

Software User's Manual
BusTools/1553-API
Publication No. 1500-045 Rev. 5.12

Supporting Products:

• QPCX-1553 • QCP-1553 • RXMC-1553

• QPMC-1553 • R15-AMC • RXMC2-1553

• R15-EC • Q104-1553P • R15-LPCIE

• RPCC-D1553 • QPCI-1553 • R15-USB

• QVME-1553 • RPCIE-1553 • RAR15-XMC-IT/RAR15XF

• RQVME2-1553

• R15-MPCIE

• QPM-1553

• R15-USB-MON

• R15-PMC

2 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Document History

Revision Date Description

5.11 July 2019 BusTools/1553-API Software Revision: 8.24

Hardware Revision: 6.11/6.09/6.08/6.03/5.18/4.6x/4.4x

Rebranding to the Abaco Systems format.

5.12 Dec 2019 BusTools/1553-API Software Revision: 8.28

Updated supported versions of Windows and added Hardware
Revision 6.17

Waste Electrical and Electronic Equipment (WEEE) Returns

Abaco Systems is registered with an approved Producer Compliance Scheme (PCS) and, subject

to suitable contractual arrangements being in place, will ensure WEEE is processed in accordance

with the requirements of the WEEE Directive.

Abaco Systems will evaluate requests to take back products purchased by our customers before

August 13, 2005 on a case-by-case basis. A WEEE management fee may apply.

Publication No. 1500-045 Rev. 5.11 About This Manual 3

About This Manual

Conventions

Notices

This manual may use the following types of notice:

 WARNING
Warnings alert you to the risk of severe personal injury.

 CAUTION
Cautions alert you to system danger or loss of data.

 NOTE
Notes call attention to important features or instructions.

 TIP
Tips give guidance on procedures that may be tackled in a number of ways.

 LINK
Links take you to other documents or websites.

Terms

Windows – References to “Windows” refer to all supported Microsoft Windows®

Operating Systems.

BusTools/1553 Hardware – Refers to Abaco Systems MIL-STD-1553 boards supported

by BusTools/1553-API.

BusTools/1553 Software – Refers to the Graphical User Interface (GUI) program that

uses the BusTools/1553-API. Using this GUI, you can program a Bus Controller and

Remote Terminals, as well as record 1553 data to disk for later analysis.

Channel – Refers to a MIL-STD-1553 interface with dual redundant buses. “Dual

Redundant” consists of two 1553 buses, primary and secondary, with one bus active at

a time. The primary bus is bus A, and the secondary bus is bus B. Many Abaco

Systems products have multiple 1553 interface channels. This document refers to those

as Channel 1, Channel 2, Channel 3, and Channel 4.

4 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Numbers

All numbers are expressed in decimal, except addresses and memory or register data,

which are expressed in hexadecimal. Where confusion may occur, decimal numbers

have a “D” subscript and binary numbers have a “b” subscript. The prefix “0x” shows

a hexadecimal number, following the ‘C’ programming language convention. Thus:

 One dozen = 12D = 0x0C = 1100b

The multipliers “k”, “M” and “G” have their conventional scientific and engineering

meanings of x103, x106 and x109, respectively, and can be used to define a transfer rate.

The only exception to this is in the description of the size of memory areas, when “K”,

“M” and “G” mean x210, x220 and x230 respectively.

In PowerPC terminology, multiple bit fields are numbered from 0 to n where 0 is the

MSB and n is the LSB. PCI terminology follows the more familiar convention that bit 0

is the LSB and n is the MSB.

Text

Signal names ending with “#” denote active low signals; all other signals are active

high. “-” and “+” denote the low and high components of a differential signal

respectively.

Publication No. 1500-045 Rev. 5.11 About This Manual 5

Further Information

Abaco Website

You can find information regarding Abaco products on the following website:

 LINK
https://www.abaco.com

Abaco Documents

This document is distributed via the Abaco website. You may register for access to

manuals via the website.

 LINK
https://www.abaco.com/products/avionics

• BusTools/1553-API Reference Manual

 LINK
https://www.abaco.com/download/bustools1553-api-reference-manual

• UCA32 LPU Reference Manual

 LINK
https://www.abaco.com/download/uca32-lpu-reference-manual

• UCA32 Global Register Reference Manual

 LINK
https://www.abaco.com/download/uca32-global-reg-ref-manual

• MIL-STD-1553 UCA Reference Manual

 LINK
https://www.abaco.com/download/mil-std-1553-uca-reference-manual

https://www.abaco.com/
https://www.abaco.com/products/avionics
https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/uca32-lpu-reference-manual
https://www.abaco.com/download/uca32-global-reg-ref-manual
https://www.abaco.com/download/mil-std-1553-uca-reference-manual

6 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Technical Support Contact Information

You can find technical assistance contact details on the website Embedded Support

page.

 LINK
https://www.abaco.com/embedded-support

Abaco will log your query in the Technical Support database and allocate it a unique

Case number for use in any future correspondence.

Alternatively, you may also contact Abaco’s Technical Support via:

 LINK
avionics.support@abaco.com

Returns

If you need to return a product, there is a Return Materials Authorization (RMA) form

available via the website Support page.

 LINK
https://www.abaco.com/support

Do not return products without first contacting the Abaco Repairs facility.

https://www.abaco.com/embedded-support
mailto:avionics.support@abaco.com
https://www.abaco.com/embedded-support

Publication No. 1500-045 Rev. 5.11 About This Manual 7

Safety Summary

The following general safety precautions must be observed during all phases of the

operation, service and repair of this product. Failure to comply with these precautions

or with specific warnings elsewhere in this manual violates safety standards of design,

manufacture and intended use of this product.

Abaco assumes no liability for the customer’s failure to comply with these

requirements.

Ground the System

To minimize shock hazard, the chassis and system cabinet must be connected to an

electrical ground. A three-conductor AC power cable should be used. The power cable

must either be plugged into an approved three-contact electrical outlet or used with a

three-contact to two-contact adapter with the grounding wire (green) firmly connected

to an electrical ground (safety ground) at the power outlet.

Do Not Operate in an Explosive Atmosphere

Do not operate the system in the presence of flammable gases or fumes. Operation of

any electrical system in such an environment constitutes a definite safety hazard.

Keep Away from Live Circuits

Operating personnel must not remove product covers. Component replacement and

internal adjustments must be made by qualified maintenance personnel. Do not

replace components with power cable connected. Under certain conditions, dangerous

voltages may exist even with the power cable removed. To avoid injuries, always

disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone

Do not attempt internal service or adjustment unless another person capable of

rendering first aid and resuscitation is present.

Do Not Substitute Parts or Modify System

Because of the danger of introducing additional hazards, do not install substitute parts

or perform any unauthorized modification to the product. Return the product to

Abaco for service and repair to ensure that safety features are maintained.

8 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Contents

About This Manual .. 3

1 • Unpacking and Handling ... 13

1.1 Unpacking Procedures ...13
1.2 Handling Precautions ...13

2 • Overview ... 14

2.1 Introduction ...14
2.2 BusTools/1553-API ..14

2.2.1 Interface to Other Languages ...14
2.2.2 API Source Code ..15

2.3 Supported Hardware ..15
2.4 Hardware Features ...16

3 • Operational Modes and Timing .. 17

3.1 Single-function, Dual-function, and Multi-function Modes ...17
3.2 RT Validation Mode (Single RT) ...17
3.3 MIL-STD-1553A and MIL-STD-1553B Operation ...18

3.3.1 MIL-STD-1553A Operation...18
3.3.2 MIL-STD-1553B Operation ...18

3.4 Setting and Using Time-tags ..18
3.4.1 Time-tag Modes ...19
3.4.2 Time-tag Initialization ..20
3.4.3 Formatting and Displaying Time-tags ...20
3.4.4 Selecting Time-tag Options ...20
3.4.5 Controlling and Synchronizing Time-tags...21
3.4.6 Reading Time-tags ...22

3.5 Using IRIG-B on Selected Boards ...22

4 • Bus Monitor .. 24

4.1 BM Hardware Operation ...24
4.2 BM Software Operation ..26
4.3 BM Recording..28

5 • Remote Terminals ... 29

5.1 RT Hardware Operation ..29
5.2 RT Software Operation ...31
5.3 RT Monitor Mode ..33
5.4 RT Extended Status Mode ..33
5.5 Dynamic Bus Control ..34

6 • Bus Controller .. 36

6.1 BC Hardware Operation ..36
6.1.1 Frame Messaging ..36
6.1.2 Message Scheduling ...37

6.2 BC Message Block Types ...37
6.2.1 1553 BC Message Block ...37
6.2.2 Conditional Branch BC Message Block ..38
6.2.3 Stop BC Message Block ..39
6.2.4 NO-OP BC Message Block ...39
6.2.5 Timed NO-OP BC Message Block ...39
6.2.6 Timed NOOP in Different BC Timing Modes ..39

6.3 Aperiodic 1553 BC Messages ..40
6.3.1 High Priority Aperiodic Messages ..40
6.3.2 Low-Priority Aperiodic Messages ...41

Publication No. 1500-045 Rev. 5.11 Contents 9

6.3.3 Aperiodic Message Timing ...41
6.4 Dynamic Bus Control ..42
6.5 Message Scheduling ..42
6.6 Minor Frame Definition ...42
6.7 Message Gap Timing ...44
6.8 BC Software Operation ...45

6.8.1 Initializing the Bus Controller ..45
6.8.2 Allocating BC Messages ...47
6.8.3 BC Messages ...47
6.8.4 Defining a Minor Frame ...48
6.8.5 Setup Message Gap Timing ..48
6.8.6 Bus Controller Interrupt Programming ...48

6.9 BC One-Shot Operation ..48
6.10 BC Read/Write/Update/Allocate APIs ...49

7 • Error Injection ... 52

7.1 Error Injection Hardware Operation ...52
7.2 Error Types ..53
7.3 Enhanced Zero-Crossing ..54
7.4 Error Injection Software Operation ..55

8 • Interrupt Queue and Interrupts ... 56

8.1 Interrupt Queue Initialization and Structure ..56
8.2 Selecting Interrupt Events ..57

8.2.1 Selecting Bus Controller Interrupts ...58
8.2.2 Selecting Bus Monitor Interrupts ..59
8.2.3 Selecting Remote Terminal Interrupts ..59
8.2.4 Selecting External Trigger Interrupts ..59

8.3 Interrupt Processing ...59
8.3.1 Interrupt Queue Software Operation ...60
8.3.2 Polling ..61
8.3.3 Interrupts ..61
8.3.4 Setting Up Interrupts with BusTools_RegisterFunction ...63

8.4 Polled or Interrupt Driven? ..64

9 • Board Memory Organization ... 65

9.1 Hardware Operation ...65
9.2 Software Operation ...65

9.2.1 Memory Segmentation ..65
9.3 Memory Organization ...66

10 • C# Support ... 68

10.1 Introduction ...68
10.2 The Reference Solution ..69
10.3 The API, Data, and Constants Classes ..69
10.4 Building and Running the Application ...70
10.5 Adding the Managed Wrapper to an Existing .NET Application ..70
10.6 Important Coding Differences when Using the .NET Wrappers ..70

10.6.1 IntFifo Creation and Updating ...71
10.6.2 Multi-Dimensional Array Data ...71
10.6.3 Class and Struct Versions of Data types ..71

10.7 Application Notes ...72
10.7.1 BustoolsCsApp ..72
10.7.2 BustoolsInterop ...72

11 • LabVIEW Support .. 73

11.1 Information ...73
11.2 System Requirements ..73
11.3 LabVIEW VI Examples ..73

10 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

12 • VxWorks Support ... 74

12.1 Introduction ...74
12.2 VxWorks Installation ..74

13 • UNIX Support ... 75

13.1 Introduction ...75
13.2 Compiling Applications ..76
13.3 Linux Installation ..76
13.4 LynxOS Installation ...76

14 • Integrity Support .. 77

14.1 Introduction ...77
14.2 Integrity Installation ..77

15 • Porting the API to Other Environments ... 78

15.1 Supported Compilers..78
15.2 API Source Code ...78
15.3 Rebuilding the API ..79

15.3.1 Customizing the BusTools/1553-API Using Pre-Defined Symbols ...80
15.3.2 Other Build Symbols ..82

15.4 Windows Calling Conventions ...83
15.5 Porting to an Unsupported Operating System ..84

15.5.1 Endian Issues ...84
15.5.2 Conversion Steps ...84

15.6 Rebuilding the BusTools/1553-API Library ...91
15.6.1 Changing Project Options ...91
15.6.2 Building the DLL ...94

15.7 Building a Unix Platform Shared Library ...94

Publication No. 1500-045 Rev. 5.11 List of Figures 11

List of Figures

Figure 15-1 Visual Studio Project Propertis .. 92

Figure 15-2 Visual Studio Project Compiler Include File Path Properties ... 92

Figure 15-4 Visual Studio Project Compiler Code Generation Properties ... 93

Figure 15-3 Visual Studio Project Linker Directories File Path .. 93

12 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

List of Tables

Table 2-1 Abaco Systems MIL-STD-1553 Products ... 15

Table 2-2 1553 Board Feature Guide ... 16

Table 3-1 Time-tag Mode Options ... 19

Table 3-2 Time-tag Initialization Options .. 20

Table 3-3 TTDisplay Options .. 20

Table 3-4 Recommended Settings for Time-tag Modes .. 21

Table 6-1 Allowed BC Timing Modes for Static TNOP and Dynamic TNOP ... 39

Table 6-1 Message Scheduling .. 42

Table 6-2 Single/Double Data Buffer Functionality with F/W V4/5 ... 49

Table 6-3 Single/Double Data Buffer Functionality with F/W V6 ... 49

Table 6-4 Multiple Data Buffer Functionality with F/W V6 and API 8.0+ ... 50

Table 8-1 Interrupt Events .. 57

Table 8-2 Interrupt Events Filters ... 62

Table 13-1 UNIX Support Matrix .. 75

Table 15-1 Rebuilding the API on Various Environments ... 79

Table 15-2 Currently Supported Platforms and Operating Systems ... 79

Table 15-3 Symbols that Customize the BusTools/1553-API ... 80

Table 15-4 Other Symbols .. 82

Table 15-5 Structure Size for Key BusTools/1553-API Structures for Boards Running V5 or Earlier Firmware 88

Table 15-6 Structure Size for Key BusTools/1553-API Structures for Boards Running V6 Firmware....................... 88

Publication No. 1500-045 Rev. 5.11 Unpacking and Handling 13

1 • Unpacking and Handling

1.1 Unpacking Procedures

Any precautions found in the shipping container should be observed. All items should

be carefully unpacked and thoroughly inspected for damage that might have occurred

during shipment. The board(s) should be checked for broken components, damaged

printed circuit board(s), heat damage and other visible contamination. All claims

arising from shipping damage should be filed with the carrier and a complete report

sent to Abaco Systems Customer Care.

1.2 Handling Precautions

Electronic assemblies use devices that are sensitive to static discharge. Observe anti-

static procedures when handling these boards. All products should be in an anti-static

plastic bag or conductive foam for storage or shipment. Work at an approved anti-

static workstation when unpacking boards.

14 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

2 • Overview

2.1 Introduction

This manual is the guide for using Abaco Systems’ MIL-STD-1553 product line using a

common Application Program Interface (API). Abaco Systems’ MIL-STD-1553 interface

boards offer a wide range of options, compatible with most system configurations.

Most importantly, these products all come with a common software package providing

C-Language software control providing the ability to perform rapid application

development.

2.2 BusTools/1553-API

All Abaco Systems’ MIL-STD-1553 products share a common architecture and use the

same powerful “C” language Application Program Interface (API) called

BusTools/1553-API. This software library is available for 32-bit Windows XP and 32-

bit/64-bit Windows 7/2008R2 (SP1 and KB3033929 reqd), 8, 8.1, Window Server 2012

R1/R2 and 10. This manual refers to these Windows versions as “Windows”. The API

also runs with Linux, VxWorks, Integrity, and LynxOS.

The API supports single, dual, and multi-function boards. This allows applications

written for a single-function or dual-function boards to run a multi-function board,

without changing the original code.

API Routines control initialization, Bus Monitor (BM), Remote Terminal (RT), and Bus

Controller (BC) functions, as well as interrupt handling, timing modes,

discretes/triggering and other board features. API routines are easy to use and speed

the development of applications. Programmers are not required to know board details

or on-board memory management. BusTools/1553-API provides a common interface

across PCI, PCI Express, Mini-PCI Express, PMC, XMC, AMC, VME/VXI, PC/104 Plus,

and ExpressCard platforms, providing for flexible and reusable software.

This is useful when expanding systems or migrating between platforms.

2.2.1 Interface to Other Languages

Abaco Systems supplies interface files and example programs to assist with

application use of the API library functions in other languages like C#. See Chapter 10,

“C# Support” for more information regarding development with the API in this

environment.

Support for National Instruments LabVIEW is provided in a separate product called

“LV-1553”.

Publication No. 1500-045 Rev. 5.11 Overview 15

2.2.2 API Source Code

API source code is included with the API distribution if you need to adapt the API to

other platforms and operating systems.

2.3 Supported Hardware

The following table shows Abaco Systems boards supported by BusTools/1553-API.

For detailed descriptions of all products, including available options and carriers, refer

to the Abaco Avionics site.

 LINK
https://www.abaco.com/products/avionics

Table 2-1 Abaco Systems MIL-STD-1553 Products

Product Name Bus Number of Channels Latest F/W Version

R15-USB USB 1 or 2 6.11

BT3-USB-MON USB 1 6.11

QPCI-1553 PCI 1, 2 or 4 4.68

QPCX-1553 PCI 1, 2 or 4 6.03

QCP-1553 CompactPCI 1, 2 or 4 6.03

RPCC-D1553 PCMCIA 1 or 2 4.40

R15-EC Express Bus 1 or 2 6.03

RXMC-1553 XMC 1 or 2 6.09

RXMC2-1553 XMC 1, 2 or 4 6.17

RAR15-XMC-IT/RAR15XF XMC 1, 2 or 4 6.17

QPMC-1553 PMC 1, 2 or 4 4.66

QPM-1553 PMC 1, 2 or 4 6.17

RPCIE-1553 PCI Express 1, 2 or 4 6.08

R15-LPCIE PCI Express 1 or 2 6.03

R15-MPCIE PCI Express 1 or 2 6.09

R15-AMC AMC 1, 2, or 4 4.40

R15-PMC PMC 1 or 2 6.03

RQVME2-1553* VME 1, 2, or 4 4.40

QVME-1553 VME 1, 2 or 4 4.40

Q104-1553-P PC/104-Plus 1, 2 or 4 6.03

* The RQVME2-1553 is a RoHS redesign of the QVME-1553

https://www.abaco.com/products/avionics

16 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

2.4 Hardware Features

The following table provides more details regarding the features available on Abaco

Systems MIL-STD-1553 interface boards.

Table 2-2 1553 Board Feature Guide

1553 Board Avionics
Discretes

EIA-485 IRIG-B Hard Wired RT
Addressing

Test
Bus

LRU
Bus

DMA Ext Trig In/Out

R15-USB 8 No Yes No No No No Programmable

QPCI-1553 10 Yes Optional Ch 1 Yes Yes No Programmable
discretes

QPCX-1553 10 Yes Optional Ch 1 Yes Yes Yes Program discretes

QCP-1553 18 Yes Optional Ch 1 and Ch 2 No No Yes Program discretes

QPMC-1553 18 Yes Optional Ch 1 and Ch 2 No No No Program discretes

QPM-1553 18 Yes Optional Ch 1 and Ch 2 No No No Program discretes

R15-PCIE 18 Yes Optional Ch 1 and Ch 2 No No No Program discretes

R15-LPCIE 14 Yes Optional Programmable No No No Output - Prog Disc.
Input Per channel

R15-MPCIE 2 Yes No Programmable No No No Program discretes

R15-PMC Optional Optional Optional Yes No No No Optional

R15-AMC 18 Yes Optional Ch 1 and Ch 2 No No No Program discretes

PCC-D1553 2 No Optional No No No No Program discretes

R15-EC 2 No Optional No No No No Program Discretes

RXMC-1553 4 dedicated
+ 8 Discrete
or PIO
(optional)

4 Optional Optional Yes No No No Output - Prog Disc.
Input Per channel

RXMC2-1553 12 Yes Optional Programmable No No No Output - Prog Disc.
Input Per channel

RAR15-XMC-IT
RAR15XF

6 No IRIG-IN Programmable No No No Build option

QVME-1553
RQVME2-1553

4 No Optional All Channels Yes No No Per channel

Q104-1553P 10 Yes Optional Ch 1 No No No Program discretes

Publication No. 1500-045 Rev. 5.11 Operational Modes and Timing 17

3 • Operational Modes and Timing

This chapter focuses on general programming topics such as operational modes, time-

tags, and IRIG-B timing. The chapters that follow cover programming the Bus

Controller, Bus Monitor, and Remote Terminal along with interrupt programming and

memory usage.

3.1 Single-function, Dual-function, and Multi-function Modes

Abaco Systems 1553 boards come in single-function, dual-function, and multi-function

configurations. Single-function boards allow operation in only one of the three 1553

functions at a time: Bus Controller, Bus Monitor, or Remote Terminal (up to 31 RTs).

Although all three modes are available, the board can operate only in one mode at any

one time. If your application attempts to run more than one function on a single-

function board, a single-function board error message appears.

Dual function boards are available on firmware versions 4.50 or greater. Dual function

allows Bus Monitoring with Remote Terminal or Bus Controller operation. This allows

application to execute as a Bus Monitor along with either Bus Controller or Remote

Terminal functions. Dual function boards report a dual-function board error if the

application tries to run the Bus Controller and Remote Terminal together.

Multi-function boards allow any combination of the three modes at the same time. This

means a multi-function board can simulate a 1553 bus with a Bus Controller, Bus

Monitor, and up to 31 Remote Terminals.

3.2 RT Validation Mode (Single RT)

Starting with firmware version 5.00 individual channels can be programmed to

support RT Validation mode. In this mode, the channel will pass the RT Validation

Test Plan Protocol tests (MIL-HDBK-1553 Appendix A, 24 September 1986). This mode

limits the channel to a single operational RT address and is called Single RT Mode.

When a channel is in RT Validation mode, the Bus Monitor function can be utilized;

however, the Bus Controller function is not available.

Single RT Mode is set on a channel-by-channel basis and is persistent through power-

cycles. Individual channels can be configured for RT Validation Mode while other

channels support normal multi-RT mode. For information on RT Electrical and Noise

validation testing, or configuration of channel features including RT Validation mode,

Bus Monitor Only Mode, and Hardwired RT address, contact Abaco Systems Avionics

technical support.

 LINK
avionics.support@abaco.com

mailto:avionics.support@abaco.com

18 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

3.3 MIL-STD-1553A and MIL-STD-1553B Operation

All Abaco Systems 1553 interface channels can be initialized in either MIL-STD-1553A

or MIL-STD-1553B modes. Select the operational mode in the initialization call

(BusTools_API_OpenChannel or BusTools_API_InitExtended). Refer to the “BusTools

1553-API Reference Manual” for more information on Initialization.

If you initialize the channel to run in MIL-STD-1553B mode, you can select individual

Remote Terminal addresses to run the MIL-STD-1553A protocol. Invoke

BusTools_Set1553Mode to select the RT addresses on which to support the 1553A

protocol. If you initialize the channel for 1553A, then all RT addresses operate in 1553A

protocol and cannot be switched to support 1553B.

