

PowerDNx Protocol and Operating
Modes (DAQBIOS)

for

PPCx, PPCx-1G, and PowerDNA Cubes

and

 DNR-x-1G HalfRACK and RACKtangle Chassis

October 2010 Edition
PN Man-DAQBIOS Protocol 1010

Version 1.0

© Copyright 1998-2010 United Electronic Industries, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written
permission.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility
is assumed for its use, or for any infringements of patents or other rights of third parties that may result
from its use.

All product names listed are trademarks or trade names of their respective companies.

See UEI’s website for complete terms and conditions of sale:

http://www.ueidaq.com/company/terms.aspx

Contacting United Electronic Industries

Mailing Address:

27 Renmar Avenue

Walpole, MA 02081

U.S.A.

For a list of our distributors and partners in the US and around the world, please see
http://www.ueidaq.com/partners/

Support:

Telephone: (508) 921-4600
Fax: (508) 668-2350

Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:

Support support@ueidaq.com

Web-Site www.ueidaq.com

FTP Site ftp://ftp.ueidaq.com

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS
CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in
life support devices or systems. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic
Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts
no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our
employees' negligence or failure to detect an improper purchase.

NOTE: Specifications shown in this document are subject to change without notice. Check with UEI for
current status.

i

Tel::508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_ManualTOC.fm

© Copyright 2008
United Electronic Industries, Inc.

Table of Contents
Chapter 1 Host / IOM Communication Modes . 1

1.1 Host / IOM Communication Modes . 1
1.1.1 Synchronous vs. Asynchronous. 2

1.2 Buffered I/O. 2
1.2.1 Advanced Circular Buffer (ACB) . 2
1.2.2 Burst Mode. 5

1.3 Message Mode (Msg Protocol) . 5
1.3.1 IOM/Host Data Transfer. 5
1.3.2 CAN-503 Data Transfer . 6
1.3.3 PDNALib Structures. 6
1.3.4 Error Recovery. 7
1.3.5 Other Messaging Types. 7
1.4.1 Fixed-Size Data Mapping (DMap) . 8

1.5 Choosing the Right Layers, Operating System, and Mode. 11
1.5.1 Attributes of Modes . 11
1.5.2 Application Requirements . 12
1.5.3 Selecting the Right Mode for Your Application . 15

Chapter 2 DAQBIOS Protocol . 18

2.1 DaqBIOS Packet Structure . 17

2.2 DaqBIOS Protocol Versions . 19

2.3 Host and IOM Data Representa-tion. 19
2.3.1 Soft and Hard Real-time . 19
2.3.2 DaqBIOS & Network Security . 19

Chapter 3 DAQBIOS Engine . 22

3.1 Basic Architecture . 21

3.2 Threads and Function . 22

3.3 IOM Data Retrieval and Data Conversion. 23

Chapter 4 Real Time Operation with an IOM . 25

4.1 Simple I/O . 24

4.2 Real-time Data Mapping (RtDmap). 24
4.2.1 Data Replication over the Network . 25
4.2.2 RtDmap Functional Description . 25
4.2.3 RtDmap Typical Program Structure . 28

4.3 Real-time Variable-size Data Mapping (RtVmap) . 28
4.3.1 RtVmap Typical Program Structure . 34

Chapter 5 Asynchronous Operation with an IOM . 35

Index . 39

i

List of Figures

Chapter 1 Host / IOM Communication Modes . 1
1-1 Communicating with an IOM ..1
1-2 Host / IOM Communication in ACB Mode (with DQE)..3
1-3 Data Field of a RDFIFO Packet Containing Messages ..6
1-4 Message Block for CAN messages in FIFO ...6
1-5 Host / IOM Communication in DMap Mode ..8
1-6 Host / IOM Communication in VMap Mode (with DQE)..10

Chapter 2 DAQBIOS Protocol . 18
2-1 DaqBIOS Packet Over UDP Packet ...17
2-2 DaqBIOS Packet Over Raw Ethernet Packet ...17

Chapter 3 DAQBIOS Engine . 22
3-1 User Application/DQE/IOM Interaction. ..21

Chapter 4 Real Time Operation with an IOM . 25
4-1 DMap Operation ...24

DAQBIOS Protocol Manual
Chapter 1 1

Host / IOM Communication
Chapter 1 Host / IOM Communication

1.1 Host / IOM
Communica-
tion Modes

As illustrated in Figure 1-1, the PowerDNA API provides four basic ways of
communicating between a host and a PowerDNA IOM (cube or RACKtangle):

• DaqBIOS Command API (point-by-point simple I/O, synchronous)

• Buffered I/O in continuous (ACB) or burst (streaming) mode (asynchro-
nous)

• Mapped I/O API (synchronous) — DMap (fixed data size) or VMap (vari-
able data size)

• Messaging — asynchronous, buffered, messaging data format

Figure 1-1. Communicating with an IOM

Note that any of the communication modes listed can be selected on a
per-I/O board basis and can run independently on the same IOM. Only one API
at a time can be used with each I/O board, but each IOM can have multiple I/O
boards using the same or different communication modes. If DMap or VMap is
selected for more than one board, all such boards are handled as a group.

Some important characteristics of the various modes are:

• In ACB mode, data is transferred in blocks between host and IOM. Each
packet contains one block per I/O board configured for ACB operation. If
you use multiple ACB I/O boards, data from each board will be sent in
separate packets. Each of the boards can run at a different speed.

• In DMap and VMap modes, data is transferred between host and mul-
tiple DMap- or VMap-configured I/O boards on an IOM in a single
packet. For DMap mode, you are limited to one data value per channel
in each packet. For VMap mode, you can set the number of packets per
channel in each packet. Also, all such boards must run at the same

Command Mode Synchronous Mode

Asynchronous Mode

(DQE is running)

DaqBIOS
Commands

Streaming
Commands

Mapping
Commands
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 2

Host / IOM Communication
speed, controlled by the IOM clock. Transfer of data between IOM and
host is controlled by the host. For DMap, update rate of the host maps is
usually set at less than half the scan rate of the IOM. For VMap, update
rate is usually set to transfer at least half the FIFO of each device.

1.1.1 Synchronous
vs.
Asynchronous

In synchronous modes, also called single scan or simple IO mode, the host
sends a request, waits for a reply, and then sends another command. This
keeps the host and IOM in lock step. Error detection/correction is handled by
the user.

In asynchronous modes, the host sends requests on ticks of a timebase timer,
and the software automatically takes care of re-requests when a network colli-
sion or loss of a packet occurs. If you prefer, you can work in a manner similar
to synchronous mode, sending request after request and processing packets
yourself. However, we recommend that you use asynchronous for streaming or
data mapping and design your application accordingly.

Asynchronous mode is inherently soft-real-time because collisions on the net-
work cannot be predicted and, therefore, cannot be avoided.

All three APIs (synchronous, buffered, mapped) can be used to communicate
with the same IOM, but not at the same time on one I/O board. Once a device
on the IOM is switched to an asynchronous mode, you should not issue syn-
chronous commands to that board so as to avoid interfering with any device
configuration or timing set up for asynchronous operation.

1.2 Buffered I/O Buffered I/O modes use temporary intermediate storage to compensate for
varying data transfer rates between host and IOM or devices. The two main
asynchronous buffered modes are called Advanced Circular Buffer (ACB) and
Burst Mode.

1.2.1 Advanced
Circular Buffer
(ACB)

As shown in Figure 1-2, the Advanced Circular Buffer Mode uses a circular buf-
fer divided into frames. The DaqBIOS engine (DQE) stores data at a known
location (the “head”) and reads it at another (the “tail). When a read or write
crosses a frame boundary, the DQE triggers an event.

ACB mode also uses another packet ring buffer for temporary and sequential
storage of received packets. When the application detects a missing packet, it
requests retransmission of the missing packet and uses the packet ring buffer
to place the packet in its proper sequence before writing it to the ACB.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 3

Host / IOM Communication
Figure 1-2. Host / IOM Communication in ACB Mode (with DQE)

Once an acquisition is started, DQE stores data into the buffer at a known point
(called the head), while the application generally reads data at another position
(known as the tail). Both operations occur asynchronously and can run at differ-
ent rates. However, you can synchronize them either by timer notification or by
triggering a DQE event.

To issue a notification to the user application upon receipt of a specific sample
or when incoming data reaches a scan-count boundary, DQE segments the buf-
fer into frames. Whenever incoming (or outgoing) data crosses a frame bound-
ary, DQE sends an event to the application. If multi-channel acquisition is
performed, the frame size should be a multiple of the scan size to keep pointer
arithmetic from becoming unnecessarily complex.

With the ACB, three modes of operation are possible, which differ in the actions
taken when the end of the buffer is reached or when the buffer head catches up
with the tail.

• In Single Buffer mode, acquisition stops when DQE reaches the end of the
buffer. The user application can access the buffer and process data during

n

n+1

n +2

n

n+1

n +2

Ethernet

Missed packet re-requests

FrameFram
e

ACB

.

Application FIFO

Frame boundaries

HOST ring
buffer

IOM ring
buffer

Data

Host IOM
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 4

Host / IOM Communication
acquisition or wait until the buffer is full. This approach is appropriate when you
are not acquiring data in a continuous stream.

• In Circular Buffer mode, the head and tail each wrap to the buffer start when
they reach the end. If the head catches up to the tail pointer, the buffer is con-
sidered full and acquisition stops. This mode is useful in applications that must
acquire data with no loss of sample data. Data acquisition continues until either
a predefined trigger condition occurs or the application stops DQE. If the appli-
cation can't keep up with the acquisition process and the buffer overflows, the
driver halts acquisition and reports an error condition.

