message pointer, and pointer

to the next interrupt queue entry.

Data Elements

Modeword/mode: This a union of the BT1553_INTMODE structure, see below and a

16 bit unsigned integer. The BT1553_INTMODE structure shows the source of the

interrupt.

typedef struct bt1553_intmode

 {

#ifdef NON_INTEL_BIT_FIELDS

 BT_U16BIT unused:7; // unused (MSB)

 BT_U16BIT bc_ctl:1; // BC control interrupt 0x0100

 BT_U16BIT bm_swap:1; // BM-Only Buffer Swap* 0x0080

 BT_U16BIT ext_trig:1; // External Trigger 0x0040

 BT_U16BIT bmtrig:1; // bm trigger has occurred 0x0020

 BT_U16BIT bc:1; // bc interrupt 0x0010

 BT_U16BIT bm:1; // bm interrupt 0x0008

 BT_U16BIT rt:1; // rt interrupt 0x0004

 BT_U16BIT timer:1; // timer overflow or load 0x0002

 BT_U16BIT iack:1; // interrupt acknowledge bit (LSB)

#else /* INTEL-Compatable bit field ordering */

 BT_U16BIT iack:1; // interrupt acknowledge bit (LSB)

 BT_U16BIT timer:1; // timer overflow or load 0x0002

 BT_U16BIT rt:1; // rt interrupt 0x0004

 BT_U16BIT bm:1; // bm interrupt 0x0008

 BT_U16BIT bc:1; // bc interrupt 0x0010

 BT_U16BIT bmtrig:1; // bm trigger has occurred 0x0020

 BT_U16BIT ext_trig:1; // External Trigger 0x0040

 BT_U16BIT bm_swap:1; // BM-Only Buffer Swap* 0x0080

 BT_U16BIT bc_ctl:1; // BC control interrupt 0x0100

 BT_U16BIT unused:7; // unused (MSB)

376 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

#endif }

BT1553_INTMODE;

/* *BM-Only Buffer Swap for AR15-VPX only */

msg_ptr: Message pointer is the message that generated the interrupt. This pointer

is to a BC, BM, or RT message block. The interrupt type in the

BT1553_INTMODE structure determines what type of message block you

read.

nxt_ptr: pointer to the next entry in the interrupt queue. The interrupt queue is a

circular linked list, 296 entries long. Interrupt records are placed sequentially

in to the queue, starting at the beginning of the queue, until the last queue

entry is reached where it wraps around to the start. The nxt_ptr allows the

user application to read the next queue position without having to check for

the end-of-queue.

Publication No. 1500-038 Rev. 5.11 Data Structures 377

7.13 Interrupt Queue Message Block Structure (F/W 6.0)

Code Definition

typedef struct iq_mblock_v6

 {

 BT_U32BIT mode; // interrupt mode

 BT_U32BIT msg_ptr; // points interrupt message

 }IQ_MBLOCK_V6;

Description

This structure has data for a single entry in the interrupt queue. Read the interrupt

queue data into this structure to determine the type and address of the message in

the queue.

The F/W 6.0 interrupt queue is 512 records long. The firmware writes the data into

the queue. The user application can process this data to read the messages. There

are three entries in this structure, the interrupt mode, the message pointer, and

pointer to the next interrupt queue entry.

Data Elements

mode: Contain the type of interrupt.

NO_INTERRUPT 0 No interrupt present

TTIMER_LOAD_INTERRUPT 1 Tag timer load interrupt (BC,RT,BM)

TRIGGER_IN_INTERRUPT 2 Trigger input interrupt (BC,RT)

BC_MESSAGE_INTERRUPT 3 BC Message interrupt (BC)

BC_CNTRLWD_INTERRUPT 4 BC control word interrupt (BC)

RT_MESSAGE_INTERRUPT 5 RT Message interrupt (RT)

BM_MESSAGE_INTERRUPT 6 BM Message interrupt (BM)

BM_TRIGGER_INTERRUPT 7 BM Message and trigger interrupt (BM)

MF_OVFL_INTERRUPT 8 Minor Frame overflow interrupt (BC)

BC_BSY_MFOVFL_INTERRUPT 9 BC busy MF overflow interrupt. (BC)

LP_MF_OVFL_INTERRUPT 10 BC LP aperiodic minor frame OVFL(BC)

HP_MF_OVFL_INTERRUPT 11 BC HP aperiodic minor frame OVFL(BC)

msg_ptr: Message pointer is the message that generated the interrupt. This pointer

is to a BC, BM, or RT message block. The interrupt type in the mode

determines what type of message block you read.

378 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.14 Interrupt Register/Filter/FIFO Structure (API_INT_FIFO)

Code Definition

#define MAX_FIFO_LEN 256 /* Size of the event FIFO (power of 2!) XXXXXX 64?*/

#if (MAX_FIFO_LEN - 1) & MAX_FIFO_LEN

#error The MAX_FIFO_LEN parameter is not a power of 2!

#endif

typedef struct api_int_fifo

{

 //***

 // Parameters setup by the user before calling BusTools_RegisterFunction

 //***

 // Pointer to user interrupt thread function:

 BT_INT (_stdcall *function)(BT_UINT cardnum, struct api_int_fifo *pFIFO);

 // Function should return API_SUCCESS if thread is to

 // continue operation, any other value will cause

 // the thread and event object to be destroyed.

 int iPriority; // User-requested thread priority

 DWORD dwMilliseconds; // Thread time-out interval in msec or INFINITE

 // Mask to request startup and shutdown notification:

 BT_INT iNotification; // CALL_STARTUP if function to be called at creation

 // of thread, CALL_SHUTDOWN if function is to be

 // called upon destruction of thread. “OR” both

 // together to enable notification on both events.

 // See “bForceShutdown” and “bForceStartup” below.

 // User variables; not referenced by the API:

 int nUser[8]; // Spare variables for use by the user.

 void *pUser[8]; // Spare variables for use by the user.

 //***

 // Event filter structure. A one “1' enables the specified event; when

 // detected the API will place it in the FIFO and call the user function.

 //***

 // Top Level Notification Event Mask:

 BT_INT FilterType; // One or more EVENT_ definitions, “or'ed” together.

 // Event filter mask array.

 // rt tr sa

 BT_INT FilterMask[32][2][32]; // The bits in the word form the word count

 // mask; bit 0 is 32 words, bit 1 is 1

 // word, bit 2 is 2 words, etc. Bit set

 // enables combination.

 //**

 // Parameters setup by BusTools_RegisterFunction

 //**

 // Reason codes explain why user function is being called.

 // If both bForceShutdown and bForceStartup are zero,

 // function is being called to process events. user:

 int bForceShutdown;// 1 - Thread is being shutdown, -1 complete (RO) $

 int bForceStartup; // 1 - Thread is being started, 0 complete (RO) $

 int nPtrIndex; // Index into API pointer table (RO) $

 BT_UINT cardnum; // Card number associated with this thread. (RO) $

 BT_UINT numEvents; // Total number of events, including overflows (RW) $

 BT_UINT queue_oflow; // Count incremented by API when FIFO overflows (RW) $

Publication No. 1500-038 Rev. 5.11 Data Structures 379

 HANDLE hEvent; // Handle to event object (RO) $

 HANDLE hkEvent; // Kernel mode handle to event object (RO) $

 HANDLE hThread; // Handle to thread (RO) $

 DWORD lThreadId; // ID of new user interrupt thread. (RO) $

 // Note that a “$” indicates that the API initializes this parameter.

 //**

 // FIFO of events, to be processed by user function. The API enters events

 // at the head_index, then increments head_index. The user function should

 // compare head_index with tail_index. If equal, the FIFO is empty and the

 // user function should return to wait for more events (return API_SUCCESS).

 //

 // If head_index != tail_index, then the user function should process the

 // FIFO entry indexed by tail_index, increment tail_index by one and

 // logically “AND” it with mask_index, saving the resulting value back into

 // tail_index.

 // The user function should then compare head_index with the updated value

 // of tail_index, and if not equal, process the next entry and update the

 // value of tail_index, etc., otherwise return “API_SUCCESS” to wait for

 // more events.

 //**

 BT_INT head_index; // Index of element being added to queue (0->63) (RO) $

 BT_INT tail_index; // Index of element to be removed from queue (RW) $

 BT_INT mask_index; // Mask for wrapping head and tail pointers (RO) $

 struct BT_FIFO // FIFO structure: events for user to process. $

 {

 BT_INT event_type; // EVENT_ definitions below.

 BT_INT buffer_off; // Byte offset of message buffer which caused event

 BT_INT rtaddress; // Terminal address of message

 BT_INT transrec; // Non-zero if transmit message, zero for receive

 BT_INT subaddress; // Subaddress of message

 BT_INT wordcount; // Word count of message; 0-31; 0 indicates 32 words

 // unless mode code (then indicates mode code number)

 BT_INT bufferID; // Buffer ID number or message ID number.

 BT_INT reserved2; // Reserved for API.

 }

 fifo[MAX_FIFO_LEN]; // FIFO has exactly 64 entries.

 BT_U32BIT EventMask[32][2][32]; // The bits correspond to the int status words

 BT_U32BIT EventInit;

 CEI_MUTEX mutex;

 BT_UINT timeout; //timeout ona timed wait 0=event – 1=timeout;

}

API_INT_FIFO;

#define CALL_STARTUP 0x0001 /* Thread created and initialized */

#define CALL_SHUTDOWN 0x0004 /* Thread shutdown has been requested */

#define USE_INTERRUPT_MASK 0x12345678

#define MAX_REGISTER_FUNCTION 64 /* Max number of registered functions */

/***

* Event filter specification values. When specified event is detected

* the API places it in the FIFO and calls the user function.

***/

#define EVENT_IMMEDIATE 0x000f

#define EVENT_EXT_TRIG 0x0001

#define EVENT_TIMER_WRAP 0x0002 /* Tag Timer overflow or discrete input */

380 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

#define EVENT_RT_MESSAGE 0x0004 /* RT message transacted */

#define EVENT_BM_MESSAGE 0x0008 /* BM message transacted */

#define EVENT_BC_MESSAGE 0x0010 /* BC message transacted */

#define EVENT_BM_TRIG 0x0020 /* BM trigger event (start/stop) */

#define EVENT_BM_START 0x0040 /* BM started (BusTools_BM_StartStop)V4.01*/

#define EVENT_BM_STOP 0x0080 /* BM stopped (BusTools_BM_StartStop) */

#define EVENT_BC_START 0x0100 /* BC started (BusTools_BC_StartStop) */

#define EVENT_BC_STOP 0x0200 /* BC stopped (BusTools_BC_StartStop) */

#define EVENT_RT_START 0x0400 /* BC started (BusTools_RT_StartStop) */

#define EVENT_RT_STOP 0x0800 /* BC stopped (BusTools_RT_StartStop) */

#define EVENT_RECORDER 0x1000 /* BM recorder buffer has 64K or timeout */

#define EVENT_MF_OVERFLO 0x2000 /* Minor frame timing overflow */

#define EVENT_API_OVERFLO 0x4000 /* BM API Recorder buffer overflowed */

#define EVENT_HW_OVERFLO 0x8000 /* BM HW Recorder buffer overflowed */

#define EVENT_BC_CONTROL 0x10000 /* BC Control block (NOOP condition stop) */

#define EVENT_LP_MF_OVFL 0x020000 /* Low priority overflow interrupt */

#define EVENT_HP_MF_OVFL 0x040000 /* High priority overflow interrupt */

#define EVENT_BC_BSY_OVFL 0x080000 /* BC_busy minor frame overflow interrupt */

#define EVENT_BM_OVRFLW 0x100000 /* Bus Monitor overflow interrupt */

Description

This structure contains all of the information needed by the API to filter and deliver

interrupt notifications to a user-specified function. Be sure to look at the current

version of this structure in the Busapi.h file for possible additions or changes.

Memory for this structure is user-allocated, initialized, and passed to the

BusTools_RegisterFunction API function. The API creates a new thread and an

event object, and links the new structure into its internal list of such structures.

When an enabled event occurs, the API interrupt function scans each registered

structure to determine if the associated thread should be signaled. If the filter

enables the event, an entry is added to the structure FIFO and the event object is

signaled. This causes the thread to wake up and call the user function, passing it the

card number and a pointer to the registered structure. The user function can then

perform the processing that is required, being sure to process all of the entries in the

FIFO (there might be more than one). When all of the entries in the FIFO have been

processed (and the FIFO tail pointer updated) the user thread performs a return; it

then waits in the API for the next event notification.

If the API attempts to write an event into the FIFO and finds it full, the event is

discarded and the queue_oflow counter is incremented. The user thread may do

what it wants with this counter/flag. The numEvents counter is always incremented,

even if the event is discarded.

The event FIFO is implemented as a circular buffer, when the head and tail pointers

are equal the FIFO is empty. When updating the tail pointer, the application should

use the mask_index to wrap the tail pointer. The head and tail pointers are actually

indexes into the FIFO array, with values from 0 - 63. The API only reads and does

not write the tail pointer. Likewise, the application should only read and not write

the head pointer to avoid race conditions when updating the pointers.

Publication No. 1500-038 Rev. 5.11 Data Structures 381

For more information on this structure, see the BusTools_RegisterFunction function.

Data Elements

See Busapi.h for the most current description of the data elements in this structure.

382 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.15 Playback Data (API_PLAYBACK)

Code Definition

typedef struct api_playback

{

 BT1553_TIME timeStart; // Start Tag Time

 BT1553_TIME timeStop; // Stop Tag Time

 BT_U32BIT messageStart; // Starting message number

 BT_U32BIT messageStop; // Ending message number

 BT_INT filterFlag; // 0 no filter, 1 = time filter, 2 = message fil22ter

 BT_U32BIT activeRT; // Active RTs 0 = do not playback; 1 = use in playback

 BT_INT Subadress31Flag; // 0 = SA 31 is not a mode code, 1 = SA31 is mode code

 BT_INT Rt31Flag; // 0 = RT 31 is not broadcast, 1 = RT 31 is broadcast

 API_PLAYBACK_STATUS *status; // Status structure to monitor playback.

