
X3-SD16 User's Manual

X3-SD16 User's Manual

The X3-SD16 User's Manual was prepared by the technical staff of
Innovative Integration on November 29, 2011.

For further assistance contact:

Innovative Integration
2390-A Ward Ave
Simi Valley, California 93065

PH: (805) 578-4260
FAX: (805) 578-4225

email: techsprt@innovative-dsp.com
Website: www.innovative-dsp.com

This document is copyright 2011 by Innovative Integration. All rights
are reserved.

VSS \ Distributions \ SD16 \ Documentation \ Manual \
SD16Master.odm

#XXXXXX

Rev 1.11

mailto:techsprt@innovative-dsp.com

Table of Contents
X3-SD16 User's Manual...2

Introduction..10
Real Time Solutions!...10
Vocabulary...10

What is X3-SD16? ...11
What is Malibu? ..11
What is C++ Builder?...11
What is Microsoft MSVC?...11
What kinds of applications are possible with Innovative Integration hardware?...12
Why do I need to use Malibu with my Baseboard?..12
Finding detailed information on Malibu...12

Online Help..12
Innovative Integration Technical Support..12
Innovative Integration Web Site..13

Typographic Conventions..13

Windows Installation...14
Host Hardware Requirements..14
Software Installation..14

Starting the Installation ...15
The Installer Program...16

Tools Registration..18
Bus Master Memory Reservation Applet...18

Hardware Installation...19
After Power-up..20
Installation on a Deployed System..20

Running MalibuRed...20

Mem Driver Installation Windows ..22

Installation on Linux...26
Package File Names...26

Prerequisites for Installation..26
The Redistribution Package Group - MalibuRed...26
Malibu..27
Other Software...27

Baseboard Package Installation Procedure..27
Board Packages..28
Unpacking the Package..28

Creating Symbolic Links..28
Completing the Board Install...29

Linux Directory Structure..29
Applets..29
Documentation...29
Examples..29
Hardware..29

X3-SD16 User's Manual 3

Mem Driver Installation Linux...30

About the X3 XMC Modules..34
X3 XMC Architecture...34
X3 Computing Core...36
X3 PCI Express Interface..38
Data Buffering and Memory Use...39

Computational SRAM..40
Data Buffer SRAM...40
EEPROM..40

Digital I/O..41
Software Support..41
Hardware Implementation..41

Front Panel DIO...42
Hardware Implementation..43
Digital I/O Timing..44
Digital IO Electrical Characteristics..45
Notes on Digital IO Use...46

Serial EEPROM Interface..46
Thermal Protection and Monitoring..47
Thermal Failures..49
LED Indicators...49
JTAG Scan Path...50
FrameWork Logic..50
Integrating with Host Cards and Systems..51

Developing Host Applications...53

Writing Custom Acquisition Applications..54
Snap Example..54

Tools Required...54
Program Design..55

The Host Application ..55
User Interface...55

Setup Tab..56
Data Streaming...58
Ram Test...59
EEPROM Access..59
Debugging..59

Host Side Program Organization...59
ApplicationIo..60

Initialization..60
Logic Loading..63
Starting Data flow...64
Handle Data Available...68
EEProm Access..69

Writing Custom Playback Applications..71
Wave Example...71

Tools Required...71

X3-SD16 User's Manual 4

Program Design..72
The Host Application ..72

User Interface...72
Setup Tab..73
Data Streaming...75
EEPROM Access..75
Debugging..76

Host Side Program Organization...76
ApplicationIo..76

Initialization..76
Logic Loading..79
Handle Data Required..84
EEProm Access..85

X3-SD16 Hardware..87
Introduction..87

A/D Conversion Features...88
A/D Converters..88
Input Range and Conversion Codes...90
Driving the A/D Inputs...91
A/D Filter Characteristics..91
Overrange Detection..92
A/D Sampling Rates...92

D/A Conversion Features...93
D/A Converters..93
Output Range and Conversion Codes..94
DAC Outputs..95
DAC Sample Underrun ...95
DAC Update Rates...96
Notes About Matching the A/D and D/A Data Rates..97

Sample Rate Generation and Clocking Controls ..97
External Clock and Reference Inputs...98
PLL Output Range and Resolution Limitations...100
Programming the PLL and VCXO...100
PLL Lock and Status..102
PLL Control Interface..103
Notes About the PLL Configuration..104
Timing Analysis...105

Triggering ...105
Trigger Source..107
Framed Trigger Mode..107
Decimation...108

Synchronizing Multiple X3-SD16...108
Sync Signal ..108
64-channel System Example..109

FrameWork Logic Functionality...110
Power Controls and Thermal Design...112

System Thermal Design...112
Temperature Sensor and Over Temperature Protection..112
Reducing Power Consumption...113

Alert Log..113

X3-SD16 User's Manual 5

Overview..113
Types of Alerts...114
Alert Packet Format...114
Software Support..115
Tagging the Data Stream..115

Using the X3-SD16..116
Where to start?...116
Getting Good Analog Performance..116
Application Logic...117

Calibration...117
Production Calibration...117
Updating the Calibration Coefficients...118

Performance Data..119
Power Consumption...119
Environmental..120
Analog Input...120
Analog Output..126

Connectors...130
Input Connector JP1...130
XMC P15 Connector..132
XMC P16 Connector..136
Note: PXI Express signals are only available when PXIE adapter card is used..140
Xilinx JTAG Connector...141

Mechanicals...142
Applets for the X3 Modules...144

EEProm..144
Finder...145
Logic Loader ...146

Applets..147
Common Applets...147

Registration Utility (NewUser.exe)...147
Reserve Memory Applet (ReserveMemDsp.exe)...148

Data Analysis Applets...148
Binary File Viewer Utility (BinView.exe)...148

X3-SD16 User's Manual 6

List of Tables
Table 1. X3 XMC Family..35
Table 2. X3 XMC Family Peripherals...36
Table 3. X3 Computing Core Devices...36
Table 4. PCI Express Standards Compliance..38
Table 5. Interfaces from PCI Express to Application Logic..39
Table 6. IUsesExtendedDioPort Class Operations..41
Table 7. Table 1: Front Panel DIO on X3 Modules...43
Table 8. IUsesExtendedDioPort Class Operations..43
Table 9. Digital I/O Port Timing Parameters...44
Table 10. Digital IO Bits Electrical Characteristics..45
Table 11. Digital IO Clock Input Electrical Characteristics..46
Table 12. Temperature Alarms..48
Table 13. X3 Modules FPGA JTAG Scan Path...50
Table 14. Development Tools. ..54
Table 15. Development Tools..71
Table 16. X3-SD16 A/D Features..89
Table 17. A/D Conversion Coding..90
Table 18. A/D Clock Rate Requirements..92
Table 19. X3-SD16 DAC Features...93
Table 20. DAC Conversion Coding...94
Table 21. D/A Clock Rate Requirements..96
Table 22. Sample Clock Modes...97
Table 1. X3 External and Reference Clock Selection...99
Table 1. X3 External Clock and Reference Input Requirements...100
Table 2. External Clock and Reference Signal Pinouts...100
Table 3. Sample Clock Output Ranges and Resolution...100
Table 4. Selecting values for PLL Divisors ..102
Table 5. PLL Example Settings...102
Table 6. Clock Device Address...103
Table 7. PLL Interface Word Format..103
Table 8. PLL Read Sequence...103
Table 9. PLL Read Sequence...104
Table 10. PLL Read Word...104
Table 11. PLL Output Assignments..104
Table 12. X3-SD16 External Sample Clock Timing...105
Table 13. Table 2: Trigger Modes...106
Table 14. External Trigger Input...107
Table 15. External Trigger Electrical Characteristics...107
Table 16. Sync Control Bit (Register 0x1)...108
Table 17. Sync Signal ...109
Table 18. Sync Signal Electrical Characteristics...109
Table 19. Reduced Power Options..113
Table 20. Alert Types..114
Table 21. Alert Packet Format...115
Table 22. X3-SD16 Power Consumption..119
Table 23. X3-SD16 Environmental Limits..120
Table 24. X3-SD16 Analog Input Performance Summary..120

X3-SD16 User's Manual 7

Table 25. A/D Signal Quality vs Sample Rate..122
Table 26. A/D Signal Quality for 20V Input Range..124
Table 27. A/D Signal Quality for 10V Input Range..124
Table 28. A/D Signal Quality for 2V Input Range..124
Table 29. X3-SD16 Analog Output Performance Summary...126
Table 30. X3 XMC Connector P15 Pinout..134
Table 31. P15 Signal Descriptions...135
Table 32. X3 XMC Secondary Connector P16 Pinout..137
Table 33. P16 Signal Descriptions...138
Table 34. X3 JP3 Xilinx JTAG Connector Pinout...141

X3-SD16 User's Manual 8

List of Figures
Figure 1. Vista Verification Dialog...15
Figure 2. Innovative Install Program..16
Figure 3. Progress is shown for each section...17
Figure 4. ToolSet registration form...18
Figure 5. BusMaster configuration..19
Figure 6. Installation complete..19
Figure 7. X3 XMC Family Block Diagram...34
X3 Computing Core Block Diagram...37
Figure 8. DIO Control Register (BAR1+0x14)...42
Figure 9. Digital IO Port Addresses...42
Figure 10. DIO Control Register (BAR1+0x14)...44
Figure 11. Digital IO Port Addresses...44
Figure 12. Digital I/O Port Timing..44
Figure 13. X3-SD16 Module (with analog shield installed)..87
Figure 14. X3-SD16 Block Diagram...88
Figure 15. X3-SD16 A/D Channel Diagram...90
Figure 16. A/D Frequency Response (Differential input to A/D)...91
Figure 17. X3-SD16 DAC Channel Diagram..94
Figure 18. DAC Output Filter Response...95
Figure 1. X3-SD16 Clock Generation and Controls Block Diagram..98
Figure 1. X3-SD16 External Clock Path...99
Figure 2. Sample Triggering ...106
Figure 3. Example 64-channel System Architecture...110
Figure 4. X3-SD16 FrameWork Logic Data Flow..111
Figure 5. Analog Input Bandwidth 0 to 1 MHz (sample rate = 144 KHz)...121
Figure 6. Analog input settling time for 1.01 kHz, 10Vp-p square wave (sample rate = 144 KHz)..................................121
Figure 7. Signal quality measurement (1.01 kHz input, 19.9Vp-p, sample rate = 144 ksps, 64K FFT, no averaging)......122
Figure 8. A/D SNR vs Input Amplitude (Vin = 19.9Vp-p, 1.01 kHz sine)...123
Figure 9. A/D ENOB vs Sample Rate (Vin = 19.9Vp-p, 1.01 kHz sine)...123
Figure 10. A/D SFDR vs Sample Rate (Vin = 19.9Vp-p, 1.01 kHz sine)..123
Figure 11. A/D THD vs Sample Rate (Vin = 19.9Vp-p, 1.01 kHz sine)..123
Figure 12. A/D SNR vs Input Amplitude (Fs = 144 ksps, Vin = 1.01 kHz sine)..125
Figure 13. A/D SFDR vs Input Amplitude (Fs = 144 ksps, Vin = 1.01 kHz sine)..125
Figure 14. A/D ENOB vs Input Amplitude (Fs = 144 ksps, Vin = 1.01 kHz sine)...125
Figure 15. A/D THD vs Input Amplitude (Fs = 144 ksps, Vin = 1.01 kHz sine)..125
Figure 16. DAC Output for 1.01kHz sine, 2Vp-p, 128 ksps update rate (as measured by X3-SD16 A/D with single-ended
input)..128
Figure 17. DAC Output for 2kHz sine, 2Vp-p, 10 ksps update rate (as measured by X3-SD16 A/D with single-ended
input)..129
Figure 18. P15 XMC Connector Orientation...133
Figure 19. P16 XMC Connector Orientation...136
Figure 20. X3-SD16 J3 Orientation...141
Figure 21. X3-SD16 J3 Side View..141
Figure 22. X3-SD16 Mechanicals (Top View) Rev B...142
Figure 23. X3-SD16 Mechanicals (Top View) Rev A..143

X3-SD16 User's Manual 9

Introduction

Real Time Solutions!
Thank you for choosing Innovative Integration, we appreciate your business! Since 1988, Innovative Integration has grown
to become one of the world's leading suppliers of DSP and data acquisition solutions. Innovative offers a product portfolio
unrivaled in its depth and its range of performance and I/O capabilities .

Whether you are seeking a simple DSP development platform or a complex, multiprocessor, multichannel data acquisition
system, Innovative Integration has the solution. To enhance your productivity, our hardware products are supported by
comprehensive software libraries and device drivers providing optimal performance and maximum portability.

Innovative Integration's products employ the latest digital signal processor technology thereby providing you the competitive
edge so critical in today's global markets. Using our powerful data acquisition and DSP products allows you to incorporate
leading-edge technology into your system without the risk normally associated with advanced product development. Your
efforts are channeled into the area you know best ... your application.

