

Application Note AN-009
The BMD and BMDX File Formats

Copyrights

Document Copyright  2016 Abaco Systems, Inc. All rights reserved.

This document is copyrighted and all rights are reserved.

This document may not, in whole or part, be; copied; photocopied; reproduced; translated; reduced or
transferred to any electronic medium or machine-readable form without prior consent in writing from
Abaco Systems, Inc.

BusTools and BusTools/1553 are trademarks of Abaco Systems, Inc.

Abaco Systems, Inc., acknowledges the trademarks of other organizations for their respective products or
services mentioned in this document.

Abaco Systems, Inc.
26 Castilian Drive, Suite B
Goleta, CA 93117
Main +1 805-965-8000 or +1 805-883-6101
Support +1 805-965-8000 or +1 805-883-6097

support@abaco.com (email)

https://www.abaco.com/products/avionics

Additional Resources

For more information, please visit the Abaco Systems website at:

www.abaco.com

mailto:support@abaco.com
https://www.abaco.com/products/avionics
http://www.abaco.com/

Contents

Introduction .. 4

BMD Files .. 5

The BMD File Structure .. 5

The API_BM_MBUF Structure (128-Bytes) ... 6

Example Program .. 7

BMDX Files .. 8

The BMDX File Structure ... 9

The BMDX File Header .. 9

The New API_BM_MBUF Structure (162-Bytes) 10

Example Program .. 11

Application Note AN 009 – The BMD and BMDX File Formats 4

Introduction

The BusTools/1553 analyzer software and the BusTools/1553-API store

Bus Monitor data in binary files with a “.bmd” or “.bmdx” file extension.

These are called “BMD files” (Bus Monitor Data files) or “BMDX files”

(Bus Monitor Data Files Extended). The purpose of this document is to

explain these file formats to allow users to write their own programs to

read and process these files.

This Application Note assumes a basic knowledge of 1553. For

information on the MIL-STD-1553 protocol refer to the “MIL-STD-1553

Tutorial” document available from Abaco Systems. Additional

information can also be found in MIL-HDBK-1553A.

Note: BMDX is a newer file format and it replaces the older BMD format
in the latest versions of the software. BusTools/1553 Bus Analyzer
v7.30 and later use the BMDX file format but can still open and read log
files in the BMD format to ensure backward compatibility.

Application Note AN 009 – The BMD and BMDX File Formats 5

BMD Files

The BMD file format is very simple. A BMD file is NOTHING but a

series of records. There is no header or footer information. Each record

in the file represents a 1553 message which corresponds to the 128-byte

API_BM_MBUF structure as it is defined in the BusTools/1553-API

version 6.44 or earlier.

Note: BMD is the format used by BusTools/1553 Bus Analyzer v7.20
and earlier.

The BMD File Structure

Message 0

Message 1

 Message 2

Message 3

Message N

Start of File

End of File

API_BM_MBUF structure

(128 bytes)

Application Note AN 009 – The BMD and BMDX File Formats 6

The API_BM_MBUF Structure (128-Bytes)

The BusTools/1553-API defines the API_BM_MBUF structure in the

file “busapi.h”. This structure is also described in the “BusTools/1553-

API Software Reference Manual” in Chapter 7 (Data Structures).

The definition is shown below:

#define BT1553_MBUFCOUNT 32 /* Data words in api_bm_mbuf struct */

typedef struct api_bm_mbuf

 {

 BT_U32BIT messno; // Message number (generated by API, 1-based)

 BT_U32BIT int_status; // Interrupt status from board

 BT1553_TIME time; // Time of message (48-bits, 1 us LSB)

 BT1553_COMMAND command1; // 1553 command word #1 (Receive for RT-RT)

 BT_U16BIT status_c1; // 1553 command word #1 error status

 BT1553_COMMAND command2; // 1553 command word #2 (Transmit for RT-RT)

 BT_U16BIT status_c2; // 1553 command word #2 error status

 BT1553_BMRESPONSE response1; // 1553 response time #1 (byte)

 BT1553_BMRESPONSE response2; // 1553 response time #2 (byte)

 BT1553_STATUS status1; // 1553 status word #1 (Transmit for RT-RT or Broadcast RT-RT)

 BT_U16BIT status_s1; // 1553 status word #1 error status

 BT1553_STATUS status2; // 1553 status word #2 (Receive for RT-RT, NULL for BCST RT-RT)

 BT_U16BIT status_s2; // 1553 status word #2 error status

 BT_U16BIT value[BT1553_MBUFCOUNT]; // 1553 data words

 BT_U8BIT status[BT1553_MBUFCOUNT]; // 1553 status for data words

 }

API_BM_MBUF;

This structure provides all the information needed for a 1553 message,

including time stamp, command words, status words, data words,

response times, and error information. The 32-bit “int_status” field

provides error/status flags for the message. The bits in this field are

defined in the “BusTools/1553-API Software Reference Manual” in

Chapter 7 (Data Structures), in the section for “Interrupt Enable /

Message Status Bits (32 bit)”. Any errors on any word will be reflected

in the 32-bit “int_status” word for the message. Errors are also reported

for each word to identify exactly where errors occurred. Each command

word and status word has an associated 16-bit error/status word that will

reflect any errors on that specific word. Each data word has an associated

8-bit error/status word that will reflect any errors on that specific data

word. The bits in these fields are defined in the “BusTools/1553-API

Software Reference Manual” in Chapter 7 (Data Structures), in the

section for “BM Word Status Bits (8/16 bit)”. The response time values

(response1 and response2) are in units of 0.5 microseconds.