• Recycled mode resembles Circular Buffer mode except that when the head
catches up with the tail pointer, it doesn’t stop but instead overwrites the oldest
scans with the new incoming scans. As the buffer fills up, DQE is free to recycle
frames, automatically incrementing the buffer tail. This buffer-space recycling
occurs whether or not the application reads the data. In this mode, a buffer
overflow never occurs. It is best suited for applications that monitor acquired
signals at periodic intervals. The task might require that the system digitize sig-
nals at a high rate, but not process every sample. Also, an application might
need only the latest block of samples.

When the buffer is used for output, the user should fill at least two frames
before starting output. Every time a frame becomes empty and ready to accept
new data, the DQE triggers an event to the application.

While the ACB may seem a departure from the single and double-buffer
schemes you see in most other data acquisition systems, it's actually a super-
set of them. In Single Buffer mode, the ACB behaves like a single buffer. If con-
figured as a Circular Buffer with two frames, it behaves as a double buffer. With
multiple frames, the ACB can function in algorithms designed for buffer queues.
The only limitation, which results in more efficient performance, is that the logi-
cal buffers in the queues cannot be dynamically allocated or freed and that their
order is fixed.

The Ethernet UDP protocol used to transfer data is connectionless and unreli-
able. Older packets may come first and new packets may never arrive. The
ACB assumes that the data comes sequentially without gaps between scans.
To accommodate the sequential nature of a data stream with the packet nature
of Ethernet, DQE implements an additional intermediate buffer – called the
Packet Ring Buffer (PRB), which should not be confused with the separate ACB
buffer.

The PRB is a non-contiguous ring buffer intended for data loss recovery. FIFO
devices on the IOM send their data to the host in sequentially numbered pack-
ets (using the dqCounter field of the DaqBIOS command header). These num-
bers vary from 0x1 to 0xFFFF and then wrap around (skipping 0). Such
numbering allows DQE to notice when a packet is missing — detected when-
ever a higher-numbered than expected packet is received. (In Figure 1-2, if the
last packet number was n and we’ve just received one numbered n+2, we know
that the packet n+1 is missing.) Since the receiving buffer is non-contiguous, we
just put the newly arrived packet into the buffer, which was bound to receive it
anyway, and send a specific request for the missing one. When it finally arrives,
we just put it in its proper place and copy all data into the contiguous ACB in
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 5

Host / IOM Communication
correct order.

A thread transfers data from the ring buffer into the ACB when contiguous
chunks of data become available. The data request routine, (DqGetACB-
Scans(), also performs additional transfers if a chunk of contiguous data is
available at the moment of execution.

1.2.2 Burst Mode Burst Mode is a streaming mode in which data is sent or received continuously
for a specific time duration or until an event such as timer event, buffer full, or
buffer empty occurs.

1.3 Message
Mode (Msg
Protocol)

With messaging devices (serial, CAN, ARINC interfaces), the data is a stream
of bytes logically divided into frames, messages, strings, etc. Two characteris-
tics of messaging devices make DMap protocol inefficient, if not impossible, for
handling messages and thus generate a need for another protocol specifically
designed for messaging. These characteristics are:

1. Since the data is a stream, losing part of the data may change the meaning
of the message.

2. Unlike digital or analog data, the timing of data availability depends on the
external stream of messages — you cannot predict when and how much
data will become available, and whether or not receiving/transmitting errors
may exist on the bus.

Messaging layers, therefore, are supported by the Msg Protocol, which shares
the same buffering mechanism as the ACB protocol. The Msg protocol buffer
receives packets and delays releasing newer packets to the user application
until it re-requests and receives all the packets in the message stream.
Although this protocol does provide a gapless stream of messages, it is not
suited for realtime operation because some deadlines may be missed.

Message mode operates in much the same way as ACB mode. The IOM, of
course, must have a layer that supports a messaging protocol, such as a CAN-
503 layer. When messages are received by the messaging layer, they are
stored in the FIFO. As with the streaming version of ACB mode, a messaging
layer in Operation mode sends packets (containing the received messages) to
the host automatically, without the host having to send a command to request
them. When the host receives the message packets, it puts them into a Receiv-
ing Message Queue, which is similar to an ACB, and signals an event, which
alerts the client program. The client program can then retrieve the messages
and process them as needed.

There is also a Sending Message Queue on the host side, into which the client
program can insert outgoing messages. These messages are taken from the
queue by the reader thread and sent to the IOM. The IOM then transmits the
message on the network interface of the layer.

1.3.1 IOM/Host Data
Transfer

When the messaging layer receives a message, the message is stored in the
FIFO of the layer. When running in Operation mode, the layer checks the FIFO
at regular intervals and transmits any as yet unsent messages to the host.

A DQFIFO structure in a packet sent from the IOM to the host may contain one
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 6

Host / IOM Communication
or more messages in its data field. The data field consists of a 16-bit value indi-
cating the size of the next message block, followed by the message block itself,
followed by another size value and message block, etc. A size field of 0 termi-
nates the sequence. See the Figure 1-3 for an illustration.

Figure 1-3 Data Field of a RDFIFO Packet Containing Messages

This same format is used to transfer outgoing messages from the host to the
IOM for transmission on the network. The host sends a WRFIFO command
whose data field holds one or more messages stored the same way.

The format of each message block is specific to the layer type, as described
below.

1.3.2 CAN-503 Data
Transfer

There are two relevant pieces of information contained in a CAN network proto-
col packet: the identifier and the message data itself. The identifier is either 11
or 29 bits long, depending on whether it is a standard packet or an extended
packet. The data can be 0 to 8 bytes long. In addition, the CAN-503 layer has
four network interfaces, which are analogous to channels on other layers. The
message data coming from the FIFO of the layer thus has to include the follow-
ing three pieces of data: the ID, the message data, and the channel that
received it. Messages sent to the IOM from the host must also include this infor-
mation. The message block for a CAN-503 layer is illustrated in Figure 1-4.

Figure 1-4. Message Block for CAN messages in FIFO

The first byte indicates the channel (network interface), the next four bytes con-
tain the identifier, and the remaining bytes contain the message data. Recall
that the size of this block is stored in the 16 bits immediately preceding it, where
it appears in an RDFIFO response packet.

1.3.3 PDNALib
Structures

The PDNALib requires several data structures to implement Message mode, as
described below.

1.3.3.1 Message
Struct

The DqMessage struct holds a message. It contains the channel number, the
address of the intended recipient, the address of the sender, and the message
contents. Like other structures defined in the PDNALib, the message content
field is declared last, as a byte array of unspecified size, so that an instance of
the struct can be allocated via malloc to any size based on the desired mes-
sage data size. The address field size is 16 bytes, which is the address size of
IPv6. This allows PDNA to support any existing messaging protocol.

1.3.3.2 Message
Queue

In PDNALib, the BCB structure can be any of three types: ACB, DMAP, or a
third variant called Message Queue (or MSGQ). For each messaging layer
installed, the user should create two message queues: one to hold messages to

Size Message Size Message ... Size Message 0x0000

16 bits 16 bits 16 bits 16 bits

Chan Message data

8 bits 32 bits

Identifier
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 7

Host / IOM Communication
be sent, and one to hold received messages. A Message Queue is similar to an
ACB, except that instead of being implemented as a flat byte array, it is a linked
list of pointers to DqMessage structures. The sending callback function for Mes-
sage mode takes DqMessage structures from the sending message queue and
converts them to DQ commands, which are then sent to the proper layer on the
IOM. As messages are received by the receiving thread from the IOM, the
receiving callback function converts the messages to DqMessage structures,
and then stores them in the receiving message queue. In this case, an event is
triggered with the DQ_eDataAvailable flag set. When the client program gets
the event, it can call DqMsgRecvMessage to get the message and remove it
from the receiving message queue.

Two message queue BCBs must be created for interacting with a message
layer: one for sending messages, and one for receiving them. One of two con-
stants must be passed to DqMsgInitOps to indicate which direction the BCB is
being initialized for.

The DQBCB structure is now able to contain a message queue instead of an
ACB or DMAP.

For more detailed information, refer to the PowerDNA Reference Manual API.

1.3.4 Error
Recovery

If network problems prevent an occasional message packet from successfully
being sent to the IOM or host, PDNALib will attempt to recover by retransmitting
or re-requesting the lost packet.

1.3.5 Other
Messaging
Types

Other types of messages such as SL-501/508, ARINC-429, and MIL-1553 are
handled in a manner similar to that of the CAN-503.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 8

Host / IOM Communication
1.4 Mapped I/O The basic benefit from using I/O mapping is increased speed and throughput.
By maintaining duplicate maps of I/O data in both host and the IOM, both pro-
cessors can access their own data map(s) as needed, without having to com-
municate across the network. Communication between host and IOM only has
to keep the two maps up to date with each other. UEI offers two types of data
mapped I/O: Direct Data Mapping (fixed data size), called DMap, and Variable
Data Mapping (variable data size) called VMap, which are described below.

1.4.1 Fixed-Size
Data Mapping
(DMap)

Fixed-size data mapping allocates defined-size (maximum of one packet) areas
of input and output data that are continually maintained as mirrors of each
other. The following diagram illustrates the structure of DMap operation.

Figure 1-5. Host / IOM Communication in DMap Mode

Each DMap is associated with a device (layer) or group of similar devices in an
IOM and each has its own input and output maps. A DMap can store data either
in raw or engineering units (volts by default) and can be a maximum of 510
bytes in size (equal to one packet of data). Maps are therefore fully updated as
each packet is received from the network.