Vocabulary

X3-SD16 User's Manual 10

What is X3-SD16?
The X3 module Family are XMC (VITA 42.3) modules with a variety of IO capabilities and a PCI Express interface. Each
modules has a Spartan 3 application FPGA, buffer memory and clocking features to support the IO functions. Two SRAMs
are used, one each for buffer memory and application memory. Then XMC has a 32/66 PCI interface to a single lane PCIe
bridge chip DIO using P16 connection to the baseboard.

For sample rate generation, the X3-SD16 has a precision, low noise PLL or external clocks. Trigger modes including
software, framed and external triggering provide precise control over sample acquisition and synchronization with other
devices. Timestamped alerts also provide the ability to monitor the acquisition process and correlate system events to the
data.

Data acquisition control, signal processing, buffering, and system interface functions are implemented in a Xilinx Spartan3A
DSP FPGA, 1.8 M gate device. Two 512Kx32 memory devices are used for data buffering and FPGA computing memory.

The logic can be fully customized using VHDL and MATLAB using the FrameWork Logic toolset. The MATLAB BSP
supports real-time hardware-in-the-loop development using the graphical, block diagram Simulink environment with Xilinx
System Generator.

The PCI Express interface supports continuous data rates up to 180 MB/ s between the module and the host. A flexible data
packet system implemented over the PCIe interface provides both high data rates to the host that is readily expandable for
custom applications.

What is Malibu?
Malibu is the Innovative Integration-authored component suite, which combines with the Borland, Microsoft or GNU C++
compilers and IDEs to support programming of Innovative hardware products under Windows and Linux. Malibu supports
both high-speed data streaming plus asynchronous mailbox communications between the DSP and the Host PC, plus a wealth
of Host functions to visualize and post-process data received from or to be sent to the target DSP.

What is C++ Builder?
C++ Builder is a general-purpose code-authoring environment suitable for development of Windows applications of any type.
Armada extends the Builder IDE through the addition of functional blocks (VCL components) specifically tailored to
perform real-time data streaming functions.

What is Microsoft MSVC?
MSVC is a general-purpose code-authoring environment suitable for development of Windows applications of any type.
Armada extends the MSVC IDE through the addition of dynamically created MSVC-compatible C++ classes specifically
tailored to perform real-time data streaming functions.

X3-SD16 User's Manual 11

What kinds of applications are possible with Innovative Integration hardware?
Data acquisition, data logging, stimulus-response and signal processing jobs are easily solved with Innovative Integration
baseboards using the Malibu software. There are a wide selection of peripheral devices available in the Matador DSP
product family, for all types of signals from DC to RF frequency applications, video or audio processing. Additionally,
multiple Innovative Integration baseboards can be used for a large channel or mixed requirement systems and data
acquisition cards from Innovative can be integrated with Innovative's other DSP or data acquisition baseboards for high-
performance signal processing.

Why do I need to use Malibu with my Baseboard?
One of the biggest issues in using the personal computer for data collection, control, and communications applications is the
relatively poor real-time performance associated with the system. Despite the high computational power of the PC, it cannot
reliably respond to real-time events at rates much faster than a few hundred hertz. The PC is really best at processing data,
not collecting it. In fact, most modern operating systems like Windows are simply not focused on real-time performance, but
rather on ease of use and convenience. Word processing and spreadsheets are simply not high-performance real-time tasks.

The solution to this problem is to provide specialized hardware assistance responsible solely for real- time tasks. Much the
same as a dedicated video subsystem is required for adequate display performance, dedicated hardware for real-time data
collection and signal processing is needed. This is precisely the focus of our baseboards – a high performance, state-of-the-
art, dedicated digital signal processor coupled with real-time data I/O capable of flowing data via a 64-bit PCI bus interface.

The hardware is really only half the story. The other half is the Malibu software tool set which uses state of the art software
techniques to bring our baseboards to life in the Windows environment. These software tools allow you to create applications
for your baseboard that encompass the whole job - from high speed data acquisition, to the user interface.

Finding detailed information on Malibu
Information on Malibu is available in a variety of forms:

• Data Sheet (http://www.innovative-dsp.com/products/malibu.htm)

• On-line Help

• Innovative Integration Technical Support

• Innovative Integration Web Site (www.innovative-dsp.com)

Online Help

Help for Malibu is provided in a single file, Malibu.chm which is installed in the Innovative\Documentation folder during the
default installation. It provides detailed information about the components contained in Malibu - their Properties, Methods,
Events, and usage examples. An equivalent version of this help file in HTML help format is also available online at
http://www.innovative-dsp.com/support/onlinehelp/Malibu.

Innovative Integration Technical Support

Innovative includes a variety of technical support facilities as part of the Malibu toolset. Telephone hotline supported is
available via

X3-SD16 User's Manual 12

http://www.innovative-dsp.com/support/onlinehelp/Malibu

Hotline (805) 578-4260 8:00AM-5:00 PM PST.

Alternately, you may e-mail your technical questions at any time to:

techsprt@innovative-dsp.com.

Also, feel free to register and browse our product forums at http://forum.iidsp.com/, which are an excellent source of FAQs
and information submitted by Innovative employees and customers.

Innovative Integration Web Site

Additional information on Innovative Integration hardware and the Malibu Toolset is available via the Innovative Integration
website at www.innovative-dsp.com

Typographic Conventions
This manual uses the typefaces described below to indicate special text.

Typeface Meaning

Source Listing Text in this style represents text as it appears onscreen or in code. It
also represents anything you must type.

Boldface Text in this style is used to strongly emphasize certain words.

Emphasis Text in this style is used to emphasize certain words, such as new
terms.

Cpp Variable Text in this style represents C++ variables

Cpp Symbol Text in this style represents C++ identifiers, such as class, function,
or type names.

KEYCAPS Text in this style indicates a key on your keyboard. For example,
“Press ESC to exit a menu”.

Menu Command Text in this style represents menu commands. For example “Click
View | Tools | Customize”

X3-SD16 User's Manual 13

http://forum.iidsp.com/

Windows Installation

This chapter describes the software and hardware installation procedure for the Windows platform (WindowsXP, Vista, and
Windows 7).

Do NOT install the hardware card into your system at this time. This will follow the software
installation.

Host Hardware Requirements
The software development tools require an IBM or 100% compatible Pentium IV - class or higher machine for proper
operation. An Intel-brand processor CPU is strongly recommended, since AMD and other “clone” processors are not
guaranteed to be compatible with the Intel MMX and SIMD instruction-set extensions which the Armada and Malibu Host
libraries utilize extensively to improve processing performance within a number of its components. The host system must
have at least 1 GB of memory (2 GB recommended), 1 GB available hard disk space, and a DVD-ROM drive. Most
versions of Windows released after Win2000 including XP, Vista, or Windows 7 (referred to herein simply as Windows) or
later is required to run the developer’s package software, and are the target operating systems for which host software
development is supported.

Software Installation
The development package installation program will guide you through the installation process.

Note: Before installing the host development libraries (VCL components or MFC classes), you must
have Microsoft MSVC Studio (version 9 or later), CodeGear RAD Studio 2007/2009, Embarcadero Rad
Studio 2010 or QtCreator installed on your system, depending on which of these IDEs you plan to use
for Host development. If you are planning on using these environments, it is imperative that they are
tested and known-operational before proceeding with the library installation. If these items are not
installed prior to running the Innovative Integration install, the installation program will not permit
installation of the associated development libraries. However, drivers and DLLs may be installed to
facilitate field deployment.

You must have Administrator Privileges to install and run the software/hardware onto your system, refer to the Windows
documentation for details on how to get these privileges.

X3-SD16 User's Manual 14

Starting the Installation

To begin the installation, start Windows. Shut down all running programs and disable anti-virus software. Insert the
installation DVD. If Autostart is enabled on your system, the install program will launch. If the DVD does not Autostart,
click on Start | Run... Enter the path to the Setup.bat program located at the root of your DVD-ROM drive (i.e.
E:\Setup.bat) and click “OK” to launch the setup program.

SETUP.BAT detects if the OS is 64-bit or 32-bit and runs the appropriate installation for each
environment. It is important that this script be run to launch an install.

When installing on a Vista OS, the dialog below may pop up. In each case, select “Install this driver software anyway” to
continue.

Figure 1. Vista Verification Dialog

X3-SD16 User's Manual 15

The Installer Program

After launching Setup, you will be presented with the following screen.

Figure 2. Innovative Install Program

Using this interface, specify which product to install, and where on your system to install it.

1) Select the appropriate product from the Product Menu.

2) Specify the path where the development package files are to be installed. You may type a path or click “Change” to
browse for, or create, a directory. If left unchanged, the install will use the default location of “C:\Innovative”.

3) Typically, most users will perform a “Full Install” by leaving all items in the “Components to Install” box
checked. If you do not wish to install a particular item, simply uncheck it. The Installer will alert you and
automatically uncheck any item that requires a development environment that is not detected on your system.

4) Click the Install button to begin the installation.

Note: The default “Product Filter” setting for the installer interface is “Current Only” as indicated by
the combo box located at the top right of the screen. If the install that you require does not appear in the
“Product Selection Box” (1), Change the “Product Filter” to “Current plus Legacy”.

X3-SD16 User's Manual 16

Each item of the checklist in the screen shown above, has a sub-install associated with it and will open a sub-install screen if
checked. For example, the first sub-install for “Quadia - Applets, Examples, Docs, and Pismo libraries” is shown below.

The installation will display a progress window, similar to the one shown below, for each item checked.

Figure 3. Progress is shown for each section.

X3-SD16 User's Manual 17

Tools Registration
At the end of the installation process you will be prompted to register.
If you decide that you would like to register at a later time, click
“Register Later”.

When you are ready to register, click Start | All Programs | Innovative |
<Board Name> | Applets. Open the New User folder and launch
NewUser.exe to start the registration application. The registration
form to the left will be displayed.

Before beginning DSP and Host software development, you must
register your installation with Innovative Integration. Technical
support will not be provided until registration is successfully
completed. Additionally, some development applets will not operate
until unlocked with a passcode provided during the registration
process.

It is recommend that you completely fill out this form and return it to
Innovative Integration, via email or fax. Upon receipt, Innovative
Integration will provide access codes to enable technical support and
unrestricted access to applets.

Figure 4. ToolSet registration form

Bus Master Memory Reservation Applet.
At the conclusion of the installation process, ReserveMem.exe will run
(except for SBC products). This will allow you to set the memory size
needed for the busmastering to occur properly. This applet may be run from
the start menu later if you need to change the parameters.

For optimum performance, reserve at least 64 MB of memory for each
Innovative board to be used simultaneously within the PC plus 32 MB for
other system use. For example, if using two X5-400M modules, reserve 2 *
64 + 32 MB = 160 MB. To reserve this memory, the registry must be
updated using the ReserveMem applet. Simply type the desired size into the
Rsv Region Size (MB) field, click Update and the applet will update the
registry for you. If at any time you change the number of boards in your
system, then you must invoke this applet found in Start | All Programs |
Innovative | <target board> | Applets | Reserve Memory.

After updating the system exit the applet by clicking the exit button to
resume the installation process.

X3-SD16 User's Manual 18

Figure 5. BusMaster configuration

At the end of the install process, the following screen will appear.

Figure 6. Installation complete

Click the “Shutdown Now” button to shut down your computer. Once the shutdown process is complete unplug the system
power cord from the power outlet and proceed to the next section, “Hardware Installation.”

Hardware Installation
Now that the software components of the Development Package have been installed the next step is to configure and install
your hardware. Detailed instructions on board installation are given in the Hardware Installation chapter, following this
chapter.

IMPORTANT: Many of our high speed cards, especially the PMC and XMC Families, require forced
air from a fan on the board for cooling. Operating the board without proper airflow may lead to
improper functioning, poor results, and even permanent physical damage to the board. These boards
also have temperature monitoring features to check the operating temperature. The board may also be
designed to intentionally fail on over-temperature to avoid permanent damage. See the specific
hardware information for airflow requirements.

X3-SD16 User's Manual 19

After Power-up
After completing the installation, boot your system into Windows.

Innovative Integration boards are plug and play compliant, allowing Windows to detect them and auto-configure at start-up.
Under rare circumstances, Windows will fail to auto-install the device-drivers for the JTAG and baseboards. If this happens,
please refer to the “TroubleShooting” section.

Installation on a Deployed System
The above instructions install the complete development platform onto a system for the development of application software.
Often, however, a developed application needs to be installed on a system that will only be used to run the program. In this
instance, installing the complete library is overkill.

To support this situation, Innovative has a minimal installation program called “MalibuRED”. This is short for Malibu
Redistributable. This install will install the driver software and support DLLs required to run a Malibu application.

Note: Specific applications may have their own, additional requirements that are not covered by
MalibuRED. For example, .NET applications require the .NET libraries to be installed as well.
Installation programs for .NET can be obtained from Microsoft over the Internet.