 Char *fileName; // Log file name

} API_PLAYBACK;

Description

This structure contains all information required by BusTools_Playback to execute the

bus playback function. The caller to BusTools_Playback fills in the data and passes

this structure as an argument in the calling sequence to BusTools_Playback. If the

filter flag is set to zero, no data is required for the messageStart, messageStop,

timeStart, and timeStop. The fileName pointer should include the path and filename

of the Bus Monitor recorded .bmd file. BusTools_Playback does not validate the

messageStart, messageStop, timeStart, and timeStop data. It is up to the calling

function to ensure that these values are consistent and within the range of values of

the Bus Monitor record (.bmd) file specified by fileName.

Data Elements

timeStart: The start time tag that BusTools_Playback uses when the filterFlag is set

to 1. It is up to the calling function to ensure that timeStart is within the range

of time tag in the .bmd file.

timeStop: The stop time tag that BusTools_Playback uses when the filterFlag is set to

1. It is up to the calling function to ensure that timeStop is within the range of

time tag in the .bmd file and that the timeStop is greater than timeStart.

messageStart: This is the message start value used when filterFlag is set to 2. The

Bus Monitor numbers each bus message starting at 1 and incrementing for

each new message recorded. It is up to the calling function to ensure the

messageStart is within the range of message numbers in the .bmd file.

messageStop: This is the message stop value used when filterFlag is set to 2. The

Bus Monitor numbers each bus message starting at 1 and incrementing for

each new message recorded. It is up to the calling function to ensure the

messageStop is within the range of message numbers in the .bmd file and is

greater than messageStart. To playback a single bus message, messageStart

and messageStop should be equal.

Publication No. 1500-038 Rev. 5.11 Data Structures 383

filterFlag: This flag indicates the type of message filtering required. Either message

time tag or message number can be used as a filter criterion. When set to 0, no

filter is requested and the messageStart, messageStop, timeStart, and timeStop

values are ignored. When filterFlag is set to 1, the timeStart and timeStop

values are used by BusTools_Playback to filter using message tag time to filter

the .bmd file messages. When filterFlag is set to 2, the messageStart, and

messageStop values are used by BusTools_Playback to filter using message

number.

activeRT: This is a 32-bit encoded value, with each bit corresponding to a remote

terminal address. If the corresponding bit is set (1), that RT is included in the

bus playback. If the bit is reset (0), that RTs responses is filtered out of the bus

playback.

subadress31Flag: Indicates to BusTools_Playback whether Subaddress 31 is a mode

code. 0 = SA 31 is not a mode code, 1 = SA31 is mode code.

rt31Flag: Not used. RT Address 31 is always a broadcast message.

status: Structure address passed to BusTools_Playback so the calling function can

monitor the status of the bus playback thread. See Playback Status

(API_PLAYBACK_STATUS) for a complete structure definition. A call to

BusTools_Playback causes a separate thread of execution to start for bus

playback. The BusTools_Playback function returns with an indication of

whether or not bus playback started successfully. API_SUCCESS means that a

bus playback thread is executing. The status structure allows the calling

function to determine the status of bus playback during execution and when

bus playback is done.

fileName: The name of the Bus Monitor record file (.bmd or .bmdx) used for bus

Playback. File name must include the path if the .bmd file is not located in the

default directory.

384 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.16 Playback Status (API_PLAYBACK_STATUS)

Code Definition

typedef struct api_playback_status

{

 BT_U16BIT tailPointer; // Playback BufferTail Pointer

 BT_U16BIT playbackStatus; // Playback status

 BT_INT playbackError; // Playback Error

 BT_U32BIT recordsProcessed; // Number of record processed

 // by BusTools_Playback

} API_PLAYBACK_STATUS;

Description

This structure contains bus playback status information. Since bus playback runs a

separate thread of execution, the calling function needs to monitor bus playback

through the data in this structure. The bus playback thread updates the values

periodically.

Data Elements

tailPointer: Playback uses a circular buffer to store messages. The playback function

moves the tail pointer as it processes the data in the buffers. The tail pointer

should change periodically. If the tail pointer value remains constant for a

period, this may indicate that the bus playback has been abnormally halted. It

is up to the function monitoring the bus playback status to determine what

constitutes an excessive time for the tail pointer to remain constant. Normal

1553 traffic would have several messages every second, so periods greater

than a few seconds would indicate a problem.

playbackStatus: The 1553 playback function provides a status register.

BusTools_Playback reads this status register periodically and reports the

results in playbackStatus. The table below describes the contents:

Table 7-1 Playback Status Bits

Bit(s) Function Description

5 Halt Bit Set to halt playback.

4 Buffer empty bit Set when the playback tail pointer and playback head pointer are
equal.

3 Error bit Set by the firmware if an error is encountered (i.e., invalid
message code).

2 Run bit Set by the firmware once playback begins transmitting. Cleared
at the end of playback or by calling BusTools_Playback_Stop.

1 Not used Not used

0 Start bit Set only by host. This bit is cleared at the end of playback or by
calling BusTools_Playback_Stop.

Publication No. 1500-038 Rev. 5.11 Data Structures 385

PlaybackError: This variable reports any error detected by the playback thread

during playback execution.

recordsProcessed: This variable shows the number of messages processed by

BusTools_Playback. This number represents the processing done by the host

system not the 1553 device, so it can’t be used to indicate the number of

records actually played over the 1553 bus. However, at the successful end of

playback, this value should equal the number of messages in the bus monitor

file or the subset of the file played back.

386 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.17 RT Address Control Block (API_RT_ABUF)

Code Definition

typedef struct api_rt_abuf

{

 WORD enable_a; // enable channel a

 WORD enable_b; // enable channel b

 WORD inhibit_term_flag; // inhibit terminal flag

 WORD status; // latest status word

 WORD command; // latest command word (read only)

 WORD bit_word; // latest built in test word

}

API_RT_ABUF;

// Define the bits in the inhibit terminal flag control word:

#define RT_ABUF_ITF 0x0004 // Set this bit to inhibit terminal flag

#define RT_ABUF_DBC_ENA 0x4000 // Set this bit to enable Dynamic Bus Acceptance

#define RT_ABUF_DBC_RT_OFF 0x8000 // Set this bit to shut down RT on valid DBA

Description

This structure contains control information that must be specified and can be

changed for each RT defined on the Abaco Systems 1553 board. The most important

elements of this structure are the enable flags. These flags control whether or not the

BusTools microcode processes any messages for this RT. In fact, if both enable flags

are set to “0”, then the specified RT is “off”.

Data Elements

enable_a: This flag indicates whether the RT should respond to messages on the

primary bus (Bus A). If this flag is off, the specified RT ignores messages on

Bus A.

enable_b: This flag indicates whether the RT should respond to messages on the

secondary bus (Bus B). If this flag is off, the specified RT ignores messages on

Bus B.

inhibit_term_flag: This is a multi-function flag word. The bit defined by the constant

“RT_ABUF_ITF” controls the reporting of the Terminal Flag within the

message status word. If this flag is set, the Terminal Flag isn’t set in the

message status word. If this flag is not set, the actual state of the Terminal

Flag (in the status word defined below) is reported. This flag should be

initialized by the application. Once the RT is operating, this flag is modified

as required by the microcode in response to the Inhibit Terminal Flag Bit and

Override Inhibit Terminal Flag Bit modecode messages.

The bit defined by the constant “RT_ABUF_DBC_ENA” controls enabling

Dynamic Bus Control (DBC) mode codes. When this bit is set, receipt of a

DBC by the RT causes the Bus Controller to start in accordance with MIL-STD-

1553 paragraph 4.3.3.5.1.7.1. Mode Code 0 must have been legalized by a call

to BusTools_RT_AbufWrite (enable word count 0, transmit, for subaddress 0

Publication No. 1500-038 Rev. 5.11 Data Structures 387

and optionally subaddress 31).

The bit defined by the constant “RT_ABUF_DBC_RT_OFF” controls the

operation of the RT when a DBC mode code is received and accepted by the

RT. If the board is a single-function or dual-function board, acceptance of a

DBC mode code causes the RT to be turned off before the BC is turned on (the

application must have previously setup but not started the bus controller). If

the board is a multi-function board, the RT is NOT turned off; however, if this

bit is set then this one RT is turned off, if this bit is clear all RTs continue to

run. “RT_ABUF_EXT_STATUS” enable extended status mode, allowing

differnet status response on RT/SA/TX/RX combinations.

status: This is the latest message status word. It should be initialized by the

application. Once the RT is operating, this entry is modified as required by

the microcode. The microcode modifies the Message Error, Broadcast

Command Received, Dynamic Bus Acceptance and Terminal Flag bits as

required by 1553 message traffic and the 1553 specification.

command: This is the command word contained in the last message targeted at this

RT. It is maintained by the microcode in order to respond to the Transmit

Last Command Word modecode message. Typically, the application need not

initialize this entry, nor does it care what is contained in this entry.

bit_word: This is the Built-In-Test word. It can be initialized by the application to be

any value. It is used by the microcode in order to respond to the Transmit BIT

Word modecode message. The microcode does not modify this word at any

time.

388 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.18 RT Control Buffer (API_RT_CBUF)

Code Definition

typedef struct api_rt_cbuf

{

 DWORD legal_wordcount; // legal word count bits

}

API_RT_CBUF;

Description

The RT Control buffer is a structure that controls the operation of a single RT subunit

(a single RT address /subaddress combination for transmit or receive operations). It

is a 32-bit value where each bit enables (= 1) or disables (= 0) a wordcount for that

subunit. See the table below for sample wordcounts.

This version of the RT Control buffer controls both normal RT subunit messages and

RT modecode operations. Modecodes are subunits with a subaddress of 0 and

optionally 31. The structure is identical for Modecodes except that the bit

assignments for wordcount are replaced with bit assignments based on the

modecode value.

This version of the RT Control buffer is not used for broadcast RT addresses (address

31 if broadcast operations are enabled). There is a different structure used for

broadcast addresses (see RT Control Buffer for Broadcast (API_RT_CBUFBROAD)).

Data Elements

legal_wordcount: This is a 32-bit value containing one bit for each possible

wordcount for messages to this RT subunit. If the bit is set, messages with

the corresponding wordcount are allowed for this RT subunit. If the bit is

not set, messages with the corresponding wordcount are not allowed for this

RT subunit. The bits in this value are assigned as follows:

Bit number Enabled Word Count legal_wordcount (hexadecimal)

0 32 0x00000001

1 1 0x00000002

2 2 0x00000004

3 3 0x00000008

… … …

29 29 0x20000000

30 30 0x40000000

31 31 0x80000000

Publication No. 1500-038 Rev. 5.11 Data Structures 389

7.19 RT Control Buffer for Broadcast (API_RT_CBUFBROAD)

Code Definition

typedef struct api_rt_cbufbroad

{

 DWORD legal_wordcount[31]; // legal word count bits for each sub address

 BT_U32BIT mbuf_count;

}

API_RT_CBUFBROAD;

Description

The RT Control buffer for Broadcast is a structure controlling the operation for all RT

address and word count combinations in a broadcast command to a specified

subaddress. There are two components of an RT Control buffer for Broadcast:

• an array of bit fields which enable and/or disable broadcast operations to the

specified RT subaddress. The array of bit fields must be supplied by the

application.

• a pointer to the first RT Message buffer used for broadcasting to this RT

subaddress.

The RT Message buffer address is managed by the BusTools API functions (thus, it is

not included in the RT Control buffer for Broadcast structure definition).

To fully control all possible broadcast message combinations, 32 copies of this

structure must be stored in channel memory. However, RT subaddresses, which

share a common set of enable/disable parameters, can share a common Control

buffer. The BusTools API functions define a default Control buffer with all enable

bits set. Initially, all subaddresses use this default structure to control broadcast

commands. If this setting is acceptable, then the application need not supply any

additional RT Control buffer for Broadcast structures.

Data Elements

legal_wordcount: This is an array of 32-bit values, with each value controlling

broadcast operations to a specific RT address. Each bit within the value

enables or disables broadcast messages with a specific word to the RT address.

Bit values are assigned as follows:

Bit number Enabled Word Count legal_wordcount (hexadecimal)

0 32 0x00000001

1 1 0x00000002

2 2 0x00000004

… … …

30 30 0x40000000

31 31 0x80000000

mbuf_count: Set the number of broadcast buffers for that subaddress.

390 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.20 RT Message Buffer (read-only) (API_RT_MBUF_READ)

Code Definition

typedef struct api_rt_mbuf_read

{

 DWORD status; // interrupt status

 BT_U32BIT reserved; //

 BT1553_TIME time; // time

 // contents of real message to/from bus

 BT1553_COMMAND mess_command; // command word

 BT1553_STATUS mess_status; // status

 BT_U16BIT mess_data[32]; // data

 BT_U16BIT spare; // spare data word for hi-word errors

}

API_RT_MBUF_READ;

Description

This structure contains all of the information read from a RT Message buffer. All

elements of this structure and, except for data values, contain valid information only

after a message has been processed for this RT subunit (RT address, subaddress, and

transmit / receive flag combination). For Message buffers associated with transmit

RT subunits, the data values are those originally supplied by the application. For

Message buffers associated with receive RT subunits, the data values are those

received from the bus and are only valid after a message has been received.

Data Elements

status: This is the Message Status bits associated with this particular message. The

bit assignments are shown in Section 7.11, “Interrupt Enable / Message Status

Bits (32 bit)”.

time: This is the time at which this message was transmitted / received. The time is

measured from the start of the BusTools (typically when the Bus Monitor

function was first started). The time is accurate to microseconds.

mess_command: This is the message command word as received from the Bus

Controller.

mess_status: This is the message status word as supplied by the Remote Terminal

for this command.

mess_data: This is the actual data transmitted / received during the command. Use

the wcount field of the message command word to determine the number of

valid data words contained in the message.

7.21 RT Message Buffer (write-only) (API_RT_MBUF_WRITE)

Code Definition

Publication No. 1500-038 Rev. 5.11 Data Structures 391

typedef struct api_rt_mbuf_write

{

 DWORD enable; // interrupt enable bits

 WORD error_inj_id; // id of error injection buffer

 WORD mess_data[32]; // data

}

API_RT_MBUF_WRITE;

Description

This structure is used to initialize a RT Message buffer. You must supply all the

contents this structure for transmit messages. For receive messages you only need to

supply the interrupt enable bits and the error injection pointer.