As indicated in the diagram, input data is acquired by the IOM layers under con-
trol of the IOM clock, stored in IOM memory in an area called DMap, and then
transferred over the network to the host. In the host, it is stored in the host
DMap where it can be accessed by the host application software as needed.
Output data is transferred in a similar manner from host to IOM. Packets are
transmitted in both directions at a rate determined by the host. The rate is set

Devices

Ethernet

HOST
DQEngine

IOM DMap
Code

Data

Application
Memory-

mapped data
DevicesDevices

DQEngine DMap Address
Mapping
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 9

Host / IOM Communication
fast enough to provide a fresh input reading with every reply packet and is typi-
cally set at a rate less than half the IOM scan rate (Nyquist rule). The output
runs at a rate capable of updating outputs before the next portion of data
arrives.

The major attributes of DMap Mode are:

• Each fixed size data map holds a snapshot of simultaneous data for all
layers in an IOM that are configured for DMap mode.

• A DMap packet delivers output data from host to IOM: IOM returns most
recent input data as a reply.

• Reply is guaranteed within 250 us (133 us with gig-E networks)

• All DMap-configured layers in an IOM are inherently synchronized

• Data is synchronized across multiple IOMs, based on host requests

• All packets are sequentially numbered; the application can re-request
lost packets.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 10

Host / IOM Communication
1.4.2 Variable-size
Data Mapping
(VMap)

VMap is another type of mapped I/O that offers variable size data maps. VMap,
therefore, is useful for installations in which the size of data to be transferred is
unpredictable, such as in messaging or data streaming applications, or when
communication bandwidth utilization can be improved by varying the packet
size.

Figure 1-6. Host / IOM Communication in VMap Mode (with DQE)

At high level, VMap is very similar to DMap. A user must create VMap with out-
put and input buffers and add channels/layers of interest to it. As with DMap,
DQEngine supports multiple VMaps that can operate at different rates derived
from the main DQEngine update period. Unlike DMap, however, VMap packets
have additional fields.

First of all, there is a flag field, which is used to guarantee continuity of messag-
ing data. Second, an output buffer adds a pair of fields for each channel in the
map at its header. The first field provides the IOM with information on how much
data is to be transmitted for that channel and the second field defines the maxi-
mum size of data to be received from that channel. Offsets of the output data in
the buffer should match the size of the data in the buffer header.

An input packet also contains a flag field as well as the number of bytes actually
written, actually received, and (optionally) the number of bytes available in the
receive FIFO and the room available in the transmit FIFO. This feature allows
flexibility in allocating packet slices for different channels. Each time packets
are exchanged between host and IOM, the user application can select different
sizes for outgoing and incoming data, taking into consideration the amount of

Devices

Ethernet

HOST
DQEngine

IOM VMap
Code

Data

Application
Mapped
FIFOs

DevicesDevice
FIFOs

DQEngine VMap FIFO
read/write
requests
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 11

Host / IOM Communication
data required to be sent and the size of data accumulated in the receiving FIFO.
If you don’t use a channel at this time, you should set the “size to send” and the
“size to receive” to zero. The header has a fixed width set up before starting
VMap operation. The user cannot change the header size on the fly even if the
channel is no longer in use.

VMap also has a function that returns the VMap ID to the user for use in multi-
ple IOM installations. Since packets from multiple IOMs may be received by the
host out of time sequence, this function gives the host the information neces-
sary to call the right VMap processing routine for that packet.

The packet counter (dqCounter in the DQPKT header) and the flags field work
hand-in-hand to synchronize the user application with the DQ Engine.

Table 1-1 lists functions specific to VMap mechanisms. For more detailed infor-
mation, refer to the PowerDNA API Reference Manual

1.5 Choosing the
Right Layers,
Operating
System, and
Mode

Choosing the right communication mode for your data collection system can
significantly improve performance of your system and help meet your design
goals. The PowerDNA system offers several choices to meet the needs of your
particular application. One of them is sure to meet your particular requirements.
Note that you can select different modes for each layer (but only one mode per
layer) and that all DMap- or VMap-configured layers are handled as multi-layer
groups.

1.5.1 Attributes of
Modes

The various modes and their attributes are described below.

Simple I/O Mode (Single Scan)

The major attribute of point-by-point mode is its simplicity and straightforward
operation. Requests are sent back and forth between host and IOM in
sequence. Error detection/correction is handled by the host.

This mode is supported in Windows XP, Linux, Real-time, UEIPAC, and QNX
operating systems.

ACB Mode

Each subsystem of each layer is handled as a separate stream of data. Every
data point is guaranteed delivery, which inherently synchronizes data from dif-
ferent layers. ACB data can be synchronized with other data by using time-
stamps and/or the SyncX interface between Cubes. In ACB mode, devices can
be clocked from external sources. This mode is currently supported in Windows
XP and QNX operating systems.

Burst Mode (ACB sub-mode)

Stream-to-memory improves performance by storing data into RAM first and
then transferring data on a stop trigger. Stream to memory makes 64MB RAM
available for temporary storage (equal to 4 seconds of data from four AI-205
layers). Cannot work continuously (limited by size of memory).Can stream data
on change of state of digital input. This mode is currently supported in Windows
XP and QNX operating systems.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 12

Host / IOM Communication
Messaging Mode

Uses an ACB to transfer messages.Messages can be grouped together in a
single packet to improve performance. Messages can be sent upon receiving a
specified amount of data or upon timeout. This mode is currently supported in
Windows XP, UEIPAC, and QNX operating systems.

DMap Mode --Fixed size of data map(s)

Can be used with both soft and hard real-time systems. With a non-RT OS, the
DQE handles lost packet detection/correction and guarantees message conti-
nuity. When the real-time set of PowerDNA functions is used on soft or hard
real-time OSs, the application software must handle error conditions.

Single DMap for all DMap-configured layers in Cube or Rack.

A single DMap packet delivers output data for all DMap layers; IOM returns
most recent input data as a reply. Reply is guaranteed within 250us (133 us for
Gig-E systems). Data is synchronized across multiple IOMs based on host
requests, guaranteeing that data is synchronized within DMap timebase. Noti-
fies application if packet is lost and no recovery is available via DQE. All pack-
ets are numbered sequentially; custom application can re-request a lost packet.
This mode is currently supported in Windows XP, Linux, Real-time, UEIPAC.
and QNX operating systems.

VMap Mode -- Variable size of data map(s)

Single VMap for all VMap-configured layers in IOM (IOM can be partitioned into
multiple VMaps as needed). VMap packet delivers output data and returns input
data plus number of samples and number now available.VMap packet can be
resized dynamically to optimize bandwidth use. VMap can be used for AIn/DIn
streaming when soon-to-be-released support is available. VMap has built-in
mechanism to inform about lost packets. All VMap packets are sequentially
numbered to maintain message integrity. If packet is lost between host and
IOM, IOM will re-output (input) the packet. If lost between IOM and host, IOM
will resend the packet. This mode is currently supported in Windows XP, Linux,
Real-time, UEIPAC. and QNX operating systems.

1.5.2 Application
Requirements

Each application has a particular set of requirements, several of which may be
opposing. For example, a pure data acquisition application may require that
all data be delivered without any gaps, but may accept slight delays in delivery
of the data. A control system application, however, usually requires that all
data be delivered on time, but that a few missing data points can be tolerated.
In such applications, meeting time deadlines is more important than having
gapless data. In complex applications, the usual requirement is that all data
be delivered in as short a time as possible.

The typical tolerances for delay in data delivery for various types of data collec-
tion systems are:

• Data Acquisition System — 1 to 2 seconds

• Control System — 0.5-10 ms
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 13

Host / IOM Communication
• Complex Application — 10 ms

The tolerances listed above and the bandwidth of the signals being measured
affect the choice of communication mode, scan rate, and type of operating sys-
tem. Some important attributes of desktop and real-time operating systems that
influence these choices are:

Desktop OS

• Windows XP: 10 ms soft real-time

• Linux 2.6: 10 ms soft real-time (1 ms with pre-emptive patch)

• All communication modes are supported

• Real-time OS

• Real-time Linux, Windows RTX: 250us hard real-time control loops

• DMap, VMap, and Single Scan are supported

• ACB, Msg, and M3 modes are not supported

Mode / OS Support

In making the choice of communication mode for your application, you need to
verify that a particular mode is supported by your selected layers, operating
system, and also by the OS environment you are working with. Table 1-1 lists
the current state of support offered by UEI for various operating systems.
Table 1-1 shows current UEI support for type of OS environment. Table 1-3
shows current UEI support for types of Analog Input Layers. Table 1-5 shows
current UEI support for types of DIO and Analog Output Layers. Table 1-6
shows current UEI support for types of Messaging Layers.

.

Table 1-1. Mode Support by Operating System

Operating System

Single

Scan ACB DMap VMap Messaging

Windows XP/Linux Y Y Y Y Y

Real-time Y N Y Y N

UEIPAC Y N Y Y N

QNX Y Y Y Y Y

Table 1-2. Mode Support by Operating System Environment

OS Environment

Single

Scan ACB DMap VMap Messaging

PDNALib Y Y Y Y Y

Framework Y Y Y N Y

3rd party drivers Y Y Y N Y

PDNALib running

under a Real-time OS

Y N Y Y N
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 14

Host / IOM Communication
.

Table 1-3. Mode Support by Analog Input Layer

Layer Model No.