Running MalibuRed

MalibuRED can be found on the installation CD in the Windows-32\Malibu subdirectory. The name of the installation file is
MalibuRED.exe. Running the program displays the setup screen for the installer:

Using the combo box, select the appropriate baseboard to install support for. In this case, we are installing an X3-A4D4
board. If support for multiple cards is needed, the program must be run to completion once for each type of board. This is
required because parts of the installation, such as baseboard device drivers, may be different for different board types.

After selecting the board, press “Go” to begin installation. The window changes to display the progress of the install.

X3-SD16 User's Manual 20

After completing the installation, reboot the system to allow Windows to recognize the new drivers. Then proceed with the
Hardware Installation as in the development system installation above.

X3-SD16 User's Manual 21

Mem Driver Installation Windows

Introduction
This document provide instructions to install and use the Innovative Integration memory allocation driver (MemDriver) and
controller applet (MemDrvControl).

Releases
Release notes are found in the file "README.txt". Peroidic updates can be downloaded from: http://www.innovative-
dsp.com/ftp/MemDriver/.

System Requirement
Windows 7 (32 or 64-bits)

Malibu Applications
In order to utilize MemDriver, all Malibu based applications must be linked against the current release of Malibu libraries.

Installing MemDriver And Controller
Both MemDriver and controller are automatically installed by the Innovative software installation program (setup.bat).
Should the installation or driver failed, please follow instructions under the "Troubleshoot" section below.

Running The Controller
This applet displays MemDriver statuses and provide various control functions. Please note, any change to the MemDriver
registry settings will require a system reboot.

Running the Applet
1. Go to folder "C:\Innovative\MemDriver - Release\utils\MemDrvControl\Vc9\Release" or "\Release_x64".
2. Execute application "MemDrvControl.exe". Following window will appear.

X3-SD16 User's Manual 22

Applet Features and Notes
1. If MemDriver failed to reserve desired amount of memory, it will attempt to reserve the largest amount poosible.

However, if it failed to reserve any memory at all, the "Status" field will show "Not Ready". In this case, set the
"Memory To Reserve" value to a smaller value (50% of previous) and reboot. Valid values are between 1 and 4095.

2. To reset memory driver and clear all allocated memory
1. Close all applications.
2. Click "Reset" button

3. To verify driver is operational
1. Close all applications.
2. Click "Test" button
3. The "Test:" field will show the test result. This field shows "Unknown" if no test has been run.

4. Click "Refresh", to update displayed values.
5. Any change to registry setting requires a system reboot to take effect.
6. If driver status failed to start-up properly, the "Test" and "Reset" buttons will be deactivated (greyed out).

Definition of Terms
Memory Pool – area of physical RAM reserved by MemDriver
Max – total size of the memory pool
Used – portion of memory pool assigned to applications
Free – total memory pool area not yet assigned to applications
LFB – Largest Free Block of contiguous area in the memory pool

X3-SD16 User's Manual 23

Troubleshoot
Before performing any troubleshooting procedure, it is recommended that the user backup all existing data and system files.
Please contact technical support for more detail.

Additional Driver Status
The user can also determine the status of MemDriver with Msinfo32.exe.

1. Click 'Start' and run application "Msinfo32.exe"
2. Goto System Summary->Software Enviornment->System Drivers
3. Look for the "memdrv" entry. It should be in the 'Running' state.

Maually Up-grade MemDriver
Perform the following steps to manually up-grade MemDriver to the latest released version, without reinstalling other
Innovative Integration software.

1. Obtain latest MemDriver release from Innovative Integration.
2. Extract the content into folder "C:\Innovative\MemDriver – Release".
3. Open folder "C:\Windows\System32\drivers" and delete file "memdrv.sys".
4. Copy the driver executable from "C:\Innovative\MemDriver – Release\driver\...".
5. Copy the file "memdrv.sys" to folder "C:\Windows\System32\drivers".
6. Reboot the system.
7. Run the controller app according to instruction in section "Running The Controller" above.
8. Verify the latest version of MemDriver is installed. See file "README.txt".

Registry Settings
MemDriver requires the certain values be set in the system registry. If the driver is not operating properly, perform the
following steps to manually verify the registry setting and correct them.

1. At Start menu, type: regedit
2. Navigate to the MemDriver registry key as shown and compare the settings.

X3-SD16 User's Manual 24

3. Reboot the system and retest the driver.
4. If test failed, contact technical support.

X3-SD16 User's Manual 25

Installation on Linux

This chapter contains instruction on the installation of the baseboard software for Linux operating systems.

Software installation on Linux is performed by loading a number of packages. A Package is a special kind of archive file that
contains not only the files that are to be installed, but also installation scripts and dependency information to allow a smooth
fit into the system. This information allows the package to be removed, or patched. Innovative uses RPM packages in its
installs.

Package File Names
A package file name such as Malibu-LinuxPeriphLib-1.1-3.i586.rpm encodes a lot of information.

Package Name Package ID Information Fields

Distribution Subpackage Version Revision Hardware Type Extension

Malibu-Linux PeriphLib 1.1 3 i586 .rpm

Prerequisites for Installation
In order to properly use the baseboard example programs and to develop software using the baseboard, some packages need
to be installed before the actual baseboard package.

The Redistribution Package Group - MalibuRed

This set of packages contain the libraries and drivers needed to run a program using Malibu. This group is called
“MalibuRed” because it contains the packages needed to allow running Malibu based programs on a target, non-development
machine. (Red is short for 'redistributable').

MalibuRed Packages Description

WinDriver-9.2-1.i586.rpm Installs WinDriver 9.2 release.

MalibuLinux-Red-[ver]-[rel].i586.rpm Installs Baseboard Driver Kernel Plugin.

intel-ipp_rti-5.3p.x32.rpm Installs Intel IPP library redistributable files.

X3-SD16 User's Manual 26

The installation CD, or the web site contains a file called LinuxNotes.pdf giving instructions on how to load these packages
and how to install the drivers onto your Linux machine. This file is also loaded onto the target machine by the the Malibu-
LinuxRed RPM. These procedures need to be completed for every target machine.

Malibu

To develop software for a baseboard the Malibu packages also must be installed.

Malibu Packages Description

Malibu-LinuxPeriphLib-[ver]-[rel].i586.rpm Installs Malibu Source, Libraries and Examples.

Other Software

Our examples use the DialogBlocks designer software and wxWidgets GUI library package for user interface code. If you
wish to rebuild the example programs you will have to install this software as well.

Package Company URL

wxWidgets wxWidgets http://www.wxwidgets.org

DialogBlocks Anthemion http://www.anthemion.co.uk.org/dialogblocks

Baseboard Package Installation Procedure
Each baseboard installation for Linux consists of one or more package files containing self-extracting packages of
compressed files, as listed in the table below. Note that package version codes may vary from those listed in the table.

Each of these packages automatically extract files into the /usr/Innovative folder, herein referred to as the Innovative
root folder in the text that follows. For example, the X5-400 RPM extracts into /usr/Innovative/X5-400-[ver]. A
symbolic link named X5-400 is then created pointing to the version directory to allow a single name to apply to any version
that is in use.

X3-SD16 User's Manual 27

Board Packages

Baseboard Packages Description

X5-400M Malibu-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X5-210M X5-210M-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-10M X3-10M-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-25M X3-25M-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-A4D4 X3-A4D4-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-SD X3-SD-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-SDF X3-SDF-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-Servo X3-Servo-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

SBC-ComEx Sbc-ComEx-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

Unpacking the Package

As root, type:

rpm -i -h X5-400-LinuxPeriphLib-1.1-4.i586.rpm

This extracts the X5-400 board files into the Innovative root directory. Use the package for the particular board you are
installing.

Creating Symbolic Links
The example programs assume that the user has created symbolic links for the installed board packages. A script file is
provided to simplify this operation by the Malibu Red package. In the MalibuRed/KerPlug directory, there is a script called
quicklink.

quicklink X5-400 1.1

These commands will create a symbolic link X5-400 pointing to X5-400-1.1.

This script can be moved to the user's bin directory to allow it to be run from any directory.

X3-SD16 User's Manual 28

Completing the Board Install

The normal board install is complete with the installation of the files. The board driver install is already complete with the
loading of the Malibu Red package. If there are any board-specific steps they will be listed at the end of this chapter.

Linux Directory Structure

When a board package is installed, its files are placed under the /usr/Innovative folder. The base directory is named
after the board with a version number attached -- for example, the version 2.0 X5-400 RPM extracts into
/usr/Innovative/X5-400-2.0.

This allows multiple version of installs to coexist by using a symbolic link to point to a particular version. Changing the
symbolic link changes with version will be used.

Under the main directory there are a number of subdirectories.

Applets
The applets subdirectory contains small application programs that aid in the use of the board. For example, there is a Finder
program that allows the user to flash an LED on the board to determine which board is associated with a target number. See
the Applets chapter for a fuller description of the applets for a board.

Documentation
This directory contains any documentation files for the project. Open the index.html file in the directory with a web browser
to see the available files and a description of the contents.

Examples
This directory and its subdirectories contain the projects, source and example programs for the board.

Hardware
This directory contains files associated with programming the board Logic and any logic images provided.

X3-SD16 User's Manual 29

Mem Driver Installation Linux

This document provide instructions to install and use the Innovative Integration memory driver (MemDriver) and controller
applet for Linux.

Releases
See the "README.txt" file.

Tested System Configuration
4 GB
Core2
openSUSE 11.1 (x32 and x64)
Linux Kernel 2.6.27.45

Malibu Applications
In order to utilize MemDriver, all Malibu based applications must be linked against the latest release of Malibu libraries.

Installing MemDriver
The MemDriver for Linux is a boot start driver. In such, this driver must be linked into the Linux kernel and executed during
system boot-up. Perform the following steps to build and link the driver into the kernel.

1. Obtain the source for the Linux kernel listed in section "Minimum System Requirement".
2. Copy the folder /usr/Innovative/MemDriver/memdrv to <your kernel source>/drivers.
3. Edit the file <your kernel source>/drivers/Kconfig. Add the line: source "drivers/memdrv/Kconfig" (quotes

included) before the line "endmenu". Save the changes.
4. Edit the file <your kernel source>/drivers/Makeflie. Add the line "obj-y += memdrv/" to the end of this file. Save.
5. Go to the kernel root folder. Perform the steps listed under the section "Adjusting Memory Pool Size". Be sure a

check mark appears beside the MemDriver module, i.e. it is set to "Y". See image below.
6. Continue to "Adjusting Memory Pool Size" section.

Adjusting Memory Pool Size
In order to adjust the memory pool size, a rebuild of the Linux kernel is required.

1. In a terminal sheel, login as root.
2. Go to the root folder of the new kernel source and type: $make gconfig
3. This window will appear:

X3-SD16 User's Manual 30

4. Goto section "Device Drivers->Innovative Memory Driver support->Memory Pool Size".
5. Change the value, click save and exit. This value must be 1-4095 for x64 and 1-1000 for x32. Addition information

in section "Applet Features and Notes - #1" below.
6. Rebuild the kernel and reboot.
7. After boot-up, login as root and change the permission: $chmod 666 /dev/memdrv. Aadd this command to the

file /etc/rc.d/boot.local.

Using Controller Applet
This applet displays MemDriver statuses and provide control functions to interact with the driver.

Running the Applet
1. Open folder "/usr/Innovative/MemDriver/controller/mdControl".
2. Run executable "mdControl".
3. If this file is missing or does not execute properly, you may recompile it using Qt project "mdControl.pro".
4. Normally, the following window will appear:

X3-SD16 User's Manual 31

Applet Features and Notes
1. If the memory driver failed to reserve desired amount of memory, it will attempt to reserve the largest amount

poosible. However, if it failed to reserve any memory at all, the "Status" field will show "Not Ready". In this case,
set the "Memory To Reserve" value to a smaller value (say 50% of previous) and reboot. Valid values are between
1 and 4095 (MB). For 32-bit machines, it is highly recommended to stay below 1000.

2. To reset memory driver and clear all allocated memory
1. Close all applications.
2. Click "Reset" button

3. To verify driver is operational
1. Close all applications.
2. Click "Test" button
3. The "Test:" field will show the test result, Pass or Failed. This field shows "Unknown" if the test has not yet

been executed.
4. Click "Refresh", to update displayed values.

Definition of Terms
Memory Pool – a section of physical RAM reserved by MemDriver
Max – total size of the memory pool
Used – amount of memory pool allocated to applications

X3-SD16 User's Manual 32

Free – total memory pool area not yet allocated to applications
LFB – Largest Free Block of contiguous memory in the pool

Alternative Driver Status
Alternatively, the user may obtain the status of MemDriver with the following:

1. Open 'bash' terminal
2. $cat /proc/driver/memdrv
3. If the driver is functional, you should see an output with the driver name, version, and build date. For example:

II Memory Driver: v0.0.24, Nov 9 2011, 12:35:43

X3-SD16 User's Manual 33

About the X3 XMC Modules

In this chapter, we will discuss the common features of the X3 module family. Specifics on each module are covered in later
chapters.