Data Elements

enable: This word contains the Interrupt Enable Bits for this message. If any of the

conditions specified by the bits in this parameter are met when the message is

received / transmitted, an interrupt block is added to the Interrupt Queue. For

bit definitions, see Section 7.11, “Interrupt Enable / Message Status Bits (32

bit)”.

error_inj_id: The Error Injection buffer number used with this message. For

transmit messages, this should be a buffer that contains an entry for the status

word and each possible data word for this message. For receive messages,

this should be a buffer that contains an entry for only the status word.

mess_data (required only for transmit messages): This is the actual data transmitted.

The application is responsible for ensuring the number of data elements

supplied here matches and the word count requested by the BC.

392 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

7.22 Time Structure (BT1553_TIME)

Code Definition

typedef struct bt1553_time

{

 BT_U32BITµs; // µs since start

 BT_U16BITtopuseconds; // Most significant part of µs

}

BT1553_TIME; // Note that this is a 48-bit value for F/W 5.x or earlier

typedef struct bt1553_time

{

 BT_U32BITµs; // µs since start

 BT_U32BITtopuseconds; // Most significant part of µs

}

BT1553_TIME; // Note that this is a 64-bit value for F/W 6.0

Description

This structure describes time within the BusTools API. Time is measured from the

beginning of the operation. For F/W 5.x and earlier it’s in microseconds. For F/W 6.0

it’s in nanoseconds.

Data Elements

microseconds: Number of µs/ns since the start.

topuseconds: MSB of µs/ns since the start.

Publication No. 1500-038 Rev. 5.11 Data Structures 393

7.23 Device Mapping(DEVMAP_T)

Code Definition

typedef struct _DEVMAP_T {

 int busType; // One of BUS_TYPE.

 int interruptNumber; // Interrupt number.

 int memSections; // Number of memory regions defined.

 int flagMapToHost[MAX_MEMORY]; // Set to map region into host space.

 char * memHostBase[MAX_MEMORY]; // Base address of region in host space.

 unsigned memStartPhy[MAX_MEMORY]; // Physical base address of region.

 unsigned memLengthBytes[MAX_MEMORY]; // Length of region in bytes.

 int portSections; // Number of I/O port regions.

 unsigned portStart[MAX_PORTS]; // I/O Address of first byte.

 unsigned portLength[MAX_PORTS]; // Number of bytes in region.

 int llDriverVersion; // Low Level driver version.

 int KernelDriverVersion; // Kernel driver version.

 HANDLE hKernelDriver; // Handle to the kernel driver.

 unsigned int VendorID; // Vendor ID if PCI card

 unsigned int DeviceID; // Device ID if PCI card

 int device; // This the device

 int use_count; // Number of user channels

#ifdef _USE_BM_DMA

 unsigned * vaddr; //

 CEI_UINT64 laddr; // local DMA addres

#endif

 int use_channel_map; //

 int mapping; // Mapping option 0 - physical 1 - virtual

} DEVMAP_T, *PDEVMAP_T;

Description

This structure is used to get device mapping information from the low level

mapping function vbtGetBoardAddresses. This structure is available only through

lowlevel.h. This description is to assist porting the API to currently non-supported

operating systems.

This structure is used by all operating systems supported by BusTools/1553-API.

This structure is used by all Abaco Systems PCI, ISA, and PCMCIA boards, but not

VME boards. Not all elements in the structure are used by each O/S. The Data

element description outlines the O/S use. Not all elements are currently in use but

are maintained for compatibility.

Data Elements

busType: (All) This is the bus value based on the following enum:

typedef enum _BUS_TYPE /* Host bus types supported

*/

{

 BUS_INTERNAL,

 BUS_ISA,

 BUS_PCI,

 BUS_VME,

 BUS_PCMCIA,

394 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

 BUS_OTHER

} BUS_TYPE;

interruptNumber: (Windows) interrupt number returned form the low-level

mapping

memSections: (All) The number of memory sections (PCI BAR regions) mapped.

For ISA and PCMCIA this is always equal to 1.

flagMapToHost (All) Set by the mapping function to specify which memory regions

are mapped.

memHostBase: (All) The mapped base address of the device. For flat mapped

system this is the same as the physical address, otherwise the virtual memory

address for the device.

memStartPhys: (All) The starting physical address of the device. For ISA devices

this is passed. For PCI devices this is the address stored in the BAR register

for each bar region mapped.

memLengthBytes: (All) The length in bytes mapped for the device. This has a

minimum of a page size.

portSections: Not used

portStart: Not Used.

portLength: Not Used.

llDrvierVersion: Not Used

KernelDriverVersion: Windows only driver version.

hKernelDriver: Windows only.

VendorID: (All) The PCI vendor ID 0x13c6 for all Abaco Systems PCI boards. Not

used for ISA and PCMCIA.

DeviceID: (All) The PCI Device ID. The value varies depending on the device. Not

used for ISA and PCMCIA

device: The device number. 0 – MAX_BTA.

use_count: The number of channels currently open on the device. This value is

incremented and decremented each time a channel on the device is opened or

closed. This value keeps track of the device used. When all channels are

closed (use_count=0) the device is un-mapped.

Publication No. 1500-038 Rev. 5.11 Data Structures 395

7.23.1 Device Information (DEVICE_INFO)

Code Definition

typedef struct DEVICE_INFO {

 int busType; // One of BUS_TYPE.

 int nchan; // number of channeld.

 int irig; // IRIG option 0=no 1=yes.

 int mode; // mode 0=single 1=multi.

 int memSections; //Number of memory section

 unsigned int VendorID; // Vendor ID if PCI card

 unsigned int DeviceID; // Device ID if PCI card

} DEVICE_INFO;

Description

This structure contains information about the type of device and the features and

channels available.

Data Elements

busType: This is the bus value based on the following enum:

typedef enum _BUS_TYPE /* Host bus types supported */

{

 BUS_INTERNAL,

 BUS_ISA,

 BUS_PCI,

 BUS_VME,

 BUS_PCMCIA,

 BUS_OTHER

} BUS_TYPE;

nchan: The number of channel available on the device (1 - 4).

IRIG: 1 = IRIG capable; 0 = No IRIG support.

mode: Operation mode of the board. 0 = single - function; 1= multi-function.

memSections: The number of memory sections (PCI BAR regions) mapped. For ISA

and PCMCIA this is always 1.

VendorID: The PCI vendor ID 0x13c6 for all Abaco Systems PCI boards. Not used

for ISA and PCMCIA.

DeviceID: The PCI Device ID. Varies depending on the device. Not used for ISA

and PCMCIA.

396 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

A • Sample Programs

A.1 List

This section lists the example programs and their descriptions. It also provides the

BusTools/1553-API functions used in each sample program. Be sure to check in this

manual for the applicability of each function to your operating system. Not all API

calls are available for all operating systems. Each function description lists

Operating System Support. The default device ID for the sample program is set to 0.

Table A-1 Sample Programs

Example Name Descriptions BusTools/1553-API

example_auto_sync_mode.c This example shows how to setup the
time tag auto sync mode. This mode
synchronizes the time tag to an external
pulse. The example also sets up a dead
man timer to detect if the external 1PPS
pulse does not occur on time. There is
optional code to have the 1553 interface
board generate the 1PPS pulse instead
of external 1PPS.

BusTools_API_OpenChannel,
BusTools_API_Close,
BusTools_SetInternalBus,
BusTools_BoardIsV6,
BusTools_SetV6TrigIn,
BusTools_SetV6TrigOut,
BusTools_DiscreteSetIO,
BusTools_DiscreteTriggerOut,
BusTools_DiscreteTriggerIn,
BusTools_TimeTagMode,
BusTools_ExtTrigIntEnable,
BusTools_BM_StartStop,
BusTools_BC_StartStop,
BusTools_RT_StartStop,
BusTools_RegisterFunction,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_MessageRead,
BusTools_TimeGetString,
BusTools_DiscreteWrite,
BusTools_RT_Init,
BusTools_RT_CbufWrite,
BusTools_RT_MessageWrite,
BusTools_RT_AbufWrite,
BusTools_BM_Init,
BusTools_BM_MessageAlloc

Publication No. 1500-038 Rev. 5.11 Data Structures 397

Example Name Descriptions BusTools/1553-API

example_bcrt_2ch.c This is a 2 CHANNEL example program
that sets up one channel as a Remote
Terminal and another channel as Bus
Controller on a multi-channel board.

The first channel is setup as RT1 with
two subaddresses, SA1 RECEIVE and
SA2 TRANSMIT.
BusTools_RegisterFunction is called to
implement a user callback function to
process the RT transmit message data.

The second channel is setup as BC with
a list of two messages, 1-R-1-32 and 1-T-
2-32, in a 500ms minor frame. This BC
list runs until stopped by user input.
User can either display the data for the 1-
T-2-32 message or quit.

A interrupt callback function is setup by
calling BusTools_RegisterFunction. The
rt_intFunction displays the RT data. The
user can also switch between
Transformer or direct couple or dump
the channels memory contents through
command-line input.

This test requires a multi-channel board
and either a physical connection
between channel 1 and channel 2 or if
you are using a QPCX-1553 or QPCI-
1553 you can use the test bus.

BusTools_API_OpenChannel,
BusTools_API_Close,
BusTools_SetInternalBus,
BusTools_TimeTagMode,
BusTools_GetBoardType,
BusTools_SetTestBus,
BusTools_SetVoltage,
BusTools_RT_StartStop,
BusTools_BC_StartStop,
BusTools_RegisterFunction,
BusTools_RT_MessageRead,
BusTools_TimeGetString,
BusTools_RT_Init,
BusTools_StatusGetString,
BusTools_RT_AbufWrite,
BusTools_RT_CbufWrite,
BusTools_RT_MessageWrite,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,

example_bc_1Shot.c This console application shows how to
setup BC messages that transact just
once and then stop the Bus Controller.
This setup is referred to as a 1Shot
message frame. Three one shot frames
are created and BusTools_BC_Start is
used to start the BC at the beginning one
of the selected bus list.

BusTools_API_OpenChannel,
BusTools_API_Close,
BusTools_SetInternalBus,
BusTools_TimeTagMode,
BusTools_RT_StartStop,
BusTools_BC_Start,
BusTools_RegisterFunction,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_MessageRead,
BusTools_RT_Init,
BusTools_RT_CbufWrite,
BusTools_RT_MessageWrite,
BusTools_RT_AbufWrite,
BusTools_RegisterFunction

example_bc_aperiodic.c This example shows how to setup and
run aperiodic messages. This example
sets up a periodic bus list running at 1hz
and two aperiodic bust lists. The user
can command either of the aperiodic list
to run at low or priority or high priority.

BusTools_API_OpenChannel,
BusTools_API_Close,
BusTools_SetInternalBus,
BusTools_BC_AperiodicRun,
BusTools_BC_StartStop,
BusTools_RegisterFunction,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_MessageRead

398 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_bc_auto_incr.c This example sets up the Bus Controller,
Remote Terminal and Bus Monitor and
then enables auto-increment on the Bus
Controller message buffer 3.
BusTools_BC_AutoIncrMessageData is
used setup the increment process.
Message buffer 3 contains a 32-word
receive command to RT4 SA4. The last
word in the command, data word word
32 increments each time the message
transacts.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_BM_Init
BusTools_BM_MessageAlloc
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_AutoIncrMessageData
BusTools_BM_StartStop
BusTools_RT_StartStop
BusTools_BC_StartStop
BusTools_DumpMemory
BusTools_RegisterFunction
BusTools_BC_MessageRead
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Data Structures 399

Example Name Descriptions BusTools/1553-API

example_bc_branch_on_data.c This application shows how to setup
Message Scheduling, Frame-Start-
Timing and Conditional Branch 2.

Conditional Branch 2 branches based on
the value in an onboard memory location
allocated using BusTools_MemoryAlloc.
The application writes values to this
location to controlwhich conditional
messages transactions. There are 10
conditional messages. Each is run based
on a different bitwise (1,2,4,8...) value
written to the allocated memory
address. By using the data_mask and
data_value the application can send any
combination of conditional messages by
entering a value between 1 and 0x3ff.
That value is written to the allocated
memory location. The Conditional
Branch message evaluate the data at
that test address to determine whether
to branch.

This is an alternate approach to
apperiodic messaging, The application
can select any combination of
messages to run after the periodic
messages transact. Unlike aperiodic
messages you need to ensure there is
enough time in the frame after the
periodic messages for the selected
conditional messages to run. All
messages run in the current frame. After
each conditional message runs the
corresponding bit at the test address is
cleared so the message only runs once
per data update.

Note: This example run on both the new
V6 firmware and older V4/V5 firmware.
In the new V6 firmware allocate 32 bit of
memory rather than 16 bits used in the
older firmware.

BusTools_API_OpenChannel,
BusTools_API_Close,
BusTools_SetInternalBus,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_MemoryAlloc32,
BusTools_MemoryWrite2,
BusTools_MemoryAlloc,
BusTools_MemoryWrite,
BusTools_BoardIsV6,
BusTools_BC_StartStop,
BusTools_DumpMemory,
BusTools_RegisterFunction,
BusTools_BC_MessageRead,

400 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_bc_branch_on_status.
c

This example program demonstrates the
use of Conditional Branches. There are
several options for branching. In this
example there are two branches used,
CONDITIONAL BRANCH and
CONDITIONAL BRANCH 3.
CONDITIONAL BRANCH branches on
data in the immediately preceding
message in the bus list, either command
word, status word or data.
CONDITIONAL BRANCH 3 branches the
same values, but the message buffer is
specified in the setup.

In this example, 8 message buffers are
created. Message 1 is a CONDITIONAL
BRANCH that branches when the Status
Request bit (SRQ) is set in the status
response on message 0, the
immediately preceding message. If the
SRQ is set, then Msg 2 transact
otherwise it is skipped.

Message buffer 6 is a CONDITIONAL
BRANCH 3 that branches if the data in
the last data word of Msg 4 is 0xabcd. If
the data is set to 0xabcd then Msg 7
transact, otherwise it is skipped.