Single

Scan ACB DMap VMap Messaging

AI-201 Y Y Y N --

AI-207/208 Y Y Y N --

AI-205 Y Y Y N --

AI-211 Y Y Y N --

AI-217 Y Y Y N --

AI-224 Y Y Y N --

AI-225 Y Y Y N --

Table 1-4. Mode Support by Analog Output Layer

Layer Model No.

Single

Scan ACB DMap VMap Messaging

AO-308 Y Y Y N --

AO-332 Y Y Y N --

AO-333 Y Y Y N --

Table 1-5. Mode Support by Digital I/O Layer

Layer Model No.

Single

Scan ACB DMap VMap Messaging

DIO-40X Y Y Y N --

DIO-416 Y N Y N --

DIO-432/433 Y N Y N --

DIO-448 Y N Y N --

Table 1-6. Mode Support by Messaging Layer

Layer Model No.

Single

Scan ACB DMap VMap Messaging

Sl-501 / 508 Y N N Y Y

CAN-503 Y N N Y Y

429-566 Y N N Y N

CT-601 / 604 Y N Y N Y
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 15

Host / IOM Communication
1.5.3 Selecting the
Right Mode
for Your
Application

To select the communication mode best suited to meet your needs, consider
the following selection criteria for each mode:

ACB application requirements (typical)

• Acquire and store/display data

• Continuous data > 100 Hz, gapless

• Data stream faster than 10 kB/s

• Timing accuracy better than 1/(data rate) seconds

• Delay between acquisition and delivery is non-critical (0.1s – 1s)

• IOM controls timing

• External trigger/clock is required

Messaging application requirements (typical)

• Send, receive, store a stream of messages

• Guaranteed message delivery

• Maximum communication bus loads (serial, CAN, ARINC)

• Non-critical delay of delivery (within 0.1s-1s)

• Receive data based on number of bytes, messages, content, timeout

DMap application requirements (typical)

• Control and simulation applications

• Host controls timing of data transfers, minimizes response time

• No network collisions allowed

• Permits scan rate of 100-500 Hz on non-realtime, 4 kHz on realtime OS

• Multiple IOM configuration OK

• VMap application requirements (typical)

• Control and simulation applications

• Variable length messages or Real time data size larger than one scan

• Host controls timing of data transfers

• Maximizes IOM performance and bandwidth, minimizes response time

• Advanced features: message scheduler, frame delays and repetitions

1.5.3.1 Selection
Procedure

The general procedure for selecting the communication mode for your system
is as follows:

STEP 1: First, define the primary goals of your data collection system.

• Is it a control or data acquisition application?

• What are the signal types, levels, and bandwidths?

• Which is more important – gapless data or timely response?
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 1 16

Host / IOM Communication
• Can the application run on a real-time OS?

STEP 2: Choose the I/O layers for your system and select operating parameters for each.

• Signal Type – In/Out, Analog Voltage/Current, Digital Logic Level, Fre-
quency, PWM, Strain, Message (SL, CAN, ARINC, 1553)

• Signal Level

• Bandwidth

• Timing Control (simultaneous or not, Int/ext sync, etc.)

STEP 3: Determine timing requirements and tolerance for gaps in data.

• Data Acquisition — a 1 to 2 second delay is usually acceptable

• Control — 1 0.5 to 10 ms control loop period is typical

• Complex Application — 10 ms control loop data delay is acceptable

• Real-time or Non-Real-Time — can missed deadlines be tolerated?

STEP 4: Select applicable Operating System

• Desktop OS

• Windows XP: 10 ms soft real-time

• Linux 2.6: 10 ms soft real-time (1 ms with pre-emptive patch)

• All communication modes are supported

• Real-time OS

• Real-time Linux, Windows RTX: 250us hard real-time control loops

• DMap, VMap, and Single Scan are supported

• ACB, Msg modes not supported

STEP 5: Verify availability of UEI support for your choices (layers, parameters, data
processing, OSs, OS environments, RT/nonRT, messages vs. non-message
communication modes). Modify choices as needed.

• See Table 1-2 to Table 1-6 starting on page 14

STEP 6: Based on factors listed above, choose Host/IOM communication mode and
select optimum parameters.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap1.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 2 17

How DaqBIOS Protocol Works
Chapter 2 How DaqBIOS Protocol Works

2.1 DaqBIOS
Packet
Structure

The DaqBIOS (DQ) protocol relies on the Ethernet protocol for transfer. Current
implementation of the IOM firmware allows exchanging DaqBIOS packets over
raw Ethernet packets and over UDP packets, but library implementation under

Microsoft Windows tm does not have an option of using raw Ethernet packets.

Figure 2-1. DaqBIOS Packet Over UDP Packet

Figure 2-2. DaqBIOS Packet Over Raw Ethernet Packet

The DaqBIOS protocol relies on the simple concept of acknowledging every
packet sent from the host to the IOM.

The DaqBIOS packet header has following fields:
typedef struct {
 uint32 dqProlog; /* const 0xBABAFACA */
 uint16 dqTStamp; /* 16-bit timestamp */
 uint16 dqCounter; /* Retry counter + bitfields */
 uint32 dqCommand; /* DaqBIOS command */
 uint32 rqId; /* Request ID - sent from host, mirrored */
 uint8 dqData[]; /* Data – 0 to 514 bytes */
} DQPKT, * pDQPKT;

dqProlog is always 0xBABAFACA for revision 2 of the DQ-TS protocol. The
DQ-VT protocol available earlier is no longer supported in R2. Instead, we use
flow-control and error-correction protocols. The only exception is when you can
send a packet with 0xBABAFAC2 as a prolog. In this case, the IOM replies with
a proper Prolog and protocol version supported in dqTStamp.

dqTStamp is a field used for time synchronization between the IOM and the
host.

dqCounter is used for flow-control between the host and the IOM. The counter
starts from one and continues up to 65535, then wraps around.

dqCommand is used to specify the command to be executed when sent from
the host to the IOM. The host replies with the command executed and with any
error flags set. If the IOM processes the command successfully, it replies with
the requested command and the DQREPLY (0x1000) flag. If the host sends a
command with a DQNOREPLY (0x2000) flag, the IOM does not send a reply
packet.

The following errors located in the upper 16 bits of dqCommand are sent in
dqCommand field:

Ethernet header

(14 bytes)

IP header

(20 bytes)

UDP header

(8 bytes)

DQ header

(8 bytes)

DQ data

(6-514)

Ethernet CRC

(4 bytes)

Ethernet header

(14 bytes)

DQ header

(16 bytes)

DQ data

(34-542)

Ethernet CRC

(4 bytes)
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol _Man_Chap2.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 2 18

How DaqBIOS Protocol Works
/* Masks to extract DQERR_... from command code */
#define DQERR_MASK 0xFFFF0000
#define DQNOERR_MASK 0x0000FFFF

/* The first nybble indicates how the next three nybbles should be interpreted
*/
#define DQERR_NYBMASK 0xF0000000 /* general error/status mask */
#define DQERR_MULTFAIL 0x80000000 /* high bit - multiple bits indicate error/
status */
#define DQERR_SINGFAIL 0x90000000 /* low bit in first nybble - single error/
status */

#define DQERR_BITS 0x0FFF0000 /* error/status bits or value extracted from
here */

/* multiple errors - inclusive or-ed with dqCommand -- high bit set */
#define DQERR_GENFAIL 0xF0000000 /* general error/status mask */
#define DQERR_OVRFLW 0x80010000 /* Data extraction too slow - data overflow
*/
#define DQERR_STARTED 0x80020000 /* Start trigger is received */
#define DQERR_STOPPED 0x80020000 /* Stop trigger is received */

/* single errors/status - not inclusive or-ed bit 0x10000000 set */
#define DQERR_EXEC 0x90010000 /* exception on command execution */
#define DQERR_NOMORE 0x90020000 /* no more data is available */
#define DQERR_MOREDATA 0x90030000 /* more data is available */
#define DQERR_TOOOLD 0x90040000 /* request is too old (RDFIFO) */
#define DQERR_INVREQ 0x90050000 /* Invalid request number (RDFIFO) */
#define DQERR_NIMP 0x90060000 /* DQ not implemented or unknown command */

/*
** The following is reuse of the previous code
** in a different direction: host->IOM
** It means that there was no reply to one
** of the previous packets of the same type
** Made especially for RDALL, WRRD and RDFIFO
** commands.
*/
#define DQERR_OPS 0x90070000 /* IOM is in operation state */
#define DQERR_PARAM 0x90080000 /* Device cannot complete request

/* with specified parameters */

/* network errors */
#define DQERR_RCV 0x90090000 /* packet receive error */
#define DQERR_SND 0x900A0000 /* packet send error */

rqId – request ID. Every time the host sends a packet to IOM, it is accompanied
with a new request ID. The Request ID serves to specify what request the reply
belongs to when request/reply pairs are overlapped. RqId is used under the
control of DQE only.

In synchronous operating mode, commands are sent and replies are received.
The following picture depicts how the host and the IOM exchange packets
under the DaqBIOS protocol:
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol _Man_Chap2.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 2 19

How DaqBIOS Protocol Works
2.2 DaqBIOS
Protocol
Versions

To recognize what version of the DaqBIOS protocol the PowerDNA cube sup-
ports, the host should send a command with dqProlog set to 0xBABAFAC2.
The IOM will reply with the proper prolog and the DaqBIOS protocol version in
the dqTStamp field and the firmware version in the next four bytes. This sub-
protocol allows the host to recognize what version of the firmware is running on
the PowerDNA cube and what version of protocol it supports.