X3 XMC Architecture
The X3 XMC modules share a common architecture as well as many features such as the PCI Express interface, data
buffering features, the Application Logic, and other system integration features. This allows the X3 XMC modules to utilize
common software and logic firmware, while providing unique analog and digital features.

Figure 7. X3 XMC Family Block Diagram

The X3 XMCs have a variety of analog and digital IO front ends suited to many applications.

X3-SD16 User's Manual 34

X3 XMC Features FPGA Applications

X3-SD 16 channels of 24-bit, 216 ksps A/D, >100
dB

Xilinx Spartan3 1M
(2M option)

Vibration measurement,
acoustics, wide dynamic
range applications

X3-SDF 4 channels of variable resolution/speed
A/D up to 24-bit, 5 MSPS or 16-bit 20
MSPS, >100 dB below 2.5 MSPS

Xilinx Spartan3 1M
(2M option)

Vibration measurement,
acoustics, wide dynamic
range applications

X3-25M Two channels of 25 MSPS, 16-bit A/D and
two channels of 16-bit, 50 MSPS DAC, 16-
bits front panel DIO

Xilinx Spartan3A DSP 1.8M Ultrasound, pulse digitizing,
waveform generation and
stimulus-response

X3-A4D4 4 channels of 16-bit, 4 MSPS A/D and 4
channels 16-bit 2 MHz DAC with low
latency, 8-bits front panel DIO

Xilinx Spartan3A DSP 1.8M Servo controls, process
instrumentation

X3-Servo 12 channels 16-bit, 250 ksps A/D and 12
channels 16-bit 250 ksps DAC, low
latency, 16-bits front panel DIO

Xilinx Spartan3A DSP 1.8M
(3.4M option)

Electromechanical controls,
process instrumentation

X3-DIO 64 bits/32 pairs digital IO to FPGA,
LVCMOS or LVDS, with streaming,
playback and capture features

Xilinx Spartan3A DSP 1.8M
(3.4M option)

Test pattern generation,
remote IO interfaces, digital
controls

X3-10M 8 channels of 16-bit, 25 MSPS A/D with
programmable gain and instrumentation
front end; Xilinx Spartan3A DSP FPGA

Xilinx Spartan3A DSP 1.8M Measurement for high speed
vibration, ultrasound fault
detection systems,
neurophysical applications

X3-2M 12 channels of 16-bit, 10 MSPS A/D with
programmable gain and instrumentation
front end; Xilinx Spartan3A DSP FPGA

Xilinx Spartan3A DSP 1.8M Multi-channel applications in
ultrasound, video sensors and
optical sensors.

X3-SD16 16 channels of 24-bit, 144 kHz A/D and
192 kHz D/A with programmable gain and
instrumentation front end; Xilinx
Spartan3A DSP FPGA

Xilinx Spartan3A DSP 1.8M Vibration monitoring,
recording, control. Acoustic
monitoring. Geophysical
sensor interfaces.

Table 1. X3 XMC Family

The X3 XMCs feature a Xilinx Spartan3 or Spartan3A DSP FPGA core for signal processing and control. In addition to the
features in the Spartan3/3A logic such as embedded multipliers and memory blocks, the FPGA computing core has two local
SRAMs for data buffering and computing memory.

There are also a number of support peripherals for IO control and system integration. Each XMC may have additional
application-specific support peripherals.

X3-SD16 User's Manual 35

Table 2. X3 XMC Family Peripherals

Peripheral Features

XMC.3 PCI Express
interface

The XMC.3 host interface Integrates with PCI Express systems using one lane operating at 2.5 Gbps
that provides up to 180 MB/s sustained data rates. This interface complies with VITA standard 42.3
which specifies PCI Express interface for the XMC module format.
The Velocia packet system provides fast and flexible communications with the host using a credit-
based flow control supporting packet transfers with the host. A secondary command channel provides
independent interface for control and status outside of the data channel that is extensible to custom
applications.

XMC P16 Provides digital IO or a private link to host cards capable of >200 MB/s sustained operation.

Timing and triggering Flexible clocking and synchronization features for IO

Data buffering and
Computational Memory

Two 2MB SRAM devices are used provide data buffering, processor memory and computation
memory for the Application FPGA

Alert Log Monitors system events and error conditions to help manage the data acqusiton process

Temperature Sensor Monitors the module temperature and provides thermal protection for the module

X3 Computing Core
The X3 XMC module family has an FPGA-based computing core that controls the data acquisition process, providing data
buffing and host communications. The computing core consists of a Xilinx Spartan3 or 3A DSP FPGA and two banks of
2MB SRAM memory. The FPGA uses the memories for data buffering and computational workspace.

Table 3. X3 Computing Core Devices

Feature X3 Module Device Part Number

Application Logic
FPGA

SD, SDF Xilinx Spartan 3 1M XC3S1000-4FGG456C

10M, Servo, 25M, DIO,
2M, SD16, A4D4

Xilinx Spartan 3A DSP 1.8M XC3SD1800-4FGG676C

Buffer Memory
SRAM

SD, SDF

10M, Servo, 25M, DIO,
2M, SD16, A4D4

Synchronous Burst ZBT
SRAM

1Mx16, 100 MHz

512Kx32, 133 MHz

Computational
Memory SRAM

SD, SDF

10M, Servo, 25M, DIO,
2M, SD16, A4D4

Synchronous Burst ZBT
SRAM

1Mx16, 100 MHz

512Kx32, 133 MHz

The main focus of the module is the X3's computing core which connects the IO, peripherals, host communications and
support features. Each IO device directly connects to the application FPGA on the X3 module, providing tight coupling for
high performance. (Real-time IO). The FPGA logic implements an interface to each device that connects them to the

X3-SD16 User's Manual 36

controls and data communications features on the module. Support features, such as sample triggering and data analysis, are
implemented in the logic to provide precise real-time control over the data acquisition process.

X3 Computing Core Block Diagram

The X3 module architecture is really defined by the features in the logic that connect the IO devices to the Velocia packet
system. For data from IO devices such as A/Ds, the data flows from the IO interface and is then enqueued in the multi-queue
buffer. The packetizer then creates data packets from the data stream that are moved across the data link to the PCIe
interface. Packets to output devices travel in the opposite direction – from the link to the deframer and into the multi-queue
data buffer. The output IO, such as a DAC, then consumes the data from the queue as required. The Alert Log monitors
error conditions and important events for management of the data acquisition process.

The host interacts with the X3 computing core using the packet system for high speed data and over the command channel.
The packet system is the main data channel to the card and delivers the high performance, real-time data capability of moving
data to and from the module. Since it uses an efficient DMA system, it is very efficient at moving data which leaves the host
system unburdened by the data flow. The command channel provides the PCIe host direct access to the computing core logic
for status, control and initialization. Since it is outside the packet system, it is less complex to use and provides unimpeded
access to the logic.

The application FPGA image is loaded by the host computer as part of the module initialization. The image is loaded over the
SelectMAP interface to the FPGA, which is a byte-wide configuration port on the FPGA, from the host PCI Express

X3-SD16 User's Manual 37

interface. The configuration port for the FPGA is independent of the packet interface to the host and does not involve the use
of the Velocia packet system. The image can be loaded at any time over the SelectMAP interface allowing dynamic
configuration of the FPGA for advanced applications.

Note: There is no on-card storage for this image and it must be loaded each time the host computer is powered down or reset.

Adding New Features to the FPGA

The functionality of the computing core can be modified using the FrameWork Logic tools for the X3 module family. The
tools support development in either VHDL or MATLAB. Signal processing, data analysis and unique functions can be added
to the X3 modules to suit application-specific requirements. See the X3 FrameWork Logic User Guide for further
information.

X3 PCI Express Interface
The X3 module family has a PCI Express interface that provides a lane, 2.5 Gbps full duplex link to the host computer. The
interface is compatible with industry standard PCI Express systems and may be used in a variety of host computers. The
following standards govern the PCI Express interface on the X3 XMC modules.

Table 4. PCI Express Standards Compliance

Standard Describes Standards Group

PCI Express 1.0a PCI Express electrical and protocol standards.
2.5 Gbps data rate.

PCI SIG (http://www.picmg.com)

ANSI/VITA 42 XMC module mechanicals and connectors VITA (www.vita.org)

ANSI VITA 42.3 XMC module with PCI Express Interface. VITA (www.vita.org)

The X3 module family uses a Texas Instruments bridge chip to go from PCI Express to a local PCI bus on the module. The
PCI Express bridge works with the PCI FGPA to implement the Velocia packet system for data communications and also
provides the module configuration and control features.

X3-SD16 User's Manual 38

http://www.vita.org/
http://www.vita.org/
http://www.picmg.com/

The major interfaces to the application logic are the data link, command channel and SelectMAP interface. The data link
provides a high performance channel for the application logic to communicate with the host computer while the Command
Channel is a command and control interface from the host computer to the application logic. The SelectMAP interface is the
application FPGA configuration port for loading the logic image.

The data link is the primary data path for the data communications between the application FPGA and host computer. When
data packets are created by the application logic, such as A/D samples, or required by the application logic for output devices,
such as DAC channels, the data flows over the data link as packets. The maximum transfer rate over the data link is 264
MB/s, with a 220 MB/s sustained rate. The data packets contain a Peripheral Device Number (PDN) that identifies the
peripheral associated with the this data packet. In this way, the packet system is extensible to other devices that may be added
to the logic. For example, an FFT analysis can be added to the logic and its result sent to the host as a new PDN for display
and further analysis while maintaining other data streams from A/D channels.

Table 5. Interfaces from PCI Express to Application Logic

Application Logic
Interface

Max Data Rate Typical Use

Data Link 264 MB/s burst, 240 MB/s sustained Velocia packet system interface -
main path for data communications

Command Channel 5 MB/s sustained Command, control and status

SelectMAP 5 MB/s Application logic configuration

Data Buffering and Memory Use
There are two 2MB SBSRAM devices attached to the application FPGA that provide data buffering and computational RAM
for FPGA applications.

X3-SD16 User's Manual 39

FPGA
PCI Interface

PCI Express
Bridge

PCI Express
X1 or x4 lane
Connector P15

Local PCI Bus
32-bit, 66 MHz

Data link to App Logic
32-bit, 66 MHz

Command Channel
Serial Link
SelectMAP interface to
app logic

Computational SRAM
The SRAM on the X3 family is a 2MB memory dedicated as FPGA local memory. Applications in the FPGA may use the
SRAM as a local buffer memory if the data buffer is too large to fit in FPGA block RAMs, or as memory for an embedded
processor in the FPGA.

The SRAM device connected to each Application FPGA is 2 MB total size, organized as 1M by 16 bits (X3-SD and X3-
SDF) or 512K by 32 bits (all others). This device is a synchronous, ZBT SRAM and supports clock rates up to 100 MHz on
X3-SD and X3-SDF, 133 MHz on all other modules. All SRAM control and data lines pins are directly connected to the
FPGA, allowing the SRAM memory control to be customized to the application.

The Framework Logic provides a simple SRAM interface that can be readily modified for many types of applications.
Detailed explanation of the interface control logic is described in the FrameWork Logic User Guide. The Framework Logic
provides a simple register interface to the SBSRAM control logic that is used for test and demonstration. FPGA logic
developers can easily replace the simple register interface logic to build on top of the high performance logic core when
integrating the SRAM into their logic design.

MATLAB developers frequently use the SRAM as the real-time data buffer during development. Since the MATLAB
Simulink tools operate over the FPGA JTAG during development at a low rate, it is necessary to use the SRAM for real-time,
high speed data buffering. The MATLAB Simulink library for the X3 modules demonstrate the use of the SRAM as a data
capture buffer. The SRAM captures real-time, high-speed data that can then be read out into MATLAB for analysis or
display as a snapshot. This allows high-speed, real-time to be captured and brought into MATLAB Simulink over the slow
(10Mb/sec) JTAG link. See the X3 FrameWork Logic User Guide for more details and examples.

Data Buffer SRAM
The second SRAM is provides a 2MB memory pool local to the FPGA. The Framework Logic implements a data buffer with
one or more queues for the A/D and D/A streams as appropriate for the particular X3 module.

In the Framework logic, the SRAM use is demonstrated as a multiple queue FIFO memory that divides the 2 MB memory
buffer into separate queues (virtual FIFOs) for input and output.. The logic component, referred to as Multi-Queue SRAM,
controls the SRAM to create the FIFO queue functionality. Custom logic applications can use the Multi Queue SRAM buffer
component to add additional queues for new devices.