3.3.1 MIL-STD-1553A Operation

When the channel or RT address is operating in MIL-STD-1553A mode, the firmware

ignores the T/R bit in the mode code. MIL-STD-1553A defines only mode code 0x0,

Dynamic Bus Control. There is no data associated with any mode code. The remaining

mode codes are undefined and are system dependent.

Since MIL-STD-1553A does not use broadcast messages or subaddress 31, they are

disabled when 1553A operation is selected.

3.3.2 MIL-STD-1553B Operation

When the channel or RT address is operating in MIL-STD-553B mode, the firmware

defines all 1553B mode codes. Initialization enables subaddress 31 and broadcast

messages. Call BusTools_SetSa31 and BusTools_SetBroadcast to disable these settings.

MIL-STD-1553B defines mode codes 0x0 through 0x8 and 0x10 through 0x15. In MIL-

STD-1553B, mode codes 0x0 through 0xf do not have an associated data word, and

mode codes 0x10 through 0x1f have an associated data word. The MIL-STD-1553

Tutorial provides a complete list of mode codes.

3.4 Setting and Using Time-tags

Time-tags are time stamps on each 1553 message. For F/W version v5.x and earlier,

time-tags use an internal clock with a 1-microsecond resolution and a 45-bit time-tag

register. Starting with F/W version 6.0 and API version 8.00 time-tags use an internal

clock with a 1-nanosecond resolution and a 64-bit time-tag register. These registers

keep track of the time once a function (BC/BM/RT) starts running. This register

defaults to zero, but using BusTools/1553-API functions, you can select different

starting values.

BusTools/1553-API can synchronize time-tags to an external source and some of the

Abaco Systems 1553 products have IRIG-B capability.

https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/mil-std-1553-tutorial
https://www.abaco.com/download/mil-std-1553-tutorial

Publication No. 1500-045 Rev. 5.11 Operational Modes and Timing 19

3.4.1 Time-tag Modes

All time-tags for a channel come from a single time-tag register. However, the user can

implement several timing modes. Timing modes determine how timing operates for

the channel. The table below shows the time-tag mode options.

Table 3-1 Time-tag Mode Options

TTMode Time-tag operating mode:

API_TTM_FREE Free running time-tag counter (Default).

API_TTM_RESET Time-tag counter is reset to zero on external TTL input discrete active.

API_TTM_SYNC Synchronize the time-tag to the external TTL input. The TTPeriod parameter
sets the period of the external TTL input in microseconds.

API_TTM_RELOD Time-tag counter is reset to the value previously loaded into the Time-tag Load
register.

API_TTM_IRIG Time-tag counter is reset to the IRIG time from either an external or an internal
IRIG source. Board must have IRIG firmware to support this option.

API_TTM_AUTO Time-tag counter is automatically set to the increment of the value store in the
time-tag counter load register on an external sync pulse

API_TTM_XCLK Time-tag counter is updated using an external 1MHz clock. Default is to use
rising edge. Set lparm1 to TIME_EXT_EDGE to use the falling edge. Requires
firmware version 5.00 or higher on RXMC2-1553 only.

API_TTM_FREE is the default setting for time-tag mode. It allows the time-tag register

to run continuously. The other options depend on either an external sync pulse or an

external IRIB-B time input. IRIG-B is an option available on some boards. Later

sections discuss the IRIG-B function.

API_TTM_RESET, API_TTM_SYNC, API_TTM_RELOD, and API_TTM_AUTO modes

depend on an external TTL pulse. API_TTM_SYNC and API_TTM_AUTO are similar

functions. The API_TTM_SYNC mode allows the application to sync the time-tag to an

external pulse. However, the application must continually set the Time-tag Counter

Load Register with the next sync value. For example, if you sync on a 1 second pulse,

you increment the initial value by 1,000,000 after each sync pulse. The

API_TTM_AUTO automatically increments the Time-tag Counter Load Register on

each external pulse. The API_TTM_AUTO is the preferred method to sync the time-tag

to an external pulse. API_TTM_SYNC is deprecated and only for legacy code already

using that method.

To use the API_TTM_AUTO, program both the Time-tag Counter Load Register with

the base start time and the Time-tag Increment Register with the time increment of the

sync pulse. You can use a sync pulse increment of 1µs up to 1.193 hours.

API_TTM_RESET and API_TTM_RELOD are similar modes that reset the time-tag to a

previous value on an external pulse. API_TTM_RESET resets the time-tag to 0 while

API_TTM_RELOD reset the time-tag to an initial setting. The application calls

BusTools_TimeTagWrite prior to selecting API_TTM_RELOD to set the re-load value.

API_TTM_XCLCK (RXMC2-1553 only) uses an external clock source instead of the

board’s clock. The clock input connects through the differential input.

20 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

3.4.2 Time-tag Initialization

There are several options regarding how an application may choose to initialize

channel time for the selected timing mode. The table below defines the timer

initialization options available to individual channels on a 1553 board.

Table 3-2 Time-tag Initialization Options

TTInit Time-tag Initialization Mode:

API_TTI_ZERO Time set to zero. (Default)

API_TTI_DAY Time of day, relative to midnight, is loaded into the Time-tag counter (Host
Clock reference)

API_TTI_IRIG Time of year based on IRIG format (Host clock reference or actual IRIG-B
input)

Time-tag initialization pre-loads the time-tag counter register with a starting value.

Both the API_TTI_DAY and API_TTI_IRIG use the host clock to calculate a time in

microseconds. An application can override this value by call BusTools_TimeTagWrite

after the call to BusTools_TimeTagInit.

3.4.3 Formatting and Displaying Time-tags

Each 1553 message has a BT1553_TIME structure that records the time of the message

transaction. This time is based on the initial time-tag setting. BT1553_TIME contains

the raw time-tag data in µs. An application can display the time-tag as a string by

calling BusTools_TimeGetString.

BusTools_TimeGetString displays the time-tag according to the setting of the Time-tag

Display parameter in the call to BusTools_TimeTagMode. The table below shows the

display options.

Table 3-3 TTDisplay Options

TTDisplay Display Type:

API_TTD_RELM

API_TTD_REML_NS

Relative to midnight format “(ddd)hh:mm:ss.useconds”.

Only those components necessary are displayed (e.g., if days is zero it
is not displayed). Default display mode.

API_TTD_IRIG

API_TTD_IRIG_NS

IRIG Format “(ddd)hh:mm:ss.uuuuuu”. Formatting:

ddd = days; hh = hours; mm = minutes;

ss = seconds; uuuuuu = microseconds.

All components displayed; fixed format.

API_TTD_DATE

API_TTD_DATE_NS

Date Format “(MM/dd)hh:mm:ss.uuuuuu”.

Match the TTInit and TTDisplay values to get a consistent recording and display of the

data. Use the _NS version of the display parameter when using V6 firmware to convert

time-tags having a one nanosecond resolution.

3.4.4 Selecting Time-tag Options

There are six time-tag modes, three time-tag initialization options, and three time-tag

display options. Those options provide a wide variety of time-tag settings, all of which

will work, but only a few combinations are useful. The following tables show the

recommended setting for each time-tag mode (“+” indicates recommended; “?” indicates

supported, not recommended; <blank> indicates not supported).

Publication No. 1500-045 Rev. 5.11 Operational Modes and Timing 21

Table 3-4 Recommended Settings for Time-tag Modes

Time-tag Mode Init/Display Options API_TTI_ZERO API_TTI_IRIG API_TTI_DAY

Free Mode/XCLK

API_TTD_RELM + ? ?

API_TTD_IRIG ? + +

API_TTD_DATE ? + +

IRIG Mode

API_TTD_RELM

API_TTD_IRIG +

API_TTD_DATE +

Reset/Reload
Mode

API_TTD_RELM + ? ?

API_TTD_IRIG + ? ?

API_TTD_DATE + ? ?

Sync/Auto Mode

API_TTD_RELM + + +

API_TTD_IRIG + + +

API_TTD_DATE + + +

3.4.5 Controlling and Synchronizing Time-tags

Free run is the default time-tag setting. This means the internal clock increments the

time-tag register 1/µs. The internal clock has a 10-25 µs drift per second. This is usually

not a problem when running a single 1553 bus. However, this drift can cause problems

matching messages from different systems when running several 1553 buses across

several platforms. BusTools_TimeTagMode offers several settings for synchronizing

time-tags. These include External IRIG time input and synchronizing to an external

TTL pulse.

BusTools_TimeTagMode sets up both the Time-tag Counter Load Register and the

Time-tag Increment Register. It sets the base time according to the TTInit selection and

sets the timer increment to the value of the TTPeriod. The following code examples

show the results of various parameter settings in the call to BusTools_TimeTagMode

on how the API records and displays time-tags. See the “BusTools/1553-API Reference

Manual” for a full description of BusTools_TimeTagMode.

status = BusTools_TimeTagMode(cardnum,API_TTD_DATE,

API_TTI_ZERO, API_TTM_FREE, NULL, 0, 0, 0);

time-tag = 2.801817

status = BusTools_TimeTagMode(cardnum,API_TTD_DATE,

API_TTI_DAY, API_TTM_FREE, NULL, 0, 0, 0);

time-tag = 13:42:56.540472

status = BusTools_TimeTagMode(cardnum,API_TTD_DATE,

API_TTI_IRIG, API_TTM_FREE, NULL, 0, 0, 0);

time-tag = (6/7)12:44:43.562962

https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/bustools1553-api-reference-manual

22 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

status = BusTools_TimeTagMode(cardnum,API_TTD_IRIG,

API_TTI_IRIG, API_TTM_FREE, NULL, 0, 0, 0);

time-tag = (158)12:47:54.719961

status = BusTools_TimeTagMode(cardnum,API_TTD_RELM,

API_TTI_DAY, API_TTM_FREE, NULL, 0, 0, 0);

time-tag = 12:49:48.605472

3.4.6 Reading Time-tags

BusTools/1553-API allows applications to read the time-tag counter. This is an

asynchronous read of the time-tag register, unrelated to a specific message time-tag.

BusTools_TimeTagRead returns a BT1553_TIME structure. With BusTools/1553-API

version 5.x and earlier, the BT1553_TIME structure is 48-bits. In F/W version 6.x the

BT1553_TIME structure is 64-bits. Depending the firmware version, the time-tag

resolution is either 1µs or 1ns.

3.5 Using IRIG-B on Selected Boards

Some Abaco Systems 1553 boards support IRIG-B timing. See Table 2-2. IRIG-B is an

optional feature. If your board has IRIG-B, you can use an external IRIG-B signal for

timing or generate an IRIG-B signal on the board. The IRIG-B-capable boards can also

generate an IRIG B002 signal externally.

BusTools/1553-API provides several functions to support IRIG-B. Function names all

start with a “BusTools_IRIG_” prefix. Call BusTools_IRIG_Config to configure IRIG

timing. This function lets you select internal or external IRIG-B signal source. It also

sets whether the board outputs the IRIG-B signal. If you use an external or internal

IRIG-B signal for timing, you must set the TTMode in the call to

BusTools_TimeTagMode to API_TTM_IRIG.

When using an external IRIG-B signal, the application should execute the API

calibration function, BusTools_IRIG_Calibration. This function calibrates the IRIG

DAC by adjusting the peak detection threshold to 82.5% of the maximum peak using

the formula Vmin + .825(Vmax – Vmin), where Vmax is the maximum peak amplitude

detection level, and Vmin is the minimum peak detection level. The IRIG DAC

adjustment performed by the IRIG calibration applies to all channels on multi-channel

boards and is not a channel-specific operation. This operation is not supported with

the RPCC-D1553 or PCCard-1553 boards.

The incoming IRIG-B signal updates the time-tag register 1/s. The onboard clock

provides the µs timing. If you lose the external IRIG-B signal, the internal clock

continues generating time-tags. Call BusTools_IRIG_Valid periodically to make sure

there is a valid IRIG-B signal. If you use the internal IRIG-B, you need to call

BusTools_IRIG_SetTime to set the IRIG-B time. You can either pass time or use the

system time. See the “BusTools/1553-API Reference Manual”, for details on the

BusTools_IRIG_xxxx functions.

https://www.abaco.com/download/bustools1553-api-reference-manual

Publication No. 1500-045 Rev. 5.11 Operational Modes and Timing 23

24 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

4 • Bus Monitor

The Bus Monitor (BM) function provides the ability to monitor and record all

messages, or a defined subset of the messages on the 1553 bus. In addition, the BM

provides timing information and detailed error status for each message word

(command, data and status).

This chapter describes the BM functionality and the API routines that control the BM

functions.

4.1 BM Hardware Operation

The BM records information about each message on the 1553 bus. It records the

message data and status about the data transmission in a BM Message Buffer in

memory. The application program must initialize a list of BM Message Buffers in

channel memory and tell the microcode where the list is located (by storing the

channel memory address of the list in one of the RAM Registers). In F/W version 5.x

and earlier the list of BM Message buffers is a circular linked list (that is, each buffer

has a pointer to the location of the next buffer in the list, and the last buffer has a

pointer to the first buffer in the list). Starting with F/W version 6.0 the BM message

buffer is composed of variable size buffers and the size of the current BM message

determines the start of the next buffer. The buffer size is in bytes, not the number of

fixed sized messages. A message recorded at the end of the buffer will wrap to the

start.

As messages appear on the 1553 bus, the board microcode fills in the BM Message

buffer with message data. The microcode then checks the 32-bit Interrupt Status Bits

for this message against the set of Interrupt Enable Bits specified in the message buffer.

If there are any matching bits (if the logical AND of the two 32-bit values is non-zero),

an Interrupt Message is added to the Interrupt Queue.

Finally, the microcode sets an internal register to point to the next message buffer in

the list and asserts the hardware interrupt output (if enabled).

The Bus Monitor can run under interrupt control. Chapter 8, “Interrupt Queue and

Interrupts” defines the interrupt queue structure. Once an interrupt is received, the

address is recorded in the interrupt queue and a hardware interrupt signals the

application that an interrupt message containing the channel memory address of the

BM Message Buffer generating the interrupt. Any application interfacing to a board

running with F/W version 5.x or earlier will convert the memory address to a specific

BM Message Buffer using BusTools_BM_GetMessageid. The application reads the BM

Message from channel memory using BusTools_BM_MessageRead. The application

can then process the message as needed. Any application interfacing to a board

running F/W version 6.0 or greater uses the address to a message to read the message

data out the BM Buffer. Starting with F/W version 6.03 there is an option to suppress

Publication No. 1500-045 Rev. 5.11 Bus Monitor 25

the hardware interrupt, but still allowing the address of the BM message to be

recorded in the interrupt queue.

As messages appear on the 1553 bus, the microcode sequences through the BM

Message Buffer list recording the data. There is no check to see if there is data in the

buffer or if the application program has read the data; therefore, the user’s application

must allocate enough BM Message Buffers to ensure it can process each buffer before

the microcode “wraps-around” and overwrites the data. The user must consider the

expected message rate and time required to process the information in each message

when deciding on how many buffers to allocate.

The available RAM on the 1553 board determines the maximum number of BM

Message Buffers. See Chapter 9, “Board Memory Organization” for more details.

When the API initializes the Bus Monitor function, the default is to monitor and

capture all messages. However, the Bus Monitor can filter messages. The BM Filter

defines the filtering. The filtering operation is on the message command word (or the

first command word in the case of “RT to RT” messages). The filter enables or disables

each possible command word for BM recording. In addition, the filtering operation can

be set up to record every nth occurrence of each command word type.

Finally, the application can define one or more trigger events used to start the BM

recording operation. Before the trigger event occurs, the BM does not record Messages.

Once the trigger event occurs, the BM records all messages, subject to the BM Filter.

The trigger events are set up using a command, data or status word of incoming

messages.

• For each message recorded by the BM, the microcode stores the following items

in the BM Message Buffer:

• Each message word; command, data, and status, along with a 16-bit BM Status

Word for that word

• The message time-tag (the time counter as of the mid-zero crossing of the parity

bit of the command word).

• The 32-bit Interrupt Status word for the entire message; this word is a

combination of all the information about the operation of the message. It

includes information about the type of message (RT-RT, Mode Code),

Completion status (End of Message, Retry Occurred), and Error Conditions (No

Response, parity, bit count, etc.).

In addition, the BM measures the RT response time and stores it in the message buffer.

The microcode records the information to the message buffer as it sees it on the bus.

The only word of the message that is always in the same place is the command word

(the first command word in the case of “RT to RT” messages) and the BM Word Status

Bits. After that, the contents of the message buffer depend on the type of message and

number of words in the message. Take for example, a “receive” message with 10 data-

words. This message has the data immediately following the Command Word’s BM

Word Status Bits. The data consists of the data value and the BM Word Status Bits for

26 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

each of the 10 data words (20 words). Following the data is the RT response time (the

time the RT required to return its status word). Finally, the BM records the status word

and its BM Word Status. For a “transmit” message, the response time and status

information is before the data (because the status word appears before the data in the

message).

Applications using BusTools/1553-API need not worry about this complexity. The API

returns the BM Message Buffer as a fixed format fixed length structure that the

application can easily use. See the BM Message Buffer (API_BM_MBUF) structure for

details. This is the same structure used to write the Bus Monitor data to the BusTools-

1553 Bus Monitor Recording File.

4.2 BM Software Operation

This section describes the BusTools/1553-API routines that handle BM operations. The

Bus Monitor initialization performs certain hardware set up for the respective channel,

such as memory initialization, interrupt queue definition and error-injection-buffer

definition. Because of these initialization steps, if you are programming a Bus Monitor,

your application must call BusTools_BM_Init prior to executing any functions that

configure the Bus Controller or Remote Terminal. You no longer need to call

BusTools_BM_Init if you are not programming a Bus Monitor.

After completing hardware initialization (using BusTools_API_InitExtended or

BusTools_API_OpenChannel), the next routine called is BusTools_BM_Init. This

routine sets up the BM for operation. It allocates and initializes the default BM filter

and sets it to enable the recording of all messages. It also sets the default BM trigger to

start recording immediately. This routine starting in BusTools/1553-API v 8.12 and

with firmware 6.03 can now disable BM hardware interrupts. The messages will still

record in the interrupt queue, if the interrupt enable is set in

BusTools_BM_MessageAlloc, but they will not create a hardware interrupt strobe.

Next, the application typically sets the desired parameters for the BM Filter.

BusTools_BM_Init creates a default BM Filter that enables monitoring of all messages.

If this behavior is acceptable for your application, no further initialization of the BM

Filter buffer is required.

You modify the BM Filter by using the BusTools_BM_FilterWrite routine. With this

routine, you specify the filter settings for a particular RT subunit (a RT subunit is a

specific RT address / subaddress / transmit-receive flag combination). You can call this

routine for all possible RT subunit combinations. The default BM filter setting lets the

BM record all messages. You should not call BusTools_BM_FilterWrite if this is

acceptable for your application.

The application should then create the required number of BM Message buffers using

the BusTools_BM_MessageAlloc routine. The caller specifies the required number of

message buffers. Make this number big enough to keep the expected message traffic on

the 1553 bus from overwriting the list before the application can retrieve the data. If

there is enough memory on the board, the routine creates the requested number of

Publication No. 1500-045 Rev. 5.11 Bus Monitor 27

message buffers and links the buffers. If there is not enough memory for the requested

number of buffers, the routine creates as many message buffers as possible and returns

the actual number created to the caller. If the application is going to use all the

memory on the board, defer this call this until you have created the other board

structures. The BusTools_BM_MessageAlloc function will create as many BM buffers

as will fit into the remaining memory. You need to allocate only the message buffers

before you start the Bus Monitor.

When running with firmware version 6.0 or greater, an invocation of

BusTools_BM_MessageAlloc no longer creates a meta-buffer of individual message

buffers individually addressable based on a message index. Since the message buffer is

a variable sized buffer based on the number of words in the message, the allocate

function simply creates a buffer with the size equal to the number of 32-word

messages specified. It is important to note the actual number of messages fitting into

the allocated memory block will depend on the size of the messages the BM encounters

on the bus.

For the R15-USB, you will need to create substantially more message buffers than for

other devices. This is due to the serial block-transfer nature of the USB bus. If you are

monitoring a heavily loaded bus you should allocate ~3000 message buffers. This will

use about half of the RAM available for the channel.

The BusTools_BM_MessageAlloc routine also sets the Interrupt Enable Bits in each

message buffer. These bits determine the status conditions that generate an interrupt.

Sometimes, you want an interrupt for every message detected on the 1553 bus (by

setting the BT1553_INT_END_OF_MESS bit). Other times, you might want to get

interrupts only if a parity error is detected (this would be done by setting the

BT1553_INT_PARITY bit). Any combination of bits can be set to specify the conditions

that generate an interrupt.

The Bus Monitor is susceptible to hardware overflows on heavily loaded buses. An

overflow occurs when the on-board Bus Monitor buffers are overwritten with new

data before the API can process the current message. Allocating enough message

buffer memory will reduce or eliminate overflows. Starting with BusTools/1553-API

8.0 and F/W v6.0 there is an interrupt on Bus Monitor Overflow. You can use this to

detect overflows by enabling interrupts on EVENT_BM_OVRFLW. You can also get a

count of the number of messages it overflowed by reading the BM Overflow Register.

Change the BM trigger by using the BusTools_BM_TriggerWrite routine. Fill in the

trigger definition structure prior to making this call. The default BM trigger is defined

such that all messages are recorded, beginning with the first message received. If this

setting is acceptable for your application, you do not need to call this routine. There is

one BM trigger buffer allocated in hardware memory.

Process interrupts by using BusTools_RegisterFunction. BusTools_RegisterFunction is

available for all Windows and UNIX operating systems (supporting POSIX threads).

See the “BusTools/1553-API Reference Manual” description of the

BusTools_RegisterFunction for more details.

https://www.abaco.com/download/bustools1553-api-reference-manual

28 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Finally, after the BM is completely initialized, start the BM by calling

BusTools_BM_StartStop. The BM begins recording messages detected on the 1553 bus

(based on BM filter and BM trigger parameters). If any message meets the criteria

specified with the Interrupt Enable Bits, an Interrupt Message is generated.

BM operation continues until the application stops the BM (using the

BusTools_BM_StartStop routine) or closes the API (using the BusTools_API_Close

function).

4.3 BM Recording

This feature is available under Windows and Linux. The API periodically polls the BM

buffers and reads the accumulated messages. These messages are stored in a large

circular buffer within the API.

To setup BusTools/1553-API to use this feature call BusTools_RegisterFunction using

EVENT_RECORDER as the filter type (filterType) in the API_INT_FIFO structure. The

callback function passed via the API_INT_FIFO structure must call

BusTools_BM_MessageReadBlock to read the most recent list of BM Message buffers.

This routine keeps track of which messages are most recent and returns an error to the

application if it detects a buffer “wrap-around”.

BusTools_BM_MessageReadBlock returns the latest BM Message buffers in an

application supplied buffer. The application can then store the information to disk.

Publication No. 1500-045 Rev. 5.11 Remote Terminals 29

5 • Remote Terminals

This chapter describes the RT functionality and the BusTools/1553-API routines used

to program that functionality. The Remote Terminal (RT) function on the 1553 board

provides the ability to control the activities of one or more RTs on the 1553 bus. The

definition of each RT includes:

• Legal transmit and receive subaddresses.

• Legal word counts for messages to and from each subaddress.

• One or more data buffers to capture data sent to each subaddress (not just legal

ones).

• One or more data buffers for each sub-address (not just legal ones).