BusTools_API_OpenChannel,
BusTools_API_Close,
BusTools_SetInternalBus,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_StartStop,
BusTools_BC_MessageRead,
BusTools_TimeGetFmtString,
BusTools_RegisterFunction

Publication No. 1500-038 Rev. 5.11 Data Structures 401

Example Name Descriptions BusTools/1553-API

example_bc_cond_count.c This application shows how setup a BC
messages and use conditional branch
on count to run a specific number of
frames. There is also a branch on data
in a previous message.
The BC sets up message buffer 1 as a
Conditional Branch 3. That branch looks
at the data in the third data word of the
previous message. If the third data word
equals 0xA002, the branch skips the next
message. In this example that condition
is always TRUE and the next message in
the bus list, RT3 SA3 WC3 TX is never
transmitted. You can alter the data and
see how that affects the branch.
Message buffer 5 is setup as a
Conditional Branch 2 that is set to
branch on the 10th occurrence. Because
of the way the firmware decrements the
branch count, it is set to n-1. In this case
count is set to 9 (10-1). The count is
decremented each time the branch
executes. When it hits to zero the branch
occurs. In the example the non-
branching false condition is a nop
message setting the end-of-frame with
the next-message pointing to the frame
start at message buffer 0. When the
branch does execute, the message
buffer contains a BC LAST command
that stops the Bus Controller. This setup
executes the frame 10 times then halts
the BC. You change the two count
values and see how it alters the
execution.

BusTools_API_OpenChannel,
BusTools_SetInternalBus,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_StartStop,
BusTools_BC_MessageRead,
BusTools_BC_IsRunning2,
BusTools_RegisterFunction

example_bc_data_transfer.c This example program sets up a Bus
Controller to transfer a block of data to
an RT. This approach could be used to
transfer any amount of data; in this case
1024 words are transferred.
An interrupt event signals when the BC
message completes so we can write the
next buffer of data to the BC message
buffer. A Conditional Branch on count is
used to transfer 32 messages of 32
words (32 x 32 = 1024). When the
transfer is complete the Bus Controller
halts, and the example exits. This
program also uses
BusTools_BC_MessageUpdate to update
only the data portion of the Bus
Controller message buffer.

BusTools_API_OpenChannel,
BusTools_SetInternal, Bus,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_StartStop,
BusTools_BC_MessageRead,
BusTools_BC_MessageUpdate,
BusTools_RegisterFunction,
BusTools_API_Close

402 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_bc_data_wrap.c This example shows how to wrap
transmit and receive buffer so that data
from a BC transits command can send
the data from a BC receive command. In
this example the data buffer from the
first message (0) is linked to the second
message (1) by reading the data buffer
address in buffer 0, the transmit
command, and over-writing the data
buffer address in the second buffer (1)
with the transmit buffer address. That
way the data from the transmit
command is used by the receive
command.

BusTools_API_OpenChannel,
BusTools_SetInternalBus,
BusTools_TimeTagMode,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_MessageGetaddr,
BusTools_BoardIsV6,
BusTools_MemoryRead2,
BusTools_MemoryWrite2,
BusTools_MemoryRead,
BusTools_MemoryWrite,
BusTools_BC_StartStop,
BusTools_RegisterFunction,
BusTools_BC_MessageRead,
BusTools_TimeGetFmtString,
BusTools_API_Close

example_bc_deadman_timer.c This example shows how to configure a
watchdog timer to stop the Bus
Controller if the host does not reset the
timer.
This example uses a Condition Branch
on count (CONDITION2) as the timer.
The Conditional Branch is setup to
branch when the count decrements to 0.
The count value is decremented each
time the branch executes. The branch
command is a BC_CONTROL_HALT that
stops the Bus Controller. Otherwise the
frame keeps running. To keep the branch
from ever executing the halt, the host
must reset the counter value to prevent it
from reaching 0. To do this, the example
gets the address of the BC buffer
containing the branch command and
resets the count value by writing the
initial count value back into the count
register thus restarting the down-count.
This example runs until the user enters
the kill command from the console.
Then the count value is no longer reset,
and the Bus controller halts. Two
callback functions are used. One for Bus
Controller messages prints the message
data to the console. The other is for the
conditional branch. This callback resets
the counter value. See how altering the
count value affects the timer.

BusTools_API_OpenChannel,
BusTools_SetInternalBus,
BusTools_TimeTagMode,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_MessageGetaddr,
BusTools_MemoryRead2,
BusTools_BoardIsV6,
BusTools_BC_StartStop,
BusTools_RegisterFunction,
BusTools_BC_MessageRead,
BusTools_TimeGetFmtString,
BusTools_MemoryWrite2,
BusTools_MemoryWrite

Publication No. 1500-038 Rev. 5.11 Data Structures 403

Example Name Descriptions BusTools/1553-API

example_bc_error_inj.c This example program sets up a Bus
Controller message list containing two
messages, 1-R-1-32 and 2-T-2-32, in a
20ms minor frame. This BC list runs
until stopped by user input. Error are
injected into the command or data
words of the two messages.
The example injects a PARITY error on
the command word either for 1-R-1-32 or
2-T-2-32. It also injects a parity error into
the first data of the receive command.
Notice the effect of the error by
monitoring with an external Bus Analyzer
like BusTools/1553. When a parity error
is injected on a command word it
becomes an invalid command the
Analyzer (monitor) ignores the message.
If error is injected on the data word, then
the command is valid and the monitor
will show errors like invalid word and
parity error.

BusTools_API_OpenChannel,
BusTools_SetInternalBus,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_StartStop,
BusTools_EI_EbufWriteENH,
BusTools_API_Close

example_bc_join.c Channel Sharing allows multiple
applications to run on a single 1553
channel. Channel sharing requires that
only one application initialize a channel.
That application must share the channel
by calling BusTools_API_ShareChannel.
Other application can join the shared
channel by calling
BusTools_API_JoinChannel. There can
be only one Bus Controller application,
one Bus Monitor application and one
Remote Terminal application per
channel. This example Shows a BC
application joining an already initialized
channel.

BusTools_API_JoinChannel,
BusTools_SetInternalBus,
BusTools_TimeTagMode,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_MessageRead,
BusTools_TimeGetString,
usTools_RegisterFunction,
BusTools_BC_StartStop,
BusTools_API_QuitChannel

example_bc_message_read_ty
pes.c

This example program shows how to
program the Bus Controller to run
multiple minor frames and to
demonstrate programming all of the
message types available to the Bus
Controller. The example initializes the
channel and sets it for external bus.
Following those initialization steps, it
initializes the Bus Controller and builds
two minor frames. There are examples
of each of the BC message in the
frames.

BusTools_API_OpenChannel,
BusTools_TimeTagMode,
BusTools_SetInternalBus,
BusTools_SetBroadcast,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_MessageRead,
BusTools_BoardIsV6,
BusTools_TimeGetFmtString,
BusTools_RegisterFunction,
BusTools_BC_StartStop,
BusTools_API_Close

404 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_bc_message_types.c This example program shows how to
program the Bus Controller to run
multiple minor frames and to
demonstrate programming all of the
message type available to the Bus
Controller. The example initializes the
Bus Controller channel. Then it sets the
channel for external bus. Following
those initialization steps, it initializes the
Bus Controller and builds two minor
frames. There are examples of each of
the BC message in the frames.

BusTools_API_OpenChannel,
BusTools_SetInternalBus,
BusTools_SetBroadcast,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BoardIsV6,
BusTools_BC_StartStop,
BusTools_API_Close

example_bc_msg_blk_read.c This example program shows how to
program the Bus Controller to run a
simple three message minor-frame. The
example initializes the channel the Bus
Controller is running on. Then sets the
channel for external bus. Following
those initialization steps, it initializes the
Bus Controller and builds a simple 3-
message frame. The messages in the
frame are linked together and the frame
will run continually until stopped by the
user.
This example also shows how to
process the messages using the
function
BusTools_BC_ReadLastMessageBlock.
This function parses the interrupt queue
to determine the BC messages that have
transacted since the last call. In order
for a BC message to record it must have
the BC_CONTROL_INTERRUPT set and
the BC initialization must define an
interrupt condition like
BT1553_INT_END_OF_MESS. This
processing differs from
BusTools_RegisterFunction in that your
application must provide a timing loop to
call
BusTools_BC_ReadLastMessageBlock
periodically. The timing must set so the
BC messages (and other messages that
may be recorded in the interrupt queue)
do not overwrite unprocessed entries.
This example uses a 50-millisecond
delay.
This application uses the Windows
function kbhit to break out of timing
loop. If using this example on non-
Windows systems, you will need to
provide a kbhit function.

BusTools_API_OpenChannel,
BusTools_SetInternalBus,
BusTools_TimeTagMode,
BusTools_BC_Init,
BusTools_BC_MessageAlloc,
BusTools_BC_MessageWrite,
BusTools_BC_StartStop,
BusTools_BC_ReadLastMessageBloc
k, BusTools_BoardIsV6,
BusTools_TimeGetFmtString,
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Data Structures 405

Example Name Descriptions BusTools/1553-API

example_bc_msg_read.c This example program shows how to
program the Bus Controller to run a
simple three message minor-frame. The
example initializes the channel and sets
the channel for external bus. Following
those initialization steps, it initializes the
Bus Controller and builds a simple 3-
message frame. The messages in the
frame are linked together and the frame
will run continually until stopped by the
user. A user callback function is set up
by using the function
BusTools_RegisterFunction. The user
function is invoked each time the
registered interrupt event is found in the
channels interrupt queue. In this
example the callback function is
registered for callback on
EVENT_BC_MESSAGE. Those events
occur on BC message that have interrupt
enabled (BC_CONTROL_INTERRUPT.
The user callback function then
processes the data in each message.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_TimeTagMode
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_StartStop
BusTools_RegisterFunction
BusTools_BC_MessageRead
BusTools_BoardIsV6
BusTools_TimeGetFmtString
BusTools_API_Close

example_bc_msg_run.c This example program shows how to
program the Bus Controller to run a
simple three message minor-frame. The
example initializes the channel the Bus
Controller is running on. Then sets the
channel for external bus. Following
those initialization steps, it initializes the
Bus Controller and builds a simple 3-
message frame. The message in the
frame are linked together and the frame
will run continually until stopped by the
user.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_StartStop
BusTools_API_Close

example_bc_msg_sched.c This application shows how to setup the
bus Controller for Message Scheduling.
That is a technique that allows the user
to schedule message at differing rates in
the major frame. In this example,
messages going out on every frame,
every other frame, and every fifth frame.
The frame rate is set at 1 Hz, so the
message traffic can be visually seen on
an analyzer. When using Message
Scheduling the user programs the start-
frame and the repeat rate for each
message. A message with a start frame
of one and repeat rate of one goes in
every frame. A start frame of 1 and
repeat rate of 2 causes the message to
transact in every other frame. By setting
the base frame rate and the start frame
and repeat rate for each message the
user can control the rate at which the
messages in the major frame transact.
You can vary frame rate and the start-
frame and repeat rates of the messages
in this example and see how the
changes affect message traffic.

BusTools_API_OpenChannel
BusTools_GetFWRevision
BusTools_SetInternalBus
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_MessageRead
BusTools_TimeGetString
BusTools_RegisterFunction
BusTools_BC_StartStop
BusTools_RT_StartStop
BusTools_API_Close

406 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_bc_multi_buffer.c This example shows how to initialize the
Bus Controller with multiple data buffers.
This example requires Firmware version
6.0 or greater and BusTools/1553-API
version 8.0 or greater. Previous F/W and
API versions only support one or two
data buffers. When using the Multiple
BC buffer option, you can create a
varying number of data buffers for each
BC message.
This function initializes the board and
steps through the process of enabling,
creating, filling, and processing the
multiple buffers. Three messages are
created with 10, 15, and 5 data buffers.
An interrupt callback function is
registered using
BusTools_RegisterFunction. In that
callback the data from the buffer is
optionally printed and the receive
command (RT4) data is incremented to
show how to update the data.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_TimeTagMode
BusTools_BC_Init
BusTools_BC_MessageBlockAlloc
BusTools_BC_MessageWrite
BusTools_BC_DataBufferWrite
BusTools_BC_MessageBufferRead
BusTools_BC_DataBufferUpdate
BusTools_BC_ReadDataBuffer
BusTools_TimeGetString
BusTools_RegisterFunction
BusTools_BC_StartStop
BusTools_API_Close

example_bc_noop.c This example shows how to NOOP and
un-NOOP a message. When a message
is NOOPed, It does not transact. The
firmware skips over the message as if it
were not in the bus list. A single minor
frame is created with three messages in
the frame. The Second message in the
bus list (message 1) is created as a
Noop message
(BC_CONTROL_MSG_NOP). That
means it created as a BC message
buffer but set in the NOOP state. When
the frame runs only message 0 and 2
transact. The user can toggle message
1 ON or OFF by entering 'U' or 'N" to Un-
NOOP or NOOP the message. The
function BusTools_BC_MessageNoop is
called change the NOOP setting for
message 1. You can use
BusTools_BC_MessageNoop on any BC
message created with
BC_CONTORL_MESSAGE or
BC_CONTROL_MSG_NOP.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_TimeTagMode
BusTools_BC_Init
BusTools_BC_MessageBlockAlloc
BusTools_BC_MessageWrite
BusTools_BC_MessageNoop
BusTools_BC_StartStop
BusTools_RegisterFunction
BusTools_BC_MessageRead
BusTools_BoardIsV6
BusTools_TimeGetFmtString
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Data Structures 407

Example Name Descriptions BusTools/1553-API

example_bc_options.c This is anThis is an example program
that uses several Bus Controller options
to configure a bus list. The options used
are Frame-start timing, Message
Scheduling, retries and Interrupts. There
are two callback functions used. One is
for the specific BC message in the bus
list excluding the sync mode code. The
other callback processes the sync mode
code. Retries on no-response or busy
are enable on several of the messages.
Frame start timing use the gap time as
the message delay time from the start of
the frame. Message scheduling is used
to setup the message in the different
frames. Some messages transact at 20
Hz, some at 10 Hz some at 2 Hz and the
sync mode code runs at 1 Hz. example
program that uses several Bus Controller
options to configure a bus list. The
options used are Frame-start timing,
Message Scheduling, retries and
Interrupts. There are two callback
functions used. One is for the specific
BC message in the bus list excluding the
sync mode code. The other callback
processes the sync mode code. Retries
on no-response or busy are enable on
several of the messages. Frame start
timing use the gap time as the message
delay time from the start of the frame.
Message scheduling is used to setup the
message in the different frames. Some
messages transact at 20 Hz, some at 10
Hz some at 2 Hz and the sync mode
code runs at 1 Hz.