EEPROM
A serial EEPROM on the X3 modules is used to store configuration and calibration information. The interface to the serial
EEPROM is an I2C bus that is controlled by the PCI logic device. The device is an Atmel AT24C16-10SI, a 16K bit device.
The I2C bus is slow and the calibration is read out of the EEPROM at initialization time by the application software and
written into registers in the application logic for real-time error correction.

The EEPROM also has a write cycle limit of 100K cycles, so it should only be written to when calibration is performed or
configuration information changes. Once the write cycle duration limit is exceeded, the device will not reliably store data
any more.

X3-SD16 User's Manual 40

Digital I/O
The X3 modules have a digital IO port and is accessible over P16 that provides basic bit IO. The port provides 44 bits of IO that
may be used as inputs or outputs and a differential clock input. The port is configured and accesses directly from the PCI
Express host. For more advance applications, digital IO port may be reconfigured in custom logic applications for a variety
purposes since it provides direct connections to the applicant FPGA.

The DIO port is presented on P16. See the connectors section of this chapter the connector pin out and information about the
connector.

Software Support

The digital I/O hardware is controlled by the IUsesExtendedDioPort class. Its properties:

Table 6. IUsesExtendedDioPort Class Operations

Function Type Description

DioPortConfig() Property Configures banks of bits for input or output

DioPortData() Property Broadside Read/Write to low-order 32-bits of
DIO.

DioPortDataHigh() Property Broadside Read/Write to high-order 12-bits of
DIO. Only

Typical use of the digital IO port involves first configuring the port using the DioPortConfig() operator. This sets the byte
direction and the clock mode. The port is then ready for read/write operations via DioPortData() or DioPortDataHigh().

Hardware Implementation

Digital I/O port activity is controlled by the digital I/O configuration control and data register. Port direction is controlled by
the configuration control register.

Bit Function

0 DIO bits 7..0 direction control, 0=input, default

1 DIO bits 15..8 direction control, 0=input, default

2 DIO bits 23..16 direction control, 0=input, default

3 DIO bits 31..24 direction control, 0=input, default

4 DIO bits 39..32 output enable. '0' = input, default

5 DIO bits 43..40 output enable. '0' = input, default

X3-SD16 User's Manual 41

Bit Function

30..6 -

31 Sample DIO inputs when DIO_EXT_CLK is true, otherwise always
sample
(0=sample always, default)

Figure 8. DIO Control Register (BAR1+0x14)

Port Address

DIO_L BAR1+0x13

DIO_H BAR1+0x16

Figure 9. Digital IO Port Addresses

Data may be written to/read from the digital I/O port using the digital I/O port data registers. Data written to ports bits which
are set for output mode will be latched and driven to the corresponding port pins, while data written to input bits will be
ignored. The input DIO may be clocked externally by enabling the external digital clock bit in the appropriate configuration
register. If the internal clock is used, the data is latched at the beginning of any read from the port. Data read from output bits
is equal to the last latched bit values (i.e. the last data written to the port by the host).

Digital I/O port pins are pulled down to digital ground within the logic device. Consequently, the state of the DIO pins do
not change as power is applied to the PC during system start-up. The pulldown resistor is about 8K ohms.

External signals connected to the digital I/O port bits or timer input pins should be limited to a voltage range between 0 and
3.3V referenced to ground on the digital I/O port connector. Exceeding these limits will cause damage to the X3 module.

Front Panel DIO
Some modules in the X3 family, notably the A4D4, 25M, Servo, SD16 and 2M provide additional banks of digital I/O
accessible via the front panel MDR68 connector. The number of available bits is shown in the table below.

These bits are direction programmable in banks of eight-bits. The FrontPanelPortConfig() property is used to program the
bank directions. This low-order two bits in the parameter sent to this method corresponds to up to two bytes of direction
control where bit 0 corresponds to front panel DIO bits 0..7, bit 1 corresponds to front panel DIO bits 8..15. Subsequently,
use of the FrontPanelPortData() property allows accessing the state of all bits. Using the setter property updates all bits
configured for output, whereas using the getter property fetches the current state of all bits, regardless of configuration.

X3-SD16 User's Manual 42

Module Bits
Servo 0..11
25M 0..15
A4D4 0..11
2M 0..11
SD16 0..5
Table 7. Table 1: Front Panel DIO on X3 Modules

This digital I/O hardware is controlled by the IUsesFrontPanelPort class. Its properties:

Table 8. IUsesExtendedDioPort Class Operations

Function Type Description

FrontPanelPortConfig() Property Configures banks of bits for input or output

FrontPanelPortData() Property Broadside Read/Write to low-order 32-bits of DIO.

Typical use of the digital IO port involves first configuring the port using the FrontPanelPortConfig() operator. This sets the
byte direction and the clock mode. The port is then ready for read/write operations via FrontPanelPortData().

Hardware Implementation

Digital I/O port activity is controlled by the digital I/O configuration control and data register. Port direction is controlled by
the configuration control register.

Bit Function

0 DIO bits 7..0 direction control, 0=input, default

1 DIO bits 15..8 direction control, 0=input, default

2 DIO bits 23..16 direction control, 0=input, default

3 DIO bits 31..24 direction control, 0=input, default

4 DIO bits 39..32 output enable. '0' = input, default

5 DIO bits 43..40 output enable. '0' = input, default

30..6 -

31 Sample DIO inputs when DIO_EXT_CLK is true, otherwise always
sample
(0=sample always, default)

X3-SD16 User's Manual 43

Figure 10. DIO Control Register (BAR1+0x14)

Port Address

DIO_L BAR1+0x13

DIO_H BAR1+0x16

Figure 11. Digital IO Port Addresses

Data may be written to/read from the digital I/O port using the digital I/O port data registers. Data written to ports bits which
are set for output mode will be latched and driven to the corresponding port pins, while data written to input bits will be
ignored. The input DIO may be clocked externally by enabling the external digital clock bit in the appropriate configuration
register. If the internal clock is used, the data is latched at the beginning of any read from the port. Data read from output bits
is equal to the last latched bit values (i.e. the last data written to the port by the host).

Digital I/O port pins are pulled down to digital ground within the logic device. Consequently, the state of the DIO pins do
not change as power is applied to the PC during system start-up. The pulldown resistor is about 8K ohms.

External signals connected to the digital I/O port bits or timer input pins should be limited to a voltage range between 0 and
3.3V referenced to ground on the digital I/O port connector. Exceeding these limits will cause damage to the X3 module.

Digital I/O Timing

The following diagram gives timing information for the digital I/O port when used in external readback clock mode (see
above for details). This data is derived from device specifications and is not factory tested.

Figure 12. Digital I/O Port Timing

Table 9. Digital I/O Port Timing Parameters

Parameter min. (ns)

tSU 5
tH 0

X3-SD16 User's Manual 44

Digital IO Electrical Characteristics

The digital IO pins are LVTTL compatible pins driven by 3.3V logic. The DIO port connects directly to the application
FPGA. The DIO input clock is LVDS, a differential input.

Warning: the DIO pins are NOT 5V compatible. Input voltage must not exceed 3.6V.

Parameter Value Notes

Input Voltage Max = 3.6V
Min = -0.3V

Exceeding these will damage
the application FPGA

Output Voltage ''1' > 3.0V
'0' < 0.8V

For load < +/-12mA

Output Current +/-12mA FPGA can be reconfigured for
custom designs for other drive
currents.

Input Logic
Thresholds

'1' >= 2VDC
'0' < 0.8VDC

Input Impedance >1M ohm || 15 pF Excludes cabling

Pulldown 8K ohms Pulldown is in the logic.

Table 10. Digital IO Bits Electrical Characteristics

Parameter Value Notes

Input Voltage Max = 3.6V
Min = -0.3V

Exceeding these will damage
the application FPGA

Signaling
Standard

LVDS 2.5V EIA-644

Input common
mode voltage

Min =0.30V
Typ = 1.25V
Max =2.20V

Input Logic
Thresholds

Min = 0.10V
Typ = 0.30V
Max = 0.60V

Differential voltage Vin+ - Vin-

Termination 100 ohms

X3-SD16 User's Manual 45

Table 11. Digital IO Clock Input Electrical Characteristics

Notes on Digital IO Use

The digital IO on X3 family, as supported using the standard FrameWork Logic, is intended for low speed bit IO controls and
status. The interface is capable of data rates exceeding 75MHz and custom logic developers can implement much higher
speed and sophisticated interfaces by modifying the logic. The digital IO clock input, and LVDS signal pair, is a capable of
rates exceeding 200 MHz.

Since the bit IO is connected to the command channel interface in the standard logic, this limits the effective update or read
rate to about 200 kHz. The limitation on this rate is the slow speed of the command channel itself. Again, custom logic
implementations can achieve much higher data rates.

The X3 FrameWork Logic user Guide details logic supporting the digital IO port and gives the pin information for
customization.

Serial EEPROM Interface
X3 modules have a serial EEPROM for storing data such as board identification, calibration coefficients, and other data that
needs to be stored permanently on the card. This memory is 16K bits in size. Functions for using the Serial EEPROM are
included in the Malibu Toolset and example programs that allow the software application programmer to easily write and read
from the memory without having to program the low-level interface.

Use the baseboard IdRom() method to obtain a reference to the internally-managed IusesPmcEeprom object, as shown below:

// Open the module
Innovative::X3-SD Module;
Module.Target(0);
Module.Open();

// Create a 50-32-bit-word section at offset zero in ROM user space
PmcIdromSection Section1(Module.IdRom().Rom(), PmcIdrom::waUser, 0, 50);
// Create a 50-32-bit-word section at offset 50 in ROM user space
PmcIdromSection Section2(Module.IdRom().Rom(), PmcIdrom::waUser, 50, 50);

// Write to ROM
for (int i = 0; i < 50; ++i)

Section1.AsInt(i, i*2);
Section1.StoreToRom();

for (int i = 50; i < 100; ++i)
Section2.AsFloat(i, static_cast<float>(i*2));

Section2.StoreToRom();

// Read from ROM
Section1.LoadFromRom();
for (int i = 0; i < 50; ++i)

int x = Section1.AsInt(i);

Section2.LoadFromRom();

X3-SD16 User's Manual 46

for (int i = 50; i < 100; ++i)
float x = Section2.AsFloat(i);

As delivered from the factory, this EEPROM contains the calibration coefficients used for the A/D error correction.
The serial EEPROM device is an Atmel AT24C16 or equivalent.

! Caution : the serial EEPROM contains the calibration coefficients for the analog and is preprogrammed at factory test. Do
not erase these coefficients or calibration will be lost.

Thermal Protection and Monitoring
X3 modules have an on-card temperature sensor that monitors the module and protects it from thermal damage. The
application software can monitor the module temperature and receive a warning if the temperature is above 70 C. If the
temperature exceeds 85C, the module will shut down devices to prevent damage.

The temperature sensor is accurate to about 2 deg C with a resolution of 0.0625C. Since it is mounted near the center of the
card, it indicates an average temperature, not the maximum on the module. Local hot spots may be 5 to 10 C hotter than the
indicated reading.

The temperature sensor can be read by the host at address PCI BAR0 +0x3. The temperature is computed as

Temperature(C) = reading * 0.0625

where the reading is a 12-bit signed number. This table summarizes the relationship.

X3-SD16 User's Manual 47

The logic component provides a programmable temperature warning (BAR0 +0x4) and failure (BAR0+0x5). The warning
and fail may create alert packets when enabled. Both temperature warning and failure are latched when they occur and must
be cleared by a read their respective registers.

Table 12. Temperature Alarms
Alarm Setting Temperature (Celsius) Set Register to

Warning 70 X”460”

Fail 85 X”550”

A temperature failure results in a power down signal to the analog electronics, signaling to shut down. The FPGA and host
interface remain active and the module should continue to communicate unless a catastrophe has occurred. The thermal
shutdown behavior of each X3 module is detailed in the specific discussion of that t module. The power down can be cleared
by reading from the temperature fail register.

The temperature sensor must be present and responding for the module to operate. If the temp sensor fails, this is treated as a
temperature failure. The logic continues to attempt to communicate with the temperature sensor. If multiple failure
conditions are found, the logic should be reloaded.

Note that the control logic for the temperature sensor is in the application logic, so the logic must be configured to provide
thermal protection. It is unlikely, except in cases of catastrophic failure that the module will overheat when the logic is not
loaded since it is central to module operation.

Software support tools provide convenient access to the temperature and thermal controls. These should be used in
application programming configure and monitor the temperature, as illustrated below:

// Open the module
Innovative::X3-SD Module;
Module.Target(0);
Module.Open();

// Create reference to thermal management object on module
const LogicTemperatureIntf & Temp(Module.Thermal());

// Read current temperature
float t = Module.LogicTemperature();

// Read/write current warning temperature
float t = Module.LogicWarningTemperature();
Module.LogicWarningTemperature(70.0);

// Read current failure temperature
float t = Module.LogicFailureTemperature();

// See if the module is in thermal shutdown
bool state = Module.Failed();

X3-SD16 User's Manual 48

Thermal Failures
The X3 modules will shut down if the module temperature exceeds 85C. This means that something is seriously wrong
either with the module or with the system design. Damage may occur if the module temperature exceeds this limit.