• The 1553 Mode Codes supported by the RT.

• The interrupt enable bits for each of the message lists.

5.1 RT Hardware Operation

For each possible RT (addresses 0 to 31), there is a four-word RT Address Buffer in

channel memory. The 32 Address Buffers form a 128-word structure in RT memory.

Each RT Address Buffer contains information that controls the microcode operation for

a particular RT. The most important entries in the RT Address Buffer are the

enable/disable bits, one for each dual redundant bus (designated as bus A or bus B). If

both bits are disabled, the RT simulation ignores any messages to that RT address. If

you enable either or both bits, then the microcode responds to commands with that RT

address on the enabled channel.

The RT Address Buffer also contains the following:

• A 16-bit status word (initialized by the application and maintained by the

microcode). This is the message status word transmitted by the RT in response

to a received bus command message. The microcode modifies the “Message

Error”, “Broadcast Command Received”, and “Terminal Flag” bits of this status

word as required by the MIL-STD-1553 specification. The other bits are set by

the application and are not modified by the microcode.

• A 16-bit last command word (to respond to the “Transmit Last Command”

mode code).

• A 16-bit Built-In-Test word (initialized by the application to respond to the

“Transmit BIT Word” mode code).

• A 1-bit “inhibit-terminal-flag” (initialized by the application and maintained by

the microcode in response to the “Inhibit Terminal” and “Override Inhibit

Terminal” Mode Codes).

• A RT Monitor Bit (Set by the user to specify monitor mode. When in monitor

mode the RT does not respond to commands)

30 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Once you start the RT simulation, and enable simulation for a specific RT address (by

enabling either Bus in the RT Address Buffer), the simulation processes any message to

that RT address.

Processing begins by checking that the command word is legal. The command is legal

if the RT address; transmit/receive flag, subaddress and word count form a legalized

combination. The RT address, transmit/receive flag and subaddress from the command

word are used as an 11-bit index into the 2048-word RT Filter Buffer. The resulting

one-word entry is extracted and used as the address of a RT Control Buffer.

There can be up to 64 RT Control Buffers created for each enabled RT address (one

transmit and one receive for each possible subaddress). The application sets up RT

Control Buffers containing a single bit for each possible word count. If the bit is set,

then that word count is legal for the associated RT address/subaddress/transmit-

receive flag combination. The RT Control Buffer also contains the address of the first or

next RT Message Buffer defined for this RT subunit.

If the command is considered legal, the microcode uses the RT Message Buffer address

specified in the RT Control Buffer to process the message. If the message is a receive

message, the data is stored in the specified RT Message Buffer. If the message is a

transmit message, the data is transferred from the specified RT Message Buffer to the

1553 bus.

The final level of complexity is that each RT subunit can have multiple RT Message

Buffers defined. The “RT Message Buffer” described above is a circular linked list of

RT Message Buffers (that is, each RT Message Buffer contains the address of the next

buffer in the list and the last buffer contains the address of the first buffer). Each time

the microcode processes a command word that maps to a specific RT Control Buffer,

the next RT Message Buffer in the linked list is saved in the RT Control Buffer.

BusTools/1553-API is responsible for initializing the message buffers properly.

After processing each message, the microcode checks the 32-bit Interrupt Status Word

against the set of Interrupt Enable Bits specified in the RT Message Buffer. If there are

any matching bits (if the logical AND of the two 32-bit values is non-zero), an Interrupt

Message is added to the Interrupt Queue and if enabled the hardware interrupt line is

asserted. See Chapter 8, “Interrupt Queue and Interrupts” for more details about how

the interrupt queue works.

Prior to turning on the RT using BusTools_RT_StartStop, the application must initialize

all 32 RT Address Buffers (1 for each possible RT), and the entire 2048-word RT Filter

Buffer. If you are not using a RT, disable the associated bus enable/disable bit in the RT

Address Buffer.

Each entry in the 2048-word RT Filter Buffer must point to a valid RT Control Buffer.

For any disabled RTs, the RT Filter Buffer entries can point to the same default “no-op”

RT Control Buffer. The call to BusTools_RT_Init creates 32-default RT Control Buffers,

one for each possible RT, and sets the addresses in the RT Filter Buffer to point to these

buffers. It also creates 32-default RT Message Buffers.

Publication No. 1500-045 Rev. 5.11 Remote Terminals 31

5.2 RT Software Operation

This section describes the BusTools/1553-API routines, which control RT operations.

You can find detailed syntax and error status information in the “BusTools/1553-API

Reference Manual”.

Prior to calling any BusTools/1553-API RT routine, initialize the RT-specific global

parameters by calling the following functions:

• BusTools_SetBroadcast

• BusTools_SetSa31

Then, initialize RT operations using the BusTools_RT_Init routine. This routine sets up

the 32 RT Address Control buffers (disabled), the 2048-word RT Filter Buffer, the 64 or

62 broadcast and 32 non-broadcast RT Control Buffers and the 32 default RT Message

Buffers used for all disabled or illegal RT messages. At this point, you can start the RT

with the BusTools_RT_StartStop routine (though all RTs are disabled).

The following steps enable RTs for operation:

1. Create the RT Control Buffers for any legal subunit (subaddress and transmit /

receive flag) for a RT. In addition, create the linked list of RT Message Buffers for

this subunit.

BusTools_RT_CbufWrite routine handles this setup. The application can call this

routine up to 64 times per simulated RT (32 subaddresses, for transmit and

receive). This routine is called to establish legal Mode Codes and word counts.

Mode codes are simply messages directed to subaddress 0 (or 31 if subaddress 31

mode codes are enabled). If subaddress 31 mode codes are enabled, the RT

message buffers allocated to subaddress 0 are used for subaddress 31 messages.

Note that a value of 0x00000001 legalizes word count 32 and a value of 0x00000002

legalizes word count 1.

2. Initialize the RT Broadcast Control buffers (if broadcast messages are enabled). Do

not attempt to read or write the Broadcast Control buffers if broadcast is not

enabled; the function will return an error.

You must call BusTools_RT_CbufbroadWrite for each subaddress and

Transmit/Receive combination enabled for Broadcast Receive or Transmit. Each

call to this function establishes a buffer of 31 32-bit control words that are accessed

by the firmware each time a broadcast message is detected. (The firmware accesses

this entry through the RT_ADDRESS_BUFFER, for RT=31).

When the RT receives a broadcast message, the firmware sequences through the 31

control words and checks to verify the specified word count is enabled for the

associated RT. If it is, the firmware sets the “Broadcast Message Received” bit (bit

4) in the 1553 Status Word for the associated RT.

https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/bustools1553-api-reference-manual

32 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

If you enable subaddress 31 mode codes, subaddress 31 messages use the RT

message buffers allocated to subaddress 0.

3. Initialize the RT Message Buffers, as required.

BusTools_RT_CbufWrite initializes the RT Message Buffers to zero, initializes the

error injection pointer, and properly links the buffers together. For all message

types (transmit or receive) the RT Message Buffer must contain the desired

Interrupt Enable Bits and a valid Error Injection Buffer pointer. In addition, for

transmit subunits; the RT Message Buffer(s) should contain the data to be

transmitted. The content of each RT Message Buffer is initialized with the

BusTools_RT_MessageWrite routine. This routine should be called for every

message buffer defined for every subunit of the RT.

The BusTools/1553-API defines one default message buffer for each RT. While the

data values in this default buffer probably do not matter (since many RT Control

Buffers usually point to this buffer), the application should set Interrupt Enable

Bits.

For example, the application could set the Interrupt Enable Bits to generate an

interrupt any time this buffer is accessed using the “BT1553_INT_END_OF_MESS”

bit. This would let the application know any time an un-initialized RT subunit is

accessed. The default RT Message Buffer can be set using the

BusTools_RT_MessageWriteDef routine.

4. After the RT Control Buffers and RT Message Buffers have been initialized, write

the RT Address Control Block, using the BusTools_RT_AbufWrite routine.

Set the bus-enable bits to enable at least one bus. The application should initialize

the status word and BIT word as required. The bit word can either be stored in the

address buffer bit word parameter or stored in the RT message buffer, data word 0.

If the inhibit terminal flag parameter is OR’ed with 0x10 then bit word data is

stored in the message buffer. Otherwise it is stored in the bit word parameter of the

address buffer.

Once one or both bus enable bits have been set (and assuming the RT simulation

has been started with the BusTools_RT_StartStop routine), the RT simulation for

the specified RT begins.

5. The application software needs to handle interrupts received from the RT. The

interrupt queue structure is defined in Chapter 8, “Interrupt Queue and

Interrupts”.

The interrupt queue provides the channel memory address of the interrupting RT

Message. Once the application receives an interrupt, it converts the memory

address to a specific RT Message Buffer using BusTools_RT_GetMessageid. The

application then reads the RT Message Buffer from channel memory by calling

BusTools_RT_MessageRead. The application can then process the message as

needed.

Publication No. 1500-045 Rev. 5.11 Remote Terminals 33

There is another method for processing interrupts, called

BusTools_RegisterFunction. This interface takes advantage of the multi-threaded

processing features of Windows and UNIX. The BusTools_RegisterFunction

interface uses standard WIN32 threads for Windows and should be compatible

with other standard WIN32 products that support multiple threads.

BusTools_RegisterFunction uses POSIX threads (pthread) for UNIX systems and is

compatible with all UNIX systems supporting POSIX threads.

The RT simulation continues for each individual RT until the bus enable bits of the

Address Control Block for the RT are cleared.

The entire RT simulation can be turned off using the BusTools_RT_StartStop routine.

Starting or stopping either a single RT or the entire RT simulation has no effect on the

Bus Controller simulation, or the operation of the Bus Monitor.

If you have a single-function 1553 board, any attempt to run the RT while the BC or the

BM is running will fail with an error status of API_SINGLE_FUNCTION_ERR. If you

have a dual-function 1553 board you get error status of API_DUAL_FUNCTION_ERR

if you attempt to run the RT while the BC is running.

5.3 RT Monitor Mode

RT Monitor mode allows the RT to record all messages to a specified RT. However, the

RT Monitor does not respond to messages or put any data onto the 1553 bus. All

BusTools/1553-API calls are available to read data from the RT Monitor the same as for

an RT in standard operating mode. Enable or disable RT Monitor Mode for an RT

address by setting or resetting bit 0 of the enable members in the API_RT_ABUF

structure. BusTools_RT_MonitorEnable allows the caller to enable or disable this mode

during standard operating mode. The application can dynamically change from RT

standard operating mode to RT Monitor Mode or from RT Monitor Mode to RT

standard operating mode using this command. See the “BusTools/1553-API Reference

Manual” for more information on BusTools_RT_MonitorEnable and the structure

API_RT_ABUF.

5.4 RT Extended Status Mode

The status word returned by the RT is normally set for all subaddresses.

For example, if you set the Busy Bit, it is set for all commands to that RT until cleared.

BusTools_RT_AbufWrite and BusTools_RT_MessageWriteStatusWord are used to set

bits in the status word. However, if you enable extended status by ORing in

RT_ABUF_EXT_STATUS to the inhibit terminal flag in the API_RT_ABUF structure, a

unique status can be set for each RT message buffer. Call

BusTools_RT_MessageWriteStatusWord to set the status word.

https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/bustools1553-api-reference-manual

34 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

5.5 Dynamic Bus Control

Dynamic Bus Control allows the BC to transfer Bus Controller duties to an RT. You can

program a single RT within an RT simulation for Dynamic Bus Control Acceptance.

The Bus Controller sends the Dynamic Bus Control (DBC) Mode Code (0000) to initiate

this operation. You must program the RT to accept the DBC mode code and to act as a

Bus Controller. Multi-function boards also allow you to keep running the RT function

as well as Bus Controller functions. MIL-STD-1553 paragraph 4.3.3.5.1.7.1, Dynamic

Bus Control describes the Dynamic Bus Control function.

You must specifically enable this mode, since it requires passing control of the data bus

to another device. Ensure that the device assumes the Bus Controller functions, and

that there is only a single Bus Controller running at any time.

Control passes once the RT returns its status word. The RT shows acceptance of the

Bus Controller function by setting the Dynamic Bus Control Acceptance bit in the

status word. The RT sets this bit only when responding to a Dynamic Bus Control

mode code (MIL-STD-1553 paragraph 4.3.3.5.3.10). At that time, the selected RT must

start running as a Bus Controller, and the old Bus Controller must stop operations. If

the RT does not set the Dynamic Bus Control Acceptance bit, the Bus Controller must

maintain functioning as a Bus Controller, and the RT must not start Bus Controller

operations.

To implement Dynamic Bus Control (DBC), you must set up both the RT and the Bus

Controller (BC). Only setup the RT or RTs that you want to have the DBC Acceptance

enabled. The following paragraphs describe the steps needed to setup an RT for DBC

Acceptance.

Legalize mode code 0 transmit by calling BusTools_RT_CbufWrite. This call must

specify at least one data buffer. You must initialize that RT message buffer with a call

to the function BusTools_RT_MessageWrite, to enable interrupts on this message (at

least enable “BT1553_INT_END_OF_MESS” interrupts in the “enable” control word).

You must also enable the RT DBC mode by calling BusTools_RT_AbufWrite. Enable

the RT and enable DBC by setting the “RT_ABUF_DBC_ENA” bit in the

inhibit_term_flag word.

On multi-function boards, BusTools_RT_AbufWrite gives you the option of shutting

down the RT when accepting the DBC, or leaving the RT running. Setting the

“RT_ABUF_DBC_RT_OFF” bit causes the accepting RT to shut off. Resetting this bit

causes the API to leave the RT running. If you keep the RT running, clear the DBC

acceptance bit in the RT status word before the BC sends the RT another message. You

can do this by calling BusTools_RT_AbufWrite and passing a new status word

(“status”) that has the DBC acceptance bit clear. You do not need to do this on single-

function or dual-function boards since the API turns off the RT simulation on a single

function or dual-function board before it turns on the BC.

Before starting the RT simulation, you need to setup the BC, so it is ready to become

the Bus Controller when the RT receives the dynamic-bus-control mode code. Create

Publication No. 1500-045 Rev. 5.11 Remote Terminals 35

all BC messages and initialize them completely, but do not start the BC (via

BusTools_BC_StartStop. The API does this after accepting the DBC mode code.

Normally, the API polls the interrupt queue at a 10-ms rate. This can delay starting the

BC for up to 10ms. If this delay is too long, you can enable hardware interrupts by

setting the flag (mode) parameter in the call to BusTools_API_OpenChannel, or

BusTools_API_InitExtended to API_HW_ONLY_INT. Using hardware interrupts

reduces this latency to the interrupt response of the host processor.

The BusTools/1553-API software distribution contains a programming example of

Dynamic Bus Control.

36 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

6 • Bus Controller

The Bus Controller (BC) function on the 1553 board performs the activities of the BC on

the 1553 bus. This chapter describes the BC functionality and the BC BusTools/1553-

API routines supporting Bus Controller operations.

6.1 BC Hardware Operation

The Bus Controller (BC) controls all activity on the 1553 bus. The BC determines which

messages appear on the bus and when they appear. The BC executes a pre-defined list

of messages (called a Bus List or a Major Frame) organized into sets of messages called

Minor Frames. Each message in a Minor Frame executes sequentially, with an optional

delay between messages. The execution of each Minor Frame starts at a specified time

interval. There are two options for creating a bus list: frame messaging and message

scheduling.

6.1.1 Frame Messaging

The first option for creating a bus list is the traditional frame messaging. The user

writes each message into the frames in which they are to transact. For example, an

application could define three Minor Frames, one with ten messages, one with 25

messages and the last with one message. If the user needs a message to repeat in each

frame, the application must put that message into each frame.

If the Minor Frame rate is set to 100ms, a Minor Frame is started every 100ms. The

major frame re-starts every 300ms with the start of Minor Frame #1.

1. When the BC operation starts, it executes Minor Frame #1 immediately (the BC

sends the ten messages in that Minor Frame in sequence).

2. The BC will remain idle until the beginning of the next 100-ms time interval, and

then it executes Minor Frame #2 (sending the 25 messages in that Minor Frame).

3. Once again, the BC operation will remain idle until the beginning of the next 100-

ms time interval, and then it executes Minor Frame #3 (sending the one message in

that Minor Frame).

4. If you configure the BC to execute the Minor Frames only once (“1shot” mode),

then the BC operation halts.

5. If you set the BC to “loop” on the Minor Frames, then the BC operation will remain

idle until the beginning of the next 100-ms time interval. Then it restarts with the

first Minor Frame or the Minor Frame defined as the start of the loop.

The application must ensure that the contents of each Minor Frame can execute within

the programmed Minor Frame time. If a Minor Frame exceeds the Frame Rate, the BC

simulation sets the “Minor Frame Overflow” bit and skips to the next minor frame.

Publication No. 1500-045 Rev. 5.11 Bus Controller 37

6.1.2 Message Scheduling

The second option for creating a bus list is to use Message Scheduling. This is a new

option starting with BusTools/1553-API version 6.20 (along with F/W version 4.40).

Message Scheduling allows the user to schedule a message into different frames by

specifying a start frame and repeat rate for each BC message. You can get the same

frames as in the example above by scheduling messages into the first, second and third

frames.

With fixed frame messaging, the application must allocate and write each message into

all the minor frame buffers in which the message transacts. Each frame must contain

all the messages specified for that frame. Message scheduling eliminates this

redundancy by scheduling a message to transact at a scheduled rate.

6.2 BC Message Block Types

A BC Message Block defines each message within a Minor Frame. Each BC Message

Block contains a control word defining the purpose of the BC Message Block. Valid

options are 1553 message, Conditional Branch, Stop BC, Timed-No-op, or No-op.

Message blocks refer to the entire BC message data. This is comprised of the control

block and the data block. There are two different formats for the control and data

structure. Starting with F/W version 6.0 and BusTools/1553-API v8.00 the structure for

the control block and data block changed to accommodate multiple BC buffers. The

“MIL-STD-1553 UCA Reference Manual” defines the legacy structures. The Enhanced

Universal Core Architecture Local Processing Unit (LPU) manual “UCA32 LPU

Reference Manual” describes the new structures.

6.2.1 1553 BC Message Block

A 1553 message block contains the 1553 command word; message status words

returned from the addressed RT, a 32-bit interrupt status word, pointers to the data

buffers, time-tag, Error Injection Buffer, message number of the next BC Message

Block, and the gap time.

If this is the first message in the minor frame, the Firmware does not execute the gap

time delay before starting the message. The message starts on the minor frame time

mark.

When the 1553 message executes, the contents of the selected data buffer are

transmitted to the RT via BC->RT message, and filled with receive data on RT->BC

messages. Status words returned from the addressed RTs are stored in the BC Message

block.

After each message executes, the 32-bit Interrupt Status word is stored in the BC

Message Block. The microcode then checks these Interrupt Status Bits against the BC

Interrupt Enable Bits. If there are any matching bits (if the logical AND of the two 32-

bit values is non-zero), an interrupt block is added to the Interrupt Queue and an

Interrupt Message is sent to the thread assigned to handle BC interrupts. It is up to the

https://www.abaco.com/download/mil-std-1553-uca-reference-manual
https://www.abaco.com/download/uca32-lpu-reference-manual
https://www.abaco.com/download/uca32-lpu-reference-manual

38 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

application to ensure that the appropriate information is retrieved from the BC

Message Block before that specific message is re-executed by the microcode (if the BC

has been set up to “loop”).

In F/W version 5.x and earlier each BC Message Block can specify either one or two

data buffers for the message. If you select only one buffer, that buffer is used each time

this message executes. Use this setting to increase the number of BC messages that fit

within the memory available on the 1553 board.

If you select two buffers, the “Buffer A” bit in the message specifies the buffer used. If

the “Buffer A” bit is set, the messages use the first buffer; if it is clear, the second data

buffer “Buffer B” is used. This allows the software to update the current unused data

buffer, and then switch the BC to use that buffer. When you select the message-

scheduling mode using F/W v5.0 or earlier only one buffer can be used.

Starting with F/W version 6.0 you can specify multiple BC data buffers. Multiple

buffers are specified by adding the value MULTIPLE_BC_BUFFERS into the BC

options parameter when you initialize the BC. There is a different method for

allocating and programming multiple buffers, as described in the BC Software

Operation section that follows in this document.

6.2.2 Conditional Branch BC Message Block

Conditional Branch messages allow for altering the bus list based on the value of data

located within board memory, including data from a previous command. Conditional

branching uses a data word address, an expected value, and a test mask to determine if

the BC should branch. The BC compares the data to the expected value using the mask.

If the comparison is true (equal), execution of the bus list transfers to the branch

message. If the comparison is false (unequal), execution transfers to the address of the

next message.

The Conditional Branch BC Message puts no traffic on the MIL-STD-1553 bus.

Conditional Branch BC Message Blocks are executed by the microcode as quickly as

possible. In many cases, the execution time is overlapped with the execution of the

previous Message Block, resulting in an effective execution time of zero. The worst-

case conditional branch delay is less than 25µs.

Using the parameters specified in the Conditional Branch Message Block, the

microcode tests a data word and changes the order of message execution based on the

results of the test. Select any location in the respective buffer memory for the data

word. This means you can select the command, data, or status of a recently transacted

1553 message or a user-defined location in memory. This feature allows an application

to reconfigure the bus list very quickly by changing only one word in buffer memory.

Starting with BusTools/1553-API v8.12 and firmware version 6.03 the firmware records

the address of the message executed after the branch in the BC Message buffer.

Publication No. 1500-045 Rev. 5.11 Bus Controller 39

6.2.3 Stop BC Message Block

The Stop BC Message Block clears the BC-run and BC-busy bits in the 1553 control

register, terminating the execution of the Bus Controller. This block also contains a

time-tag corresponding to the BC stop time.

6.2.4 NO-OP BC Message Block

The NO-OP BC Message Block skips to the next BC Message Block. It contains the

address of the next BC Message Block to execute. A 1553 BC Message Block converts

into a NO-OP message by clearing one bit in the control word and then converts back

into a 1553 message by setting the bit.

Like the Conditional Branch BC Message Block, execution of the NO-OP Message

Block is overlapped, as much as possible, with the previous message. This typically

results in an effective execution time of zero.

6.2.5 Timed NO-OP BC Message Block

The Timed NO-OP BC Message Block skips to the next BC Message Block while

inserting a timing delay between the two messages. It contains the address of the next

BC Message Block to execute and a gap time. The timed NO-OP uses the gap-time so

the user can insert delay between messages to extend the gap time beyond the

maximum 16-bit delay. A 1553 BC Message Block converts into a Timed NO-OP

message by clearing one bit and setting another in the control word and then converts

back into a 1553 message by setting/clearing those two bits, respectively. A Timed NO-

OP Message Block can also trigger a BC interrupt and related processing.

6.2.6 Timed NOOP in Different BC Timing Modes

For all V6.x firmware, there are two types of a Timed NOOP (TNOP): static Timed

NOOP and dynamic Timed NOOP, and they have different usage rules; care must be

taken when coding a TNOP. A static TNOP is configured by programming

BC_CONTROL_TIMED_NOP for a message write operation; a dynamic TNOP is

configured via BusTools_BC_MessageNoop invocation by setting the NoopFlag to

TIMED_NOOP.

This table shows the BC timing modes where you can use the static TNOP and

dynamic TNOP.