2.3 Host and IOM
Data
Representa-
tion

Data on the IOM as well as in the network packets are represented in big-
endian format. Data on the PC platform are rendered in little-endian format.
Thus, to ensure proper data representation, the user should convert data from
network format to host format and back.

2.3.1 Soft and Hard
Real-time

We address real-time performance as soft-real-time when timing deadlines are
achieved almost every time. However, soft-real-time cannot guarantee meeting
a deadline in all instances. The majority of general-purpose OSs (Microsoft
Windows, Linux, etc.) are soft-real-time with better or worse probability of miss-
ing a deadline.

Hard-real-time performance guarantees that no one deadline is missed. Hard-
real-time OSs have specially designed schedulers that preempt any ongoing
operation when real-time code has to be executed. QNX and RTLinux are
examples of hard-real-time OSs.

2.3.1.1 Implementation n
 Details

Hard real-time response is achievable only under control of hard-real-time OSs
(QNX, for example) or general-purpose OSs with real-time extensions (RTLi-
nux, RTAI Linux.) Real-time OSs are capable of sending DaqBIOS commands
to the host without missing deadlines (using DQE). This avoids network colli-
sions completely. Two sets of commands are available for real-time operations:
DaqBIOS commands and data mapping commands. Streaming cannot be
made real-time because its timing cannot be controlled from the host side.

If streaming is required under a real-time system, you can implement streaming
in FIFO mode rather than streaming mode. FIFO mode assumes that the host
sends a request to retrieve data from the IOM side every now and then. This
way, the real-time application is responsible for retrieving data on time.

2.3.1.2 Immediate and
Pending
Commands

The firmware processes some commands immediately in the network interrupt
vector. Other commands are scheduled and executed by firmware in the pend-
ing command thread. A vast majority of DaqBIOS commands are immediate
commands. See the PowerDNA API Reference Manual for details. Firmware
running on a CM-1 layer sends replies within 200-400µs. Commands that
include waiting for some hardware events to happen are implemented as pend-
ing commands. They include IOCTL calls, setting/getting/saving parameters,
and receiving layer capabilities information. The time for pending command
execution varies and the user should adjust the timeout prior to calling these
commands appropriately.

2.3.2 DaqBIOS &
Network
Security

The PowerDNA Cube may be connected to the Internet, posing virtually no risk
to the network it is hosted on. Several features make the PowerDNA Cube next
to invulnerable for external attack, in descending order:

1. The PowerDNA Cube has only one UDP open port. By default, this port is
6334 – falling in the IANA unassigned port range 6323-6342. Default secu-
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol _Man_Chap2.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 2 20

How DaqBIOS Protocol Works
rity hole scanners will either skip UDP scanning, or skip scans of this range,
expecting no useful protocols to run in this range.

2. The only protocol running on the cube is DaqBIOS – an unpublished proto-
col with no known exploits. If UDP port 6334 is discovered, it is unusable by
anyone who does not understand the protocol.

3. Commands over the network that involve a change to the IOM memory or
settings require a passwordAny command that changes internal state of the
cube requires user password to be supplied. The password is stored in the
encoded NVRAM area of the RTC chip. Any command that changes non-
volatile memory requires a super-user password. The password is supplied
over DQ protocol.

4. To prevent disruption of the experiment, the cube has the option to be
locked onto an IP/port pair. For compatibility, locking/unlocking is disabled
by default. When the locking option is enabled and the host PC establishes
communication with the cube, the cube locks on to the host’s IP/port pair
and will listen for commands only from the locked host – until the host
unlocks/releases the cube. Other PCs can only request cube configuration
and status requests (e.g., IOM_25431 with AI-201 layer in slot 0 is currently
in Locked state).

Finally, note that the PowerDNA Cube has no known exploitable daemons (e.g.,
Ms-IIS for http, ftp, etc.)
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol _Man_Chap2.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 3 21

DaqBIOS Engine
Chapter 3 DaqBIOS Engine

The DaqBIOS Engine (DQE) is organized as a PowerDNA shared library with
which a user application is linked. It is a set of functions and data structures,
implementing the DaqBIOS data acquisition protocol. DQE provides all func-
tions necessary to interact with IOMs over the network.

DQE functions are executed within the user process; however, DQE may create
additional execution threads for its purposes. Different user applications can
use DQE simultaneously. Every process gets its own copy of DQE. DQE imple-
ments interlock mechanisms, preventing using of a single IOM by two pro-
cesses and a single layer in exclusive modes.

DQE is used to simplify PowerDNA programming and shift data contingency
and buffering responsibility from a user application to the library.

Figure 3-1. User Application/DQE/IOM Interaction.

In the above figure, note that one user application may interact with more than
one IOM. The converse is not true.

3.1 Basic
Architecture

DaqBIOS Engine consists of the following parts:

• Sending thread/periodic task (multimedia timer callback under
Windows)
This piece of code periodically wakes up and checks the command
queue (CQ) of each IOM accessed by the process. It sends one or more
commands per IOM per execution cycle and marks it as “waiting for
response” so that it isn’t sent the next time. See also command queue
entry below. There is a single sending thread in every DQE.

User
Applicationn

DQE

User
Application2

DQE

User
Application1

DQE

IOM1

IOM2

IOMm

.

.

.

IOMk

.

.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_ Man_Chap3.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 3 22

DaqBIOS Engine
• Receiving Thread
There is exactly one receiving thread per each IOM. This thread listens
to the IOM, receives packets, and routes them to the input buffers
according to the IOM’s command queue. When a packet arrives from
the IOM, the receiving thread looks up the corresponding entry in the
command queue and then relocates the packet to the ring buffer. If there
is no corresponding CQ entry, the packet is discarded. If there is a call-
back associated with the entry, the receiving thread calls it with the
specified parameter.

• IOM Table
The IOM table is a static array inside the library and is common to all
processes. It contains information about all active IOMs being contacted
from this host. It includes the list of layers and their options, the pro-
cesses that are working with them (one process per IOM), and some
additional control information. The IOM table access is often made from
a critical section.

• Command Queue
There is exactly one command queue per IOM. It is a double-linked list
that keeps the descriptions (also called command queue entries) of all
commands to be sent and all replies to be received to/from the corre-
sponding IOM. The entries are parsed with the sending thread and later
used by the receiving thread. They are put into the queue by DqSend-
Pkt() and other DQE calls. The results (after the packets arrive) are
used by Directivity() calls or DQE callbacks, specified in the com-
mand queue entry.

• Buffer Control Block
This structure contains control information about Advanced Circular Buf-
fer (ACB) or Data Map (DMap), such as device, subsystem, transfer list,
expected byte rate, update period, etc.

• Reader and Writer Threads
Reader and writer threads provide transfer of data to and from the
packet ring buffer to the ACB or DMap. They are responsible for calling
proper data conversion routine depending on the layer type and data
format selected. They are also responsible for error correction.

• Advanced Circular Buffer, Data Map
These are the data exchangers between the user application and FIFO
devices (for ACB) or groups of snapshot devices (for DMap) on IOM.

3.2 Threads and
Function

Every instance of DQE has one sending and one receiving thread. When a pro-
cess allocates an ACB or a DMap, DQE starts two additional threads. One of
them is called writer thread and another one reader thread. The purpose of
these threads is to transfer data from the ACB to the ring buffer for output and
from the ring buffer to the ACB for input. The sending or receiving thread wakes
the threads up when data needs to be transferred to/from the ring buffer.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_ Man_Chap3.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DAQBIOS Protocol Manual
Chapter 3 23

DaqBIOS Engine
3.3 IOM Data
Retrieval and
Data
Conversion

The reader and writer threads call a conversion routine that converts data from
the raw format represented in the ring buffer into a floating point representation
of volts or other engineering units. If conversion parameters (offset and coeffi-
cient) weren’t supplied upon creation of ACB or DMap, the data conversion rou-
tine converts raw data into native representation – Volts.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_ Man_Chap3.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 24

Real-time Operation with an IOM
Chapter 4 Real-time Operation with an IOM

This section discusses how to perform data mapping and streaming under con-
trol of a real-time operating system. The reason for making a separate chapter
for real time operation is that writing real-time code can be done more efficiently
without using the DQE. Therefore, this section discusses programming of
streaming and data mapping operations at low-level.

4.1 Simple I/O Simple I/O mode, which is commonly associated with lower speed systems,
may also be used for real-time applications with a real-time operating system.
The key requirement is not speed of operation but rather that all timing be
deterministic and that no time deadline be missed.

4.2 Real-time
Data Mapping
(RtDmap)

Direct data mapping is a mechanism that allows you to create areas of input
and output data that mirror data values on the input and output lines of net-
worked IOMs. The following diagram illustrates the structure of DMap opera-
tion.

Figure 4-1. DMap Operation

Every DMap has its input and output maps and can work with a single multi-
module IOM. Two DMaps can work with the same IOM, but must address differ-
ent I/O boards (devices) within the IOM.

IOM1

Input
channel

data IOM1
Output
channel

data IOM1

Input transfer
list IOM1

Output transfer
list IOM1

Input
Map

Output
Map

IOM2
IOM3

Requests with output data

(500us between requests to the same IOM)

Replies from IOMs with input data

Transfer list defines position and
amount of data from specified IOM

Host

UDP
Port
(Out)

UDP
Port

UDP packets

UDP packets(In)
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 25

Real-time Operation with an IOM
The maximum size of a DMap is limited to the size of a single packet – 510
bytes, which means that a DMap can be updated by receiving the data con-
tained within a single new packet. Also, DMap allows representation of data
either in raw or engineering units (volts by default).