BusTools_API_OpenChannel
BusTools_GetFWRevision
BusTools_SetInternalBus
BusTools_TimeTagMode
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_RetryInit
BusTools_RegisterFunction
BusTools_BC_StartStop
BusTools_BC_MessageRead
BusTools_BoardIsV6
BusTools_TimeGetFmtString
BusTools_API_Close

408 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_bc_retry.c This example demonstrates enabling
retries on Bus Controller messages.
Enabling retries lets the hardware
automatically resend a message if the
retry condition occurs. In the example
the Bus Controller automatically resends
the message if a no-response is
detected on a retry enabled message or
if the RT responds with Busy or Message
Error.
In order to enable retries you need to
configure the Bus Controller to retry by
setting the retry condition(s) in
BusTools_BC_Init. Once a condition is
programmed, each Bus Controller
message can then be set to retry. In this
example retries are set for message 1
and 2 (0-based) in the bus list.
Furthermore, up to eight retries can be
programmed by calling
BusTools_BC_RetryInit. That function
allows programming up to eight retries
on either the same or alternate bus. The
same and alternate bus designations are
from the initial bus setting of the
message. For example, if the message
transacts Bus A the alternate bus is Bus
B. In addition to setting up retries the
example also sets up a callback function
on a retry.

BusTools_API_OpenChannel
BusTools_GetFWRevision
BusTools_SetInternalBus
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_RetryInit
BusTools_BC_StartStop
BusTools_RegisterFunction
BusTools_BC_MessageRead
BusTools_BoardIsV6
BusTools_TimeGetFmtString
BusTools_API_Close

example_bc_rt_bm.c This console application shows how to
configure the Remote Terminal, Bus
Controller and Bus Monitor and set up
interrupt on BC, RT, BM messages. The
RT and BC callback function change the
data for Transmit and Receive
commands. The Bus Monitor callback
displays the data.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_BM_Init
BusTools_BM_MessageAlloc
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BM_StartStop
BusTools_RT_StartStop
BusTools_BC_StartStop
BusTools_RT_MessageRead
BusTools_BM_MessageRead
BusTools_BC_MessageReadData
BusTools_BC_MessageUpdate
BusTools_BC_ControlWordUpdate
BusTools_BC_MessageUpdateBuffer
BusTools_RegisterFunction
BusTools_TimeGetString
BusTools_DumpMemory
BusTools_ReadBoardTemp
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Data Structures 409

Example Name Descriptions BusTools/1553-API

example_bc_rt_broadcast.c This example shows how to setup
broadcast for BC and RT. It also shows
the Remote Terminal processes
Broadcast messages.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_SetBroadcast
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_CbufbroadWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_RT_StartStop
BusTools_BC_StartStop
BusTools_RegisterFunction
BusTools_RT_MessageRead
BusTools_API_Close

example_bc_start_frame.c This example application shows how to
configure the Bus Controller for an initial
frame that runs once then run a periodic
frame. The application uses
BusTools_BC_Start to start the initial
frame at message 40. After that the
frame starting at message zero (0) runs.
This example also shows how to set an
interrupt on minor-frame-overflow. A
minor-frame-overflow occurs when the
messages in a minor-frame take longer
than the programmed frame-time to
transact. When this occurs, messages
exceeding the frame-time are
suppressed and the new frame starts. In
this example the frame rate is set for 1
Hz (1000000). All the messages
transact. If you change the frame rate to
1000 Hz (1000), a minor-frame overflow
occurs and the last two messages in the
frame are suppressed. The minor-
frame-overflow interrupt callback
increments a counter each time it runs.
the number of overflow events are
printed out at the end of this example.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_Start
BusTools_RegisterFunction
BusTools_BC_MessageBufferRead
BusTools_TimeGetString
BusTools_BC_DataBufferUpdate
BusTools_API_Close

410 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_bc_trigger_oneshot.c This example program demonstrates
how to start the Bus Controller using a
trigger input. The example sets up a
simple BC message list with 1-R-1-32
and 2-T-2-32, in a 500ms minor frame.
This BC list runs until stopped by user
input. Data is automatically displayed
for 1-R-1-32 and 2-T-2-32. The user hits
Enter to quit, shutdown the application
and exit.

 BusTools_BC_Trigger is used to setup a
1shot trigger that starts the Bus
Controller running. After calling
BusTools_BC_StartStop the BC waits for
an external trigger input before running.
The trigger can be from an external
trigger source or generated by the board.
If the trigger source in internal to the
board you must wrap discrete 7 and 8
together.

Note: not all boards have discrete
channels or are configure with the
discrete 7 and 8. You will need to check
the configuration of the board installed
to make sure that discrete channels are
available.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_Trigger
BusTools_RegisterFunction
BusTools_BoardIsV6
BusTools_SetV6TrigOut
BusTools_SetV6TrigIn
BusTools_DiscreteWrite
BusTools_DiscreteSetIO
BusTools_DiscreteTriggerOut
BusTools_DiscreteTriggerIn
BusTools_BC_StartStop
BusTools_BC_MessageRead
BusTools_TimeGetFmtString
BusTools_API_Close

example_bc_trigger_user.c This example application shows BC
Triggering using the BC_TRIGGER_USER
option. In this option the user controls
how the BC frames run by adding
BC_CONTROL_LAST to stop the Bus
Controller. Each time you stop the Bus
Controller using BC_CONTROL_LAST a
trigger input is needed to restart. You
can have one or more frames
transacting off each trigger. This
example creates six frames. The first
four frames each start on a trigger input.
The last two frames combined. The fifth
frame starts on a trigger. The sixth
frame runs after the normal frame delay,
then stop when the BC_CONTROL_LAST
buffer transacts. The list loops back to
the first frame requiring a trigger to start.

The application provides an option for
internally generated triggers or an
external user-supplied trigger. If you
select the internal trigger, you will need
to connect discrete7 and 8 together. Not
all boards have these discrete channels
available so check the board's
configuration.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_TimeTagMode
BusTools_SetV6TrigOut
BusTools_SetV6TrigOut
BusTools_DiscreteWrite
BusTools_DiscreteSetIO
BusTools_DiscreteTriggerOut
BusTools_DiscreteTriggerIn
BusTools_BC_Init
BusTools_BC_Trigger
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_StartStop
BusTools_ExtTriggerOut
BusTools_DumpMemory
BusTools_BC_StartStop
BusTools_RegisterFunction
BusTools_BC_MessageRead
BusTools_BoardIsV6
BusTools_TimeGetFmtString
BusTools_API_Close

example_bit.c This example program that initializes a
channel and runs the Internal Built-In-
Test and the Cable Wrap Test, then exits.

BusTools_API_OpenChannel
BusTools_BIT_InternalBit
BusTools_BIT_CableWrap
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Data Structures 411

Example Name Descriptions BusTools/1553-API

example_bm_filter_messages.c This example program sets up a Bus
Monitor to record the message traffic to
a file. The user is prompted for the
number of messages to capture. The
program then captures those messages
and writes them to a file. This is a
version of example_bm_recorder that
demonstrates message filtering. This
program only captures messages for
RT1 SA2 TX.

This is a monitor only example. It needs
something to generating bus traffic that
includes a RT1 SA2 TX message to
capture data.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_BM_Init
BusTools_GetBoardType
BusTools_BM_FilterWrite
BusTools_BM_MessageAlloc
BusTools_BM_StartStop
BusTools_BM_MessageReadBlock
BusTools_RegisterFunction
BusTools_API_Close

example_bm_process_messag
es.c

This example program sets up a Bus
Monitor to process each message
transacted on the 1553 bus. The
example shows how to use
BusTools_RegisterFunction to setup a
user-callback function to processes
individual Bus Monitor Messages. It
also shows how to write a user-callback
that processes each Bus Monitor
message. In the callback function the
Bus Monitor message data is displayed
on the console. This is a monitor only
example; you will need to connect to a
1553 bus with traffic to capture
messages.

BusTools_API_OpenChannel
BusTools_BM_Init
BusTools_SetInternalBus
BusTools_GetBoardType
BusTools_BM_MessageAlloc
BusTools_BM_StartStop
BusTools_RegisterFunction
BusTools_BM_MessageRead
BusTools_API_Close

example_bm_process_msg_blk
.c

This example sets up a Bus Monitor to
process each Bus Monitor message
transacted. This example also shows
how to process the messages using the
function
BusTools_BM_ReadLastMessageBlock.
This function parses the interrupt queue
to determine the BM messages that
have transacted since the last call. For a
BM message to record the BM
initialization must define an interrupt
condition like
BT1553_INT_END_OF_MESS. This
processing differs from using
BusTools_RegisterFunction in that your
application must provide a timing loop to
call
BusTools_BM_ReadLastMessageBlock
periodically. The timing must be set so
the BM messages (and other messages
that may be recorded in the interrupt
queue do not overwrite unprocessed
entries. This example uses a 50-
millisecond delay.

This application uses the Windows
function kbhit to break out of timing
loop. If using this example on non-
Windows systems, you will need to
provide a kbhit function.

BusTools_API_OpenChannel
BusTools_BM_Init
BusTools_SetInternalBus
BusTools_GetBoardType
BusTools_BM_MessageAlloc
BusTools_BM_StartStop
BusTools_BM_ReadLastMessageBlo
ck BusTools_API_Close

412 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_bm_recorder.c This example program sets up a Bus
Monitor to record the message traffic to
a file. The user is prompted for the
number of messages to capture. The
program then captures those messages
and writes them to a file.

Since this is a monitor only example, you
will need something else generating bus
traffic so there will be messages to
capture.

BusTools_API_OpenChannel
BusTools_BM_Init
BusTools_SetInternalBus
BusTools_GetBoardType
BusTools_BM_MessageAlloc
BusTools_BM_MessageReadBlock
BusTools_BM_StartStop
BusTools_RegisterFunction
BusTools_API_Close

example_bm_share.c This application demonstrates how to
initialize a channel and the share the
channel so other applications can use
that channel. This application initializes
and shares the channel. It then
configures and runs a Bus Monitor. This
allows separate Bus Controller and
Remote Terminal applications to join this
channel.

BusTools_API_OpenChannel
BusTools_API_ShareChannel
BusTools_SetInternalBus
BusTools_BM_Init
BusTools_BM_MessageAlloc
BusTools_RegisterFunction
BusTools_BM_StartStop
BusTools_BM_MessageRead
BusTools_API_QuitChannel
BusTools_API_Close

example_bm_trig_start_stop.c This example shows how to enable Bus
Monitor start trigger and stop trigger
using the function
BusTools_BM_TriggerWrite. A start
trigger specifies a condition or set of
conditions that must occur before the
Bus Monitor starts processing data. The
stop trigger defines a condition of set of
conditions that must occur to stop the
Bus Monitor processing. When a start
trigger is set it prevent Bus Monitor data
from being recorded in the interrupt
queue. A stop trigger disables the Bus
Monitor message from going into the
interrupt queue. You can still record all
the message traffic.

In this example the Bus Monitor is
configured to start only after a
command is sent to RT1. All traffic
transacting prior is not processed. Once
started the Monitor stops processing
messages when a command word with
RT22 occurs when armed first by a
command word to RT2.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_BM_Init
BusTools_BM_MessageAlloc
BusTools_BM_TriggerWrite
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_CbufWrite
BusTools_RT_AbufWrite
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_RegisterFunction
BusTools_BM_MessageRead
BusTools_TimeGetFmtString
BusTools_BC_StartStop
BusTools_RT_StartStop
BusTools_BM_StartStop
BusTools_RegisterFunction
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Data Structures 413

Example Name Descriptions BusTools/1553-API

example_bm_trgout.c This example shows how to setup the
Bus Monitor to generate an external
trigger out when it records a specific
message. In this example the Bus
Monitor and optionally the BC and RT are
configured. The Bus Monitor will
generate an external trigger (trigger-out
on discrete 7) when it records a BC
message to RT 8. This example also
routes the output trigger back to the
input trigger (set up on discrete 8) and
sets up an interrupt on external trigger.
This setup generates an output trigger
and captures it as an input trigger for
display. In order for this set up to work
you need to physically connect the
discrete7 to discrete 8. Discrete and
triggers vary between boards and this
setup may not run on your board variant.
Please refer to the “MIL-STD-1553
Hardware Installation Guide” for details
about triggers and discrete channels
available on the different 1553 products.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_ExtTrigIntEnable
BusTools_BM_Init
BusTools_BM_MessageAlloc
BusTools_BM_TriggerWrite
BusTools_SetV6TrigOut
BusTools_SetV6TrigIn
BusTools_DiscreteWrite
BusTools_DiscreteSetIO
BusTools_DiscreteTriggerOut
BusTools_DiscreteTriggerIn
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_BC_StartStop
BusTools_RT_StartStop
BusTools_BM_StartStop
BusTools_DumpMemory
BusTools_RegisterFunction
BusTools_API_Close

example_dbca.c This application shows how to setup
Dynamic Bus Controller allocation for
both the Remote Terminal and the Bus
Controller. This example uses two
channels, one as the initial Bus
Controller and the other as the initial
Remote Terminal. The RT channel also
configures a Bus Controller, but it is not
started. In this example the active BC is
initialized to send a bus list using RTs 2,
4 and 6. There is also an aperiodic
message to send a mode code 0 to RT1.
If RT1 accepts the DBCA by setting the
DBA bit in the Status word, the Bus
Controller halts. The inactive BC,
configured by the RT channel, has a bus
list to RTs 12, 14, and 16. RT1 is setup
to accept the DBCA Mode Code 0. It
automatically starts the Bus Controller.
User input from the console sends the
aperiodic Mode Code 0 to RT1. Once
that transacts, the initial BC is halted,
and the RT side BC takes over.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_RT_StartStop
BusTools_BC_StartStop
BusTools_BC_AperiodicRun
BusTools_RT_MessageRead
BusTools_RegisterFunction
BusTools_API_Close

414 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_ext_trig.c This application shows how to setup
interrupts on external trigger. In
addition, it shows how to setup discrete
for input and output triggers. This test
requires a wrap connector between
discrete 7 and discrete 8 on the D50
connector. The test generates a output
trigger and wraps output on discrete 7 to
the input on discrete 8. The input trigger
generates an interrupt.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_SetVoltage
BusTools_BM_Init
BusTools_BM_MessageAlloc
BusTools_BM_StartStop
BusTools_SetV6TrigOut
BusTools_SetV6TrigIn
BusTools_DiscreteWrite
BusTools_DiscreteSetIO
BusTools_DiscreteTriggerOut
BusTools_DiscreteTriggerIn
BusTools_ExtTrigIntEnable
BusTools_RegisterFunction
BusTools_BM_StartStop
BusTools_ExtTriggerOut
BusTools_TimeTagRead
BusTools_API_Close

example_irig1.c This test program demonstrates the
setup of the IRIG-B output and input.
This program just configures IRIG for
EXTERNAL or INTERNAL source, sets
the IRIG the current time/date and then
loops 20 times reading and displaying
the time every second. This REQUIRES a
board with the IRIG option. The part
number should include a 'W', which
indicates IRIG. For example: QPCX-
1553-4MW. Use
BusTools_BoardHasIRIG to find out if
you have an IRIG enabled board.