Table 6-1 Allowed BC Timing Modes for Static TNOP and Dynamic TNOP

 Relative Time (default) Fixed Gap Timing Frame Start Timing

Static TNOP Yes Yes No

Dynamic TNOP No Yes No

In the relative timing mode, the programmed gap time is measured from the end of the

message to the start of the next message. Dynamically disabling the message with

TIMED_NOOP set would produce a much shorter time delay than was intended.

40 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

In frame start timing mode, the time relative to the start of frame is already

programmed into the gap time word, so there is no need for a TNOP; and, if

programmed incorrectly, could alter the bus list.

A TNOP should probably not be used with the message scheduling option (available

with all three timing modes); but if it is, the user must perform a thorough analysis for

each unique frame in order to obtain the desired results.

6.3 Aperiodic 1553 BC Messages

Normally, the Bus Controller executes a pre-defined list of messages (called a Bus List

or a Major Frame) organized into sets of messages called Minor Frames. Each Minor

Frame is executed sequentially, beginning on a time mark called the Minor Frame

Rate.

Aperiodic messages are 1553 messages that the application designates to be inserted

into a running bus list on a one-shot basis. An application can create a list of BC

messages, consisting of one or more messages, limited only by available memory.

These messages transact as soon as the Bus Controller can send them. You can send

any type of 1553 message as an aperiodic. However, you cannot use the retry feature

with aperiodic messages. The Application inserts the aperiodic messages by calling

BusTools_BC_AperiodicRun.

Abaco Systems 1553 boards support two types of aperiodic message queues:

• High Priority

• Low Priority

You can have messages in both aperiodic message queue types at the same time.

6.3.1 High Priority Aperiodic Messages

An application creates a list of BC messages (consisting of one or more messages,

limited only by available memory) and passes the address of the first message to the

High Priority Aperiodic Message Queue.

Messages in the High Priority Aperiodic Message Queue are transmitted in sequence

following completion of the currently transmitting periodic message. On completion of

transmitting the aperiodic messages, the BC returns to processing the remaining Minor

Frame periodic message list. If the transmission of messages in the High Priority

Aperiodic Message Queue causes the minor frame to overflow, the BC function will

wait for the beginning of the next minor frame to transmit the message(s).

 CAUTION
Inserting high priority messages into a bus list may cause a minor frame overflow. If there is not enough time to
transmit the remaining periodic messages in the bus list, a minor frame error will occur, transmission of the
current minor frame will terminate, and transmission of the next minor frame will begin. The application must
ensure that the time required to process the aperiodic messages does not cause the minor frame period to be
exceeded.

Publication No. 1500-045 Rev. 5.11 Bus Controller 41

6.3.2 Low-Priority Aperiodic Messages

An application creates a list of BC messages (consisting of one or more messages) and

passes the address of the first message to the Low Priority Aperiodic Message Queue.

Messages in the Low Priority Aperiodic Message Queue are transmitted in the time

period between transmission of the last message in a minor frame and the start of the

next minor frame. Before transmitting a low priority aperiodic message, the BC

determines if there is time to transmit the message before the start of the next minor

frame. If enough time is available, the BC will transmit the aperiodic message;

otherwise, the BC suspends processing low priority aperiodic messages until the end

of the last message in the next minor frame. It repeats this process until transmission of

all the messages in a low priority message list is complete.

 NOTE
Low-priority messages are only transmitted if enough time is available at the end of the minor frame. It is
possible to build a bus list that does not allow time for any low priority message to be transmitted. The
application is required to ensure minor frame timing provides enough time to transmit messages in the Low
Priority Aperiodic Message Queue.

The firmware calculates the time an aperiodic message takes to execute by counting

the number of words and multiplying by 25µs and compares that with minor frame

timer.

6.3.3 Aperiodic Message Timing

The 1553 command word and the rt31_bcst and sa31_mc bits, (see the functions

BusTools_SetBroadcast and BusTools_SetSa31) determine an approximate duration (in

µs) for transmitting a message. See below.

• Normal messages

The time computed is 125µs + 25µs/data word.

• Mode codes

The time computed is either 125µs or 150µs (without/with data word).

• Broadcast messages

The time is computed as 300µs + 25µs/data word.

Error injection is ignored when computing the duration to transmit a message. It is

possible to overflow the minor frame when using high word errors or programmable

response times in either the aperiodic or periodic messages. The following message

attributes are not added to the computed duration to transmit:

• 20µs for high word Error Injection

• 20µs for maximum programmable response time of 32µs

• RT-RT adds 20µs for programmable response time #2

Take care when setting up both the bus list and the aperiodic message list. Ensure that

enough time is available in the programmed minor frames time to support the

addition of aperiodic messages. Also, ensure the bus list and aperiodic messages

account for any additional error injection timing.

42 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

6.4 Dynamic Bus Control

BusTools/1553-API supports Dynamic Bus Control (DBC) to allow the Bus Controller

to transfer Bus Controller functions to a Remote Terminal. To perform DBC the Bus

Controller issues the Dynamic Bus Control mode code (0000) and checks the DBC

Acceptance bit in the returned status word. If that bit is set, the BC must immediately

stop.

If the bit is reset, the Bus Control must continue running. Set up the Bus Controller for

this operation using the standard API calls. See Section 5.6, “Dynamic Bus Control” for

more details.

6.5 Message Scheduling

Message Scheduling allows the application to specify a start-frame and a repeat-rate

for each message.

Scheduling is set up by setting MEG_SCHD when initializing the Bus Controller and

programming a start-frame and a repeat rate. The table below shows the scheduling

options.

Table 6-2 Message Scheduling

Start Frame Repeat Rate Message Schedule

0 0 Never

0 n Never

n 0 Once in the nth frame

1 1 Every frame

n 1 Every frame starting in the nth frame

n n Every nth frame starting in the nth frame

With message scheduling, there is only a single instance of a message that is scheduled

to transact in the defined minor frames.

6.6 Minor Frame Definition

A minor frame is a group of 1553 messages sent at a multiple of the frame rate you

program for the Bus Controller.

Defining the beginning and ending of the minor frame are the key elements in

configuring a minor frame. Adding the value BC_CONTROL_MFRAME_BEG to the

control word of the first message in the minor frame in conjunction with adding the

value BC_CONTROL_MFRAME_END to the control word of the last message in the

minor frame will define the minor frame. You can have any number and type of

messages in a minor frame. If the minor frame consists of a single message, then the

values BC_CONTROL_MFRAME_BEG and BC_CONTROL_MFRAME_END should

both be added to the control word of that message.

Publication No. 1500-045 Rev. 5.11 Bus Controller 43

You can have any number of minor frames. Start the message number for the first

message in the first minor frame at 0. Increment the message count by one for each

additional message, no matter how many minor frames you specify.

The BC transmits messages on the 1553 bus according to the message list in the minor

frames you program. The message list you create tells the BC how to transmit the

messages.

Next, determine if the BC will transmit the messages once or continually. If you want

to send the bus list only once, the control word of the last message in the list is

BC_CONTROL_LAST. This stops the Bus Controller. If you want to send the messages

continually, set the “next-message pointer” of the last message in the bus list to 0. This

creates a circular linked list of messages that continually run according to the bus list

parameters you program. Start and stop the BC by calling BusTools_BC_StartStop.

The next thing you must decide is the number of minor frames. A minor frame is a

group of 1553 messages sent at a multiple of the frame rate you program for the Bus

Controller. Program the frame rate in the call the BusTools_BC_Init.

If you have one minor frame, the BC starts the messages in that frame at the frame rate.

For example, a 1-s frame rate causes the BC to send the frame every second. If you

have more than one minor frame, each frame starts on the multiple of the frame rate. If

there are n minor frames, each minor frame runs at n times the frame rate (n x frame

rate).

A minor frame can have from one message to the number of messages that will fit

within the frame rate. If the time to transact the messages in a minor frame exceeds the

frame rate, you get a minor-frame-overflow error. Remember the transaction time for

the frame includes gap time and response times. To calculate the time used for a

message, count 20µs for each word (command, status, and data) plus 7µs for average

response time, plus the programmed gap time. For example, a one-word BC-RT

message with a 15-µs gap will take approximately 60 + 7 + 15 = 82µs to transact.

There are two options for defining a minor frame. When initializing the Bus Controller,

you can select to use frame messaging or message scheduling. Frame messaging is

more tedious and requires multiple instances of the same messages that repeat in

different frames, but it does allow a more complex bus list. Message Scheduling is new

starting with BusTools/1553-API version 6.20. This method schedules messages to

transmit in various frames by setting the start frame and repeat rate parameters.

The BC transmits messages on the 1553 bus according to the bus list you program. The

bus list you create tells the BC how to transmit the messages. Control the bus (A or B),

message type, gap time, and other message data by setting parameters in the

API_BC_MBUF structure you pass to BusTools_BC_MessageWrite.

Next, determine if the BC will transmit the messages once or continually. If you want

to send the bus list only once, the control word of the last message in the list is

BC_CONTROL_LAST. This stops the Bus Controller. If you want to send the messages

continually, set the “next-message pointer” of the last message in the bus list to 0. This

44 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

creates a circular linked list of messages that continually run according to the bus list

parameters you program. Start and stop the BC by calling BusTools_BC_StartStop.

The next thing you must decide is the number of minor frames. A minor frame is a

group of 1553 messages sent at a multiple of the frame rate you program for the Bus

Controller. Program the frame rate in the call the BusTools_BC_Init.

If you have one minor frame, the BC starts the messages in that frame at the frame rate.

For example, a 1-s frame rate causes the BC to send the frame every second. If you

have more than one minor frame, each frame starts on the multiple of the frame rate. If

there are n minor frames, each minor frame runs at n times the frame rate (n x frame

rate).

The number of messages allowed in a minor frame ranges from one message to the

number of messages whose duration to transmit will fit within the defined minor

frame rate. If the time to transact the messages in a minor frame exceeds the frame rate,

a minor-frame-overflow error will be encountered. Remember the transaction time for

the frame includes gap time and response times. To calculate the time used for a

message, add 20µs for each word (command, status, and data) plus 7µs for average

response time, plus the programmed gap time. For example, a one-word BC-RT

message with a 15-µs gap will take approximately 60 + 7 + 15 = 82µs to transact.

Define BC minor frames using the BC_CONTROL_MFRAME_BEG and

BC_CONTROL_MFRAME_END bits in the “control” word of the BC message

structure. The first Message Block of each minor frame must be marked with the

BC_CONTROL_MFRAME_BEG bit. The last Message Block of each minor frame must

be marked with the BC_CONTROL_MFRAME_END bit.

As you define each message, specify the next message in the list to execute (typically,

this is the next message in the list). The hardware expects to see a channel memory

address for this entry. However, since the BusTools/1553-API handles all memory

addressing requirements, the application need only refer to messages by number.

Message #0 is the first message in the BC Message block list. Once the Message Blocks

are filled in, start the BC simulation using the BusTools_BC_StartStop routine.

6.7 Message Gap Timing

Message gap time is the time interval between MIL-STD-1553 messages in a minor-

frame. The application defines this value during the Bus Controller message setup. The

valid range for message gap time value is 4µs to 16777216 µs, (upper limit is 65535 µs

for firmware versions prior to Ver. 4.40).

When initializing the Bus Controller, three options are available for specifying message

gap time. They are relative gap timing (default), fixed gap timing, and frame start

timing.

Relative Gap timing applies the programmed gap-time to the completion of a message

to determine when the next message will be processed. Completion of the transaction

Publication No. 1500-045 Rev. 5.11 Bus Controller 45

includes the data transmission, response time, and possible no-response from a

Remote Terminal. The start of the next message is always relative to the end of

previous message and response (or no response), and the gap duration inserted

between two sequential messages in a frame will always be the value of the gap time

programmed.

Fixed Gap timing applies the gap-time relative to the start of the current message.

Transmission of the next message is always a fixed time from the start of the current

message, regardless of any instance of no response or retry. The gap time must

consider the duration of a complete message transaction, including all possible retries.

If a message transaction is still active when the gap time expires, frame timing will be

corrupted.

Frame Start timing applies the gap-time relative to the start of the current frame. With

this option all messages will have a defined start time within the frame, including an

optional delayed transmission of the first message in the frame. When using frame

start timing the application must account for the duration of all message transactions

defined within in the respective minor frame.

Any one of these three gap timing options can be used with either Frame Messaging or

Message Scheduling.

6.8 BC Software Operation

This section describes the BusTools/1553-API routines that control BC operations. The

“BusTools/1553-API Reference Manual” has detailed syntax, structure layout, and

error status information for these routines.

6.8.1 Initializing the Bus Controller

Prior to calling any BusTools/1553-API BC routine, you must initialize the Bus

Controller operation. An invocation of BusTools_BC_Init Init defines the attributes for

the BC function on this channel, including the Interrupt Enable Bits for all BC

messages, the frame rate (Minor Frame period), the “no-response” and “late-response”

time-out periods, the hardware retry conditions, the BC gap timing mode (Relative

Gap, Fixed Gap, or Frame Start Gap), scheduling method, and single/multiple BC

buffer selection. This routine should only be invoked after initializing the channel via

invocation of BusTools_API_InitExtended or BusTools_API_OpenChannel.

The default BC operation uses relative gap timing without message scheduling or

multiple BC Buffers. See the “BusTools 1553-API Reference Manual” for details.

Define the BC Interrupts by ORing the desired interrupt option bits from Table 8-1

Interrupt Events”. The BC interrupt enable register is a 32-bit register with each

individual bit programming a different interrupt condition. Review the example code

in the Example directory for Bus Controller coding examples. The ability to select

which Bus Controller message generates interrupts is also available. Interrupts can be

https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/bustools1553-api-reference-manual

46 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

programmed on a message-by-message basis by ORing the value

BC_CONTROL_INTERRUPT into the message control word.

Calling the BC initialization allows you to set retry conditions. You can have the BC

retry a 1553 command if the firmware detects any of the conditions below.

• BC_RETRY_NRSP No Response

• BC_RETRY_ME Message Error

• BC_RETRY_BUSY Busy Bit Set

• BC_RETRY_TF Terminal Flag

• BC_RETRY_SSF Subsystem Flag

• BC_RETRY_INSTR Instrumentation

• BC_RETRY_SRQ Service Request

• BC_RETRY_INV_WRD Invalid Word1

• BC_RETRY_INV_SYNC Sync error2

• BC_RETRY_MID_BIT Mid-bit error2

• BC_RETRY_TWO_BUS Two bus error2

• BC_RETRY_PARITY Parity Error2

• BC_RETRY_CONT_DATA Non-contiguous data2

• BC_RETRY_EARLY_RSP Early response

• BC_RETRY_LATE_RSP Late response

• BC_RETRY_BAD_ADDR Bad RT address

• BC_RETRY_WRONG_BUS Wrong Bus3

• BC_RETRY_NO_GAP No inter-message gap

1 for F/W version 6.10 use BC_RETRY_INV_WRD in place of sync, parity, two bus, mid bit and bit count errors
2 Retries on these conditions are not supported in F/W v6.10
3 Not supported in F/W 5.0 and greater

Program retries on a message-by-message basis when defining the 1553 message by

ORing the value BC_CONTROL_RETRY into the control word. Invoke

BusTools_BC_RetryInit to define how a retry executes.

The call to BusTools_BC_Init also allows the application to define time-out values for

both late response and no-response. The late response period is the duration between

completion of a BC message transmission and a future point in time in which the

corresponding RT response is considered late. If an RT response is received in the

period between the late response time-out and the no-response time-out, it will be

designated as late and the corresponding Late Response bit will be set in the Interrupt

Status Word. If the duration of an RT response exceeds the no-response time-out, the

corresponding No Response bit in the Interrupt Status Word is set. When

programming these two time-out values, an application should consider the response

capabilities of the RTs in the target system.

Publication No. 1500-045 Rev. 5.11 Bus Controller 47

The Frame Rate value is the BC initialization of the minor frame time. For example,

selecting 100,000 as the frame rate sets a 10 Hz rate. This means a minor frame

transacts every 100,000µs. If there are 3 minor frames in the bus list, then it will take

300,000µs to transact all three frames.

For BC function code demonstrations, review the coding examples in the

BusTools/1553-API software distribution Examples directory.

6.8.2 Allocating BC Messages

The next step in setting up the BC is to allocate and initialize the list of BC Message

Blocks. BusTools_BC_MessageAlloc provides the method to allocation BC Message

Blocks. When invoking BusTools_BC_MessageAlloc the application should define the

number of BC messages required in the minor frames for all transaction scenarios,

including additional aperiodic messages. Allocating extra message blocks that are not

used is recommended if spare channel memory is available. As an example, if the

application scenario requires 3 minor-frames with 10 messages in each, 50 messages

may be allocated without affecting BC operations. However, if memory for only 30

messages is allocated and an additional aperiodic message is added, an

API_BC_ILLEGAL_MBLOCK error will be encountered when the application attempts

to write to that message block.

Applications using legacy products with older firmware and API versions are limited

in message buffer allocation to one buffer, or two buffers switched under application

control. Starting with firmware version 6.0 and BusTools/1553-API version 8.00 the Bus

Controller can have multiple BC Data Buffers allocated to individual messages,

specified in the invocation of BusTools_BC_Init. This feature allows an application to

allocate any number of buffers for each message, limited only by memory available on

the channel. To program multiple BC buffer usage in the application, invoke the

function BusTools_BC_MessageBlockAlloc for each BC message buffer created.

BusTools/1553-API 8.0 and greater allows either BC Message allocation method.

Existing applications using the legacy method will run the same.

6.8.3 BC Messages

An application should define all required BC Message Blocks via invocation of

BusTools_BC_MessageWrite; however, unused allocated message blocks do not

require initial values. Each message is referenced via message index or message

number, zero referenced and tracked by the application based on the number of

messages provided in the invocation of BusTools_BC_MessageAlloc. If an application

defines 3 minor frames with 10 messages each, then 30 messages referenced via

message number 0 through 29 should be initialized.

If you are using Multiple BC Buffers, then use BusTools_BC_MessageWrite to write the

Message definition, and data for the message and first data buffer. Then use

BusTools_BC_DataBufferWrite to fill in the additional data buffers specified in

BusTools_BC_MessageBufferAlloc.

48 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

6.8.4 Defining a Minor Frame

Minor frames can be configured for transmission via one of two schemes, frame

messaging or message scheduling. The Message Scheduling method schedules

messages to run in various frames by setting the start frame and repeat rate

parameters, while Frame Messaging requires multiple instances of the same messages

repeated in different frames. Refer to Section 6.1 “BC Hardware Operation” for details

on scheduling message activity in Minor Frames.

6.8.5 Setup Message Gap Timing

There are three options for specifying gap time. They are relative gap timing (default),

fixed gap timing, and frame start timing. The three gap-time setting is used with either

Frame Messaging or Message Scheduling. Refer to Section 6.7, “Message Gap Timing”

for details.

6.8.6 Bus Controller Interrupt Programming

The firmware checks the status of each BC message to decide if it should generate an

interrupt. If the firmware detects the conditions specified for an interrupt, the

firmware writes an entry to the interrupt queue and asserts the hardware interrupt

(IRQ) line (if enabled).

The BusTools/1553-API provides a high-level method for processing interrupts,

BusTools_RegisterFunction. This function uses multi-threaded processing.

BusTools_RegisterFunction is available for Windows, Linux, LynxOS, VxWorks and

Integrity. Windows uses Windows threads while all other systems use POSIX threads.

6.9 BC One-Shot Operation

The Bus Controller can execute a bus list continuously or as a single pass. The single

pass execution is referred to as “One Shot Mode”. Previous versions of the API

supported “One Shot” functions to facilitate programming this type of operation.

These functions are no longer available. Instead, the user must set up the Bus

Controller using BC_CONTROL_LAST to stop the list after a single pass.

Publication No. 1500-045 Rev. 5.11 Bus Controller 49

6.10 BC Read/Write/Update/Allocate APIs

BusTools/1553-API provides several API functions for its basic Bus Controller read,

write, update and message allocation operations. This section lists all applicable API

functions for the respective firmware designs.

Table 6-3 lists the API functions for firmware version 4/5 single/double data buffer

functionality.

Table 6-4 lists the API functions for firmware version 6 single/double data buffer

functionality.

Table 6-5 provides the API functions for the multiple buffer feature introduced with

the combination of firmware version 6 and API version 8.0.

Table 6-3 Single/Double Data Buffer Functionality with F/W V4/5

BusTools/1553-API Function Descriptions

BusTools_BC_MessageReadDataBuffer (
wCardnum, wMessageid, wBufferid,
pBuffer);

This routine reads the specified data buffer from the specified BC message
from the 1553 board. If BusTools_BC_Init is called with num_buffers equal to
2, this function reads the data from the selected buffer. If num_buffers is
equal to 1, this routine reads a single BC data buffer.

BusTools_BC_MessageUpdate(
wCardnum, wMblock_id, pBuffer)

If BusTools_BC_Init is called with num_buffers equal to 2, this function writes
the new data to the inactive buffer. If num_buffers is equal to 1, this routine
updates the single BC data buffer. The new buffer becomes active after the
message buffer control-word has been written. The first of the two buffers is
active after initialization.

BusTools_BC_MessageUpdateBuffer(
wCardnum, wMblock_id, wBufferid,
pBuffer)

If BusTools_BC_Init was called with num_buffers equal to 2, this function
writes the new data to the buffer selected by wBufferid. If num_buffers is
equal to 1, this routine updates the single BC data buffer regardless of the
value of wBufferid.

BusTools_BC_MessageAlloc(
wCardnum, wCount)

This function allocates the message buffers from 0 to wCount-1 and clears
the allocated buffers.

BusTools_BC_MessageRead (
wCardnum, wMessageid, pMessage)

This routine reads the specified BC message from the Abaco Systems 1553
device

BusTools_BC_MessageWrite(
wCardnum, wMessageid, pMessage);

This routine writes a Bus Controller message or control structure to a
specified Bus Controller message buffer on the 1553 board. This function is
used to fill in the message parameters and data in the first buffer when the
double data buffers feature is selected.

Table 6-4 Single/Double Data Buffer Functionality with F/W V6

BusTools/1553-API Function Descriptions

BusTools_BC_MessageBufferRead (
wCardnum, wAddr, pMessage)

This function is used in the user callback function specified in the
API_INT_FIFO structure passed in a call to BusTools_RegisterFunction. Use
this function in a user callback function setup to read BC messages. The
address of that buffer is stored in the API_INT_FIFO entry fifo[index].buff_off.
Use the fifo[index].buffer_off for wAddr.

BusTools_BC_ReadDataBuffer (
wCardnum, wBufAddr, pDbuffer);

This function uses the buffer address stored in the interrupt queue to read
the data recorded in that buffer. This function only reads the data portion of
the Bus Controller data buffer.

BusTools_BC_DataBufferUpdate (
wCardnum, wBufaddr, wDcount,
pwBuffer)

This function is used in the user callback function specified in the
API_INT_FIFO structure passed in a call to BusTools_RegisterFunction. The
interrupt queue contains the address of the data buffer that generated the
interrupt. The address of that buffer is stored in the API_INT_FIFO entry
fifo[index].buff_off. Use this address as the wBufaddr.

50 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

BusTools/1553-API Function Descriptions

BusTools_BC_MessageAlloc(
wCardnum, wCount)

This function allocates the message buffers from 0 to wCount-1 and clears
the allocated buffers.

BusTools_BC_MessageRead (
wCardnum, wMessageid, pMessage)

This routine reads the specified BC message from the Abaco Systems 1553
device.