The Application LED will blink when the a temperature failure has occurred. If your software was monitoring the alert
packets, you will also receive a temperature warning alert prior to failure. The module temperature can always be read by the
application software so this can also provide information pointing to overheating.

The most important thing to do is to determine the root cause of the failure. The module could have failed, the system power
is bad, or the environment is too harsh.

The first thing to do is inspect the module. Is anything discolored or do any ICs show evidence of damage? This may be due
to device failure, system power problems, or from overheating. If damage is noticed, the module is suspect and should be
sent for repair. If not, test the module outside the system in a benign environment such as on an adapter card in a desktop PC
with a small fan. It should not overheat. If it does, this module is now bad.

Now consider what may have caused the failure. A bad module could be the cause, but it could have went bad due to system
failure or overheating. The system power supply could cause a failure by not providing proper power to the module. This
could be too little power resulting in the module failing or power glitches causing the temp sensor to drop out. Did other
cards in the system fail? If so, this may indicate that a system problem must be solved.

If the module did overheat, you should review the thermal design of the system. What was the ambient temperature when
failure occurred? Is the air flow adequate? Is air flow blocked to the card? Did a fan fail? If conduction cooling is being
used, what is the temperature of the surrounding components? The heat must be dissipated either through conduction or
convection for the module to keep from overheating.

You should also review application and be sure that you have taken advantage of any power saving features on the module.
Many of the X3 modules have power saving features that allow you to turn off unused channels, reduce clock rates or stop
data when the module is not in use. The chapter discussing module specifics has information on both the power consumption
and the power-saving features that can be used.

LED Indicators
The X3 modules have two LEDs: one that is used for PCI Express interface and one from the application logic. Both LEDs
are on the back side of the card. These LEDs are not visible from the front panel in most installations. They are used
primarily for debug.

The LED from the PCI Express interface FPGA, D4, is usually used to find the target number of the module. The Finder
applet blinks the LED when the target module is addressed. This allows systems with multiple modules to find out the
software target number for each module. Another use for the PCI LED is to indicate that the PCI interface logic loaded. This
LED should ALWAYS be on after the host computer boots. If it is not on, that means the PCI control logic did not load.
The possible causes for this are: bad power, defective module, or missing PCI logic image. In any case, if this LED is off,
the card will not communicate to the host system.

The second LED, D5, is from the application logic. The purpose of this LED is to indicate that the application logic has been
configured and to blink when an over temperature condition occurs. Custom logic designs can use it for any purpose. When

X3-SD16 User's Manual 49

using the stock firmware, the state of user logic LED, D5 can be controlled using the Innovative::X3-SD::Led()
property.

JTAG Scan Path
The X3 modules have a JTAG scan path for the Xilinx devices on the module. This is used for logic development tools such
as Xilinx ChipScope and System Generator, and for initial programming of the PCI FPGA configuration FLASH ROM.

There are three devices in the scan chain: the Xilinx FLASH ROM, Spartan 3E 250K used for PCI control, and the Spartan
3/3A application logic. When the devices are identified in the scan chain you will see these devices in this order.

Table 13. X3 Modules FPGA JTAG Scan Path

JTAG Device
Number

Module Device Function

0 All X3 Xilinx XCF02S FLASH ROM PCI FPGA (Spartan3E) logic
configuration ROM

1 All X3 Xilinx Spartan3E -250 FPGA
(XC3S250E-4FTG256C)

Control FPGA for PCI
Interface

2 X3-SD, X3-SDF Xilinx Spartan3 -1000 FPGA
(XC3S1000-4FGG456C)
** optional 2M device could be installed here

All others Xilinx Spartan3A DSP -1800 FPGA
(XC3SD1800-4FGG676C)
** optional 3.4M device could be installed here

Application Logic

FrameWork Logic
Many of the standard X3 XMC features are implemented in the application logic. This feature set includes a data flow,
triggering features, and application-specific features. In many cases, this logic provides the features needed for a standard
data acquisition function and is supported by software tools for data analysis and logging. In this manual, the FrameWork
Logic features for each card are described in in general to explain the standard hardware functionality.

The X3 FrameWork Logic User Guide provides developers with the tools and know-how for developing custom logic
applications. See this manual and the supporting source code for more information. The X3 XMC modules are supported by
the FrameWork Logic Development tools that allow designs to be developed in HDL or MATLAB Simulink. Standard
features are provided as components that may be included in custom applications, or further modified to meet specific design
requirements.

X3-SD16 User's Manual 50

Integrating with Host Cards and Systems
The X3 XMCs may be directly integrated PCI Express systems that support VITA 42.3 XMC modules. The host card must
be both mechanically and electrically compatible or an adapter card must be used.

The XMC modules conform to IEEE 1386 specification for single width mezzanine cards . This specification is common to
both PMC and XMC modules and specifies the size, mounting, mating card requirements for spacing and clearances.

There are several adapter cards that are used to integrate the XMC modules into other form-factor PCI Express systems, such
as desktop systems.

There are also adapter cards to electrically adapter the PCI Express XMC modules in older PCI systems that use a bridge
device between the two buses. PCI is not electrical

Host Type Bus Mechanical Form-factor Adapter
Required

Example card

XMC.3 module
slot

PCI Express 1.0a XMC, single width None Kontron CP6012

www.kontron.com

Diversified Technology CPB4712

http://www.diversifiedtechnology.com/p
roducts/cpci/cpb4712.html

Desktop PC PCI Express 1.0a PCI Express Plug-in card PCIe-XMC.3
adapter

Innovative 80172

Desktop PC PCI 2.2 PCI Plug-in card PCI-XMC.3
adapter

Innovative 80167

Compact PCI
Express

PCI Express 1.0a 3U or 6U CPCIe-XMC.3
adapter

TBD

Cabled PCI
Express

PCI Express 1.0a Cabled PCI Express to
remote IO

Cable PCIe
Adapter and
XMC.3 carrier

Innovative 90181-0

PXI Express Compact PCI
Express

3U 3U PXIe
Adapter

Innovative 80207

X3-SD16 User's Manual 51

http://www.diversifiedtechnology.com/products/cpci/cpb4712.html
http://www.diversifiedtechnology.com/products/cpci/cpb4712.html
http://www.kontron.com/

Embedded PC Stand alone PC
with dual XMC
sites

Enclosure is

195 x 252 x 75 mm

- Innovative 90201, 90199

OpenVPX PCI 3U

Air-cooled or conduction-
cooled

3U VPX-XMC Innovative 80260

X3-SD16 User's Manual 52

Developing Host Applications

Developing an application will more than likely involve using an integrated development environment (IDE) , also known as
an integrated design environment or an integrated debugging environment. This is a type of computer software that assists
computer programmers in developing software.

Refer to Chapter 3 “Creating Applications using an IDE” within the Malibu Library Users Manual for specific instructions
for each of the supported compilers.

X3-SD16 User's Manual 53

http://www.innovative-dsp.com/myii/dl_Docs.php?file=Malibu.pdf&product=Malibu&ref=/cgi-bin/dlDocs.cgi?product=Malibu

Writing Custom Acquisition Applications

Most scientific and engineering applications require the acquisition and storage of data for analysis after the fact. Even in
cases where most data analysis is done in place, there is usually a requirement that some data be saved to monitor the system.
In many cases a pure data that does no immediate processing is the most common application.

A logger that saves all data to disk file is feasible at modest data rates. A dedicated RAID0 drive array partitioned as NTFS
for data storage may be required if data rates approximate 80MBytes/sec.

Snap Example
The Snap example in the software distribution, demonstrates such functionality. It consists of a host program in Windows or
Linux, which simultaneously works with user defined interface logic. It uses the Innovative Malibu software libraries to
accomplish the tasks.

Tools Required

In general, writing applications for an X3 module requires the development of host program. This requires a development
environment, a debugger, and a set of support libraries from Innovative.

Table 14. Development Tools.

Processor Development Environment Innovative
Toolset

Project Directory

Host PC
(Windows)

Borland Developers Studio C+
+

Microsoft Visual Studio 2008

Common Host Code

Malibu Examples\Snap\Bcb

Examples\Snap\VC9

Examples\Snap\Common

Processor Development Environment Innovative
Toolset

Project Directory

Host PC
(Linux)

DialogBlocks

Common Host Code

Malibu Examples\Snap\DialogBlocks

Examples\Snap\Common

On the host side, the Malibu library is source code compatible with the above environments. The code that performs much of
the actual functioning of the program, outside of the User Interface portion of the program, is therefore common code. Each
project uses the same file to interact with the hardware and acquire data.

X3-SD16 User's Manual 54

Program Design

The Snap example is designed to allow repeated data reception operations on command from the host. As mentioned earlier,
received data can be saved as Host disk files. When using modest samples rates, data can be logged to standard disk files.
However, full bandwidth storage of multiple A/D channels can require up to 80 MB/s capacity, to a dedicated RAID0 drive
array partitioned as NTFS for data storage may be required. The example application software is written to perform minimal
processing of received data and is a suitable template for high-bandwidth applications.

The example uses various configuration commands to prepare the module for data flow. Parametric information is obtained
from a Host GUI application, but the code is written to be GUI-agnostic. All board-specific I/O is performed within the
ApplicationIo.cpp/.h unit. Data is transferred from the module to the Host as packets of Buffers.

The Host Application
The picture to the right shows the main window of Snap example. This form is from the designer of the Borland Turbo C++
version of the example. It shows the layout of the controls of the User Interface. The timer, pop-up menu and folder icons to
the upper right are non-visual components in Builder. Timer controls timer ticks and pop-up menu facilitate user to select
channels on right click, where the folder controls the posting of a File Open Dialog box. They will not appear in the running
application.

User Interface

This application has four tabs. Each tab has its own significance and usage, though few could be inter-related. All these tabs
share a common area, which displays messages and feedback throughout the operation of the program. Logic Tab

Configure Tab

As soon as the application is launched, device driver is
opened and hardware is attached to the selected target
number. In this tab we configure user interface logic.

The target board number is set to zero. The order of the
targets is determined by the location in the PCI bus, so
it will remain unchanged from run to run.

While application is being launched, the device driver
is automatically opened for the baseboard and internal
resources are allocated for use. At this point, stream is
simply connected to the board and board has been reset
to be in known good state. Also, if ID ROM is properly
initialized, module name and revision in addition to the
“Device Opened” message is displayed in the message
box.

Next, we load the desired user interface logic . The user
logic for the module must be loaded at least once per

X3-SD16 User's Manual 55

session (it remains valid until power is removed from the board). Use “Configure” button is to load the logic from an BIT
file.

Setup Tab

This tab has a set of controls that hold the
parameters for data acquisition. These settings are
delivered to the target and configure the target when
streaming is initiated via controls on the Stream tab,
described in the next section.

The setup tab contains a large number of controls
used to configure the on-board timebase, alert
notifications, analog channel selection, range and
triggering, etc. Each of these controls is described
below.

Clock Group. The module features an on-board
AD9510 PLL which may be used as a sample clock
during analog acquisition. Alternately, an external
sample clock may be used. The Clock | Source
radio control governs which timebase is used as the
analog sample clock. If the internal PLL is selected,
the sample rate entered in the Output | Khz edit
control is used to program the PLL to generate the
specified sample rate during acquisition. However, if the clock source is external, then the Output | KHz control is used to
inform the program of your intended (external) sample rate. In that case, you are expected to supply a clock running at the
rate listed in the Clock | Source | KHz control to the external clock input connector on the module.

Communications Group. All X3 modules support data transfer between Host memory and the on-board FPGA via a
dedicated PCI Express bus interface. Data is transferred in packets, which consist of a two word header followed by a fixed-
length data buffer. Header word zero contains the buffer length in bits 0:23 and a peripheral ID in bits 24:31.

The Communications | Pkt Size edit control specifies the size of the packets transferred between the target and the
Host. Each packet transferred results in a Host interrupt, handled by the Malibu libraries. Consequently, larger packets
amortize the Host interrupt processing more efficiently. However, packets are transferred using a contiguous, page-locked
memory region of Host memory known as bus-master memory, which is allocated during installation via the
ReserveMemDsp.exe applet (Windows). Since bus-master memory is Host memory, it is limited in size by the amount of
physical memory installed in the PC. By default, 32 MBytes are allocated as bus-master memory. In practice, packets of
0x40000 bytes in size tend to provide good performance while fitting into available bus-master memory. Under Linux, the
default is 4Mbytes of bus-master region and is being researched how to increase it; take this into consideration when
specifying your packet size. Packet Size is defined in events, which corresponds to one sample of every enabled channel. It is
recommended that the calculated packet size in bytes fits four to eight times into the allocated bus-master region.

Active Channels Group. The X3 module support simultaneous acquisition up to the maximum number of channels.