In DMap mode, I/O devices perform at a rate sufficient to update input points
fast enough to provide a fresh input reading with every reply packet. The output
runs at a rate capable of updating outputs before the next portion of data
arrives. Therefore, DMap mode meets the requirements of “hard” real-time
operation.

4.2.1 Data
Replication
over the
Network

DMap can be used for input data replication across a local area network if work-
station NICs are set into promiscuous mode and receive all reply packets from
the UDP interface. DMap can also be used in homogenous networks of IOMs in
which IOMs exchange data between each other.

4.2.2 RtDmap
Functional
Description

The RtDmap API, described in this section, gives easy access to DMap opera-
tion without requiring use of the DQEngine. For more detailed information, refer
to the PowerDNA Reference Manual.

Operation is as follows:

At each tick of the IOM clock, the IOM firmware scans the configured channels
and stores the result in an area of memory called the DMap.

The host PC keeps its own copy of the DMap and synchronizes it periodically
with the IOM’s version of the DMap. The rate at which the host transfers pack-
ets is controlled by the host and is usually set at a rate less than half the scan
rate of the IOM clock.

This mode is very useful when the host computer runs a real-time operating
system because it ensures that the host refreshes its DMap at deterministic
intervals (hard real-time). It optimizes network transfer by packing all channels
from multiple I/O boards into a single UDP packet, thus reducing the network
overhead.

The standard (non-real-time) low-level API (DqDmap*** functions) use the
DqEngine (DQE) to refresh the DMap at a given rate and to retry a DMap
refresh request if, for some reason, a packet is lost. Use of the DQE is neces-
sary on desktop-oriented operating systems to ensure that the DMap is
refreshed periodically, but is not required (and not recommended) for use with
hard real-time operating systems.

The following is a list of the real time data mapping functions, with short
descriptions of each. (Note that each of these functions does not use DQE.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 26

Real-time Operation with an IOM
Table 4-1. RtDMap API Functions

Function Description

DqRtDmapInit Initializes the specified IOM to operate in DMAP mode at the speci-
fied refresh rate.

DqRtDmapAddChannel Adds one or more channels to the DMAP.

DqRtDmapGetInputMap Gets a pointer to the beginning of the input data map allocated for

the specified device

DqRtDmapGetInputMapSize Gets the size in bytes of the input map allocated for the specified

device.

DqRtDmapGetOutputMap Gets a pointer to the beginning of the output data map allocated for
the specified device.

DqRtDmapGetOutputMapSize Gets the size in bytes of the output map allocated for the specified
device.

DqRtDmapReadScaledData Reads and scales the data stored in the input map for the specified
device.
Note: The data read is the data transferred by the last call to DqRt-
DmapRefresh().
This function should only be used with devices that acquire analog
input data such as the AI-2xx series layers.

DqRtDmapReadRawData16 This function reads raw data from the specified device as 16-bit
integers.

Note: The data read is the data transferred by the last call to DqRt-
DmapRefresh().

This function should only be used with devices that acquire 16-bit
wide digital data such as the AI-4xx series layers.

DqRtDmapReadRawData32 This function reads raw data from the specified device as 32-bit
integers.

Note: The data read is the data transferred by the last call to DqRt-
DmapRefresh().

This function should only be used with devices that acquire 32-bit
wide digital data such as the DIO-4xx series layers.

DqRtDmapWriteScaledData This function writes scaled data to the output map of the specified
device.

Note: The data written is actually transferred to the device on the
next call to DqRtDmapRefresh().

This function should only be used with devices that generate analog
data such as the AI-3xx series layers.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 27

Real-time Operation with an IOM
DqRtDmapWriteRawData16 This function writes 16-bit wide raw data to the specified device.

Note: The data written is actually transferred to the device on the
next call to DqRtDmapRefresh().

This function should only be used with devices that generate 16-bit
wide digital data such as the DIO-4xx series layers.

DqRtDmapWriteRawData32 This function reads raw data from the specified device as 32-bit
integers.

Note: The data written is actually transferred to the device on the
next call to DqRtDmapRefresh().

This function should only be used with devices that acquire 32-bit
wide digital data such as the AI-4xx series layers.

DqRtDmapStart This function starts operation and the IOM updates its internal rep-
resentation of the map at the rate specified in DqRtDmapCreate.

DqRtDmapStop This function stops operation and the IOM stops updating its inter-
nal representation of the data map.

DqRtDmapRefresh This function refreshes the host's version of the map by download-
ing the IOM's map.

Note: The IOM automatically refreshes its version of the data map
at the rate specified in DqRtDMapInit(). This function needs to be
called periodically (a real-time OS is necessary) to synchronize the
host and IOM data maps.

DqRtDmapRefreshOutputs This function refreshes the host's version of the map by download-
ing the IOM's map.

Note: The IOM automatically refreshes its version of the data map
at the rate specified in DqRtDMapInit(). This function needs to be
called periodically (a real-time OS is necessary) to synchronize the
host and IOM data maps.

DqRtDmapRefreshInputs This function refreshes the host's version of the map by download-
ing the IOM's map.

Note: The IOM automatically refreshes its version of the data map
at the rate specified in DqRtDMapInit(). This function needs to be
called periodically (a real-time OS is necessary) to synchronize the
host and IOM data maps.

DqRtDmapClose This function frees all resources on the specified IOM allocated by
the DMAP operation.

Table 4-1. RtDMap API Functions (Cont.)

Function Description
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 28

Real-time Operation with an IOM
4.2.3 RtDmap
Typical
Program
Structure

The following is a quick tutorial on use of the RtDmap API (with error handling
omitted):

1. Initialize the DMAP to refresh at 1000 Hz.
DqRtDmapInit(handle, &dmapid, 1000.0);

2. Add channel 0 from the first input subsystem of device 1.
chentry = 0;
DqRtDmapAddChannel(handle, dmapid, 1, DQ_SS0IN,
&chentry, 1);

3. Add channel 1 from the first output subsystem of device 3.
chentry = 1;
DqRtDmapAddChannel(handle, dmapid, 3, DQ_SS0OUT,
&chentry, 1);

4. Start all devices that have channels configured in the DMAP.
DqRtDmapStart(handle);

5. Update the value(s) to be output to device 3.
outdata[0] = 5.0;
DqRtDmapWriteScaledData(handle, dmapid, 3, outdata, 1);

6. Synchronize the DMAP with all devices.
DqRtDmapRefresh(handle, dmapid);

7. Retrieve the data acquired by device 1.
DqRtDmapReadScaledData(handle, dmapid, 1, indata, 1);

8. Stop the devices and free all resources.
DqRtDmapStop(handle, dmapid);
DqRtDmapClose(handle, dmapid);

4.3 Real-time
Variable-size
Data Mapping
(RtVmap)

This feature is similar to RealTime DMap operation (see “Real-time Data Map-
ping (RtDmap)” on page 24) except that the size of the data transfer is variable.

The RtVmap API, like the RtDmap API, gives easy access to the VMap operat-
ing mode without needing the DqEngine.

VMap is a protocol developed for control applications in which the ability to get
immediate real-time data may be more important than receiving a continuous
gapless flow of the data. VMap is also well-suited for many real-time messaging
applications, as described below.

Messaging layers are normally supported by the Msg protocol, which shares
the same buffering mechanism as the ACB protocol. The Msg protocol buffer
receives packets and delays releasing newer packets to the user application
until it re-requests and receives all the packets in the previous message stream.
Although this protocol does provide a gapless stream of messages, it is not
suited for real-time operation because timing is not deterministic.

VMap, however, can provide a real-time alternative to the Msg protocol for mes-
saging devices — at the expense of restricting the ability to recover lost pack-
ets. It shifts the decision about whether or not to recover the lost packet to the
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 29

Real-time Operation with an IOM
user application. A set of hard real-time VMap functions is listed below in
Table 4-2.

At high level, VMap is very similar to DMap. A user creates a VMap with output
and input buffers and add channels/layers of interest to it. VMap packets also
have additional fields. First of all, there is a flag field required to guarantee con-
tinuity of messaging data. Second, an output buffer adds a pair of fields for each
channel in the map at its header. The first field provides the IOM with informa-
tion on how much data is to be transmitted for that channel; the second field
defines the maximum size of data to be received from that channel. The offsets
of the output data in the buffer should be in agreement with the size of the data
in the buffer header.

An input packet also contains a flag field as well as the number of bytes actually
written, actually received plus (optionally) the number of bytes available in the
receive FIFO, and the room available in the transmit FIFO. This feature allows
flexibility in allocating packet slices for various channels. Each time packets are
exchanged between host and IOM, the user application can select different
sizes for outgoing and incoming data, taking into consideration the amount of
data required to be sent and the size of data accumulated in the receiving FIFO.
If you don’t use a channel at this time, you should set size to send and size to
receive to zero. The header has a fixed width set up before starting VMap oper-
ation; the header size cannot be changed on the fly even if the channel is no
longer in use.

Note that VMap has a function that returns the VMap ID to the user for use in
systems that have multiple IOMs. Since packets from multiple IOMs may be
received by the host out of time sequence, this function gives the host the infor-
mation necessary to call the right VMap processing routine for that packet.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 30

Real-time Operation with an IOM
Table 4-2 is a list of the real-time variable data mapping functions, with short
descriptions of each. Refer to the PowerDNA Reference Manual API for more
detailed information.

Table 4-2 . RtVmap API Functions

Function Description

DqRtVmapInit Initializes the specified IOM to operate in VMap mode at the speci-
fied refresh rate.