BusTools_BC_MessageReadData (
wCardnum, wMessageid, pBuffer);

This routine reads the data buffer of the specified BC message from the
1553 board. The value of the A/B buffer bit in the BC Message Buffer Control
Word determines which data buffer to update. If BusTools_BC_Init is called
with num_buffers equal to 2, this function reads the data from the active
buffer. If num_buffers is equal to 1, this routine reads a single BC data buffer.

BusTools_BC_MessageReadDataBuffer (
wCardnum, wMessageid, wBufferid,
pBuffer);

This routine reads the specified data buffer from the specified BC message
from the 1553 board. If BusTools_BC_Init is called with num_buffers equal to
2, this function reads the data from the selected buffer.

BusTools_BC_MessageUpdate(
wCardnum, wMblock_id, pBuffer)

If BusTools_BC_Init is called with num_buffers equal to 2, this function writes
the new data to the inactive buffer. If num_buffers is equal to 1, this routine
updates the single BC data buffer. The new buffer becomes active after the
message buffer control-word has been written. The first of the two buffers is
active after initialization.

BusTools_BC_MessageUpdateBuffer(
wCardnum, wMblock_id, wBufferid,
pBuffer)

If BusTools_BC_Init is called with num_buffers equal to 2, this function writes
the new data to the buffer selected by wBufferid. If num_buffers is equal to 1,
this routine updates the single BC data buffer regardless of the value of
wBufferid.

BusTools_BC_MessageWrite(
wCardnum, wMessageid, pMessage);

This routine writes a Bus Controller message or control structure to a
specified Bus Controller message buffer on the 1553 board. This function is
used to fill in the message parameters and data in the first buffer when the
double data buffers feature is selected.

Table 6-5 Multiple Data Buffer Functionality with F/W V6 and API 8.0+

BusTools/1553-API Function Descriptions

BusTools_BC_MessageBufferRead (
wCardnum, wAddr, pMessage)

This function is used in the user callback function specified in the
API_INT_FIFO structure passed in a call to BusTools_RegisterFunction. Use
this function in a user callback function setup to read BC messages. The
address of that buffer is stored in the API_INT_FIFO entry fifo[index].buff_off.
Use the fifo[index].buffer_off for wAddr.

BusTools_BC_ReadDataBuffer (
wCardnum, wBufAddr, pDbuffer);

This function uses the buffer address stored in the interrupt queue to read
the data recorded in that buffer. This function only reads the data portion of
the Bus Controller data buffer.

BusTools_BC_DataBufferUpdate (
wCardnum, wBufaddr, wDcount,
pwBuffer)

This function is used in the user callback function specified in the
API_INT_FIFO structure passed in a call to BusTools_RegisterFunction. The
address of that buffer is stored in the API_INT_FIFO entry fifo[index].buff_off.
Use this address as the wBufaddr.

BusTools_BC_DataBufferWrite (
wCardnum, wMsgId, wBufId, pwBuffer)

This function is used with Multiple BC Data Buffers to populate data into the
respective data buffer accessed by message ID and Buffer ID.

BusTools_BC_MessageBlockAlloc(
wCardnum, wBufid, wCount)

This function creates a BC message control block and the number of
associated data buffers as indicated in the count parameter. At least 1 data
buffer must be allocated, with a maximum data buffer count limited only be
the amount of available memory. You must call this routine for each BC
message buffer. You must complete allocating all BC message blocks either
before or after creating the Bus Monitor buffers. You cannot allocate
additional buffers after allocating the Bus Monitor buffer. If you are using
aperiodic messages, make sure you allocate enough messages for the
periodic bus list and the aperiodic bus list, if used, since both reside in
channel memory.

BusTools_BC_MessageRead (
wCardnum, wMessageid, pMessage)

This function reads the specified BC message from the 1553 device

Publication No. 1500-045 Rev. 5.11 Bus Controller 51

BusTools/1553-API Function Descriptions

BusTools_BC_MessageWrite(
wCardnum, wMessageid, pMessage)

This routine writes a Bus Controller message or control structure to a
specified Bus Controller message buffer on the 1553 board. This function is
used to fill in the message parameters and data in the first buffer when
multiple data buffers are allocated.

BusTools_BC_SelectBufferRead(
wCardnum, wMessno, wBufno, pDbuffer)

This function uses the message number and the buffer number to read the
data recorded in that buffer. This function only reads the data portion of the
Bus Controller data buffer.

wStatus =
BusTools_BC_SelectBufferUpdate(
wCardnum, wMessno, wBufno, wCount,
pDbuffer)

This function uses the message number and the buffer number to update the
data in the buffer.

52 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

7 • Error Injection

The Error Injection (EI) function on the Abaco Systems MIL-STD-1553 boards creates

specific errors in the 1553 data stream, allowing you to test how other equipment

responds to these errors. This chapter describes the EI functions.

7.1 Error Injection Hardware Operation

You can inject several different errors into the 1553 data stream. Some errors affect

individual words within the message, while others affect the entire message. Some

errors result in erroneous behavior by the RT. In all cases, errors are specified using the

Error Injection Buffer associated with a specific operation. The API defines a default

Error Injection Buffer with no errors. The API uses this buffer for all BC and RT

message buffers without errors (this is API error injection buffer “0”).

Each word of an Error Injection Buffer controls the error(s) in a specific 1553 transmit-

word. For each 1553 message, there are up to three Error Injection Buffers. If the board

is simulating the BC, there is an Error Injection Buffer associated with the BC Message

Buffer. If the board is simulating a specific RT, there is an Error Injection Buffer

associated with the RT Message Buffer. Finally, for situations involving RT-to-RT

messages between two simulated RTs on the board, each has its own Error Injection

Buffer. BC and RT message buffers are described in the “BusTools 1553-API Reference

Manual”.

The maximum size of an Error Injection Buffer is 34 words. The actual size depends on

the Error Injection Buffer type. There are five types of Error Injection Buffers:

• BC Receive Error: Error Injection Buffer for errors in a BC Receive Message.

This buffer contains 34 error specification words. There is one error

specification word for the message command word followed by 33 error

specification words for message data words. The API uses 33 words for a High

Word Count Error.

• BC Transmit Error: Error Injection Buffer for BC Transmit Messages. This

buffer contains only one error specification word for the message command

word.

• BC RT-to-RT Error: Error Injection Buffer for BC RT-to-RT Messages. This

buffer contains two error specification words, one for each message command

word.

• RT Receive Error: Error Injection Buffer for RT Receive Messages. This buffer

contains one error specification word that applies to the message status word.

• RT Transmit Error: Error Injection Buffer for RT Transmit Messages. This

buffer contains up to 34 error specification words. There is one error

specification word for the message status word and up to 33 error specification

words for message data words. The API uses 33 words for a High Word Count

Error.

https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/bustools1553-api-reference-manual

Publication No. 1500-045 Rev. 5.11 Error Injection 53

7.2 Error Types

The following section describes the possible errors you can inject into the 1553 data

stream. The board checks the current position in the Error Injection Buffer to see if you

specified any error conditions for that word. If there are, the firmware adds those

errors to the word during transmission. The firmware injects errors on a word-by-

word basis in a command word, status word, or data word, as it is transmitted on the

bus.

The following errors are set using either BusTools_EI_EnhEbufWrite or

BusTools_EI_EbufWrite.

• Bit Count Error: The hardware transmits a sync pulse, 16 data bits and a parity

bit for each 1553 word. Setting this error allows you to alter the number of data

bits in a word. The RT Validation Test Plan recommends using values in the

range 14 to 19. Values outside of this range may cause other parts of the

hardware to function improperly. Set this error for any entry in any EI buffer

type. In Bit Count errors, the parity bit counts as a bit. Thus, injecting 17 bits

may produce a parity error, not a bit count error.

• Word Count Error: Normally, the command word specifies the number of

words in a message. This error causes the actual number of words in the

message to differ from that in the command word. You can set any word count

from one to 33. You must specify this error condition on the command word of

a BC message, for BC Receive buffer types, or the status word of a RT message,

for RT Transmit buffer types.

• Sync Error: Use this error to transmit a word with an invalid sync code. The

data pattern specified in the error injection buffer indicates the shape of the

sync code. A data pattern of zero (0) defaults to "inverted sync". This error can

be specified for any entry in any EI buffer type.

• Mid-Bit Mid-Parity and Mid-Sync: These three error injection codes delay the

zero-crossing point by 300ns from where it is expected. For mid-bit zero-

crossing errors, you can select the bit (0 through 15). Bit 0 is the LSB of the 16-

bit word, however it transmits last in the serial stream. Similarly, bit 15, the

MSB, is transmitted first.

• Programmable Response: This RT selection allows the application to enter a

programmable response time of up to 31½µs, programmed with the LSB equal

to 500ns. Do not use an entry less than 4-µs as this is not supported and

undefined operation may result. An entry greater than 14µs is a late response

according to the MIL-STD-1553B Specification. This error applies only to the RT

status word in either of the RT buffers.

• Parity Error: This error transmits a word with an inverted parity bit. You can

specify this for any entry in any EI buffer type.

• Data gap: Add a gap time between data words from 0.5 to 2.5µs in .5-µs

increments.

54 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

• Respond with Wrong Address: Normally, the RT status word contains the

address of the RT. This error forces the status word to contain a different

address. You can set the address to any number from 0 to 31. You can select

this error only in RT Receive and RT Transmit Error Injection Buffer types.

• Bi-Phase Error: A bi-phase bit error is an error where there is no zero crossing

for the entire bit time. It is not predictable how a 1553 decoder will interpret a

word when this error is on one of the first two bits. This depends on timing and

the states of the first two bits. When the bit does not cross zero, it may stay in

one state for 1½µs and the decoder might try to reestablish sync. Therefore, the

API does not support injection in either of the first two bits, but you should be

aware of the possible behavior should this case occur.

The following errors are set only using BusTools_EI_EnhEbufWrite (Available in

BusTools/1553-API v6.42 or later running with firmware version 5.00 or later.)

• Bi-Phase Low Error: The selected bit is at a logic LOW during the entire bit

time.

• Bi-Phase High Error: The selected bit is at a logic HIGH during the entire bit

time.

• Bi-Phase Parity Low Error: The error is injected into the parity bit. This bit will

be at a logic LOW the entire bit time.

• Bi-Phase Parity High Error: The error is injected into the parity bit. This bit will

be at a logic HIGH during the entire bit time.

• Enhanced Zero-Crossing Error: The error is inserted into a specified zero

crossing transition in the specified word. The zero crossing may be

programmed to occur before the expected transition time by setting the

ZC_Early bit, or after the expected transition time by clearing the ZC_Early bit.

ZC_Early is part of the Enhanced Zero-Crossing Error Inject word that (see

below). The offset value has a resolution of 6.25ns, which allows for a 400ns

offset using a 6-bit field.

• T-Enhanced Zero-Crossing Error: in some cases, the software must compensate

the transition offset. For late offsets, the firmware must handle the

compensation. This error code provides for firmware compensation.

7.3 Enhanced Zero-Crossing

Enhanced-zero crossing error shifts the zero-crossing transition up to +/- 400ns from

the nominal crossing time. If you want to inject Enhanced Zero-Crossing Errors or T-

Enhanced Zero-Crossing Errors, you must reference the “error_injection_word”

paragraph in the Error Injection Buffer description of the UCA or UCA32 reference

manual applicable to the firmware revision programmed on your board. This section

explains how to setup the 16-bit enhData used in BusTools_EI_EnhEbufWrite.

Publication No. 1500-045 Rev. 5.11 Error Injection 55

7.4 Error Injection Software Operation

This section describes the BusTools/1553-API routines that handle Error Injection

Buffers. Details of the syntax and error status information are in the “BusTools 1553-

API Reference Manual”.

When Bus Monitor operations are initialized using BusTools_BM_Init, the API

initializes board memory with 64 Error Injection Buffers. The API identifies buffers by

a number between 0 and 63. Initialization fills all buffers with “zeros”, so the firmware

does not inject errors for any Error Injection Buffer type.

The first buffer (buffer id #0) should be left in its initialized state, reserved as the “No

Error” Error Injection Buffer. All BC Message Buffers and RT Message Buffers not

affected by error injection should reference it.

The remaining buffers should be defined with the appropriate error injection

information as required using BusTools_EI_EbufWrite. The caller must specify which

Error Injection Buffer is to be accessed and a structure that indicates the buffer type

and contents. The Error Injection structure API_EIBUF defines the elements of the

error injection structure. It is up to the caller to ensure that each element of the

structure matches the requirements of the Error Injection Buffer type.

https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/bustools1553-api-reference-manual

56 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

8 • Interrupt Queue and Interrupts

The Interrupt Queue is the core of the flexible interrupt processing on all Abaco

Systems’ MIL-STD-1553 products. The Interrupt Queue is an on-board data structure

maintained by the firmware. The firmware updates the interrupt queue with

information about an event when it occurs. The interrupt queue buffers events, so the

host system need not respond to them immediately.

BusTools/1553-API allows you to define which events go into the interrupt queue. It

also allows you to enable the firmware to send a hardware interrupt to the host. The

firmware records these events in the interrupt queue when they occur. You must select

one of the hardware interrupt options for the firmware to propagate the interrupt to

the host. If you do not use hardware interrupts, your application must poll the

interrupt queue to process interrupt events. You can do this automatically with a

“software interrupt” that checks the interrupt queue at a specified interval.

Control of interrupts for a channel is specified at initialization when you select the

mode parameter (BusTools_API_OpenChannel) or flag parameter

(BusTools_API_InitExtended). There are four general interrupt mode options:

• API_SW_INTERRUPT (1) – Software Interrupt mode

• API_HW_INTERRUPT (2) – Software + Hardware interrupts

• API_HW_ONLY_INT (3) – Hardware interrupt mode

• API_MANUAL_INT (0x20) – No interrupt processing

Use hardware or software interrupts in conjunction with BusTools_RegisterFunction to

process the interrupt events. BusTools_RegisterFunction calls a user-supplied function

when a specified event happens. The following sections describe setting up and using

both polling and hardware interrupts.

8.1 Interrupt Queue Initialization and Structure

The interrupt queue consists of a linked list of 296, three-word entries. The first of

these words is the interrupting mode (BC/BM/RT), the second word is the message

buffer address, and the third word is a pointer to the next queue entry. The last entry

in the list points back to the first entry, creating a circular linked list. The API initializes

the “interrupt_queue_pointer” (a hardware register) to point to the first word of the

queue.

Once an application has started bus traffic running (with calls to

BusTools_BC_StartStop, BusTools_BM_StartStop, or BusTools_RT_StartStop), the

firmware updates the interrupt_queue_pointer data recorded in the queue. Since the

interrupt queue is a circular buffer, after the firmware fills the queue, it wraps to the

start of the queue. Read data from the interrupt queue at a rate fast enough to avoid

having data in the queue overwritten. This rate is application dependent. For example,

Publication No. 1500-045 Rev. 5.11 Interrupt Queue and Interrupts 57

if your application has 300 interrupt events per second, you must read the data from

the interrupt queue faster than a 1 Hz rate.

BusTools_RegisterFunction reads the interrupt queue every 10ms in software interrupt

mode and for every interrupt in hardware interrupt mode. You can call

BusTools_SetPolling to modify the software interrupt polling rate.

8.2 Selecting Interrupt Events

BusTools/1553-API allows you to select the events that generate interrupts through

API function calls. The Bus Controller, Bus Monitor, and Remote Terminal each have

different methods for setting interrupt events, but they all use the “Interrupt Enable/

Message Status Bits structure” to select interrupt events.

The “Interrupt Enable / Message Status Bits structure” is a 32-bit, unsigned integer,

with each bit representing an interrupt event. The section “Interrupt Enable/Message

Status Bits” in the Data Structures section of the “BusTools/1553-API Reference

Manual” describes this structure in detail. Table 8-1 shows the selectable interrupt

events. Select the interrupt events by setting bits in the “Interrupt Enable word” as

described in the following sections.

The firmware generates a 32-bit “Interrupt Status word” for each 1553 message and

stores it in the “Interrupt status word” data element in the BC/BM/RT message buffer

(BC – int_status; RT – status; BM – int_status). By testing the bits in this data element,

you can see which interrupt events occurred. In addition to the interrupts in the table

below, you can get an interrupt on external trigger. This interrupt is not linked to any

message and does not have a bit in the interrupt status table.

Table 8-1 Interrupt Events

Interrupt Name Interrupt Value Interrupt Description

BT1553_INT_HIGH_WORD 0x00000001 high word error

BT1553_INT_BIT_COUNT_DATA 0x00000001 bit count err, data word **

BT1553_INT_INVALID_WORD 0x00000002 Invalid word error **

BT1553_INT_LOW_WORD 0x00000004 low word error

BT1553_INT_INVERTED_SYNC 0x00000008 Inverted sync**

BT1553_INT_MID_BIT 0x00000010 Mid Bit Error**

BT1553_INT_TWO_BUS 0x00000020 data on both buses error

BT1553_INT_PARITY 0x00000040 parity error**

BT1553_INT_NON_CONT_DATA 0x00000080 non-contiguous data**

BT1553_INT_EARLY_RESP 0x00000100 early response

BT1553_INT_LATE_RESP 0x00000200 late response

BT1553_INT_BAD_RTADDR 0x00000400 incorrect rt address

BT1553_INT_CHANNEL 0x00000800 Bus (0=A, 1=B)

BT1553_INT_WRONG_BUS 0x00002000 Response on wrong bus

BT1553_INT_BIT_COUNT 0x00004000 bit count error** (Not used by
F/W 5.00 or later)

BT1553_INT_NO_IMSG_GAP 0x00008000 No/Short inter-message gap

https://www.abaco.com/download/bustools1553-api-reference-manual
https://www.abaco.com/download/bustools1553-api-reference-manual

58 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Interrupt Name Interrupt Value Interrupt Description

BT1553_INT_END_OF_MESS 0x00010000 End of message

BT1553_INT_BROADCAST 0x00020000 broadcast message

BT1553_INT_RT_RT_FORMAT 0x00040000 rt-to-rt message format

BT1553_INT_RESET_RT 0x00080000 Reset rt

BT1553_INT_SELF_TEST 0x00100000 Self-test

BT1553_INT_MODE_CODE 0x00200000 Message is a Mode Code

BT1553_INT_NOCMD 0x00400000 Command unseen by decoder

BT1553_INV_RTRT_TX 0x00800000 Invalid RTRT TX CMD2

BT1553_INT_RTRT_RCV_NRSP 0x01000000 RT-RT No response on Rcv

BT1553_INT_RETRY 0x02000000 Retry

BT1553_INT_NO_RESP 0x04000000 no response (RT-RT, set if
EITHER is no resp.)

BT1553_INT_ME_BIT 0x08000000 1553 status word message
error bit

BT1553_INT_TRIG_BEGIN 0x10000000 message with trigger begin

BT1553_INT_TRIG_END 0x20000000 message with trigger end

BT1553_INT_BM_OVERFLOW 0x40000000 message at buffer overflow

BT1553_INT_ALT_BUS 0x80000000 retry on alternate bus

** While all events shown in this table apply to individual command words, status words or entire messages, only these
interrupt events will be encountered for a fault in an individual message data word.

8.2.1 Selecting Bus Controller Interrupts

The API allows you to set the interrupt conditions for all Bus Controller messages. You

can also select which Bus Controller messages generate an interrupt. Set the interrupt

conditions by setting the appropriate bits in the “Interrupt Enable Word” passed in the

call to BusTools_BC_Init. This is illustrated in the coding example for Bus Controller.

The firmware generates a Bus Controller interrupt if the Interrupt Enable Word passed

to BusTools_BC_Init is non-zero.

The coding example enables interrupts on the “end of message”

(BT1553_INT_END_OF_MESS). The “end of message” event is always set on at the

end of each valid 1553 message. If the “Interrupt Status Word” has this bit set, then the

firmware completed processing the message.

To select the specific BC messages you want to interrupt, set the

BC_CONTROL_INTERRUPT (0x0080) bit in the control word of the API_BC_MBUF

structure passed to BusTools_BC_MessageWrite. There is also the option to have the

message go into the interrupt queue but not generate a hardware interrupt. If you

want the message recorded in the interrupt queue without getting hardware

interrupts, then also set the BC_CONTROL_INTQ_ONLY. Use this, for example, to

record all the messages in a minor frame while only getting an interrupt on the last

message in the frame.

The coding example shows how to enable Bus Controller interrupts for a specific BC

message with the option of only recording the message in the interrupt queue.

Publication No. 1500-045 Rev. 5.11 Interrupt Queue and Interrupts 59

8.2.2 Selecting Bus Monitor Interrupts

Bus Monitor interrupt events are set via the Interrupt Enable word bit fields supplied

in the call to BusTools_BM_MessageAlloc. Review the Bus Monitor examples in the

BusTools/1553-API software distribution Examples directory regarding Bus Monitor

Interrupts. The firmware records Bus Monitor messages in the interrupt queue only if

the Interrupt Enable word is non-zero. If you want the firmware to record all Bus

Monitor messages in the interrupt queue, use the BT1553_INT_END_OF_MESS bit

assignment in the Interrupt Enable word.

For Bus Monitor applications only, you may use the “nth occurrence feature” to

interrupt on ‘one out of every N’ messages and read N messages once the nth message

sets the interrupt. Use BusTools_BM_FilterWrite to set up this feature.

Starting with BusTools/1553-API and firmware version 6.03, applications can suppress

hardware interrupts from the board. This option is available when initializing the Bus

Monitor with BusTools_BM_Init by disabling interrupts in the bm_ctrl parameter. That

allows BM message events to be recorded in the interrupt queue but not generate a

hardware interrupt. This is useful in limiting the number interrupt processed by the

ISR. Applications process BM messages using BusTools_BM_ReadLastMessageBlock.

8.2.3 Selecting Remote Terminal Interrupts

The BusTools/1553-API allows Remote Terminals to select interrupt events for each RT

Address, Subaddress, Receive/Transmit, and buffer number combination. This means

you can specify different interrupt conditions for each of these settings. You can select

BT1553_INT_END_OF_MESS on a transmit message sent to RT 4, Subaddress 4, while

selecting BT1553_INT_ME_BIT on a receive message sent to RT 4, Subaddress 4. Set

the Interrupt Enable word in the call to BusTools_RT_MessageWrite.

The Remote Terminal coding examples in the BusTools/1553-API software distribution

Examples directory demonstrate several aspects for programming a Remote Terminal.

The firmware records only RT messages in the interrupt queue that have a non-zero

Interrupt Enable word. If you want the firmware to record every RT message, then you

must at least set the Interrupt Enable bit BT1553_INT_END_OF_MESS in the call to

BusTools_RT_MessageWrite

8.2.4 Selecting External Trigger Interrupts

Interrupts from an external trigger are supported via invocation the API function

BusTools_ExtTrigIntEnable. This function enables the external trigger interrupt,

resulting in an external trigger interrupt event recorded in the interrupt queue. There

is no message data or time-tag data associated with this interrupt so the message

pointer for a trigger interrupt event is NULL.

8.3 Interrupt Processing

When the firmware processes a 1553 message, it does a bitwise “AND” of the 32-bit

“Interrupt Enable word” with the 32-bit “Interrupt Status word”. If the result is non-

60 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

zero, the firmware writes the message data into the interrupt queue. When this

happens, the firmware clears the “interrupt acknowledge” bit, sets the “interrupt

mode” bit, writes the message address, and updates the “interrupt_queue_pointer”

register with the address of the next interrupt queue entry. If you enabled hardware

interrupts, the hardware then triggers the hardware interrupt line to the host.