BusTools_API_OpenChannel
BusTools_BoardHasIRIG
BusTools_BM_Init
BusTools_IRIG_Config
BusTools_IRIG_Calibration
BusTools_IRIG_Valid
BusTools_IRIG_SetTime
BusTools_TimeTagMode
BusTools_TimeTagRead
BusTools_API_Close

example_rev.c This example program initializes a board
and displays version information and
general board information.

BusTools_GetDevInfo
BusTools_StatusGetString
BusTools_API_OpenChannel
BusTools_GetBoardType
BusTools_ReadBoardTemp
BusTools_GetRevision
BusTools_GetFWRevision
BusTools_BoardIsV6
BusTools_BoardIsMultiFunction
BusTools_GetCSCRegs
BusTools_GetChannelCount
BusTools_BoardHasIRIG
BusTools_GetSerialNumber
BusTools_MemoryAvailable
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Data Structures 415

Example Name Descriptions BusTools/1553-API

example_rt_auto_wrap.c This application shows how to
automatically wrap RT receive and
transmit messages buffers. When
transmit and receive message buffers
are wrapped the RT transmits the data
from the previous receive command.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_SetVoltage
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_RegisterFunction
BusTools_BC_MessageRead
BusTools_RT_StartStop
BusTools_BC_StartStop
BusTools_API_Close

416 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_rt_buffer_switch.c The example demonstrates how to
setup the Remote Terminal to manually
switch between two RT message
buffers. The RT is initialized with two
message buffer per RT/SA/TX/RX
combination. Then, using
BusTools_RT_MessageGetaddr and
BusTools_MemoryWrite2 the RT
message buffer linked list is altered to
have each buffer point to its address
instead of the next buffer in the list.
Instead of looping through the message
buffer the RT uses only a single buffer.
The user must write the address of the
message they want to run into the RT
control Buffer.

This example sets up a RT3 SA3 TX with
2 buffers. Then manually changes the
message buffer linking so only a single
buffer is used. By entering 0 or 1 at the
command prompt the user can switch
between buffer 0 (data = 0x1111) and
buffer 1 (data = 0x2222)

This example shows this process for
both the V6 and V4/5 firmware designs.
The high-level API hides the underlying
design differences in the firmware.
When directly accessing memory, the
user needs to understand the memory
layout for the firmware they are using.
Refer to the MIL-STD-1553 Universal
Core Architecture Reference Manual for
the V4/5 firmware and the MIL-STD-
1553 Enhanced Universal Core
Architecture (UCA32) Local Processing
Unit (LPU) Reference Manual for V6
firmware. Also keep in mind that V6
firmware uses 32-bit addressing while
V4/5 uses 16-bit addressing.

When running this example, it you a
dump the board's memory by typing 'd'
or 'D'. Reviewing the memory dump will
help follow the memory manipulations in
this example.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_RT_MessageGetaddr
BusTools_BoardIsV6
BusTools_RamAddr
BusTools_RelAddr
BusTools_MemoryWrite2
BusTools_GetAddr
BusTools_MemoryRead2
BusTools_RT_MessageRead
BusTools_RegisterFunction
BusTools_RT_StartStop
BusTools_BC_StartStop
BusTools_DumpMemory
BusTools_API_Close

example_rt_ei_late_rsp.c This example program sets up RT1 with
two subaddresses, SA1 RECEIVE and
SA2 TRANSMIT. It also demonstrates
how to inject errors into an RT message.
In this case, we inject a LATE RESPONSE
ERROR. The user can specify the
response time from 7-31us. This can be
done for SA1 RECEIVE or SA2
TRANSMIT.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_RT_Init
BusTools_RT_AbufWrite
BusTools_RT_CbufWrite
BusTools_EI_EbufWriteENH
BusTools_RT_MessageWrite
BusTools_RT_StartStop
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Data Structures 417

Example Name Descriptions BusTools/1553-API

example_rt_ei_parity.c This example program sets up a simple
RT1 with two subaddresses, SA1
RECEIVE and SA2 TRANSMIT. It also
demonstrates RT error injection. In this
case, it creates a PARITY ERROR. This
can be done for SA1 RECEIVE (on
STATUS word) or on SA2 TRANSMIT (on
STATUS or DATA words).

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_RT_Init
BusTools_RT_AbufWrite
BusTools_RT_CbufWrite
BusTools_EI_EbufWriteENH
BusTools_RT_MessageWrite
BusTools_RT_StartStop
BusTools_API_Close

example_rt_extended_status.c This example shows how to configure a
Remote Terminal and enable Extended
Status updates. Under normal 1553
operation the status returned by the RT
is for all Sub-addresses and transmit and
receive buffer. BusTools_RT_AbufWrite
sets the status response for the RT and
enable extended status for a RT. Using
Extended Status mode, the RT can set
the status word for each Sub-address,
Transmit, Receive and buffer for the RT.

 In this example the RTs are set up with
two buffers per RT/SA/TX/RX
combination. For RT 3 Transmit and RT
4 receive the second buffer is set to
respond with updated status. RT 3
responds with Busy (BSY) and RT 4
responds with Message Error (ME). This
causes the status word for those two
messages to toggle between the RT
message status and the extended status
programmed by
BusTools_RT_MessageWriteStatusWord
. To use Extended Status set the
Extended Status enable in the ‘inhibit
terminal flag’ parameter in call to
BusTools_RT_AbufWrite.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_RT_MessageWriteStatusW
ord BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_RegisterFunction
BusTools_RT_StartStop
BusTools_BC_StartStop
BusTools_BC_MessageRead
BusTools_TimeGetFmtString
BusTools_API_Close

example_rt_join.c This example shows how an application
joins an already initialized channel. This
function demonstrates a simple RT
application. RTs 1 - 8 are programmed
and a callback function is setup to
process RT message in the interrupt
queue.

This function requires that the channel
joined already be initialize and shared by
another application. The user can run
this example with example_bm_share
and example_bc_join. Joining a shared
channel allows individual Remote
Terminal, Bus Monitor and Bus
Controller applications to run off a single
channel.

BusTools_API_JoinChannel
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_RegisterFunction
BusTools_TimeTagRead
BusTools_RT_MessageRead
BusTools_TimeGetString
BusTools_RT_StartStop
BusTools_API_QuitChannel

418 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_rt_mc17.c Demonstrates how to process Mode
Code 17, Sync with Data.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_TimeTagMode
BusTools_GetRevision
BusTools_GetFWRevision
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_RegisterFunction
BusTools_BC_StartStop
BusTools_RT_StartStop
BusTools_DumpMemory
BusTools_RT_MessageRead
BusTools_BC_MessageRead
BusTools_API_Close

example_rt_mode_code.c This example shows multi-buffering of
mode code data. Uses Mode Code 17,
synchronize with data and Mode code
19, Transmit Bit Word. This example
shows how to setup data for Mode
codes if that are in the same bus list.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_TimeTagMode
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_RegisterFunction
BusTools_RT_MessageRead
BusTools_BC_MessageRead
BusTools_RT_StartStop
BusTools_BC_StartStop
BusTools_DumpMemory
BusTools_API_Close

example_rt_monitor.c This example shows how to setup the
Remote Terminal in monitor only mode.
In this mode the RT capture all
messages to the specified RT but will
not respond to the RT messages.

With the exception of calling
BusTools_RT_MonitorInit the Remote
terminal is configured identically to a
real Remote Terminal.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_TimeTagMode
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_RT_MonitorEnable
BusTools_RegisterFunction
BusTools_RT_StartStop
BusTools_RT_MessageRead
BusTools_RT_StartStop
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Data Structures 419

Example Name Descriptions BusTools/1553-API

example_rt_set_status.c This example program sets up RT1 with
two subaddresses, SA1 RECEIVE and
SA2 TRANSMIT. This example program
also demonstrates:
- DISABLING and ENABLING an RT to
respond on the 1553 Bus
- toggling of the BUSY, SERVICE
REQUEST, and TERMINAL FLAG bits in
the RT Status Word
- ILLEGALIZING commands to an RTSA

An external BC device is required and
configured to send a BC->RT command
to RT1 SA1 and an RT->BC command to
RT1 SA2, at a minimum. Recommended
BC setup:
- BC->RT Command RT1, SA1, RECEIVE,
32 Data Words, Bus A
- RT->BC Command RT1, SA1,
TRANSMIT, 32 Data Words, Bus A
- BC->RT Command RT1, SA1, RECEIVE,
32 Data Words, Bus B
- RT->BC Command RT1, SA1,
TRANSMIT, 32 Data Words, Bus B

After DISABLING the RT, verify that the
RT does not respond with Status to the
BC Command on Bus A and Bus B. After
ENABLING the RT, verify that the RT
responds with Status to the BC
Command on Bus A and Bus B.

Verify the RT Status Word Response
using the BC device as the BUSY,
SERVICE REQUEST, and TERMINAL
FLAG bits are set and cleared in the RT
Status Word. The BC List should execute
at a rate to allow for monitoring of the
changes to the RT Status Word.

When ILLEGALIZING commands to RT1-
SA1-RX and RT1-SA2-TX, the RT will
respond with the MESSAGE ERROR bit
set in the status word. And, for the
TRANSMIT command, the RT will not
send any data words.
Note that alternative coding options are
included for setting and clearing the RT
Status Word bits.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_RT_Init
BusTools_RT_AbufWrite
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_StartStop
BusTools_API_Close

420 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

Example Name Descriptions BusTools/1553-API

example_rt_wrap.c This console example program shows
how to manually wrap RT receive and
transmit messages buffers. This differ
from the automatic way is that the
example gets the address of the RT
buffer and manipulates the buffer
address data.

BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_BC_Init
BusTools_BC_MessageAlloc
BusTools_BC_MessageWrite
BusTools_RT_Init
BusTools_RT_CbufWrite
BusTools_RT_MessageWrite
BusTools_RT_AbufWrite
BusTools_RT_MessageWrite
BusTools_BoardIsV6
BusTools_RT_AbufWrite
BusTools_GetAddr
BusTools_MemoryRead2
BusTools_RelAddr
BusTools_MemoryWrite2
BusTools_MemoryRead
BusTools_MemoryWrite
BusTools_RT_StartStop
BusTools_BC_StartStop
BusTools_RegisterFunction
BusTools_BC_MessageRead
BusTools_API_Close

example_timetag_read.c This example set the time tag to either
zero or the present time and data. Then
it reads the time tag register every 500
milliseconds (.5s) and prints the raw ns
or µs depending the firmware version. It
also converts the time to a string and
prints the time string.

BusTools_ListDevices
BusTools_API_OpenChannel
BusTools_SetInternalBus
BusTools_GetRevision
BusTools_BoardIsV6
BusTools_TimeTagMode
BusTools_RegisterFunction
BusTools_TimeTagRead
BusTools_API_Close

Publication No. 1500-038 Rev. 5.11 Glossary 421

Glossary

 LINK
This glossary only features terms special to this manual. Explanations of more general terms can be found in
the Glossary, publication number GLOS1.

1553 A component or message in accordance with MIL-STD-1553.

Windows An operating system developed by Microsoft.

API Application Programmer’s Interface. A defined and documented software
interface, which permits software written by one person or organization to
interact with the software written by another person or organization
without requiring either party to know the details of the implementation of
the other’s software.

BC Bus Controller. One of three possible devices that may be connected to a
MIL-STD-1553 bus. Determines the message traffic on a 1553 bus.

BC-RT A 1553 message that transfers data from the BC to a RT. Also called an
RT Receive message.

BIOS Basic Input/Output System. The resident software that initializes the
computer hardware and provides low-level access to some of the
computer components.

BM Bus Monitor. One of three possible devices that may be connected to a
MIL-STD-1553 bus. A passive monitor, which cannot create or request
traffic on a 1553 bus.

Broadcast A class of 1553 messages characterized by multiple receivers and one
sender. Broadcast messages are directed to the broadcast Remote
Terminal number (31) but are actually received and processed by all
Remote Terminals on the bus.

Broadcast BC-RT A specific 1553 message directed to RT address 31, where all RTs receive
the data sent by the BC and do not respond with a status word.

Broadcast Mode
Code

A class of 1553 messages, where a mode code is directed to RT address
31. This causes all RTs on the bus to process the message and do not
respond with a status word.

Broadcast RT-BC A message type that is not defined or permitted on a MIL-STD-1553 bus
system.

Broadcast RT→RT A specific 1553 message, where two command words are transmitted by
the BC, and that the first command word tells all RTs to listen (receive).
The second command word instructs a specific RT to ignore the receive
command and to transmit data.

BSP Board Support Package. Software used by VxWorks or Integrity to setup
the hardware on a specific processor board. Roughly equivalent to the
BIOS on a PC or PC/AT.

cPCI Compact version of the PCI interface. See PCI below.

https://www.abaco.com/download/glossary

422 BusTools/1553-API Software Reference Manual Publication No. 1500-038 Rev. 5.11

DLL Dynamic Link Library. A stand-alone library of software functions that may
be used by an application. The DLL may be updated or changed without
requiring that the application be re-compiled or re-built.

FPGA Field Programmable Gate Array.

IP Carrier An interface board designed to adapt one or more IP Modules to a
different mechanical and electrical bus structure.

IP Module A modular mezzanine card based on the VITA 4-1995 IP Module Draft
Standard 1.0.d.0.

include file A file with an extension of “.h”, used by “C” programmers to contain
function and data structure definitions that are shared among various
program modules.

Linux UNIX based operating system for PCs

Microcode The instructions for the programmable element of the 1553 interface
contained in the WCS.

Microsecond 1/1000000 (millionth) of a second. Abbreviated as µs.