DqRtVmapAddChannel This function adds a channel to <vmapid> VMap. The function adds

an entry to the transfer list. Channels with an SSx_IN subsystem are

added to the transfer list; channels with an SSx_OUT subsystem are

added to the output transfer list.

Channel in <cl> should be defined in the standard way including

channel number, gain, differential, and timestamp flags.

Configuration <flags> for the input subsystem can include

DQ_VMAP_FIFO_STATUS to report back the number of samples in

the input FIFO waiting to be requested (after output packets are

processed). Configuration <flags> for the output system can include

DQ_VMAP_FIFO_STATUS to report back the number of samples

that can still be written into the output FIFO before it becomes full

(after all transmitted bytes have been written). Note that this flag

adds a uint16 word to the standard header for an input packet, thus

inceasing te size of the header and decreasing the size available for

data.

<clSize> specifies the maximum number of array entries.

The Output VMap buffer, which transfers data from host to IOM, has

the structure shown in Table 4-3 on page 33.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 31

Real-time Operation with an IOM
DqRtVmapAddChannel (cont.) The total length of the buffer cannot exceed the size available in the

UDP packet minus the combined size of the DQPKT and DQQRRD

headers.

The output buffer of VMap contains information to be written to the

channel output FIFOs of the messaging layer (as well as theanalog

or digital layers equipped with hardware FIFOs). It also specifies the

number of bytes to read from the same channel, if any. Data for or

from the channel should be assembled in accordance with the

message structure of that layer.

Flags are used to make data ready and to acknowledge packet

execution. This feature arises because VMap relies on continuous

data flow compatible with messaging layers as well as continuous

acquisition and output and thus must ensure continuuty of data. In

other words, no message can be sent or received twice.

The Input VMap buffer, which transfers data from IOM to host, has

the structure shown in Table 4-4 on page 34.

The Input VMap buffer contains information showing how much data

was actually retrievded from the channel FIFO and how much of the

data in the output buffer has been written to that channel.

The header size cannot be changed after DqRtVmapStart() is called.

In other words, after a channel is added using

DqRtVmapAddChannel(), the header size increases by one in the

output packet and by one or two (if DQ_VMAP_FIFO_STATUS is

set) uint16 words in the input packet. The header allocation cannot

be changed until the current VMap is destroyed and a new one is

created. If youwould like to send zero bytes for that channel or

receive zero byttes froma a channel, VMap fills the appropriate

header field with 0.

Note: Each call to DqRtVmapAddChannel() adds one or more

transfer list entries. Ther indices are zero-origin, sequential, and

cumulative. For example, if one adds five channels in the first call to

this function, the transfer list index of the last channel is 4. For the

next call, the last channel will have transfer list index equal to 9.

DqRtVmapStart This function sets up all parameters needed for operation – channel
list and clock; transfers and finalizes the transfer list. The function
also parses the transfer list and stores offsets of the headers for
each transfer list entry.

If clocked devices (AIn/AOut) are used, the function programs
devices at the rate specified in DqRtDmapInit.

Table 4-2 . RtVmap API Functions (Cont.)

Function (Cont.) Description
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 32

Real-time Operation with an IOM
DqRtVmapStop This function stops operation and the IOM stops updating its internal
representation of the data map.

DqRtVmapClose This function destroys the <vmapid> VMap.

DqRtVmapRefresh This function refreshes the host version of the map by downloading
the IOM map.

Use the DQ_VMAP_REREQUEST flag if you want to re-request the
failed transaction instead of performing a new one. In such case, the
dqCounter in the DQPKT header will not be incremented by the host
and the IOM will not output/input a new message if the IOM already
processed it (reply packet lost). Instead, the IOM will reply with a
copy of the previous packet. If the IOM never received the packet, it
will process it in the normal way.

 Note: The IOM automatically refreshes its version of the data map
at the rate specified in DqRtVMapInit(). This function should be
called periodically (a real time OS is required) to synchronize the
host and IOM data maps).

DqRtVmapRefreshOutputs This function refreshes the host version of the map by downloading
the IOM map. Use DQ_VMAP_REREQUEST flag if you want to re-
request the failed transaction instead of performing a new one.

Note: This function needs to be called periodically (real-time OS is
required) to synchronize host and IOM data.

DqRtVmapRefreshInputs This function refreshes the host version of the map by downloading
the IOM map.

Note: This function needs to be called periodically (a real-time OS is
necessary) to synchronize the host and IOM data maps.

DqRtVmapGetInputPtr This function gets the pointer to the beginning of the input data allo-
cated for the specified entry.

Note: This function can be called only after packet is received.

DqRtVmapGetOutputPtr This function gets the pointer to the beginning of the output data allo-
cated for the specified entry.

Note: This function can be called only after transmission size for all
channels is written.

DqRtVmapGetInputMap Get pointer to the beginning of the input data map allocated for the

specified device.

Note: This fuunction can be called only after a packet is received,

because the actual positions of the input data in the packet for each

transfer list entry depend on the number of bytes actually retrieved

from the input FIFO. If the number of bytes retrieved is less than

requested, VMap will not waste the space in the packet, but rather

will pack it to decrease transmission time.

Table 4-2 . RtVmap API Functions (Cont.)

Function (Cont.) Description
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 33

Real-time Operation with an IOM
DqRtVmapGetOutputMap This function gets the pointer to the beginning of the output data map

allocated for the specified entry.

Note: This function can be called only after transmission size for all
channels is written. Actual offsets of the data for each channel in the
output packet depend on the size of the data stored in the packet
header. Thus, this function makes sense only if all data is placed into
the packet.

DqRtVmapAddOutputData This function copies data into the output packet and returns the num-
ber of bytes left in the packet.

Note: This function modifies the output packet.This function must be
called before DqRtVmapRefresh().

DqRtVmapRqInputDataSz This function requests the number of bytes to receive in the input
packet. It returns the number of bytes left in the buffer, the actual
size requested, and the pointer to the location where the data will be
stored.

Note: This function modifies the output packet.This function must be
called before DqRtVmapRefresh().

DqRtVmapGetInputData This function copies data from the input packet and returns the num-
ber of bytes copied and the size available in the input FIFO.

Note: This function must be called after DqRtVmapRefresh().

DqRtVmapGetOutputDataSz This function examines the input packet and returns the number of
bytes copied from the output packet to the output FIFO and (option-
ally) how much room is available in the output FIFO.

Note: This function must be called after DqRtVmapRefresh().

Table 4-2 . RtVmap API Functions (Cont.)

Function (Cont.) Description

Table 4-3. Output VMap Buffer

Size Flags (uint16)

Size to write to Ch0 (uint16) Size to write to ChN (uint16)

•

•

•

•

•

•.

Size to read from Ch0 (uint16) Size to read from ChN (uint16)

Data for Ch0 (of specified size)

•

•

•

Data for ChN (of specified size)
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 34

Real-time Operation with an IOM
4.3.1 RtVmap
Typical
Program
Structure

The following is a short tutorial example that uses the RtVmap API (handling of
error codes is omitted):

1. Initialize the VMAP to refresh at 1000 Hz:
DqRtVmapInit(handle,&vmapid,1000.0);

2. Configure device input output ports using the appropriate DqAdv*** func-
tion. For example, the following configures an ARINC-429 device (DEVN)
input and output ports 0 to run at 100kbps with no parity and no SDI filter-
ing.
DqAdv566SetMode(handle, DEVN, DQ_SS0OUT, 0, DQ_AR_RATEHIGH |
DQ_PARITY_OFF);
DqAdv566SetMode(handle, DEVN, DQ_SS0IN, 0,
DQ_AR_RATEHIGH|DQ_PARITY_OFF|DQ_AR_SDI_DISABLED);

3. Add input port 0 to VMAP, set flag to retrieve the status of the input FIFO
after each transfer:
chentry = 0;
flag = DQ_VMAP_FIFO_STATUS;
DqRtVmapAddChannel(handle, vmapid, DEVN, DQ_SS0IN, &chentry,
&flag, 1);

4. Add output port 0 to VMAP, set flag to retrieve the status of the output FIFO
after each transfer.
chentry = 0;

Table 4-4. Input VMap Buffer

Size Flags (uint16)

No. of bytes retrieved from Ch0 (uint16) No. of bytes remaining in Ch0 (uint16, optional)

•

•

•

•

•

•.