Application Note AN 009 – The BMD and BMDX File Formats 7

Example Program
Here is a very simple example program that reads a BMD file. For each

message in the file, the program displays the message number and the

command word.

#include <stdio.h>

#include "busapi.h" // Header file from BusTools/1553-API v6.44 or earlier version

void main()

{

 FILE *BMDfile;

 char BMDfile_name[80];

 API_BM_MBUF msg;

 unsigned long num_msgs, i;

 printf("Input BMD filename: "); scanf("%s",BMDfile_name);

 BMDfile = fopen(BMDfile_name, "rb");

 if (BMDfile == NULL) {

 printf("ERROR OPENING BMD FILE %s\n",BMDfile_name);

 }

 else {

 fseek(BMDfile, 0, SEEK_SET); // Make sure we are at beginning of file.

 fseek(BMDfile, 0, SEEK_END); // Determine file size in records.

 num_msgs = ftell(BMDfile) / sizeof(API_BM_MBUF);

 printf("There are %d message records in the file.\n", num_msgs);

 fseek(BMDfile, 0, SEEK_SET); // Reset to beginning of file.

 // Read a message record.

 for (i=0; i<num_msgs; i++) {

 if (fread(&msg, 1, sizeof(msg), BMDfile) != sizeof(msg)) {

 printf("ERROR READING RECORD!\n");

 i = num_msgs;

 }

 else {

 // Display msg # and command word.

 printf("Message #: %d ", msg.messno);

 if (msg.command1.tran_rec)

 printf("CMD1 = RT%02d TRANSMIT SA%02d WC%02d\n",

 msg.command1.rtaddr,

 msg.command1.subaddr,

 msg.command1.wcount);

 else

 printf("CMD1 = RT%02d RECEIVE SA%02d WC%02d\n",

 msg.command1.rtaddr,

 msg.command1.subaddr,

 msg.command1.wcount);

 }

 }

 printf("Finished, closing file.\n");

 fclose(BMDfile);

 }

 }

Application Note AN 009 – The BMD and BMDX File Formats 8

BMDX Files

The BMDX file format was created to accommodate the new

API_BM_MBUF structure as it was defined in the BusTools/1553-API

v8.0 and later.

This new structure is very similar to previous one used in the BMD file

format but with the two following improvements:

 64-bit time tags (instead of 48-bit in the old structure). These

time tags can either have a microsecond resolution (if the traffic

was recorded with a board using firmware revision prior to v6.0)

or a nanosecond resolution (if the traffic was recorded with

boards using firmware revision v6.0 or later).

 16-bit extended status/quality word (instead of 8-bit in the old

structure) for each data word in the message.

In order to integrate these two changes, the BMD file format had to be

modified and replaced by the new BMDX format.

The BMDX format is still very simple. It consists of a header (providing

some information about the file) followed by a series of records. Each

record after the header represents a 1553 message and corresponds to the

new 162-byte API_BM_MBUF structure as it is defined in the

BusTools/1553-API main header file for API versions 8.0 and later.

Note: BMDX is the format used by BusTools/1553 Bus Analyzer v7.30
and later.

Application Note AN 009 – The BMD and BMDX File Formats 9

The BMDX File Structure

The BMDX File Header
The BMDX header is 28-byte structure defined as follows:

// This is the header for the BMDX file format

typedef struct bmdx_header

{

 char cTypeName[16]; //"BMDX"

 BT_U32BIT uVersion; // File version

 BT_U32BIT uFormatInfo; // Info about the content of the file

 BT_U32BIT uReserved; // Reserved Bits

}

BMDX_HEADER;

- The cTypeName parameter contains the format name and should

always be “BMDX”.

- The uVersion parameter contains the value for the BMDX version.

- The uFormatInfo parameter provides some information about the

records in the file:

o Bit 0 - Indicates if the 64-bit time tags in the

API_BM_MBUF records have a nanosecond or microsecond

resolution (0 = microsecond, 1= nanosecond).

o Bits 1 to 31 - Currently unused.

- The uReserved parameter is currently unused.