X3-SD16 User's Manual 56

Trigger Group. Acquisition may be triggered using an external signal or via software. The Trigger | Source radio
control provides the means of selection. Triggers act as a gate on data flow - no data flows until a trigger has been received.
Triggers may be initiated via software or hardware, depending on the Trigger | Source control. If software, the
application program must issue a command to initiate data flow. If hardware, a signal applied to the external trigger
connector controls data flow.

Triggers are modal depending on the Trigger | Mode control. In Unframed mode, triggers are level sensitive and data
flow proceeds while the trigger is in the high (active) state and stops while the trigger is in the low (inactive) state. This
mode is ideal for conventional data acquisition applications. In Framed mode, triggers are rising edge sensitive. Upon
detection of each edge, Trigger | Frame | Count samples are acquired from all active channels, then acquisition
terminates until the next trigger edge is detected. If Trigger | Frame | Auto Retrig is checked and the Trigger |
Source is software, the application automatically re-triggers upon completion of processing of the previous packet. This
mode is ideal for application such as spectral analysis using fixed input buffers submitted to FFTs.

Digital I/O Group. These controls govern the configuration of the P16 DIO port on the module. The DIO port can be
configured for input or output on a byte-wise basis, as a function of the configuration code in Digital I/O | Config
Mask. See the DIO Control Register description (user logic offset 0x14) for details.

Front Panel I/O Group. These controls govern the configuration of the Front Panel DIO port on the module. The DIO port
can be configured for input or output on a byte-wise basis, as a function of the configuration code in Front Panel I/O |
Config Mask. See the Front Panel DIO Control Register description (user logic offset 0x07) for details.

Data Logging Group. These controls govern the size of data files created by the application containing packet data received
from the module during real-time streaming. The value of Data Logging | Samples sets the upper-bound on the number
of stored events (samples from each channel). If the Data Logging | Auto Stop checkbox is checked, streaming will
automatically terminate once the specified number of events have been collected and logged to disk.

Test Counter Group. Use this control to enable a logic-specific test mode if you are developing custom FPGA logic. If you
are using the stock factory-supplied logic, bit zero of the Test Register user logic offset 0x02 is controlled by Test Counter |
Enable which forces an incremental ramp to replace A/D data from each channel.

Decimation Group. These controls govern the behavior enable the decimation logic. When enabled, only one of every Nth
sample of acquired data is retained within the internal on-board FIFOs and sent to the Host PC via bus-mastering.

X3-SD16 User's Manual 57

Data Streaming

Select the Stream tab. The controls on this tab control data
flow. The meaning of each of the fields on this tab are
explained below:
Data collection is initiated when the VCR Start button is
pressed, and terminates when the VCR Stop button is pressed
or when the amount of data specified in the Data Logging
configuration controls is accumulated.

To accommodate custom logic development, the application
supports execution of simple, user-authored scripts before and
after the commencement of data flow. The Start Scripts
| Before edit box specifies the full path spec to a text file
containing valid script commands (described below) which
will be executed prior to data flow. Similarly, the Start
Scripts | After edit box specifies the file containing
commands to be executed after data flow is underway.

The following script commands are supported:

-- l! (n a -) Store n to logic register address a

-- l@ (a - n) Fetch n from logic register address a

-- p! (n a -) Store n to port register address a

-- p@ (a - n) Fetch n from port register address a

-- ms (n -) Delay n milliseconds

All commands use postfix notation so parameters go before the command. For instance, 0x01, 0x02 l! causes the value
0x01 to be stored to logic address 0x02.

The Stream | Data Files | Log check box controls whether received packets are logged in real time. If checked, data
will be accumulated until the limit specified in the Data Logging | Samples edit box is reached.

The Stream | Data Files | Plot check box controls whether the BinView file viewer applet is invoked when
streaming terminates to allow perusal of the acquired data stored in the disk file (not available under Linux).

The Stream | Data Files | Overwrite BDD check box controls whether a new BinView binary data descriptor file
should be created as streaming terminates. Normally, this should be enabled so that a valid BDD is available for use by
BinView when it is opened to view acquired data. But under some circumstances, such as when comments are added to the
BDD file, it may be desirable to avoid re-creating the file each run.

During data flow, the number of received data packets, data transfer rate, board temperature, current DIO and Front Panel
DIO pins state is shown in real time on the statistics status bar located at the bottom of the Streaming tab.

X3-SD16 User's Manual 58

Ram Test
Select the ZbtRam tab. The control on this tab allows the onboard ZBT ram to be tested.

In practice, the ZbtRam is directly addressed by custom FPGA firmware. However, the stock logic provides means of
accessing this RAM using methods in the module control object, to verify proper electrical operation.

EEPROM Access

Select the EEPprom tab. The controls on this tab allow the contents of the onboard EEPROM to be queried or changed.

The onboard EEPROM is used for non-volatile storage of module identification strings, digital calibration coefficients for
each of the A/D channels and for a calibration coefficient for the reference clock for the onboard PLL. These values are
determined during factory calibration and need not normally be changed by the user.

Debugging

Select the Debug tab. The controls on this tab support a few low-level debug operations to be performed.

A debug script may be executed at any time to perform low-level register fetches or stores to exercise custom FPGA
firmware or determine the current hardware state. Unlike the stream scripts described earlier, this script executes manually
(via the button), so you need not be streaming to put it to use.

A software alert may be generated by pressing the Software button. The value in the edit control to the right of this button is
supplied as the code for the alert, which is returned and displayed in the log if software alerts are enabled for display.

Host Side Program Organization

With the exception of OS_Mb.lib (libOs_mb.a) and Analysis_Mb.lib(libAnalysys.a), the Malibu library is designed to be re-
buildable in each of the different host environments: Borland C++ Builder, Microsoft Visual Studio 2003, Microsoft Visual
Studio 2005 using the .NET UI, and GNU GCC(Linux). Because the library has a common interface in all environments, the
code that interacts with Malibu is separated out into a class, ApplicationIo in the files ApplicationIo.cpp and .h. This class
acts identically in all the platforms.

The Main form of the application creates an ApplicationIo to perform the work of the example. The UI can call the methods
of the ApplicationIo to perform the work when, for example, a button is pressed or a control changed.

Sometimes, however, the ApplicationIo object needs to 'call back into' the UI. But since the code here is common, it can't use
a pointer to the main window or form, as this would make ApplicationIo have to know details of Borland, VC,
DialogBlocks(Linux) or the environment in use.

The standard solution to decouple the ApplicationIo from the form is to use an Interface class to hide the implementation. An
interface class is an abstract class that defines a set of methods that can be called by a client class (here, ApplicationIo). The
other class produces an implementation of the Interface by either multiple inheriting from the interface, or by creating a
separate helper class object that derives from the interface. In either case the implementing class forwards the call to the UI

X3-SD16 User's Manual 59

form class to perform the action. ApplicationIo only has to know how to deal with a pointer to a class that implements the
interface, and all UI dependencies are hidden.

The predefined IUserInterface interface class is defined in ApplicationIo.h. The constructor of ApplicationIo requires a
pointer to the interface, which is saved and used to perform the actual updates to the UI inside of ApplicationIo's methods.

ApplicationIo

Initialization
The main form creates an ApplicationIo object in its constructor. The object creates a number of Malibu objects at once as
can be seen from this detail from the header ApplicationIo.h.

PmcModule Module;
IUserInterface * UI;
Innovative::PacketStream Stream;
IntArray _Rx;
unsigned int Cursor;

 ii64 BlocksToLog;

bool Opened;
bool Stopped;
bool StreamConnected;
Innovative::StopWatch Clock;
Innovative::DataLogger Logger;
IntArray DataRead;
Innovative::BinView Graph;
Innovative::Scripter Script;
float ActualSampleRate;
std::string Root;
Innovative::AveragedRate Time;
double FBlockRate;
std::string FVersion;
Innovative::SoftwareTimer Timer;
...

In Malibu, objects are defined to represent units of hardware as well as software units. The PmcModule, defined in Target.h,
represents the X3 specifuc board. The PacketStream object encapsulates supported, board-specific operations. Scripter object
can be used to add a simple scripting language to the application, for the purposes of performing hardware initialization
during FPGA firmware development. Buffer class object can be used to access buffer contents.

In addition, under this constructor we hook up event handlers to various events.

 // Hook script event handlers.
 Script.OnCommand.SetEvent(this, &ApplicationIo::HandleScriptCommand);
 Script.OnMessage.SetEvent(this, &ApplicationIo::HandleScriptMessage);
 //
 // Configure Module Event Handlers
 Module.Logic().OnFpgaFileReadProgress.SetEvent(this, &ApplicationIo::HandleProgress);
 Module.Logic().OnFpgaFileReadComplete.SetEvent(this, &ApplicationIo::HandleParseComplete);
 Module.Logic().OnFpgaParseProgress.SetEvent(this, &ApplicationIo::HandleProgress);
 Module.Logic().OnFpgaParseComplete.SetEvent(this, &ApplicationIo::HandleParseComplete);
 Module.Logic().OnFpgaParseMessage.SetEvent(this, &ApplicationIo::HandleLoadError);
 Module.Logic().OnFpgaLoadProgress.SetEvent(this, &ApplicationIo::HandleProgress);
 Module.Logic().OnFpgaLoadComplete.SetEvent(this, &ApplicationIo::HandleLoadComplete);
 Module.Logic().OnFpgaLoadMessage.SetEvent(this, &ApplicationIo::HandleLoadError);

X3-SD16 User's Manual 60

This code attaches script event handlers and X3 module logic loader's informational event handlers to their corresponding
events. Malibu has a method where functions can be 'plugged into' the library to be called at certain times or in response to
certain events detected. Events allow a tight integration between an application and the library. These events are
informational messages issued by the scripting and logic loader feature of the module. They display feedback during the
loading of the user logic and when script is used.

 //
 // Alerts
 Module.Alerts().OnTimeStampRolloverAlert.SetEvent(this,
&ApplicationIo::HandleTimestampRolloverAlert);
 Module.Alerts().OnSoftwareAlert.SetEvent(this, &ApplicationIo::HandleSoftwareAlert);
 Module.Alerts().OnWarningTemperature.SetEvent(this, &ApplicationIo::HandleWarningTempAlert);
 Module.Alerts().OnPllLost.SetEvent(this, &ApplicationIo::HandlePllLostAlert);
 Module.Alerts().OnInputFifoOverrun.SetEvent(this, &ApplicationIo::HandleInputFifoOverrunAlert);
 Module.Alerts().OnInputTrigger.SetEvent(this, &ApplicationIo::HandleInputTriggerAlert);
 Module.Alerts().OnInputOverrange.SetEvent(this, &ApplicationIo::HandleInputFifoOverrangeAlert);

This code attaches alert processing event handlers to their corresponding events. Alerts are packets that the module generates
and sends to the Host as packets containing out-of-band information concerning the state of the module. For instance, if the
analog inputs were subjected to an input over-range, an alert packet would be sent to the Host, interspersed into the data
stream, indicating the condition. This information can be acted upon immediately, or simply logged along with analog data
for subsequent post-analysis.

 Module.OnBeforeStreamStart.SetEvent(this, &ApplicationIo::HandleBeforeStreamStart);
 Module.OnBeforeStreamStart.Synchronize();
 Module.OnAfterStreamStart.SetEvent(this, &ApplicationIo::HandleAfterStreamStart);
 Module.OnAfterStreamStart.Synchronize();
 Module.OnAfterStreamStop.SetEvent(this, &ApplicationIo::HandleAfterStreamStop);
 Module.OnAfterStreamStop.Synchronize();

Similarly, HandleBeforeStreamStart, HandleAfterStreamStart and HandleAfterStreamStop handle events issued on before
stream start, after stream start and after stream stop respectively. These handlers could be designed to perform multiple tasks
as event occurs including displaying messages for user. These events are tagged as Synchronized, so Malibu will marshal the
execution of the handlers for these events into the main thread context, allowing the handlers to perform user-interface
operations.

The Stream object manages communication between the application and a piece of hardware. Separating the I/O into a
separate class clarifies the distinction between an I/O protocol and the implementing hardware.

In Malibu, high rate data flow is controlled by one of a number of streaming classes. In this example we use the events of the
PacketStream class to alert us when a packet arrives from the target. When a data packet is delivered by the data streaming
system, OnDataAvailable event will be issued to process the incoming data. This event is set to be handled by
HandleDataAvailable. After processing, the data will be discarded unless saved in the handler. Similarly,
“OnDataRequired” event is handled by HandleDataRequired.

 //
 // Configure Stream Event Handlers
 Stream.OnDataAvailable.SetEvent(this, &ApplicationIo::HandleDataAvailable);
 Stream.OnDataAvailable.Synchronize();

X3-SD16 User's Manual 61

In this example, a Malibu SoftwareTimer object has been added to the ApplicationIo class to provide periodic status updates
to the user interface. The handler below serves this purpose.