Hardware interrupts from MIL-STD-1553 bus traffic can overwhelm even a fast host

processor. For example, Mode Codes can occur every 50µs. A PC running Windows

can take over 50µs to process an interrupt, resulting in a PC that appears to be “locked

up”. Use care in selecting which interrupts to process.

8.3.1 Interrupt Queue Software Operation

If you use the BusTools_RegisterFunction routine, the API hides the structure of the

interrupt queue from your application. The API looks at the queue at a given time

interval. During this interval, it processes all the messages transacted during this time.

To reduce latency and improve overall processing efficiency, you may want to write

your own polling or interrupt processing functions. If you write your own polling or

interrupt processing code, you need to ensure that you process all messages added to

the queue during this time interval.

When servicing the Interrupt Queue, the host application must keep track of both the

current queue pointer stored in “interrupt_queue_pointer” register and the last queue

pointer position. The host application must then check each entry between the last

queue pointer and the current “interrupt_queue_pointer” for events of interest.

When polling, look at the queue at a given time interval. During that interval, the

firmware could have written several messages into the queue. Read all the messages

written into the queue since the last look or you could miss data. Even if you are using

hardware interrupts, you must check to make sure you read all the data transacted.

The interrupt mode word shows the source of the event. The mode word identifies BC,

BM, RT, BM trigger, and tag timer overflow interrupts. Use the message address to

read the message data. Then, step through all the messages between the last queue

pointer and the current queue pointer, using the pointer to the next queue entry.

Publication No. 1500-045 Rev. 5.11 Interrupt Queue and Interrupts 61

8.3.2 Polling

User applications can directly poll the interrupt queue, or they can use API functions

to poll and read data from the interrupt queue. Review the polling example

applications in the BusTools/1553-API software distribution Examples directory

regarding methods to poll the interrupt queue.

The API has nine polling functions that hide the interrupt queue structure, while

allowing the caller to access queue data. These functions are:

• BusTools_BC_ReadNextMessage

• BusTools_BC_ReadLastMessage

• BusTools_BC_ReadlastMessageBlock

• BusTools_RT_ReadNextMessage

• BusTools_RT_ReadLastMessage

• BusTools_RT_ReadlastMessageBlock

• BusTools_BM_ReadNextMessage

• BusTools_BM_ReadLastMessage

• BusTools_BM_ReadlastMessageBlock

Use these functions in place of BusTools_RegisterFunction if you want to reduce the

latency of high-level interrupt processing. Make sure that the interval between calling

these functions is less than the time it takes to overflow the interrupt queue.

8.3.3 Interrupts

A hardware interrupt occurs when a specified interrupt event happens on the bus.

When there is an interrupt, the Interrupt Service Routine (ISR) determines which

channel(s) on the device generated the interrupt. The ISR clears the interrupt and

invokes a deferred process that stores the interrupt data including the card number for

the channel and passes it on to a user supplied interrupt callback function. The

hardware interrupt deferred processing function searches the interrupt queue for all

interrupt events, but there is always at least one matching interrupt event.

BusTools_RegisterFunction is the mechanism the API provides to connect a user

function to an interrupt event. BusTools_RegisterFunction is available for Windows,

Linux, LynxOS, VxWorks and Integrity. VxWorks also has low-level interrupt

processing that clears the interrupt and invokes the user callback function.

BusTools_RegisterFunction allows you to filter interrupts (Table 8-2). If you are only

interested in BM interrupts, select EVENT_BM_MESSAGE when invoking

BusTools_RegisterFunction. You can OR together events from Table 8-2. The coding

example in the in the BusTools/1553-API software distribution Examples directory

illustrates this technique.

62 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Table 8-2 Interrupt Events Filters

Event Pneumonic Event Description

EVENT_IMMEDIATE Immediately calls the users function without processing the
interrupt queue

EVENT_EXT_TRIG External Trigger Interrupt

EVENT_TIMER_WRAP Tag Timer overflow or discrete input

EVENT_RT_MESSAGE RT message transacted

EVENT_BM_MESSAGE BM message transacted

EVENT_BC_MESSAGE BC message transacted

EVENT_BC_CONTROL BC control transacted (Last, conditional branch, timed no-op)

EVENT_BM_TRIG BM trigger event (start/stop)

EVENT_BM_START BM started (BusTools_BM_StartStop)

EVENT_BM_STOP BM stopped (BusTools_BM_StartStop)

EVENT_BM_OVRFLW BM detect a overflow (head PTR = tail PTR)

EVENT_BC_START BC started (BusTools_BC_StartStop)

EVENT_BC_STOP BC stopped (BusTools_BC_StartStop)

EVENT_RT_START RT started (BusTools_RT_StartStop)

EVENT_RT_STOP RT stopped (BusTools_RT_StartStop)

EVENT_RECORDER BM recorder buffer has 64K or timeout

EVENT_MF_OVERFLO Minor frame timing overflow

EVENT_LP_MF_OVFL Low Priority Aperiodic message list extend beyond 1 frame

EVENT_HP_MF_OVFL High Priority Aperiodic message list extend beyond 1 frame

EVENT_BC_BSY_OVFL Overflow on BC Busy

EVENT_API_OVERFLO BM API Recorder buffer overflowed

EVENT_HW_OVERFLO BM HW Recorder buffer overflowed

EVENT_IMMEDIATE allows the application to specify the API immediately invoke

the user callback function when an interrupt occurs on the specified channel. You can

use no other interrupt events on a channel if you use EVENT_IMMEDIATE. The

API_INT_FIFO structure contains no message information. The callback function must

do all low-level processing to get the information. The option can reduce latency under

some conditions

The example code searches for a specific interrupt event in the line

if(sIntFIFO → FilterType == YOUR_EVENT_TYPE).

You can omit this line if you have only a single interrupt event for this interrupt

function.

Publication No. 1500-045 Rev. 5.11 Interrupt Queue and Interrupts 63

8.3.4 Setting Up Interrupts with BusTools_RegisterFunction

BusTools_RegisterFunction handles both software (timer interval) and hardware

interrupts. The underlying interrupt function searches the interrupt queue for

matching records, records them in the API_INT_FIFO and then calls the user-supplied

function. Use the following steps to setup interrupts.

Bus Controller Interrupts:

1. Set the BC Interrupt events in the call to BusTools_BC_Init.

2. Set the BC messages that interrupt in BusTools_BC_MessageWrite.

3. Set EVENT_BC_MESSAGE or EVENT_BC_CONTROL in the API_INT_FIFO

structure filterType.

4. You can further refine the interrupt selection by setting FilterMask and EventMask.

FilterMask allows you to select an interrupt by word Count. EventMask allows you

to select an interrupt by the message status bits.

Bus Monitor Interrupts:

1. Set the BM Interrupt events in the call to BusTools_BM_MessageAlloc.

2. Set EVENT_BM_MESSAGE in the API_INT_FIFO structure filterType.

3. Further refine the interrupt selection by setting FilterMask and EventMask.

FilterMask allows you to select interrupts by word Count. EventMask allows you

to select interrupts by the message status bits.

Remote Terminal Interrupts:

1. Set the RT interrupt events in the call to BusTools_RT_MessageWrite. You can set

interrupt events for each RT address, RT Subaddress, Transmit/Receive, and buffer

combination.

2. Set EVENT_RT_MESSAGE in the API_INT_FIFO structure filterType.

3. Further refine the interrupt selection by setting FilterMask and EventMask.

FilterMask allows you to select interrupts by word Count. EventMask allows you

to select interrupts by the message status bits.

External Trigger Interrupts:

1. Call BusTools_ExtTrigIntEnable and enable the external trigger interrupt.

2. Set EVENT_EXT_TRIG in the API_INT_FIFO structure filterType.

3. No other filtering is available.

64 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

8.4 Polled or Interrupt Driven?

The API can use either hardware interrupts or software polling. Determining the most

efficient mechanism (polled or interrupt-driven) requires an in-depth knowledge of the

characteristics of the overall system. In both cases, the interrupt queue tracks the

events on the 1553 bus.

Consider the following when choosing between polled and interrupt driven mode:

• Operating System (OS) Interrupt Latencies. The minimum latency is a function

of the OS and the speed of the processor. The maximum latency is a function of

the OS and the other processes, such as network interfaces and disk accesses.

• Allowable latency between a message occurring on the 1553 bus and the

software processing that message.

• The normal and maximum number of messages occurring per second and the

number of messages per second causing interrupts.

• The number of software processing cycles required per second.

• The speed of the host processor.

• The amount of processing time available for 1553 processing.

• The availability of hardware interrupts on the host processor.

Interrupt driven processing is normally most efficient when the interrupts occur

irregularly or at long intervals. It is also desirable when you must process the data

immediately after the event. The processing load is directly proportional to the

interrupt rate.

Polled operation is normally most efficient when the interrupts are closely spaced in

time. The processing load is not a strong function of the interrupt rate.

Publication No. 1500-045 Rev. 5.11 Board Memory Organization 65

9 • Board Memory Organization

Abaco Systems MIL-STD-1553 products operate using data structures defined in the

board’s host interface, stored in onboard memory. Knowledge of these details is not

necessary when programming the board with the API. However, this information is

useful if you need to modify the API code for special needs.

This chapter provides an overview of the memory structures as defined in the “UCA32

LPU Reference Manual” and “UCA32 Global Reg Ref Manual”. It also describes how

the API routines create and align the various memory structures. The size of these

structures is limited by the amount of memory on the board, and by various placement

restrictions required by both the hardware and the API.

Additional information about the memory organization for older firmware revisions is

available in the “MIL-STD-1553 UCA Reference Manual”.

9.1 Hardware Operation

There is one Megabyte of memory on all boards addressed as 512k 16-bit words. The

API partitions this memory into five categories of structures:

• BM Operation: Memory structures used to control the operation of the Bus

Monitor.

• RT Operation: Memory structures used to control the operation of one or more

Remote Terminals.

• BC Operation: Memory structures used to control the Bus Controller.

• Error Injection Buffers: Buffers used to control the injection of error conditions

into the 1553 data stream. If the application defines a BC or RT, there must be at

least one error injection buffer.

• Interrupt Queue: The Interrupt Queue stores significant events. The host

processor uses the Interrupt Queue to process these events as they occur.

9.2 Software Operation

BusTools/1553-API routines provide a framework that makes the actual memory

organization transparent. However, some knowledge of the framework and memory

organization used by the API routines may be helpful. This section describes the

assumptions made by the API routines.

9.2.1 Memory Segmentation

All boards have one megabyte of on-board RAM memory organized as 512K 16-bit

words. Most of the address-offsets on the board are 16-bits; however, 19 bits are

required to address the full memory range. BusTools/1553-API uses only the upper 16

bits of the address. This restricts the start address of these structures to even eight-

https://www.abaco.com/download/uca32-lpu-reference-manual
https://www.abaco.com/download/uca32-lpu-reference-manual
https://www.abaco.com/download/uca32-global-reg-ref-manual
https://www.abaco.com/download/mil-std-1553-uca-reference-manual

66 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

word boundaries. A few structures require 16-bit addressing. This limits these

structures to the first 64K words of memory, referred to as Segment 1.

Starting with F/W version 6.0 all address offsets on the board are 32-bits. The only

restriction is that structure addresses start on an even double word boundary.

9.3 Memory Organization

The API assigns memory at the following word offsets for Abaco Systems 1553 boards

with firmware version 5.x or earlier:

• (0x0000 - 0x007F) Hardware Control Registers: They include the operational

control bits and the addresses of the various control structures.

• (0x0080 - 0x0094) BM Trigger Buffer: Even if no BM triggers have been

defined, this block must be allocated and set to the default values of all zeros,

which is automatically done when the channel is initialized.

• (0x0094 - 0x009C) Default BM Control Buffer: When the BM is initialized, all

addresses in the BM Filter buffer point to this location. The default Control

Buffer enables recording of all messages for the specified RT address/

subaddress. The second buffer in this block disables all word counts. The API

uses it whenever the caller of BusTools_BM_FilterWrite disables all word

counts for a specified RT address/subaddress.

• (0x00D9 - 0x0450) Interrupt Queue: This memory block contains the Interrupt

Queue. BusTools/1553-API operates with 296 entries.

• (0x0451 - 0x080D) Error Injection Buffers: BusTools/1553-API operates with 30

Error Injection Buffers.

• (0x1000 - 0x17FF) BM Filter Buffer: There is one word in this block for each

possible RT address, Transmit/Receive, and RT subaddress combination. This

block is always present. By default, all addresses point to the default BM

Control buffer. The block must begin on an even 2K-word boundary.

• (0x1000 - 0x7FFFF) Available: This area is available for BM, RT, and BC control

structures and data buffers, RT message buffers and RT broadcast control

buffers (508K words). If Broadcast is enabled, 3906 or 4032 words are reserved

for the Broadcast RT Control Buffers, depending on the state of the Subaddress

31 Mode Code Enable switch. The API allocates BM and BC message and data

buffers, and RT data buffers, at word addresses beginning with 0x10000. RT

control buffers are allocated below 0x10000.

Publication No. 1500-045 Rev. 5.11 Board Memory Organization 67

The API assigns memory at the following word offsets for Abaco Systems 1553 boards

with firmware version 6.x and later:

• (0x0000 - 0x03FF) Hardware Control Registers: They include the operational

control bits, and the addresses of the various control structures, (registers are in

separate memory segment and do not overlap RAM).

• (0x0000 - 0x005B) BM Trigger Buffer: Even if no BM triggers have been

defined, this block must be allocated and set to the default values of all zeros,

which is automatically done when the BusTools_BM_Init routine is called.

• (0x005c- 0x006B) Default BM Control Buffer: When the BM is initialized, all

addresses in the BM Filter Buffer point to this location. The default Control

Buffer enables recording of all messages for the specified RT address/

subaddress. The second buffer in this block disables all word counts. The API

uses it whenever the caller of BusTools_BM_FilterWrite disables all word

counts for a specified RT address/subaddress.

• (0x0100- 0x10FF) Interrupt Queue: This memory block contains the Interrupt

Queue. BusTools/1553-API operates with 512 queue entries.

• (0x1100 - 0x217F) Error Injection Buffers: BusTools/1553-API operates with 30

Error Injection Buffers.

• (0x3000 - 0x4FFF) BM Filter Buffer: There is one 32-bit element in this block for

each possible RT address, Transmit/Receive, and RT subaddress combination.

This block is always present. By default, all addresses point to the default BM

Control buffer.

• (0x5000 - 0x7FFFF) Available: This area is available for BM, RT, and BC control

structures and data buffers, RT message buffers and RT broadcast control

buffers (508k words). If Broadcast is enabled, 3906 or 4032 words are reserved

for the Broadcast RT Control Buffers, depending on the state of the Subaddress

31 Mode Code Enable switch. The API allocates BM and BC message and data

buffers, and RT data buffers, at word addresses beginning with 0x10000. RT

control buffers are allocated below 0x10000.

68 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

10 • C# Support

10.1 Introduction

The .NET Interop Reference Solution can give you a quick start to harnessing the

power of the .NET framework for your 1553 application.

The distributed Bustools/1553-API library is an "unmanaged" DLL and does not use

the .NET framework. By using managed wrapper classes, you can use the distributed

Bustools/1553-API library in your managed application.

The reference solution consists of:

• A managed wrapper class written in C# that encapsulates the Bustools/1553-

API functions and data types.

• A sample managed GUI written in C# that uses the wrapper class to operate an

Abaco Systems 1553 board.

• A sample C# project and C++ unmanaged DLL project that can be used as a

workbench to explore aspects of .NET interop.

The managed wrapper class can be used with C#, VB.NET, or any of the managed

languages .NET supports.

This documentation assumes familiarity with Visual Studio 2008 or later and creating

and running .NET applications.

Publication No. 1500-045 Rev. 5.11 C# Support 69

10.2 The Reference Solution

The reference solution is a Microsoft Visual Studio 2008 solution in the root folder,

named BustoolsInterop.sln. When you open this solution, you will see four projects in

the solution explorer window.

• BustoolsCsApp: A C# GUI that opens and operates a 1553 board.

• BustoolsCsWrapper: A C# class library that wraps the unmanaged

Bustools/1553-API library functions, constants, and data types.

• BustoolsInterop: A C# project that works in conjunction with the C DLL project

to demonstrate .NET interop concepts.

• C DLL: An unmanaged C++ DLL that represents an unmanaged API. Used by

the BustoolsInterop project.

Familiarity with .NET and C# concepts including interop is required to understand the

Reference Solution.

 NOTE
The Reference Solution demonstrates one way to use the Bustools/1553-API distribution with a .NET
application. Other ways and other user-defined wrapper definitions are also possible.

10.3 The API, Data, and Constants Classes

The Bustools1553 namespace encapsulates all the API functions, Data Types, and

Constant definitions. It is recommended you do not change this namespace name, as it

identifies the wrapper and provides name separation when loaded into other projects.

The API static class contains managed entry points for each API call in the unmanaged

Bustools/1553-API C library. .NET interop requires that managed entry points be

contained in a static class. This class is found in file API.cs.

The DataTypes namepsace contains managed equivalents of the structures required by

the unmanaged Bustools/1553-API C library. The managed equivalents are

implemented using C# structures, classes, and unions. This namespace is found in file

DataTypes.cs.

The Constants static class contains managed definitions of the constants required by

the unmanaged Bustools/1553-API C library. This class is found in file Constants.cs.

70 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

10.4 Building and Running the Application

You can build and run the Reference Application "out of the box", as long as you meet

the following assumptions:

• You have Microsoft Visual Studio 2005 or later.

• Abaco MIL-STD-1553 avionics hardware and Bustools/1553-API software has

been properly installed on your host.

In Visual Studio, set BustoolsCsApp as the startup project, and then select "Rebuild

All". You can then run BustoolsCsApp.

10.5 Adding the Managed Wrapper to an Existing .NET Application

First, it is suggested (but not required) that you add the C# project BustoolsCsWrapper

to your existing .NET solution.

Then, in the Solution Explorer, right-click your project and select "Add Reference". If

you added BustoolsCsWrapper to your solution, click the Projects tab and select

BustoolsCsWrapper. Otherwise, select the Browse tab and locate

BustoolsCsWrapper.dll on your disk.

At the top of each of your code pages, add the following lines:

 using Bustools1553;

 using Bustools1553.DataTypes;

 using System.Runtime.InteropServices;

You may need to edit the file API.cs in the BustoolsCsWrapper project. At the top of

this file is a statement that defines exactly where Busapi32.dll should be found.

You can now use the managed wrapper classes in your project.

10.6 Important Coding Differences when Using the .NET Wrappers

Managed .NET Applications can't directly access memory via pointers, so there is no

possibility of sharing memory between the Managed Application and an Unmanaged

DLL. This is where "Interop Marshaling" with "Platform Invoke" a.k.a. "P/Invoke"

comes in.

When a Managed Application calls functions in an Unmanaged DLL, the parameters

to be passed are "Marshaled" across the managed / unmanaged boundary by P/Invoke.

In general, marshaling means copying data across the boundary in one or both

directions.

When a structure or class is Marshaled to the Unmanaged DLL, it is copied to the

DLL's address space where the DLL can access it. When the function returns, the

structure may be Marshaled back to the Managed Application if specified. Because of

this, certain Bustools/1553-API operations that require shared pointers to IntFifo

structures need to be modified.

Publication No. 1500-045 Rev. 5.11 C# Support 71

Additionally, marshaling presents some challenges with multi-dimensional arrays

which are embedded in structures. Because of this, it is required to flatten the array

and use accessor functions to get at it with multiple indices.

Lastly, most Bustools/1553-API functions require pointers to structures, so a .NET class

(a reference type) is required. However, some functions require arrays of structures.

These must be Marshaled as a .NET struct (a value type). This means that the .NET

wrapper contains both struct and class representations of certain data types.

10.6.1 IntFifo Creation and Updating

When using the BusTools/1553-API in C, the application creates the IntFifo and passes

the API a pointer to it. When using .NET, request that the API create the IntFifo

because it must stay in unmanaged memory.

Additionally, when the managed application has completed its IntFifo processing and

modified the tail pointer, it must make a special call to have the API update its version

of the tail pointer.

For an example of this, see the function SetupBcIntFifo in RtTests.cs, in the

BustoolsCsApp project.

10.6.2 Multi-Dimensional Array Data

The API_INT_FIFO Data Type contains the embedded multi-dimensional arrays

eventMask and filterMask. The wrapper flattens these and defines these members as

Private. To access them, use the accessor functions GetEventMask, SetEventMask,

GetFilterMask, and SetFilterMask.

The API_BC_MBUF and API_BC_MBUF_STRUCT Data Type contains the embedded

multi-dimensional array data. The wrapper flattens it and defines this member as

Private. To access it, use the accessor functions GetData and SetData.

10.6.3 Class and Struct Versions of Data types

The Bustools/1553-API functions BC_ReadLastMessageBlock,

BM_ReadLastMessageBlock, and RT_ReadLastMessageBlock require arrays of

API_BC_MBUF, API_BM_MBUF, and API_RT_MBUF_READ, respectively.

Therefore, the wrapper provides both a class and struct version of each. The struct

versions have "_STRUCT" at the end of their names.

If you do not use the struct MBUF version when calling the above functions, you get

an Execution Exception.

For an example of this, see the function BcUserTimerCallback in RtTests.cs, in the

BustoolsCsApp project.

72 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

10.7 Application Notes

10.7.1 BustoolsCsApp

The primary code for this project can be found in the Form1 and RtTests classes. Form1

implements a basic GUI, and RtTests contains source for a simple demonstration

application that configures and interacts with an Abaco Systems 1553 board.

10.7.2 BustoolsInterop

The primary code for this project can be found in the Form1 class. Although this is a

Windows Forms project, the interop tests all take place in the Form1 constructor, and

do not actually implement any GUI operations. Thus, the result is a blank form.

Use the Microsoft Visual Studio debugger to step through the constructor code to see

how interop works.

Publication No. 1500-045 Rev. 5.11 LabVIEW Support 73

11 • LabVIEW Support

11.1 Information

LabVIEW support for BusTools/1553-API is available as a separate product from

Abaco Systems called LV-1553. LV-1553 combines components built on the

fundamental Abaco Systems BusTools/1553-API into a suite of LabVIEW Virtual

Instruments (VIs), complete with integrated examples that are ready to use. Its aim is

to provide the tools you need to operate Abaco Systems 1553 products with LabVIEW.

Further information can be found in the “LV-1553 User’s Manual”.

11.2 System Requirements

Make sure that your PC (or compatible) and its software conforms to the following

requirements:

• Microsoft Windows 32-bit XP, 32-bit/64-bit Windows 7/2008R2 (SP1 and

KB3033929 required), 8, 8.1, Windows Server 2012 R1/R2, or 10 is required.

• National Instruments LabVIEW v8.6 (or higher) is required.

11.3 LabVIEW VI Examples

The LV-1553 distribution also includes example VIs that show how to implement 1553

applications using the LV-1553 VI library. These examples may be, in some cases,

suitable for simple applications; however, the example VIs are only tutorials and not

designed as complete applications.

74 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

12 • VxWorks Support

12.1 Introduction

VxWorks is an embedded real-time operating system (RTOS). BusTools/1553-API

supports VxWorks on PowerPC and Intel x86 processors. You can also port

BusTools/1553-API support to other BSPs. See Chapter 15, “Porting the API to Other

Environments”.