Millisecond 1/1000 (thousandth) of a second. Abbreviated as ms.

MIL-STD-1553 A military communication standard that specifies the interconnection of
one Bus Controller, multiple Remote Terminals, and optionally, one or more
Bus Monitors, into an integrated communication system.

MIL-STD-1773 An optically coupled version of MIL-STD-1553.

Mode Code A class of 1553 messages, using Sub Address 0 or 31, and with the word
count interpreted as the mode code number. Mode codes have zero or
one data word, depending on the mode code number. While all word
counts are potentially valid, only a subset of the possible mode codes are
valid, as specified by the standard.

Nanosecond 1/1,000,000,000 (billionth) of a second. Abbreviated as ns.

NT A Microsoft operating system, Windows NT

Operating System
(OS)

The software that operates the computer, such as Windows or Linux.

PC Personal Computer. A specific type of computer, based on the Intel 80x86
processor line.

PCI Peripheral Component Interconnect. A board-level communication bus
used in Personal Computers (and other computer systems) based on the
PCI Specification from the PCI Special Interest Group.

Playback The ability to regenerate MIL-STD-1553 message traffic on the physical
bus using data that was previously recorded.

PMC PCI Mezzanine Card. A slim modular mezzanine card based on the PCI
specification.

RT Remote Terminal. One of three possible devices that may be connected to
a MIL-STD-1553 bus. Responds to a Bus Controller.

RT Number
The address of a specific RT. A value between 0 and 30, with 31 being
reserved for the Broadcast function.

Publication No. 1500-038 Rev. 5.11 Glossary 423

RT Receive
A 1553 message that transfers data from the Bus Controller to a Remote
Terminal. Also called a BC-RT message or just a Receive message.

RT Transmit
A 1553 message that transfers data from a Remote Terminal to the Bus
Controller. Also called an RT-BC message or just a Transmit message.

RT-BC
A 1553 message that transfers data from an RT to the BC. Also called an
RT Transmit message.

RT→RT

A class of 1553 messages, where there are two command words
transmitted by the BC. The first command tells a specific RT to listen for
data, the second command word instructs another RT to transmit data.
The BC is neither the source nor destination for the data.

Sub Address

The address within an RT that acts as the source or destination of a
specific message. Sub Addresses 1 through 30 are used for messages,
SA 0 and 31 are reserved for mode codes.

WCS

Writeable Control Store. The WCS contains the microcode that runs the
1553 hardware. The WCS is downloaded to the board from the host bus
during initialization or is part of the onboard FPGA configuration data that
is loaded when the board is powered.

window A functional component of an application. A display.

Windows One of several operating systems supplied by Microsoft Corporation.

© 2019 Abaco Systems, Inc.
All rights reserved. Patent pending.

* indicates a trademark of Abaco Systems,
Inc. and/or its affiliates. All other trademarks
are the property of their respective owners.

This document contains Proprietary
Information of Abaco Systems, Inc. and/or
its suppliers or vendors. Distribution or
reproduction prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE
PROVIDED "AS IS", WITH NO
REPRESENTATIONS OR WARRANTIES OF
ANY KIND, WHETHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. ALL OTHER
LIABILITY ARISING FROM RELIANCE ON ANY
INFORMATION CONTAINED HEREIN IS
EXPRESSLY DISCLAIMED.

Abaco Systems
Information Centers

Americas:
 1-866-652-2226 (866-OK-ABACO)
 or 1-256-880-0444 (International)

Europe, Middle East and Africa:
 +44 (0)1327 359444

Additional Resources

For more information, please visit the
Abaco Systems web site at:

www.abaco.com

 Publication No. 1500-038 Rev. 5.11

https://www.abaco.com/

	About This Manual
	Conventions
	Notices
	Terms
	Numbers
	Text
	Additional C Sample Programs

	Further Information
	Abaco Systems Manuals
	Abaco Website
	Abaco Documents

	Technical Support
	Returns
	Safety Summary
	Ground the System
	Do Not Operate in an Explosive Atmosphere
	Keep Away from Live Circuits
	Do Not Service or Adjust Alone
	Do Not Substitute Parts or Modify System

	Contents
	List of Tables
	List of Figures
	1 • Introduction
	1.1 Operating Systems Supported
	1.2 Interface to Other Languages
	1.3 API Source Code
	1.4 Supported Hardware
	1.5 Hardware Features

	2 • API Initialization and Global Routines
	2.1 API Initialization
	2.2 API Shutdown
	2.3 Global Parameter Routines
	2.3.1 IRIG-B Functions
	2.3.2 Discrete and Differential I/O Functions

	2.4 General Purpose Routines

	3 • Application Development
	3.1 Developing Applications in Supported Environments
	3.2 Common Header Files
	3.3 Developing Windows Applications
	3.4 Developing Linux and LynxOS Applications
	3.5 Developing VxWorks Applications
	3.6 Developing Integrity Applications
	3.7 General Development Notes
	3.7.1 Number of Channels Supported
	3.7.2 API Disk Space Requirements
	3.7.3 Operating System Requirements

	3.8 Hints and Tips

	4 • BusTools/1553-API Routines
	4.1 BusTools_API_Close
	Description
	OS Support
	Syntax
	Return Value

	4.2 BusTools_API_InitExtended
	Description
	OS Support
	Syntax
	Return Value
	Notes
	4.2.1 User Supplied External Addressing Mode
	4.2.2 Initialization Examples
	4.2.3 RQVME2/QVME : One, Two or Four-channel Native Boards
	Example 1: Initialize Channel 1 on a QVME-1553

	4.3 BusTools_API_InitExternal
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.4 BusTools_API_OpenChannel
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.5 BusTools_API_ShareChannel
	Description
	OS Support
	Syntax
	Return Value

	4.6 BusTools_API_JoinChannel
	Description
	OS Support
	Syntax
	Return Value

	4.7 BusTools_API_QuitChannel
	Description
	OS Support
	Syntax
	Return Value

	4.8 BusTools_API_LoadUserDLL
	Description
	OS Support
	Syntax
	Return Value

	4.9 BusTools_BC_AperiodicRun
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.10 BusTools_BC_AperiodicTest
	Description
	OS Support
	Syntax
	Return Value

	4.11 BusTools_BC_AutoIncrMessageData
	Description
	OS Support
	Syntax
	Return Value

	4.12 BusTools_BC_Checksum1760
	Description
	Example 1
	Example 2
	OS Support
	Syntax
	Return Value

	4.13 BusTools_BC_ControlWordRead
	Description
	OS Support
	Syntax
	Return Value

	4.14 BusTools_BC_ControlWordUpdate
	Description
	OS Support
	Syntax
	Return Value

	4.15 BusTools_BC_DataBufferUpdate
	Description
	OS Support
	Syntax
	Return Value

	4.16 BusTools_BC_DataBufferWrite
	Description
	OS Support
	Syntax
	Return Value

	4.17 BusTools_BC_GetBufferCount
	Description
	OS Support
	Syntax
	Return Value

	4.18 BusTools_BC_Init
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.19 BusTools_BC_IsRunning
	Description
	OS Support
	Syntax
	Return Value

	4.20 BusTools_BC_IsRunning2
	Description
	OS Support
	Syntax
	Return Value

	4.21 BusTools_BC_MessageAlloc
	Description
	OS Support
	Syntax
	Return Value

	4.22 BusTools_BC_MessageBlockAlloc
	Description
	OS Support
	Syntax
	Return Value

	4.23 BusTools_BC_MessageGetaddr
	Description
	OS Support
	Syntax
	Return Value

	4.24 BusTools_BC_MessageGetid
	Description
	OS Support
	Syntax
	Return Value

	4.25 BusTools_BC_MessageNoop
	Description
	OS Support
	Syntax
	Return Value

	4.26 BusTools_BC_MessageRead
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.27 BusTools_BC_MessageBufferRead
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.28 BusTools_BC_MessageReadData
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.29 BusTools_BC_MessageReadDataBuffer
	Description
	OS Support
	Syntax
	Return Value

	4.30 BusTools_BC_MessageUpdate
	Description
	OS Support
	Syntax
	Return Value

	4.31 BusTools_BC_MessageUpdateBuffer
	Description
	OS Support
	Syntax
	Return Value

	4.32 BusTools_BC_MessageWrite
	Description
	OS Support
	Syntax
	Return Value
	Notes
	4.32.1 BC 1553 Data Message
	Example 1: First message in a minor frame
	Example 2: Message in a minor frame
	Example 3: Mode Code
	Example 4: Message Scheduling
	4.32.2 1553 RT Messages (RT→RT, RT→RT Broadcast)
	Example 5: RT→RT message
	4.32.3 Conditional Message
	For Conditional Branch and Conditional Branch 3
	For Conditional Branch 2
	Example 6: Conditional Branch 2
	Example 7: Conditional Branch or Conditional Branch 3
	4.32.4 Stop BC
	Example 8: Last BC Message
	4.32.5 No-op Message
	Example 9: No-op Message
	4.32.6 Timed No-op Message
	Example 10: Timed No-op Message
	4.32.7 Mode Codes and Dynamic Bus Control

	4.33 BusTools_BC_ReadDataBuffer
	Description
	OS Support
	Syntax
	Return Value

	4.34 BusTools_BC_ReadLastMessage
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Example

	4.35 BusTools_BC_ReadLastMessageBlock
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Example

	4.36 BusTools_BC_ReadNextMessage
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Example

	4.37 BusTools_BC_RetryInit
	Description
	OS Support
	Syntax
	Return Value
	Example

	4.38 BusTools_BC_SelectBufferRead
	Description
	OS Support
	Syntax
	Return Value

	4.39 BusTools_BC_SelectBufferUpdate
	Description
	OS Support
	Syntax
	Return Value

	4.40 BusTools_BC_SetFrameRate
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.41 BusTools_BC_Start
	Description
	OS Support
	Syntax
	Return Value

	4.42 BusTools_BC_StartStop
	Description
	OS Support
	Syntax
	Return Value

	4.43 BusTools_BC_Trigger
	Description
	OS Support
	Syntax
	Return Value

	4.44 BusTools_BIT_CableWrap
	Description
	OS Support
	Syntax
	Return Value

	4.45 BusTools_BIT_InternalBit
	Description
	OS Support
	Syntax
	Return Value

	4.46 BusTools_BIT_TwoBoardWrap
	Description
	OS Support
	Syntax
	Return Value

	4.47 BusTools_BIT_StructureAlignmentCheck
	Description
	OS Support
	Syntax
	Return Value

	4.48 BusTools_BM_Checksum1760
	Description
	OS Support
	Syntax
	Return Value

	4.49 BusTools_BM_FilterRead
	Description
	OS Support
	Syntax
	Return Value

	4.50 BusTools_BM_FilterWrite
	Description
	OS Support
	Syntax
	Return Value

	4.51 BusTools_BM_Init
	Description
	OS Support
	Syntax
	Notes
	Return Value

	4.52 BusTools_BM_MessageAlloc
	Description
	OS Support
	Syntax
	Return Value

	4.53 BusTools_BM_MessageGetaddr
	Description
	OS Support
	Syntax
	Return Value

	4.54 BusTools_BM_MessageGetid
	Description
	OS Support
	Syntax
	Return Value

	4.55 BusTools_BM_MessageRead
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.56 BusTools_BM_MessageReadBlock
	Description
	OS Support
	Syntax
	Return Value

	4.57 BusTools_BM_ReadLastMessage
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Example

	4.58 BusTools_BM_ReadLastMessageBlock
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Example

	4.59 BusTools_BM_ReadNextMessage
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Example

	4.60 BusTools_BM_SetRT_RT_INT
	Description
	OS Support
	Syntax
	Return Value

	4.61 BusTools_BM_StartStop
	Description
	OS Support
	Syntax
	Return Value

	4.62 BusTools_BM_TriggerWrite
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.63 BusTools_BoardHasIRIG
	Description
	OS Support
	Syntax
	Return Value

	4.64 BusTools_BoardIsMultiFunction
	Description
	OS Support
	Syntax
	Return Value

	4.65 BusTools_BoardIsUSBMon
	Description
	OS Support
	Syntax
	Return Value

	4.66 BusTools_BoardIsV6
	Description
	OS Support
	Syntax
	Return Value

	4.67 BusTools_Checksum1760
	Description
	Example 1
	Example 2
	OS Support
	Syntax
	Return Value

	4.68 BusTools_CreateIntFifo
	Description
	OS Support
	Syntax
	Return Value

	4.69 BusTools_DestroyIntFifo
	Description
	OS Support
	Syntax
	Return Value

	4.70 BusTools_DataGetString
	Description
	OS Support
	Syntax
	Return Value
	Example

	4.71 BusTools_DiffTriggerOut
	Description
	OS Support
	Syntax
	Return Value

	4.72 BusTools_DiscreteGetIO
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.73 BusTools_PIO_GetIO
	Description
	OS Support
	Syntax
	Return Value

	4.74 BusTools_DiscreteRead
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.75 BusTools_PIO_Read
	Description
	OS Support
	Syntax
	Return Value

	4.76 BusTools_DiscreteSetIO
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Coding Example

	4.77 BusTools_PIO_SetIO
	Description
	OS Support
	Syntax
	Return Value
	Coding Example

	4.78 BusTools_DiscreteTriggerIn
	Description
	OS Support
	Syntax
	Return Value

	4.79 BusTools_DiscreteWrite
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.80 BusTools_PIO_Write
	Description
	OS Support
	Syntax
	Return Value

	4.81 BusTools_DiscreteTriggerOut
	Description
	OS Support
	Syntax
	Return Value

	4.82 BusTools_DMA_Setup
	Description
	OS Support
	Syntax
	Return Value

	4.83 BusTools_DumpMemory
	Description
	OS Support
	Syntax
	Return Value

	4.84 BusTools_EI_EbufWrite
	Description
	OS Support
	Syntax
	Return Value
	EI Buffer Example

	4.85 BusTools_EI_EnhEbufWrite (DEPRECATED)
	Description
	OS Support
	Syntax
	Return Value

	4.86 BusTools_EI_EbufWriteENH
	Description
	OS Support
	Syntax
	Return Value
	EI Buffer Example

	4.87 BusTools_EI_Getaddr
	Description
	OS Support
	Syntax
	Return Value

	4.88 BusTools_EI_Getid
	Description
	OS Support
	Syntax
	Return Value

	4.89 BusTools_ErrorCountClear
	Description
	OS Support
	Syntax
	Return Value

	4.90 BusTools_ErrorCountGet
	Description
	OS Support
	Syntax
	Return Value

	4.91 BusTools_ExtTrigIntEnable
	Description
	OS Support
	Syntax
	Return Value

	4.92 BusTools_ExtTriggerOut
	Description
	OS Support
	Syntax
	Return Value

	4.93 BusTools_FindDevice
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.94 BusTools_FirmwareReload
	Description
	OS Support
	Syntax
	Return Value