HEADER

Message 0

 Message 1

Message 2

Message N

Start of File

End of File

New API_BM_MBUF

structure (162 bytes)

Application Note AN 009 – The BMD and BMDX File Formats 10

The New API_BM_MBUF Structure (162-Bytes)
The BusTools/1553-API (v8.0 and later) defines the API_BM_MBUF

structure in the file “busapi.h”. This structure is also described in the

“BusTools/1553-API Software Reference Manual” in Chapter 7 (Data

Structures). The definition is shown below:

#define BT1553_MBUFCOUNT 32 /* Data words in api_bm_mbuf struct */

typedef struct api_bm_mbuf

 {

 BT_U32BIT messno; // Message number (generated by API, 1-based)

 BT_U32BIT int_status; // Interrupt status from board

 BT1553_TIME time; // Time of message (64-bits, 1 us or 1ns LSB)

 BT1553_COMMAND command1; // 1553 command word #1 (Receive for RT-RT)

 BT_U16BIT status_c1; // 1553 command word #1 error status

 BT1553_COMMAND command2; // 1553 command word #2 (Transmit for RT-RT)

 BT_U16BIT status_c2; // 1553 command word #2 error status

 BT1553_BMRESPONSE response1; // 1553 response time #1 (byte)

 BT1553_BMRESPONSE response2; // 1553 response time #2 (byte)

 BT1553_STATUS status1; // 1553 status word #1 (Transmit for RT-RT or Broadcast RT-RT)

 BT_U16BIT status_s1; // 1553 status word #1 error status

 BT1553_STATUS status2; // 1553 status word #2 (Receive for RT-RT, NULL for BCST RT-RT)

 BT_U16BIT status_s2; // 1553 status word #2 error status

 BT_U16BIT value[BT1553_MBUFCOUNT]; // 1553 data words

 BT_U16BIT status[BT1553_MBUFCOUNT]; // 1553 status for data words (16-bit words)

 }

API_BM_MBUF;

As was the case for the BMD format, this structure provides all the

information needed for a 1553 message, including time stamp (64-bit),

command words, status words, data words, response times, and error

information. The 32-bit “int_status” field provides error/status flags for

the message. The bits in this field are defined in the “BusTools/1553-API

Software Reference Manual” in Chapter 7 (Data Structures), in the

section for “Interrupt Enable / Message Status Bits (32 bit)”. Any errors

on any word will be reflected in the 32-bit “int_status” word for the

message. Errors are also reported for each word to identify exactly where

errors occurred. Each command word, data word, and status word has an

associated 16-bit error/status word that will reflect any errors on that

specific word. The bits in these fields are defined in the “BusTools/1553-

API Software Reference Manual” in Chapter 7 (Data Structures), in the

section for “BM Word Status Bits (8/16 bit)”. The response time values

(response1 and response2) are in units of 0.5 microseconds.

Application Note AN 009 – The BMD and BMDX File Formats 11

Example Program
Here is a simple example program that reads a BMDX file. For each

message in the file, the program displays the message number and the

command word.

#include <stdio.h>

#include "busapi.h" // Header file from BusTools/1553-API v8.00 or later

typedef struct bmdx_header{

 char cTypeName[16];

 BT_U32BIT uVersion;

 BT_U32BIT uFormatInfo;

 BT_U32BIT uReserved;

}

BMDX_HEADER;

#define BMDX_HEADER_SIZE sizeof(BMDX_HEADER)

void main()

{

 FILE *BMDXfile;

 char BMDXfile_name[80];

 API_BM_MBUF msg;

 unsigned long num_msgs, i;

 printf("Input BMDX filename: "); scanf("%s",BMDXfile_name);

 BMDXfile = fopen(BMDXfile_name, "rb");

 if (BMDXfile == NULL) {

 printf("ERROR OPENING BMD FILE %s\n",BMDXfile_name);

 }

 else {

 fseek(BMDXfile, 0, SEEK_SET); // Make sure we are at beginning of file.

 fseek(BMDXfile, 0, SEEK_END); // Determine file size in number of records.

 num_msgs = (ftell(BMDXfile) - BMDX_HEADER_SIZE) / sizeof(API_BM_MBUF);

 printf("There are %d message records in the file.\n", num_msgs);

 fseek(BMDXfile, BMDX_HEADER_SIZE, SEEK_SET); // Reset to beginning of the BM records.

 // Read a message record.

 for (i=0; i<num_msgs; i++) {

 if (fread(&msg, 1, sizeof(msg), BMDXfile) != sizeof(msg)) {

 printf("ERROR READING RECORD!\n");

 i = num_msgs;

 }

 else {

 // Display msg # and command word.

 printf("Message #: %d ", msg.messno);

 if (msg.command1.tran_rec)

 printf("CMD1 = RT%02d TRANSMIT SA%02d WC%02d\n",

 msg.command1.rtaddr,

 msg.command1.subaddr,

 msg.command1.wcount);

 else

 printf("CMD1 = RT%02d RECEIVE SA%02d WC%02d\n",

 msg.command1.rtaddr,

 msg.command1.subaddr,

 msg.command1.wcount);

 }

 }

 printf("Finished, closing file.\n");

 fclose(BMDXfile);

 }

 }

	Introduction
	BMD Files
	The BMD File Structure
	The API_BM_MBUF Structure (128-Bytes)
	Example Program

	BMDX Files
	The BMDX File Structure
	The BMDX File Header
	The New API_BM_MBUF Structure (162-Bytes)
	Example Program