No. of bytes retrieved from ChN (uint16) No. of bytes remaining in ChN (uint16, optional)

No. of bytes written to Ch0 (uint16) No. of bytes that can be written to Ch0 (uint16,

optional)

•

•

•

No. of bytes written to ChN (uint16 optional) No. of bytes that can be written to ChN (uint16,

optional)

Data from Ch0 (of specified retrieved size)

•

•

•

Data from ChN (of specified retrieved size)
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

DNA-PPCx PowerDNA Cube Manual
Chapter 4 35

Real-time Operation with an IOM
flag = DQ_VMAP_FIFO_STATUS;
DqRtDmapAddChannel(handle, vmapid, DEVN, DQ_SS0OUT, &chentry,
&flag, 1);

5. Enable ARINC-429 ports.
DqAdv566Enable(handle, DEVN, TRUE);

6. Start all devices that have channels configured in the VMAP.
DqRtVmapStart(handle, vmapid);

7. Prepare ARINC word to send through port 0 and update VMAP.
uint32 arincWord = DqAdv566BuildPacket(data, label, ssm, sdi, parity);
DqRtVmapAddOutputData(handle, vmapid, 0, sizeof(uint32), &accepted,
(uint8*)&arincWord);

8. Specify that we wish to receive up to MAX_WORDS words received by
port 0.
DqRtVmapRqInputDataSz(handle, vmapid, 0,
MAX_WORDS*sizeof(uint32), &rx_act_size, NULL);

9. Synchronize the VMAP with all devices.
DqRtVmapRefresh(handle, vmapid, 0);

10. Retrieve the data received by port 0.
uint32 recvWords[MAX_WORDS];
DqRtVmapGetInputData(handle, vmapid, 0, MAX_WORDS*sizeof(uint32),
&rx_data_size, &rx_avl_size, (uint8*)recvWords);

11. We can also check how much data was actually transmitted during the last
refresh.
DqRtVmapGetOutputDataSz(handle, vmapid, 0, &tx_data_size,
&tx_avl_size);

12. Stop the devices and free all resources.
DqRtVmapStop(handle, vmapid);
DqRtVmapClose(handle, vmapid);
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap4.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

PPCx, PPCx-1G Cubes and DNR-1G Chassis
Chapter 5 36

Asynchronous Real-time Operation with an IOM
Chapter 5 Asynchronous Real-time Operation with
 an IOM

The PowerDNA DaqBIOS works on a request/response scheme in which the
host requests certain actions to be performed by the cube. The cube performs
these actions and returns the status and/or data.

Thus, request and response packet pairs should be matched. This is accom-
plished in the same way that each DqAdv…() command and DqRtVmapRe-
fresh() command sends a request and waits until a timeout occurs or a
response is received. If a response is received from a command other than the
one that requested it, this response packet is discarded.

Thus, when a program has multiple threads, it is important to safeguard integ-
rity of the request/response interface. This is normally done in one of two ways:

1. Use a separate thread to communicate with the cube and use events (or
other host OS primitives like semaphores or messages) to exchange
requests and results with this thread.

2. Use OS-provided primitives to ensure that no DqAdv…() or DqRt…() call
can happen while another thread is waiting for a return packet in the
PDNALib.dll

When using asynchronous events, it is also important to have a single thread
responsible for receiving asynchronous event packets and dispatch them to
appropriate user application threads. This is accomplished by creating a thread
in the user application, initializing asynchronous operation (i.e., what layers,
channels, and event types are involved), creating and assigning event primi-
tives for each event, and then calling DqAsyncReceive() in the loop.

DqAsyncReceive() waits for the socket until a asynchronous packet is
received (or timeout occurs), then stores it in the queue, and sets an appropri-
ate event. Then, the thread continues its execution and calls DqAsyncRe-
ceive()again.The OS is responsible for delivering an event to the user
threads dedicated to processing it and re-scheduling threads accordingly to
assigned priorities and available resources.

Refer to the following figures for a more detailed description o the Application
Design and Command Processing.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap5.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

PPCx, PPCx-1G Cubes and DNR-1G Chassis
Chapter 5 37

Asynchronous Real-time Operation with an IOM
WaitForEvent()
*returns on timeout or
when a bound port
receives packet.

Thread Dev.N Channel(s) Y

Communicate with the

User Application

DqRtAsyncReceive()

1. Call Stack to receive.

If packet is received:
2. Store packet in the queue.
3. SetEvent() for layer/channel
or
Call a registred callback.

Thread created
in the User Application

Initialize

WaitForEvent()
Process Event

Rack

PDNALib.dll

DqRtVMapRefresh() or DqAdv...()

1. Send Packet.
2. Receive packet.

If packet received:
3. Process packet and return
results.

Rack I/O Thread

1. Receive I/O request from
user threads.
2. Process request.
3. Store data.

Communicate with the

Initialize.

Thread Dev.1 Channel(s) X

Initialize.

WaitForEvent()

Communicate with the
Rack

Process Event

-or-

Alternatively, communicate
with the rack inside the user
threads, but use Critical
Section around calls.

Windows or other OS
UDP socket implementation

IP Stack UDP port 6344

IP Stack UDP port 6334
 (DqBIOS Port)
SendPacket().

WaitForEvent()
*returns on timeout or
when a bound port
receives packet.

Receive packet from queue

SendPacket().

WaitForEvent()
*returns on timeout or
when a bound port
receives packet.

Receive packet from queue

Multithreaded Application Design with Asynchronous Events

(Asynchronous Events Port)
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap5.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

PPCx, PPCx-1G Cubes and DNR-1G Chassis
Chapter 5 38

Asynchronous Real-time Operation with an IOM

1

3
 2

4

DqAdv...()DqRtVmapRefresh() Command Processing

Host

IOCTL Processing Routine Sent Packet Received Packet

Cube

VMap ID1

Stored Lx1/Cy1 [avail. in FIFO]

Retrieved Lx1/Cy1 [avail. in FIFO]
Stored Lxn/Cyn [avail in FIFO]

Retrieved Lxn/Cym [avail. in FIFO]

Data from Layer x1/Channel y4

Data from Layer xn/Channel ym

Sent Packet Received Packet

Ethernet I/O

VMap/DMap
Processing Routine

Processsing Time
~200 us

Processsing time ~500us

. Get commands from queue.

. Store/retrieve data from layer

Cube

1. Add to the command queue
. . .

 . Process command.

. Return status and/or data

Command
Layer/channel data

DqAdv...()

Command Processed
Layer/channel status and/or
data.

2.Store received data to the
 layers.

*layer/channel is not pro-

1. Retrieve data from layers
to send back.

 cessed if data size is zero.

Host

 VMap ID1 (up to 64 IDs)

Size Out Lx1/Cy1 [VMap+ channel]

Size Out Lx1/Cy1 [VMap+ channel]
Size Out Lxn/Cyn [VMap+ channel]

Size Out Lxn/Cyn [VMap+ channel]

Data from Layer x1/Channel y1

Data from Layer xn/Channel ym

Layers
Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_Man_Chap5.fm

© Copyright 2009 all rights reserved
United Electronic Industries, Inc.

PPCx, PPCx-1G Cubes and DNR-1G Chassis
Index 39

Tel: 508-921-4600 www.ueidaq.com Vers: 1.0
Date: October 2010 File: DAQBIOS_Protocol_ManualIX.fm

© Copyright 2008 all rights reserved
United Electronic Industries, Inc.

Index
A
ACB 1
Advanced Circular Buffer, Data Map 22
Asynchronous Real-time Operation 36

B
Buffer Control Block 22
Buffered I/O 1

C
Circular Buffer mode 4
Command Queue 22

D
DaqBIOS & Network Security 19
DaqBIOS Engine (DQE) 21
DaqBIOS Packet Structure 17
DaqBIOS Protocol Versions 19
DMap 1
DMap and VMap modes 1

H
Host / IOM Communication in ACB Mode 3
Host / IOM Communication Modes 1
Host and IOM Data Representation 19

I
IOM Data Retrieval and Data Conversion 23
IOM Table 22

M
Mapped I/O 1

Messaging 1

P
Point-by-point Simple I/O 1

R
Reader and Writer Threads 22
Real-time Operation 24
Real-time Variable-size Data Mapping 28
Receiving Thread 22
Recycled mode 4
RtDMap API Functions 26
RtDmap Functional Description 25
RtDmap Typical Program Structure 28
RtVmap API Functions 30
RtVmap Typical Program Structure 34

S
Sending thread/periodic task 21
Single Buffer mode 3
Soft and Hard Real-time 19
Synchronous and Asynchronous Modes 2

T
Threads and Function 22

U
User Application/DQE/IOM Interaction. 21

V
VMap 1

	
	PowerDNx Protocol and Operating Modes (DAQBIOS) for PPCx, PPCx-1G, and PowerDNA Cubes and DNR-x-1G HalfRACK and RACKtangle Chassis
	Table of Contents
	List of Figures
	Chapter 1 Host / IOM Communication
	1.1 Host / IOM Communica- tion Modes
	1.1.1 Synchronous vs. Asynchronous

	1.2 Buffered I/O
	1.2.1 Advanced Circular Buffer (ACB)
	1.2.2 Burst Mode

	1.3 Message Mode (Msg Protocol)
	1.3.1 IOM/Host Data Transfer
	1.3.2 CAN-503 Data Transfer
	1.3.3 PDNALib Structures
	1.3.4 Error Recovery
	1.3.5 Other Messaging Types

	1.4 Mapped I/O
	1.4.1 Fixed-Size Data Mapping (DMap)
	1.4.2 Variable-size Data Mapping (VMap)

	1.5 Choosing the Right Layers, Operating System, and Mode
	1.5.1 Attributes of Modes
	1.5.2 Application Requirements
	1.5.3 Selecting the Right Mode for Your Application

	Chapter 2 How DaqBIOS Protocol Works
	2.1 DaqBIOS Packet Structure
	2.2 DaqBIOS Protocol Versions
	2.3 Host and IOM Data Representa- tion
	2.3.1 Soft and Hard Real-time
	2.3.2 DaqBIOS & Network Security

	Chapter 3 DaqBIOS Engine
	3.1 Basic Architecture
	3.2 Threads and Function
	3.3 IOM Data Retrieval and Data Conversion

	Chapter 4 Real-time Operation with an IOM
	4.1 Simple I/O
	4.2 Real-time Data Mapping (RtDmap)
	4.2.1 Data Replication over the Network
	4.2.2 RtDmap Functional Description
	4.2.3 RtDmap Typical Program Structure

	4.3 Real-time Variable-size Data Mapping (RtVmap)
	4.3.1 RtVmap Typical Program Structure

	Chapter 5 Asynchronous Real-time Operation with an IOM
	Index