Two VxWorks operating systems are supported by BusTools/1553-API, VxWorks 6.x

and VxWorks 7. The current support for the V6.x kernel covers versions 6.2 to 6.9. The

driver and API provide limited support for PCI/PMC devices under VxWorks 5.5.1.

BusTools/1553-API supports both kernel modules with legacy device drivers (for

PCI/PMC and VME devices) and VxBus device drivers (for PCI/PMC and PCI

Express/XMC devices).

12.2 VxWorks Installation

Follow the instructions provided in the Installation Options section of the

BusTools1553-API VxWorks User Manual located in the VxWorks_Install folder on the

BusTools/1553-API CD and accessible via the Abaco Systems website link below.

 LINK
https://www.abaco.com/download/bustools1553-api-vxworks-user-manual

https://www.abaco.com/download/bustools1553-api-vxworks-user-manual

Publication No. 1500-045 Rev. 5.11 UNIX Support 75

13 • UNIX Support

13.1 Introduction

The BusTools/1553-API distribution contains support for Linux and LynxOS. The table

below shows the boards supported by each operating system.

Table 13-1 UNIX Support Matrix

Board Type Linux LynxOS

QPCX-1553 Yes Yes

QPM-1553 Yes Yes

QPC-1553 Yes Yes

Q104-1553P (PCI) Yes Yes

RPCIE-1553 Yes -

R15-LPCIE Yes -

R15-MPCIE Yes -

R15-AMC Yes -

R15-USB Yes -

R15-EC Yes -

RPCC-D1553 Yes -

RXMC-1553 Yes -

RXMC2-1553 Yes -

QVXI2-1553X - Yes

RQVME2-1553 - Yes

RAR15-XMC-IT/RAR15XF Yes -

Abaco distributes the Linux and LynxOS API versions with the BusTools/1553-API

distribution media. The installation process installs both the API as a shared library

and the driver as a module. Application programs link with the shared library. These

UNIX API versions support all core API functions, as well as interrupts (for POSIX

compliant systems).

76 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

13.2 Compiling Applications

Use the following command line to build and link your UNIX application program:

cc app-name.c –Dnnnnn –I/Condor-Default_Directory/Include –lbusapi –o app-name

Where cc is your C compiler such as cc or gcc and –Dnnnnnnn defines your target

operating system and processor. Options include:

• _LINUX_X86_

• LYNXOS_VME_PPC

• LYNXOS_PMC_PPC

• LYNXOS_X86

Some compilers may not automatically recognize C++ (//) style comments. You may

need to provide a compiler option to allow C++ style comments. For example, SUNS

native compiler requires the compiler option –xCC.

13.3 Linux Installation

Follow the instructions provided in the Installation section of the Linux_install_v<LSP

VERSION>.txt file located in the Linux_install folder on the BusTools/1553-API CD, in

the Linux distribution archive file linux_bt1553_v<API VERSION>.tgz, and on

supported product web pages accessible via the Abaco MIL-STD-1553 product

webpage.

13.4 LynxOS Installation

Follow the instructions provided in the Install section of the text file appropriate for

your LynxOS host:

lynxos_4_ppc_install_bt1553_vNNN.txt for a LynxOS 4 PowerPC host

lynxos_5_ppc_install_bt1553_vNNN.txt for a LynxOS 5 PowerPC host

lynxos_4_x86_install_bt1553_vNNN.txt for a LynxOS 4 x86 host

where NNN is the BusTools/1553-API revision. These files are located in the

LynxOS_install folder on the BusTools/1553-API CD, and on supported product web

pages accessible via the Abaco MIL-STD-1553 product webpage.

 LINK
https://www.abaco.com/download/bustools1553-api-lynxos-4-powerpc-support

 LINK
https://www.abaco.com/download/bustools1553-api-lynxos-4-x86-support

https://www.abaco.com/products/mil-std-1553-protocol
https://www.abaco.com/products/mil-std-1553-protocol
https://www.abaco.com/products/mil-std-1553-protocol
https://www.abaco.com/download/bustools1553-api-lynxos-4-powerpc-support
https://www.abaco.com/download/bustools1553-api-lynxos-4-x86-support

Publication No. 1500-045 Rev. 5.11 Integrity Support 77

14 • Integrity Support

14.1 Introduction

Green Hills Integrity is a secure high reliability real-time operating system (RTOS)

intended for use in mission critical embedded systems. The BusTools/1553-API

distribution provides support for Integrity on systems with PowerPC and x86

processors for the following boards: RAR15-XMC-IT/RAR15XF, R15-MPCIE, R15-

LPCIE, RPCIE-1553, RXMC2-1553, RXMC-1553, QPM-1553, QPCX-1553, QCP-1553,

QVXI2-1553X, and RQVME2-1553.

Integrity is flexible in how it builds the kernel and application software. You can build

a monolith containing the kernel, BSP, and application software, or you can build a

separate kernel/BSP and the application as a Dynamic Download. The BusTools/1553-

API Integrity distribution supports either method.

The BusTools/1553-API distribution provides the Integrity PCI driver, API source

code, and example program source. The source code allows you to modify the static

library if needed.

14.2 Integrity Installation

Follow the instructions provided in the Installation section of the Integrity_install.pdf

file located in the Integrity_install folder on the BusTools/1553-API CD and on

supported product web pages accessible via the Abaco MIL-STD-1553 product

webpage.

 LINK
https://www.abaco.com/download/bustools1553-api-integrity-installation-guide

https://www.abaco.com/products/mil-std-1553-protocol
https://www.abaco.com/products/mil-std-1553-protocol
https://www.abaco.com/download/bustools1553-api-integrity-installation-guide

78 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

15 • Porting the API to Other Environments

This chapter describes the steps to customize the API and to port to a non-supported

operating system. The BusTools/1553-API Installation includes device drivers, low-

level interface routines, and libraries for all supported platforms. The Installation

includes pre-compiled libraries for all operating systems. There is no need to build the

API unless you intend to customize the code or port to a non-supported platform.

These API routines provide consistent, documented interfaces to all hardware features

while hiding the initialization, addressing details and other differences that exist

among the various board models.

BusTools/1553-API also supports easy customization and porting to non-supported

operating systems. All source and include files needed to build the BusTools/1553-API

library come on the installation CD-ROM. Installation copies these files to the Include

and Source directories on your host system.

15.1 Supported Compilers

The latest BusTools/1553-API version for the Windows/Intel platforms is built using

Microsoft C/C++ version 6.0 and Microsoft Visual Studio 2008. Linux and LynxOS

libraries use the GNU C/C++ compiler. The Integrity API builds with the native Multi

C compiler.

15.2 API Source Code

The BusTools/1553-API installation includes the source code for the API, providing the

ability to customize or port the API. The distributed BusTools/1553-API libraries

control all Abaco Systems 1553 boards, and in most cases this installation should

suffice; however, in some cases you may want to customize the API to improve speed

or size, or port to an unsupported platform

The API is written in C. Although it is intended to be standard C, there might be

certain constructs in the code that need to be changed when migrating to a different

compiler.

There are two ways to customize the API. The first is to use the pre-defined macros to

control how the API compiles. These macros allow you to include or exclude API

functions. The other is to modify the source and re-compile the BusTools/1553-API.

Modify the API code with caution as unintended effects could result.

Publication No. 1500-045 Rev. 5.11 Porting the API to Other Environments 79

15.3 Rebuilding the API

The following table itemizes combinations of compiler and target environments that

might be used when re-building the API for the Windows/Intel environments:

Table 15-1 Rebuilding the API on Various Environments

Target
Environment

Target Tool Set
Compile
Source with

Implementation Comments

Windows
Application

Microsoft –
compatible tools
including C/C++
and Visual Basic

Microsoft C/C++
V6 or above.

Distribution API is compiled using Microsoft
Visual Studio 6 and 2008. While the DLL is
compatible with all standard tools, the .lib
file is specific to the Microsoft tool version.

VxWorks
Workbench 3.2 or
greater

C Compiler
supplied with
Workbench

Build according to the instructions in
Chapter 12, “VxWorks Support”.

Integrity
Multi v5.10 or
greater

Multi C compiler
Build according to the instructions in
Chapter 14, “Integrity Support”.

Linux Versions
2.4x, 2.6x, 3.x,
4.x, and 5.x

GNU Tools

GCC Version 2.0

GNU Tools

GCC Version 2.0

Link with the libceill.so low-level library file
which resides in the default path for libraries
(/usr/lib or /usr/lib64).

The installation provides a project or Make file for rebuilding the API. The Windows

BusTools/1553-API projects for Microsoft Development Studio are located under the

respective toolset directory in the installed directory tree based on the host operating

system:

for Windows 7 and later versions:

C:\Users\Public\Documents\Condor Engineering\BusTools-1553-API\Windows API Projects

for Windows XP:

C:\Program Files\Condor Engineering\BusTools-1553-API\Windows API Projects

The Linux and LynxOS installations provide Make files for building the device driver,

example program, and API library. These are located within the respective driver,

examples, and source directories beneath the bt1553 directory. VxWorks does not have

a make file or project, but Chapter 12, “VxWorks Support” provides information

regarding where to find the project build instructions.

When you compile the API, you need to include busapi.h, which in turn includes

target_defines.h. These files are in the BusTools/1553-API Include directory, created

during the software installation process. The target_defines.h file determines how the

API compiles for each supported target. There are define-blocks for each target. Table

15-2 shows which platforms are currently supported by the BusTools/1553-API.

Table 15-2 Currently Supported Platforms and Operating Systems

Operating System/Platform Compiler Directive Comment

Windows _WIN32 or WIN32 The Microsoft Visual C++ compiler defines
WIN32

Linux (x86 platform) _LINUX_X86_ Defined in the Makefile when building the API

80 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Operating System/Platform Compiler Directive Comment

VxWorks x86 with PCI/PCIe/PMC/XMC VXW_PCI_X86 All VxWorks x86 BSP’s with PCIbus-based
boards.

VxWorks x86 with VME VXW_VME_X86 All VxWorks x86 BSP’s with VMEbus-based
boards.

VxWorks PPC with VME VXW_VME_PPC All VxWorks PowerPC BSP’s with VMEbus-
based boards.

VxWorks PPC with PCI/PCIe/PMC/XMC VXW_PCI_PPC All VxWorks PowerPC BSP’s with PCIbus-
based boards.

Integrity PPC with PCI/PCIe/PMC/XMC INTEGRITY_PCI_PPC Green Hills Integrity PowerPC with PCIbus-
based boards.

Integrity PPC with VME INTEGRITY_VME_PPC Green Hills Integrity PowerPC with VMEbus-
based boards.

LynxOS PPC with VME LYNXOS_VME_PPC LynxOS PowerPC host with VMEbus-based
boards.

LynxOS PPC with PCI/PCIe/PMC/XMC LYNXOS_PMC_PPC LynxOS PowerPC host with PCIbus-based
boards.

LynxOS x86 with PCI/PCIe/PMC/XMC LYNXOS_X86 LynxOS x86 host with PCIbus-based boards.

15.3.1 Customizing the BusTools/1553-API Using Pre-Defined
Symbols

You can customize how the API compiles by changing the symbol definitions within

the target blocks. If you port to an unsupported platform, you need to use an existing

target definition block or build a new target definition block.

If you choose to create a new block, you should start with an existing block like your

target platform. For example, if you port the API to an SGI processor running IRIX,

you may want to create a new block.

Within each block these symbol-defines determine how the API builds. Table 15-3

shows the symbols you can use to customize how the API compiles.

Table 15-3 Symbols that Customize the BusTools/1553-API

Symbol Name Purpose O/S Support Comment

MAX_BTA Define the number of
1553 interface
channels that the API
can use

All This is set to a default of 64 for all API
versions. You can increase or decrease as
needed.

INCLUDE_VMIC Include the optional
VMIC support.

 Windows This allows the Win32 API to run on VMIC
Intel processors and control VME boards.
Defined by default for WIN32 and
undefined for all other O/S

_WIN16_INTERRUPTS_ Includes support for
legacy 16-Bit
Windows (Windows
3.1) interrupts

 Windows Some applications use legacy 16-Bit
Windows interrupt handling. Defined by
default for WIN32, undefined for other
O/S’s

Publication No. 1500-045 Rev. 5.11 Porting the API to Other Environments 81

Symbol Name Purpose O/S Support Comment

FILE_SYSTEM This enables logging
information to file.

All The API has dump and error logging
functions that write data to files on a disk
drive. If your O/S supports a file system,
you can use these features by defining
this symbol. Defined for systems
supporting file systems like Windows and
Linux. Un-defined for embedded systems
like VxWorks and Integrity

DEMO_CODE Allows the API to run
in demo mode without
hardware.

WIN32 By default only defined for WIN32
systems.

ADD_TRACE Allows a trace of all
API calls.

All Use for diagnostic purposes. By default
undefined for all O/S’s. Requires a file
system (FILE_SYSTEM)

DO_BUS_LOADING Allows the API to
calculate bus loading
statistic

All This optional feature allows the API to
calculate Bus Loading statistics. The
Default Windows API defines this symbol.
All others undefine the symbol.

_INIT_EXTERNAL_ Uses external DLL for
API initialization

 Windows When running in a Windows environment
some systems like NI-VXI can use an
external DLL to initialize the board. You
supply the DLL and functionality
according to documentation for
BusTools_API_InitExternal. By default this
is defined for Windows and undefined for
all other O/S’s.

LABVIEW Includes the LabVIEW
routines for use with
National Instrument
LabVIEW programs

 Windows Allows the API to run with LabVIEW.
Defined for Windows and undefined for all
other O/S’s.

_USER_DLL_ Allows a Windows
system to include a
user-defined DLL to
alter how the API
executes. This is
normally used with
BusTools, Graphical
Bus Analyzer
program, but can be
used for other
applications.

 Windows Defined under Windows, undefined for all
other systems. Un-defining removes the
feature from the API.

PLAYBACK Include the Playback
function into the API.

 Windows and
UNIX

Playback allows the API to take a
BusTools-1553 Bus Monitor file (.bmd)
and playback the 1553 messages
recorded over a 1553 bus. Requires
defining the REGISTERFUNCTION symbol,
BusTools_RegisterFunction, to run.

INCLUDE_VME_1553 Include the VME
board capability into
the API

All The VME-1553 uses a large firmware file
during initialization. If you aren’t using the
VME-1553 board, you can reduce the size
of the API by undefining this symbol.
Defined for Windows and all systems
supporting the RQVME2-1553 and QVME-
1553 board.

82 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Symbol Name Purpose O/S Support Comment

NO_ASSEMBLY Excludes assembly
language code

All The API uses some assembly code in the
time.c file to optimize the time functions.
This code is for Windows systems.
Undefine this symbol for all non-Windows
environments.

GCC Compile with gcc UNIX
VxWorksLynxOS

This define specifies if you are compiling
with GNU gcc. It allows the API to take
advantage of gcc structure packing.

_VMEBOARDSETUP
_LINUXBOARDSETUP
_LINUXVMEBOARDSETUP
_X86BOARDSETUP
_PCIBOARDSETUP

_LYNXOSBOARDSETUP

INTEGRITY_PCI_PPC

Board setup options UNIX VxWorks
Integrity

Select the board setup option you compile
with the API. The file btdrv.c includes the
selected file according to the setup option
you define in your target_define block. If
you omit this define, you get a compiler
error.

15.3.2 Other Build Symbols

BusTools/1553-API uses several other symbols to allow compiling across different

platforms and operating systems (see Table 15-4). When porting to an unsupported

operating system, make sure you define these symbols correctly. If you port to a

Windows-based system, these symbols are defined under the __WIN32__ definition

block or by default. When porting a UNIX based system, defining the _UNIX_ in your

target block defines these symbols for a UNIX system.

Table 15-4 Other Symbols

Symbol Definition Operating
System

Comment

CCONV Calling Convention Windows Define as _stdcall for Window and blank for all other
operating systems.

NOMANGLE C++ Compilers Windows Define as blank for C compilers.

PACKED Provides proper
structure alignment
and packing for GNU
compilers.

UNIX Certain structures need 2-byte alignment. When
compiling with a GNU compiler define PACKED as:
__attribute__ ((aligned(2),packed)) Otherwise, define
PACKED blank.

PRAGMA_PACK Local structure
alignment for MS
Visual C++

Windows Use for Microsoft Visual C++ compiler to pack structure
with 2-byte alignment.

MSDELAY Provides a 1
millisecond Sleep
function

All Define a MSDELAY(p1) function that sleeps for p1
milliseconds. For example, Linux uses the following
definition:

#define MSDELAY(p1) usleep(p1*1000)

__int64

__unt64

64-bit integer and
unsigned 64-bit integer

All The time.c file requires a 64-bit integer to calculate the
tag time. Declaring a 64-bit signed or unsigned integer
varies between compilers. You must define __int64 as a
64-Bit integer and __uint64 as a 64-Bit unsigned integer.
For example, VxWorks uses the following:

#define __int64 long long

#define __uint64 unsigned long long

CEI_MALLOC

CEI_FREE

Used for Bus Monitor
setup

All For Windows define CEI_MALLOC as GlobalAlloc and
CEI_FREE as GlobalFree. All other system can use
malloc and free.

Publication No. 1500-045 Rev. 5.11 Porting the API to Other Environments 83

Symbol Definition Operating
System

Comment

CEI_MUTEX Mutual Exclusion
device

All CEI_MUTEX is defined in target_defines.h. Base this on
the O/S you are using. Defined for windows as
CRITICAL_SECTION, POSIX as pthread_mutex_t,
VxWorks as SEM_ID

CEI_EVENT Event variable All CEI_EVENT is defined in target_defines.h. Base this on
the event variable for our systems. Defined for
Windows as HANDLE, POSIX as phtread_cond_t;
Vxworks as MSG_Q_ID

CEI_THREAD Thread definition All CEI_THREAD is defined in target_defines.h. Base this
on the thread type for the system you are using.
CEI_THREAD is defined in Windows as int; POSIX as
pthread_t, VxWorks as int

CEI_THREAD_EXIT Thread exit macro All This macro is defined in target_defines.h. base this on
thread type you are using. Defined for Windows as
ExitThread(0); POSIX as pthread_exit(0); Vxworks as
taskDelete(a) where a is the tasked.

CEI_MUTEX_LOCK Mutex Lock macro All The Mutex lock macro is defined in target_defines.h.
Base this macro on the mutex you are using. Defined in
Windows as EnterCriticalSection, POSIX as
pthread_mutex_lock; and VxWorks as semTake

CEI_MUTEX_UNLOCK Mutex Un-Lock macro All The Mutex unlock macro is defined in target_defines.h.
Base this macro on the mutex you are using. Defined in
Windows as LeaveCriticalSection, POSIX as
pthread_mutex_unlock; and VxWorks as semGive

CALLBACK Used with a timer
callback function when
in Windows

Windows For other system define as blank

WORD

DWORD

UINT

HWND

LPSTR

LPINT

LPWORD

LPLONG

LPDWORD

LPVOID

These are defined in
Windows.

UNIX,
VxWorks,
Integrity

 typedef unsigned short WORD;

 typedef unsigned long DWORD;

 typedef unsigned int UINT;

 typedef int HWND;

 typedef char * LPSTR;

 typedef int * LPINT;

 typedef WORD * LPWORD;

 typedef long * LPLONG;

 typedef DWORD * LPDWORD;

 typedef void * LPVOID;

LARGE_INTEGER A Microsoft structure
used for a 64 bit
unsigned integer.

UNIX and
VxWorks

LARGE_INTEGER is used with the ADD_TRACE
capability. If you want to include this debugging tool
into your API, you need to define LARGE_INTEGER as a
signed 64-bit integer.

VOID Void ALL Define VOID as void

timeGetTime Windows and provides
a timeGetTime function
that returns the current
time in milliseconds

UNIX,
VxWorks,
Integrity

You need to provide a timeGetTime function that
returns time in milliseconds. The wrapper versions are
in the time.c file.

15.4 Windows Calling Conventions

When compiled for Windows, all API functions use the stdcall or WINAPI calling

conventions. Consequently, you can call the busapi32.dll from any Windows

application that supports those calling conventions, such as LabVIEW, and Visual

Basic. These applications do not need to re-compile the API to use it.

84 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

15.5 Porting to an Unsupported Operating System

BusTools/1553-API library source is written in C, not C++. Although it is standard C,

there might be certain constructs in the code you need to change when migrating to a

unsupported compiler. You must also assure all include files are valid for your system.

15.5.1 Endian Issues

The API supports operation on Little Endian and Big Endian systems. By default, the

API is Little Endian. When compiling for a Big Endian system assure the API does all

bit- and byte-swapping correctly. Due to variations in operating systems and

compilers this may be inconsistent across Big Endian systems. You can define several

macros that will convert a Big Endian value to Little Endian.

• NON_INTEL_WORD_ORDER – flips 32-bit words to and from Big Endian

• NON_INTEL_BIT_FIELDS – Reorders certain bit fields in structures.

• WORD_SWAP – Flip every 16-bit access to the board.

The BusTools/1553-API defines NON_INTEL_WORD_ORDER and

NON_INTEL_BIT_FIELDS for RQVME2-1553, and QVME-1553 on the PowerPC

processor, and defines WORD_SWAP for the PMC-1553 on a PowerPC system.

When porting the API to a new platform, make sure you understand all the Endian

issues and correctly set the Endian conversion symbols. You must consider the

Endianess for both the host processor and the target Bus. For example, the VME bus is

Big Endian and the PCI bus is Little Endian.

15.5.2 Conversion Steps

The sections that follow detail the following conversion issues:

• Choosing an initial environment.

• Target definition

• In-line Intel assembly language.

• Syntactical issues.

• Bit fields word ordering

• Structure alignment and byte/word accesses.

• Mapping the board into host memory.

• Interrupt support

Choosing an Initial Environment

BusTools/1553-API supports the following target environments:

• Windows

• Linux

• VxWorks

• LynxOS

Publication No. 1500-045 Rev. 5.11 Porting the API to Other Environments 85

• Integrity

The first decision to make is which environment most closely resembles your target

environment. The target_defines.h included by Busapi.h, defines the labels that control

the compilation targets. Consider the following items for porting to a non-supported

platform.

• When compiling for Windows, define _WIN32 or WIN32.

• When compiling for non-Intel environments, or compilers that do not support

in-line x86 assembly, define “NO_ASSEMBLY”.

• When compiling for UNIX environments, define _UNIX_. This generates a

build targeted to an UNIX-like system. It will substitute UNIX system calls for

Windows system calls. This includes all systems using GNU compilers

including VxWorks.

• When running VxWorks, define VXWORKS.

• When running Integrity, define _INTEGRITY_.

• When compiling for an environment which defines bit fields reversed from the

Intel ordering, define the label NON_INTEL_BIT_FIELDS.

• When running PCI bus on a PowerPC, define WORD_SWAP. This macro

maintains proper word ordering.

• When compiling for processors that order words reversed from the Intel

ordering, define the label NON_INTEL_WORD_ORDER. This enables the

“flip” macro that swaps the two words of a DWORD when they cross a 32-bit

boundary.

• Always ensure that the compiler does not pad structures (e.g., specify two-byte

structure alignment). You need to ensure that your system has the correct

structure size for all structures. Table 15-5 shows the required structure sizes.

You need to ensure that the size of these structures in your code matches the

sizes in this table.

• When compiling for an environment that supports a file system, you can define

the label “FILE_SYSTEM” to include the diagnostic and memory dump output

capabilities of the API (BusTools_DumpMemory, et al.).

• When compiling for systems that support hardware interrupts, define

HW_INTERRUPTS.