	4.95 BusTools_FlashLogErase
	Description
	OS Support
	Syntax
	Return Value

	4.96 BusTools_FlashLogRead
	Description
	OS Support
	Syntax
	Return Value

	4.97 BusTools_FlashLogWrite
	Description
	OS Support
	Syntax
	Return Value

	4.98 BusTools_GetAddr
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.99 BusTools_GetBoardType
	Description
	OS Support
	Syntax
	Return Value

	4.100 BusTools_GetChannelStatus
	Description
	OS Support
	Syntax
	Return Value
	4.100.1 API_CHANNEL_STATUS Definition
	Error Status Bits
	Run Status Bits
	Operational Status

	4.101 BusTools_GetChannelCount
	Description
	OS Support
	Syntax
	Return Value

	4.102 BusTools_GetCSCRegs
	Description
	OS Support
	Syntax
	Return Value

	4.103 BusTools_GetDevInfo
	Description
	OS Support
	Syntax
	Return Value

	4.104 BusTools_GetFWRevision
	Description
	OS Support
	Syntax
	Return Value

	4.105 BusTools_GetPulse
	Description
	OS Support
	Syntax
	Return Value

	4.106 BusTools_GetRevision
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.107 BusTools_GetSerialNumber
	Description
	OS Support
	Syntax
	Return Value

	4.108 BusTools_GetTermEnable
	Description
	OS Support
	Syntax
	Return Value

	4.109 BusTools_GetTimeTagMode
	Description
	OS Support
	Syntax
	Return Value

	4.110 BusTools_GetValidDiscrete
	Description
	OS Support
	Syntax
	Return Value

	4.111 BusTools_GetValidPio
	Description
	OS Support
	Syntax
	Return Value

	4.112 BusTools_GetValidDiff
	Description
	OS Support
	Syntax
	Return Value

	4.113 BusTools_InterMessageGap
	Description
	OS Support
	Syntax
	Notes

	4.114 BusTools_InterMessageGap2
	Description
	OS Support
	Syntax
	Notes

	4.115 BusTools_IRIG_Calibration
	Description
	OS Support
	Syntax
	Return Value

	4.116 BusTools_IRIG_Config
	Description
	OS Support
	Syntax
	Return Value

	4.117 BusTools_IRIG_SetTime
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.118 BusTools_IRIG_Valid
	Description
	OS Support
	Syntax
	Return Value

	4.119 BusTools_ListDevices
	Description
	OS Support
	Syntax
	Return Value
	4.119.1 Device List Structure Contents

	4.120 BusTools_MemoryAlloc
	Description
	OS Support
	Syntax
	Return Value

	4.121 BusTools_MemoryAlloc32
	Description
	OS Support
	Syntax
	Return Value

	4.122 BusTools_MemoryAvailable
	Description
	OS Support
	Syntax
	Return Value

	4.123 BusTools_MemoryRead(obsoleted)
	Description
	OS Support
	Syntax
	Return Value

	4.124 BusTools_MemoryRead2
	Description
	OS Support
	Syntax
	Return Value

	4.125 BusTools_MemoryWrite(obsoleted)
	Description
	OS Support
	Syntax
	Return Value

	4.126 BusTools_MemoryWrite2
	Description
	OS Support
	Syntax
	Return Value

	4.127 BusTools_PCI_Reset/BusTools_VME_Reset
	Description
	OS Support
	Syntax
	Return Value

	4.128 BusTools_Playback
	Description
	OS Support
	Syntax
	Return Value

	4.129 BusTools_Playback_Check
	Description
	OS Support
	Syntax
	Return Value

	4.130 BusTools_Playback_Stop
	Description
	OS Support
	Syntax
	Return Value

	4.131 BusTools_ReadBoardTemp
	Description
	OS Support
	Syntax
	Return Value

	4.132 BusTools_ReadVMEConfig
	Description
	OS Support
	Syntax
	Return Value

	4.133 BusTools_RegisterFunction
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Debugging Tips

	4.134 BusTools_RS485_TX_Enable
	Description
	OS Support
	Syntax
	Return Value

	4.135 BusTools_RS485_Set_TX_Data
	Description
	OS Support
	Syntax
	Return Value

	4.136 BusTools_RS485_ReadRegs
	Description
	OS Support
	Syntax
	Return Value

	4.137 BusTools_RT_AbufRead
	Description
	OS Support
	Syntax
	Return Value

	4.138 BusTools_RT_AbufWrite
	Description
	4.138.1 The RT Enable Bits
	4.138.2 The Inhibit Terminal Flag
	4.138.3 The RT Status Word
	4.138.4 The RT Last Command Word
	4.138.5 The BIT Word
	4.138.6 Single RT Mode
	OS Support
	Syntax
	Return Value

	4.139 BusTools_RT_AutoIncrMessageData
	Description
	OS Support
	Syntax
	Return Value

	4.140 BusTools_RT_CbufbroadRead
	Description
	OS Support
	Syntax
	Return Value

	4.141 BusTools_RT_CbufbroadWrite
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.142 BusTools_RT_CbufRead
	Description
	OS Support
	Syntax
	Return Value

	4.143 BusTools_RT_CbufWrite
	Description
	OS Support
	Syntax
	Return Value

	4.144 BusTools_RT_Checksum1760
	Description
	Example 1
	Example 2
	OS Support
	Syntax
	Return Value

	4.145 BusTools_RT_Init
	Description
	OS Support
	Syntax
	Return Value

	4.146 BusTools_RT_GetRTAddr
	Description
	OS Support
	Syntax
	Return Value

	4.147 BusTools_RT_GetRTAddr1760
	Description
	OS Support
	Syntax
	Return Value

	4.148 BusTools_RT_MessageGetaddr
	Description
	OS Support
	Syntax
	Return Value

	4.149 BusTools_RT_MessageGetid
	Description
	OS Support
	Syntax
	Return Value

	4.150 BusTools_RT_MessageRead
	Description
	OS Support
	Syntax
	Return Value

	4.151 BusTools_RT_MessageBufferNext
	Description
	OS Support
	Syntax
	Return Value

	4.152 BusTools_RT_MessageWrite
	Description
	OS Support
	Syntax
	Return Value

	4.153 BusTools_RT_MessageWriteDef
	Description
	OS Support
	Syntax
	Return Value

	4.154 BusTools_RT_MessageWriteStatusWord
	Description
	OS Support
	Syntax
	Return Value

	4.155 BusTools_RT_MonitorEnable
	Description
	OS Support
	Syntax
	Return Value

	4.156 BusTools_RT_ReadLastMessage
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Example

	4.157 BusTools_RT_ReadLastMessageBlock
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Example

	4.158 BusTools_RT_ReadNextMessage
	Description
	OS Support
	Syntax
	Return Value
	Notes
	Example

	4.159 BusTools_RT_StartStop
	Description
	OS Support
	Syntax
	Return Value

	4.160 BusTools_Set1553Mode
	Description
	OS Support
	Syntax
	Return Value

	4.161 BusTools_SetBroadcast
	Description
	OS Support
	Syntax
	Return Value

	4.162 BusTools_SetDumpPath
	Description
	OS Support
	Syntax
	Return Value

	4.163 BusTools_SetExternalSync
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.164 BusTools_SetInternalBus
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.165 BusTools_SetIntVector
	Description
	OS Support
	Syntax
	Return Value

	4.166 BusTools_SetIRQ_Lvl
	Description
	OS Support
	Syntax
	Return Value

	4.167 BusTools_SetMultipleExtTrig
	Description
	OS Support
	Syntax
	Return Value

	4.168 BusTools_SetNRLRTimeout
	Description
	OS Support
	Syntax
	Return Value

	4.169 BusTools_SetOptions
	Description
	OS Support
	Syntax
	Return Value

	4.170 BusTools_SetPolling
	Description
	OS Support
	Syntax
	Return Value

	4.171 BusTools_SetSa31
	Description
	OS Support
	Syntax
	Return Value

	4.172 BusTools_SetTermEnable
	Description
	OS Support
	Syntax
	Return Value

	4.173 BusTools_SetTestBus
	Description
	OS Support
	Syntax
	Return Value
	Note

	4.174 BusTools_SetVoltage
	Description
	OS Support
	Syntax
	Return Value

	4.175 BusTools_SetV6TrigIn
	Description
	OS Support
	Syntax
	Return Value

	4.176 BusTools_SetV6TrigOut
	Description
	OS Support
	Syntax
	Return Value

	4.177 BusTools_StatusGetString
	Description
	OS Support
	Syntax
	Return Value

	4.178 BusTools_TimeGetString
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.179 BusTools_TimeGetFmtString
	Description
	OS Support
	Syntax
	Return Value

	4.180 BusTools_TimeTagGet
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.181 BusTools_TimeTagInit
	Description
	OS Support
	Syntax
	Return Value

	4.182 BusTools_TimeTagMode
	Description
	OS Support
	Syntax
	Return Value
	Notes

	4.183 BusTools_TimeTagRead
	Description
	OS Support
	Syntax
	Return Value

	4.184 BusTools_TimeTagReset
	Description
	OS Support
	Syntax
	Return Value

	4.185 BusTools_TimeTagWrite
	Description
	OS Support
	Syntax
	Return Value

	4.186 BusTools_UpdateIntFifo
	Description
	OS Support
	Syntax
	Return Value

	4.187 BusTools_UpdateTailPTR
	Description
	OS Support
	Syntax
	Return Value

	4.188 BusTools_WriteVMEConfig
	Description
	OS Support
	Syntax
	Return Value

	5 • Extending the API
	5.1 Introduction
	5.2 BusTools/1553-API User DLL Interface
	5.3 How Does it Work?
	5.3.1 Support for Multiple User Interface DLLs

	5.4 What Can I Do from a User Interface DLL Function?
	5.5 User Interface DLL Function Example
	5.6 BusTools/1553-API User DLL Interface Functions
	5.6.1 UsrAPI_Close
	Description
	OS Support
	Syntax
	Return Value
	5.6.2 UsrBC_MessageAlloc
	Description
	OS Support
	Syntax
	Return Value
	5.6.3 UsrBC_MessageRead
	Description
	OS Support
	Syntax
	Return Value
	5.6.4 UsrBC_MessageUpdate
	Description
	OS Support
	Syntax
	Return Value
	5.6.5 UsrBC_MessageWrite
	Description
	OS Support
	Syntax
	Return Value
	5.6.6 UsrBC_StartStop
	Description
	OS Support
	Syntax
	Return Value
	5.6.7 UsrBM_MessageAlloc
	Description
	OS Support
	Syntax
	Return Value
	5.6.8 UsrBM_MessageRead
	Description
	OS Support
	Syntax
	Return Value
	5.6.9 UsrBM_StartStop
	Description
	OS Support
	Syntax
	Return Value
	5.6.10 UsrRT_CbufWrite
	Description
	OS Support
	Syntax
	Return Value
	5.6.11 UsrRT_MessageRead
	Description
	OS Support
	Syntax
	Return Value
	5.6.12 UsrRT_StartStop
	Description
	OS Support
	Syntax
	Return Value

	6 • Return Codes
	7 • Data Structures
	7.1 1553 Command Word (BT1553_COMMAND)
	Code Definition
	Description
	Data Elements

	7.2 1553 Status Word (BT1553_STATUS)
	Code Definition
	Description
	Data Elements

	7.3 BC Retry Parameters (BusTools_BC_Init argument)
	Code Definition
	Description
	Data Elements

	7.4 BC Message Buffer (API_BC_MBUF)
	Code Definition
	Description
	Data Elements

	7.5 BM Filter Buffer (API_BM_CBUF)
	Code Definition
	Description
	Data Elements

	7.6 BM Message Buffer (API_BM_MBUF)
	Code Definition
	Description
	Data Elements

	7.7 BM Trigger Buffer (API_BM_TBUF)
	Code Definition
	Description
	Data Elements

	7.8 BM Word Status Bits (8/16 bit)
	Code Definition
	Description
	Data Elements (in alphabetical order)

	7.9 Device List Structure (DeviceList)
	Code Definition
	Description
	Data Elements

	7.10 Error Injection Definitions (API_EIBUF and API_ ENH_EIBUF)
	Code Definition
	Description
	Data Elements

	7.11 Interrupt Enable / Message Status Bits (32 bit)
	Code Definition
	Description
	Data Elements (in alphabetical order)

	7.12 Interrupt Queue Message Block Structure (F/W 5.x or earlier)
	Code Definition
	Description
	Data Elements

	7.13 Interrupt Queue Message Block Structure (F/W 6.0)
	Code Definition
	Description
	Data Elements

	7.14 Interrupt Register/Filter/FIFO Structure (API_INT_FIFO)
	Code Definition
	Description
	Data Elements

	7.15 Playback Data (API_PLAYBACK)
	Code Definition
	Description
	Data Elements

	7.16 Playback Status (API_PLAYBACK_STATUS)
	Code Definition
	Description
	Data Elements

	7.17 RT Address Control Block (API_RT_ABUF)
	Code Definition
	Description
	Data Elements

	7.18 RT Control Buffer (API_RT_CBUF)
	Code Definition
	Description
	Data Elements

	7.19 RT Control Buffer for Broadcast (API_RT_CBUFBROAD)
	Code Definition
	Description
	Data Elements

	7.20 RT Message Buffer (read-only) (API_RT_MBUF_READ)
	Code Definition
	Description
	Data Elements

	7.21 RT Message Buffer (write-only) (API_RT_MBUF_WRITE)
	Code Definition
	Description
	Data Elements

	7.22 Time Structure (BT1553_TIME)
	Code Definition
	Description
	Data Elements

	7.23 Device Mapping(DEVMAP_T)
	Code Definition
	Description
	Data Elements
	7.23.1 Device Information (DEVICE_INFO)
	Code Definition
	Description
	Data Elements

	A • Sample Programs
	A.1 List

	Glossary