Target Definition

Target_defines.h has define-blocks for the supported processors and operating

systems. The following is an example of a define block for a PCI boards running on a

Linux x86 system.

/**

 * Target defines for Linux running for the PCI Boards.

 ***/

#if defined(_LINUX_X86_) /* */

 #define _UNIX_ /* */

 #define _GCC_ /* Using GCC compiler */

86 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

 #undef _Windows /* */

 #undef __WIN32__ /* */

 #define _LINUXBOARDSETUP/* */

 #undef INCLUDE_VMIC /* supports the VMIC VME */

 #undef _PLAYBACK_ /* */

 #define FILE_SYSTEM /* Add file systems functions*/

 #undef DEMO_CODE /* API DEMO version */

 #undef NON_INTEL_BIT_FIELDS /* Intel Bit Ordering */

 #undef NON_INTEL_WORD_ORDER /* Intel Word Ordering */

 #undef ADD_TRACE /* function call trace code */

 #undef DO_BUS_LOADING /* bus loading code */

 #undef _USER_INIT_ /* */

 #undef _LABVIEW_ /* */

 #undef _USER_DLL_ /* */

 #define _PLAYBACK_ /* */

 #undef INCLUDE_VME_VXI_1553 /* */

 #define INCLUDE_PCCD /* */

 #include <unistd.h> /* */

 #include <string.h> /* */

 #define MSDELAY(p1) usleep(p1*1000) /*Sleep marcro */

 /* the following are the O/S specific definitions for*/

 /* malloc, free threads, mutexes and events */

 #include <pthread.h> /* pthread for Interrupts */

 #define CEI_MALLOC(a) malloc(a) /* memory alloc */

 #define CEI_FREE(a) free(a) /*memory free */

 #define CEI_MUTEX pthread_mutex_t /* mutex type */

 #define CEI_THREAD pthread_t /* thread type */

 #define CEI_EVENT pthread_cond_t /* event variable */

 #define CEI_MUTEX_LOCK(a) pthread_mutex_lock(a)/* */

 #define CEI_MUTEX_UNLOCK(a) pthread_mutex_unlock(a)/**/

 #define CEI_THREAD_EXIT(a) pthread_exit(0) /* */

#endif /* end _LINUX_X86_ */

/***/

Inline Intel Assembly Language

Inline Intel assembly language has an alternate implementation in portable “C” code.

The “C” implementation is selected when the “NO_ASSEMBLY” label is defined.

Syntax Issues

While the API source is written in “C”, it uses a mix of “C” and “C++”style comments

(“//”) throughout the code. If you use the –ansi directive with GNU C, the compiler

does not recognize // comments.

Another syntax issue is the use of system-include files. The code uses both the PC

platform set of .h files and the UNIX (gnu C) set of include files. Select the set of

include files the API uses by setting the macros in the target_defines.h file. These two

include file options aren’t necessarily compatible with other compilers. If you are using

a non-supported compiler, you may need to modify the include files to work with your

compiler.

Publication No. 1500-045 Rev. 5.11 Porting the API to Other Environments 87

Bit Fields and Word Ordering

Many non-Intel-targeted compilers number the bits in the bit fields opposite to that

required by the Windows (Little Endian) platform. Defining the compile-time symbol

“NON_INTEL_BIT_FIELDS”, causes the bit numbering to be reversed to agree with

these targets.

Many non-Intel platforms reverse the ordering of words within a quantity. The “flip”

macro is activated when the compile-time symbol “NON_INTEL_WORD_ORDER” is

defined.

Define “NON_INTEL_WORD_ORDER” if you are running on a Big Endian processor.

Further, you may need to define the WORD_SWAP macro if you are running a

PowerPC or other Big Endian processor with a PCI bus.

Structure Alignment and Byte/Word Accesses

The BusTools/1553-API uses two types of structures, host and on-board. The host

structures use “API” in their name (API_BC_MBUF for example). These host structures

pass information between the API and the application software. The alignment of these

structures is not critical to execution, so long as you compile all modules with the same

alignment. This is not true of the board structures.

Board structures pass information between the API and the 1553 interface board. The

API needs the compiler to align and pack these structures on a two-byte boundary. If

this alignment is off, the API doesn’t execute correctly. Make sure that the board

structures match the size in Table 15-5.

BusTools_BIT_StructureAlignmentCheck is a BIT function that checks for the structure

alignment in your application. You can use this function in the early application

development to check for alignment problems and remove later when alignment is

correct.

88 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Table 15-5 Structure Size for Key BusTools/1553-API Structures for Boards Running V5 or Earlier
Firmware

Structure Name Size in Bytes

BC_MESSAGE 48

BC_CBUF 48

BC_DBLOCK 68

BM_CBUF 8

BM_MBUF 168

BM_FBUF 4096

BM_TBUF_ENH 106

EI_MESSAGE 66

RT_ABUF_ENTRY 8

RT_ABUF 256

RT_CBUF 6

RT_CBUFBROAD 126

RT_FBUF 4096

RT_MBUF_HW 88

RT_MBUF_API 8

RT_MBUF 96

BT1553_TIME 8 for API v8.0x and 6 for earlier API revisions.

IQ_MBLOCK 6

Table 15-6 Structure Size for Key BusTools/1553-API Structures for Boards Running V6 Firmware

Structure Name Size in Bytes

BC_V6MESSAGE 36

BC_V6CBUF 36

BC_V6DBLOCK 68

BM_V6CBUF 8

BM_V6MBUF 172

BM_V6FBUF 8192

V6MBUF_HW 96

BM_V6TBUF_ENH 92

EI_V6MESSAGE 66

RT_V6ABUF_ENTRY 8

RT_V6ABUF 256

T_V6CBUF 8

RT_V6CBUFBROAD 132

RT_V6FBUF 8192

RT_V6MBUF_HW 96

RT_MBUF_API 8

RT_V6MBUF 104

BT1553_TIME 8

IQ_V6MBLOCK 8

Publication No. 1500-045 Rev. 5.11 Porting the API to Other Environments 89

Mapping the Board into Host Memory

BusTools/1553-API controls the board through direct pointer access. This means that

the API requires only a pointer to the board’s base address. Some boards require just a

pointer to memory while other boards require a pointer to memory and a

configuration space. Check either the “MIL-STD-1553 UCA Reference Manual” or the

“UCA32 Global Register Reference Manual” for the mapping requirements for your

1553 interface, depending on the firmware version programmed on the board.

When porting to non-supported systems, you need to supply the API with a device

driver or a similar function that can provide the pointer to the board. You also need a

low-level interface. The low-level interface provides a consistent interface between the

API and the mapping function.

You need to have the following two functions for all board types.

• vbtMapBoardAddresses

• vbtFreeBoardAddresses

You also need to provide:

• vbtGetPCIConfigRegister (for Native PCI boards or a stub)

lowlevel.h has the function prototypes for these routines.

The process of mapping the board into memory depends on the board you are using

and the operating environment. Abaco Systems uses a third-party driver for Windows

operating systems and supplies a device driver for Linux and LynxOS systems. The

API also has the following low-level interface files:

• lowlevel.c: Windows. This is a proprietary file and only the lowlevel.obj file is

on the distribution.

• mem.c: Used for all board types under Linux and LynxOS.

• mem_vxWorks.c: Used for all boards and supported Board Support Packages.

• mem_integrity.c: Used for all board and supported Board Support Packages.

You can use one of these files as the basis for any new development. They all include

lowlevel.h.

https://www.abaco.com/download/mil-std-1553-uca-reference-manual
https://www.abaco.com/download/uca32-global-reg-ref-manual

90 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Interrupt Support

BusTools/1553-API supports interrupt processing via invocation of the function

BusTools_RegisterFunction. This function allows the user to provide an interrupt

callback function that runs when the specified interrupt event occurs. You can

implement this feature on unsupported systems or modify how interrupts run on

supported systems by providing code for the CEI interrupt templates. These templates

are functions, MACROS, or data types. Fill in the code to provide the functionality

needed. The following table lists the templates.

Name Type Description

CEI_THREAD_DESTROY function Terminates thread and events

CEI_THREAD_CREATE function Create thread and events

CEI_WAIT_FOR_EVENT function Wait (blocks) for specified event

CEI_EVENT_SIGNAL function Signal waiting thread of event

CEI_MUTEX_LOCK MACRO Lock mutex

CEI_MUTEX_UNLOCK MACRO Unlock mutex

CEI_THEAD_EXIT MACRO Thread exit macro

CEI_THREAD type Type definition for thread

CEI_EVENT type Type definition for event

CEI_MUTEX type Type definition for mutex

Currently the API supports hardware interrupts for Windows, POSIX and VxWorks.

These are implemented in 3 files, CEI_WIN_INTERRUPT_FUNCTIONS.c,

CEI_POSIX_INTERRUPT_FUCNTIONS.c, and

CEI_VXW_INTERRUPT_FUNCTIONS.c. There is a CEI_INTERRUPT.h file containing

the function prototypes for the interrupt functions. The macros and data type are

defined in target block in target_defines.h. You can use these predefined interrupt

functions or use the file CEI_template_INTERRUPT_FUNCTION.c provided in the

source directory and fill in missing code with the interrupt processing required.

Publication No. 1500-045 Rev. 5.11 Porting the API to Other Environments 91

15.6 Rebuilding the BusTools/1553-API Library

Abaco Systems provides the source code to the BusTools/1553-API library as part of

the standard distribution. This allows you to understand how the API works and

allows customization the API if desired. The Windows BusTools/1553-API projects for

Microsoft Development Studio are located under the respective toolset directory in the

installed directory tree based on the host operating system:

for Windows 7 and later versions:

C:\Users\Public\Documents\Condor Engineering\BusTools-1553-API\Windows API Projects

for Windows XP:

C:\Program Files\Condor Engineering\BusTools-1553-API\Windows API Projects

For Microsoft Visual C++ 6, open the project for Busapi32.dll via double-click on the

Busapi32.dsw (workspace) file in the MSVS 6.0\Busapi32 directory.

For Microsoft Visual Studio 2008, open the 64-bit API library project via double-click

on the solution file Busapi64.sln located in the MSVS 2008\Busapi64 directory. The

following example build is for Microsoft Visual Studio 2008:

You can build the Busapi32.dll by clicking on the Build icon or pressing the F7 key.

You can customize this build by changing the Project Option settings.

15.6.1 Changing Project Options

1. Right-click on the project Busapi64, select Properties… to access the following

dialog.

92 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

Figure 15-1 Visual Studio Project Propertis

2. To change the path to the API header files: Under the Configuration Properties ->

C/C++ category, select the General subcategory and enter the appropriate path in

the Additional Include Directories property.

Figure 15-2 Visual Studio Project Compiler Include File Path Properties

3. Build the API with 2-byte alignment: Under the Configuration Properties -> C/C++

category, select the Code Generation subcategory and modify the Struct Member

Alignment property.

Publication No. 1500-045 Rev. 5.11 Porting the API to Other Environments 93

Figure 15-3 Visual Studio Project Compiler Code Generation Properties

4. The precompiled Lowlevel.obj and usb.obj files are included in the build from

Configuration Properties -> Linker category, select the General subcategory and

enter the appropriate path in the Additional Library Directories property.

Figure 15-4 Visual Studio Project Linker Directories File Path

94 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

15.6.2 Building the DLL

Use the build icon, press the ‘F7’ key or under Build menu, select Build Busapi64 or

Rebuild Solution. This compiles the files and builds the 64-bit DLL. The Busapi64.dll

builds without any errors or warnings.

15.7 Building a Unix Platform Shared Library

The Linux make will compile the API as a shared library (libbusapi.so). Under LynxOS

it is built as a static library (libbusapi.a). Re-build the library and install it into the

proper directory by navigating to the bt1553 directory in the install directory tree and

typing ‘make’.

Publication No. 1500-045 Rev. 5.11 Glossary 95

Glossary

1553 A component or message in accordance with MIL-STD-1553.

1773 A component in accordance with MIL-STD-1773, which is an optically coupled
version of MIL-STD-1553.

Windows An operating system developed by Microsoft.

API Application Programmer’s Interface. A defined and documented software interface,
which permits software written by one person or organization to interact with the
software written by another person or organization without requiring either party to
know the details of the implementation of the other’s software.

BC Bus Controller. One of three possible devices that may be connected to a MIL-STD-
1553 bus. Determines the message traffic on a 1553 bus.

BC-RT A 1553 message that transfers data from the BC to a RT. Also called a RT Receive
message.

BIOS Basic Input/Output System. The resident software that initializes the computer
hardware and provides low-level access to some of the computer components.

BM Bus Monitor. One of three possible devices that may be connected to a MIL-STD-
1553 bus. A passive monitor, which cannot create or request traffic on a 1553 bus.

Broadcast A class of 1553 messages characterized by multiple receivers and one sender.
Broadcast messages are directed to the broadcast Remote Terminal number (31) but
are actually received and processed by all Remote Terminals on the bus.

Broadcast BC-RT A specific 1553 message directed to RT address 31, where all RTs receive the data
sent by the BC, and that they do not respond with a status word.

Broadcast Mode Code A class of 1553 messages, where a mode code is directed to RT address 31. This
causes all RTs on the bus to process the message, and not respond with a status
word.

Broadcast RT-BC A message type that is not defined or permitted on a MIL-STD-1553 bus system.

Broadcast RT-RT A specific 1553 message, where two command words are transmitted by the BC, and
that the first command word tells all RTs to listen. The second command word
instructs a specific RT to ignore the listen command and to transmit data.

BSP Board Support Package. Software used by embedded systems to setup the hardware
on a specific processor board. Roughly equivalent to the BIOS on a PC or PC/AT.

cPCI Compact version of the PCI interface. See PCI below.

DLL Dynamic Link Library. A stand-alone library of software functions that may be used by
an application.

FPGA Field Programmable Gate Array

include file A file with an extension of “.h”, used by “C” programmers to contain function and data
structure definitions that are shared among various program modules.

Linux UNIX based operating system for PCs

Microcode The instructions for the programmable element of the 1553 interface contained in
the WCS.

Microsecond 1/1000000 (millionth) of a second. Abbreviated as µs.

Millisecond 1/1000 (thousandth) of a second. Abbreviated as ms.

MIL-STD-1553 A military communication standard that specifies the interconnection of one Bus
Controller, multiple Remote Terminals, and optionally, one or more Bus Monitors, into
an integrated communication system.

MIL-STD-1773 An optically coupled version of MIL-STD-1553.

Mode Code A class of 1553 messages, using Subaddress 0 or 31, and with the word count
interpreted as the mode code number. Mode codes have zero or one data word,
depending on the mode code number. While all word counts are potentially valid, only
a subset of the possible mode codes is valid, as specified by the standard.

Operating System The software that operates the computer, such as Windows or Linux.

OS Operating System. The software that operates the computer.

PC Personal Computer. A specific type of host computer based on the Intel architecture.

PCI Peripheral Component Interconnect. A board-level communication bus used in
Personal Computers (and other computer systems) based on the PCI Specification
from the PCI Special Interest Group.

96 BusTools/1553-API Software User's Manual Publication No. 1500-045 Rev. 5.11

 LINK
See the Abaco Glossary Reference Manual for more terms and acronyms.

PCIe Peripheral Component Interconnect Express. A board-level communication bus used
in Personal Computers.

Playback The ability to regenerate MIL-STD-1553 message traffic on the physical bus using
data that was previously recorded.

PMC PCI Mezzanine Card. A slim modular mezzanine card based on the PCI specification.

RT Remote Terminal. One of three possible devices that may be connected to a MIL-
STD-1553 bus. Responds to a Bus Controller.

RT Number The address of a specific RT. A value between 0 and 30, with 31 being reserved for
the Broadcast function.

RT Receive A 1553 message that transfers data from the Bus Controller to a Remote Terminal.
Also called a BC-RT message or just a Receive message.

RT Transmit A 1553 message that transfers data from a Remote Terminal to the Bus Controller.
Also called a RT-BC message or just a Transmit message.

RT-BC A 1553 message that transfers data from a RT to the BC. Also called a RT Transmit
message.

RT-RT A class of 1553 messages, where there are two command words transmitted by the
BC. The first command tells a specific RT to listen for data, the second command
word instructs another RT to transmit data. The BC is neither the source nor
destination for the data.

Subaddress The address within a RT that acts as the source or destination of a specific message.
Subaddresses 1 through 30 are used for messages, SA 0 and 31 are reserved for
mode codes.

USB Universal Serial Bus, a type of computer port which can be used to connect external
equipment to a computer.

WCS Writeable Control Store

Window A functional component of an application. A display.

Windows Any one of several Windows operating systems supplied by Microsoft corporation.

XMC Express Mezzanine Card. A slim modular mezzanine card based on the PCI Express
specification.

https://www.abaco.com/download/glossary

© 2019 Abaco Systems, Inc.
All rights reserved.

* indicates a trademark of Abaco Systems,
Inc. and/or its affiliates. All other trademarks
are the property of their respective owners.

This document contains Proprietary
Information of Abaco Systems, Inc. and/or its
suppliers or vendors. Distribution or
reproduction prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE
PROVIDED "AS IS", WITH NO
REPRESENTATIONS OR WARRANTIES OF
ANY KIND, WHETHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. ALL OTHER
LIABILITY ARISING FROM RELIANCE ON ANY
INFORMATION CONTAINED HEREIN IS
EXPRESSLY DISCLAIMED.

Abaco Systems
Information Centers

Americas:
 1-866-652-2226 (866-OK-ABACO)
 or 1-256-880-0444 (International)

Europe, Middle East and Africa:
 +44 (0)1327 359444

Additional Resources

For more information, please visit the
Abaco Systems web site at:

www.abaco.com

Publication No. 1500-045 Rev. 5.11

https://www.abaco.com/

	About This Manual
	Conventions
	Notices
	Terms
	Numbers
	Text

	Further Information
	Abaco Website
	Abaco Documents

	Technical Support Contact Information
	Returns
	Safety Summary
	Ground the System
	Do Not Operate in an Explosive Atmosphere
	Keep Away from Live Circuits
	Do Not Service or Adjust Alone
	Do Not Substitute Parts or Modify System

	Contents
	List of Figures
	List of Tables
	1 • Unpacking and Handling
	1.1 Unpacking Procedures
	1.2 Handling Precautions

	2 • Overview
	2.1 Introduction
	2.2 BusTools/1553-API
	2.2.1 Interface to Other Languages
	2.2.2 API Source Code

	2.3 Supported Hardware
	2.4 Hardware Features

	3 • Operational Modes and Timing
	3.1 Single-function, Dual-function, and Multi-function Modes
	3.2 RT Validation Mode (Single RT)
	3.3 MIL-STD-1553A and MIL-STD-1553B Operation
	3.3.1 MIL-STD-1553A Operation
	3.3.2 MIL-STD-1553B Operation

	3.4 Setting and Using Time-tags
	3.4.1 Time-tag Modes
	3.4.2 Time-tag Initialization
	3.4.3 Formatting and Displaying Time-tags
	3.4.4 Selecting Time-tag Options
	3.4.5 Controlling and Synchronizing Time-tags
	3.4.6 Reading Time-tags

	3.5 Using IRIG-B on Selected Boards

	4 • Bus Monitor
	4.1 BM Hardware Operation
	4.2 BM Software Operation
	4.3 BM Recording

	5 • Remote Terminals
	5.1 RT Hardware Operation
	5.2 RT Software Operation
	5.3 RT Monitor Mode
	5.4 RT Extended Status Mode
	5.5 Dynamic Bus Control

	6 • Bus Controller
	6.1 BC Hardware Operation
	6.1.1 Frame Messaging
	6.1.2 Message Scheduling

	6.2 BC Message Block Types
	6.2.1 1553 BC Message Block
	6.2.2 Conditional Branch BC Message Block
	6.2.3 Stop BC Message Block
	6.2.4 NO-OP BC Message Block
	6.2.5 Timed NO-OP BC Message Block
	6.2.6 Timed NOOP in Different BC Timing Modes

	6.3 Aperiodic 1553 BC Messages
	6.3.1 High Priority Aperiodic Messages
	6.3.2 Low-Priority Aperiodic Messages
	6.3.3 Aperiodic Message Timing

	6.4 Dynamic Bus Control
	6.5 Message Scheduling
	6.6 Minor Frame Definition
	6.7 Message Gap Timing
	6.8 BC Software Operation
	6.8.1 Initializing the Bus Controller
	6.8.2 Allocating BC Messages
	6.8.3 BC Messages
	6.8.4 Defining a Minor Frame
	6.8.5 Setup Message Gap Timing
	6.8.6 Bus Controller Interrupt Programming

	6.9 BC One-Shot Operation
	6.10 BC Read/Write/Update/Allocate APIs

	7 • Error Injection
	7.1 Error Injection Hardware Operation
	7.2 Error Types
	7.3 Enhanced Zero-Crossing
	7.4 Error Injection Software Operation

	8 • Interrupt Queue and Interrupts
	8.1 Interrupt Queue Initialization and Structure
	8.2 Selecting Interrupt Events
	8.2.1 Selecting Bus Controller Interrupts
	8.2.2 Selecting Bus Monitor Interrupts
	8.2.3 Selecting Remote Terminal Interrupts
	8.2.4 Selecting External Trigger Interrupts

	8.3 Interrupt Processing
	8.3.1 Interrupt Queue Software Operation
	8.3.2 Polling
	8.3.3 Interrupts
	8.3.4 Setting Up Interrupts with BusTools_RegisterFunction

	8.4 Polled or Interrupt Driven?

	9 • Board Memory Organization
	9.1 Hardware Operation
	9.2 Software Operation
	9.2.1 Memory Segmentation

	9.3 Memory Organization

	10 • C# Support
	10.1 Introduction
	10.2 The Reference Solution
	10.3 The API, Data, and Constants Classes
	10.4 Building and Running the Application
	10.5 Adding the Managed Wrapper to an Existing .NET Application
	10.6 Important Coding Differences when Using the .NET Wrappers
	10.6.1 IntFifo Creation and Updating
	10.6.2 Multi-Dimensional Array Data
	10.6.3 Class and Struct Versions of Data types

	10.7 Application Notes
	10.7.1 BustoolsCsApp
	10.7.2 BustoolsInterop

	11 • LabVIEW Support
	11.1 Information
	11.2 System Requirements
	11.3 LabVIEW VI Examples

	12 • VxWorks Support
	12.1 Introduction
	12.2 VxWorks Installation

	13 • UNIX Support
	13.1 Introduction
	13.2 Compiling Applications
	13.3 Linux Installation
	13.4 LynxOS Installation

	14 • Integrity Support
	14.1 Introduction
	14.2 Integrity Installation

	15 • Porting the API to Other Environments
	15.1 Supported Compilers
	15.2 API Source Code
	15.3 Rebuilding the API
	15.3.1 Customizing the BusTools/1553-API Using Pre-Defined Symbols
	15.3.2 Other Build Symbols

	15.4 Windows Calling Conventions
	15.5 Porting to an Unsupported Operating System
	15.5.1 Endian Issues
	15.5.2 Conversion Steps
	Choosing an Initial Environment
	Target Definition
	Inline Intel Assembly Language
	Syntax Issues
	Bit Fields and Word Ordering
	Structure Alignment and Byte/Word Accesses
	Mapping the Board into Host Memory
	Interrupt Support

	15.6 Rebuilding the BusTools/1553-API Library
	15.6.1 Changing Project Options
	15.6.2 Building the DLL

	15.7 Building a Unix Platform Shared Library

	Glossary