 Timer.OnElapsed.SetEvent(this, &ApplicationIo::HandleTimer);
 Timer.OnElapsed.Thunk();

An event is not necessarily called in the same thread as the UI. If it is not, and if you want to call a UI function in the handler
you have to have the event synchronized with the UI thread. The call to Synchronize() directs the event to call the event
handler in the main UI thread context. This results in a slight performance penalty, but allows us to call UI methods in the
event handler freely.

Creating a hardware object does not attach it to the hardware. The object has to be explicitly opened. The Open() method
open hardware.

 //
 // Open Devices
 Module.Target(Settings.Target);
 Module.Open();
 Module.Reset();
 UI->Status("Module Device Opened...");
 Opened = true;

This code shows how to open the device for streaming. Each baseboard has a unique code given in a PC. For instance, if
there are three boards in a system, they will be targets 0,1 and 2. The order of the targets is determined by the location in the
PCI bus, so it will remain unchanged from run to run. Moving the board to a different PCI slot may change the target
identification. The Led property can be use to associate a target number with a physical board in a configuration.

Malibu method Open() is called to open the device driver for the baseboard and allocate internal resources for use. The next
step is to call Reset() method which performs a board reset to put the board into a known good state. Note that reset will stop
all data streaming through the bus-master interface and it should be called when data taking has been halted.

 //
 // Connect Stream
 Stream.ConnectTo(&Module);
 StreamConnected = true;
 UI->Status("Stream Connected...");

 FHwPciClk = Module.Debug()->PciClockRate();
 FHwBusWidth = Module.Debug()->PciBusWidth();
 DisplayLogicVersion();

 FChannels = Module.Input().Info().Channels().Channels();

Once the object is attached to actual physical device, the streaming controller associates with a baseboard by the
ConnectTo() method. Once connected, the object is able to call into the baseboard for board-specific operations during data
streaming. If an objects supports a stream type, this call will be implemented. Unsupported stream types will not compile.

//---
// ApplicationIo::Close() --
//---

void ApplicationIo::Close()
{
 Stream->Disconnect();
 Board->Close();

X3-SD16 User's Manual 62

 FOpened = false;
}

Similarly, the Close() method closes the hardware. Inside this method, first we logically detach the streaming subsystem from
its associated baseboard using Disconnect() method. Malibu method Close() is then used to detach the module from the
hardware and release its resources.

Logic Loading
The user interface logic for the module must be loaded at least once per session (it remains valid until power is removed from
the board). In the following code we show how to browse and configure the desired logic.

In the UI, when the logic browse button is pressed, LogicLoadBrowseBtnClick() method gets called as shown below.

//---
// TMainForm::LogicLoadBrowseBtnClick() --
//---

void __fastcall TMainForm::LogicLoadBrowseBtnClick(TObject *Sender)
{
 std::auto_ptr<TOpenDialog> Dialog(new TOpenDialog(NULL));
 Dialog->Filter = "Logic File (*.bit)|*.bit|All Files|*.*";
 Dialog->Title = "Select FPGA Logic File";
 if (LogicFilenameEdit->Text.Length())
 Dialog->InitialDir = ExtractFilePath(LogicFilenameEdit->Text);

 if (Dialog->Execute())
 LogicFilenameEdit->Text = Dialog->FileName;
}

The code above opens a dialog allowing the user to browse for logic file. The filter property of this dialog masks out all the
files in a folder other than bit file. If the user cancels out, no change will occur in the selection box. If logic file is selected
then we will move on to the loading it.

//---
// TMainForm::LogicLoadConfigBtnClick() --
//---

void __fastcall TMainForm::LogicLoadConfigBtnClick(TObject *Sender)
{
 Io->LoadLogic();
}

In UI, LogicLoadConfigBtnClick() shown above, is executed in response to the “Configure” button click. It immediately
checks whether the device is opened and stream is connected. If the condition is true we exit the routine after logging the
message in the message log. We can also do some more UI tricks here, such as setting up the progress bar limits and
disabling the configure button etc. We further extract the file name from the Textbox and pass it to the ApplicationIo method
LoadLogic() shown below.

//---
// ApplicationIo::LoadLogic() -- Initiate Logic Load Process
//---

void ApplicationIo::LoadLogic()
{
 if (!Opened)
 {

X3-SD16 User's Manual 63

 UI->Log("No module on specified target");
 return;
 }

 UI->Log("---");
 UI->Log(" Parsing Module logic file");

 UI->GetSettings();
 Module.Logic().ConfigureFpga(Settings.ExoFile);
}

In this method, we make a call to the Malibu function ConfigureFpga() which allows new logic image to be loaded. This
method takes name of the image file as an argument, which will be read and loaded into the interface logic. Logic loading
triggers a series of events, which are managed by the background thread.

//--
// ApplicationIo::HandleProgress() -- Incremental logic load event
//--

void ApplicationIo::HandleProgress(ProcessProgressEvent & event)
{
 UI->UpdateLogicLoadProgress(event.Percent);
}

Process progress events are issued to give a percentage progress of the entire operation . These event are handled by
HandleProgress(). This handler calls a UI method UpdateLogicLoadProgress() , where a Progress bar control is updated to
give a visual effect of the loading progress.

//--
// ApplicationIo::HandleLoadComplete() -- Logic load completion event
//--

void ApplicationIo::HandleLoadComplete(ProcessCompletionEvent & event)
{
 UI->Log("Load completed ok");

 DisplayLogicVersion();
}

Finally, the logic loader issues a process completion event, when the load is complete. This event is handled by
HandleLoadComplete as shown above. In this case, all we do is update the UI so the user can see that the logic configuration
is complete and application status is idle. In other cases this could trigger the application to automatically perform additional
tasks.

Starting Data flow
After downloading interface logic user can setup clocking and triggering options. The stream button then can be used to start
streaming and thus data flow.

//---
// ApplicationIo::StartStreaming() -- Initiate data flow
//---

void ApplicationIo::StartStreaming()
{
 if (!StreamConnected)
 {
 UI->Log("Stream not connected! -- Open the boards");
 return;
 }

X3-SD16 User's Manual 64

//
 // Set up Parameters for Data Streaming
 // ...First have UI get settings into our settings store
 UI->GetSettings();

Before we start streaming, all necessary parameters must be checked and loaded into option object. UI-> GetSettings() loads
the settings information from the UI controls into the Settings structure in the ApplicationIo class.

 if (SampleRate() > Module.Input().Info().MaxRate())
 {
 UI->Log("Sample rate too high.");
 StopStreaming();
 UI->AfterStreamAutoStop();
 return;
 }

We insure that the sample rate specified by the GUI is within the capabilities of the module.

if (Settings.Framed)
 {

if (Settings.FrameCount < Settings.PacketSize)
 {
 UI->Log("Error: Frame count must exceed packet size");
 UI->AfterStreamAutoStop();
 return;
 }
 }

The module supports both framed and continuous triggering. In framed mode, each trigger event, whether external or
software initiated, results in the acquisition of a fixed number of samples. In continuous mode, data flow continues whenever
the trigger is active, and pauses while the trigger is inactive. The code above issues a warning if the trigger mode is framed
and ill-formed.

 FBlockCount = 0;
 FBlockRate = 0;
 FTriggered = -1;

The class variables above are used to maintain counts of blocks received, reception rate and whether the module is currently
triggered. These values are initialized prior to each streaming run.

//
// Channel Enables
for (int i = 0; i < Channels(); ++i)

Module.Input().Info().Channels().Enabled(i, Settings.ActiveChannels[i] ? true :
false);

int ActiveChannels = Module.Input().Info().Channels().ActiveChannels();
if (!ActiveChannels)

{
UI->Log("Error: Must enable at least one channel");
UI->AfterStreamAutoStop();
return;
}

The modules supports different quantity of A/D channels of simultaneous data flow. The previous call to GetSettings
populated the Settings object with the number of channels to be enabled on this run. That information is used to enable the
required channels via the Channels object within the Module.Input().Info() object.

X3-SD16 User's Manual 65

// Packets scaled in units of events (samples per each enabled channel)
int SamplesPerWord = 1;
Module.ReturnPacketSize(Settings.PacketSize*ActiveChannels/SamplesPerWord + 2);

The size of the data packets sent from the module to the Host during streaming is programmable. This is helpful during
framed acquisition, since the packet size can be tailored to match a multiple of the frame size, providing application
notification on each acquired frame. In other applications, such as when an FFT is embedded within the FPGA, the packet
size can be programmed to match the processing block size from the algorithm within the FPGA.

//
// Start Loggers on active channels
if (Settings.PlotEnable)

Graph.Quit();

if (Settings.LoggerEnable || Settings.PlotEnable)
Logger.Start();

BlocksToLog = Settings.SamplesToLog/Settings.PacketSize
+ ((Settings.SamplesToLog%Settings.PacketSize) ? 1 : 0);

Stopped = false;

The example illustrates logging data to a disk file, with post-viewing of the acquired data using BinView. The code fragment
above closes any pending instance of BinView and logger data files. BinView will not display data under Linux.

Module.Dio().DioPortConfig(Settings.DioConfig);
Module.FrontPanel().FrontPanelPortConfig(Settings.FrontPanelConfig);

The module supports programmable bit I/O, available on connector JP16 and on the Front Panel connector. The code
fragment above programs the direction of these DIO bits in accordance with the settings from the GUI.

// Set test mode
Module.TestCounterEnable(Settings.TestCounterEnable);

For test purposes, the FPGA firmware supports replacement of analog input samples with ascending ramp data. If the test
counter is enabled in the GUI, it is applied to the hardware using the preceeding code fragment.

 // Set Decimation Factor, if enabled
if (Settings.DecimationEnable)

 Module.Input().Decimation(Settings.DecimationFactor);
 else
 Module.Input().Decimation(1);

The above code controls the desired decimation factor.

// Route clock to active analog devices
// Set reference based on clock source to obtain correct FrequencyActual
double reference;
if (Settings.SampleClockSource == 0)

{
reference = SampleRate() * Module.DecimationFactor(SampleRate());
Module.Clock().OutputClock(Ad9511::oExternal);
}

else
{
reference = Module.Input().Info().ReferenceClock();
Module.Clock().OutputClock(Ad9511::oVco);

X3-SD16 User's Manual 66

}

// Apply timebase correction factor, if available
double correction = Settings.PllCorrection;
if (correction != correction)

correction = 1.0; // NaN, so fix it
Module.Clock().ReferenceCalibrationFactor(correction);
Module.Clock().Reference(reference);
Module.Clock().Frequency(SampleRate());

The module may accept an external sample clock but also features a programmable PLL clock source which may be used as a
sample clock for the A/D input channels.

// All channels trigger together
Module.Input().ExternalTrigger((Settings.ExternalTrigger == 1));

// Frame count in units of packet elements
if (Settings.Framed)

Module.Input().Framed(Settings.FrameCount);
else

Module.Input().Unframed();

Samples will not be acquired until the channels are triggered. Triggering may be initiated by a software command or via an
external input signal to the Trigger SMA connector. The code fragment above selects the trigger mode.

enum IUsesX3Alerts::AlertType Alert[] = {
IUsesX3Alerts::alertTimeStampRollover, IUsesX3Alerts::alertSoftware,
IUsesX3Alerts::alertWarningTemperature,
IUsesX3Alerts::alertPllLost, IUsesX3Alerts::alertInputFifoOverrun,
IUsesX3Alerts::alertInputTrigger, IUsesX3Alerts::alertInputOverrange };

for (unsigned int i = 0; i < Settings.AlertEnable.size(); ++i)
Module.Alerts().AlertEnable(Alert[i], Settings.AlertEnable[i] ? true : false);

The fragment above enables alert generation by the module. The GUI control includes check boxes for each of the types of
alerts of which the module is capable. The enabled state of the check boxes is copied into the Settings.AlertEnable array.
This code fragment applies the state of each bit in that array to the Alerts() sub-object within the module. During streaming,
an alert message will be sent to the Host tagged with a special alert packet ID (PID), to signify the alert condition.

//
// Start Streaming
Stream.Start();
UI->Log("Stream Mode started");
UI->Status("Stream Mode started");

The Stream.Start command applies all of the above configuration settings to the module, then enables PCI data flow.
However, samples will not be acquired until the module is triggered. .

ActualSampleRate = static_cast<float>(Module.Clock().FrequencyActual());

std::stringstream msg;
msg.precision(6);
msg << "Actual sampling rate: " << ActualSampleRate/1.e3 << " KHz";
UI->Log(msg.str());

FTicks = 0;
Timer.Enabled(true);

X3-SD16 User's Manual 67

Handle Data Available

Once streaming is enabled and the module is triggered, data flow will commence. Samples will be accumulated into the
onboard FIFO, then they are bus-mastered to the Host PC into page-locked, driver-allocated memory following a two -word
header (data packets). Upon receipt of a data packet, Malibu signals the Stream.OnDataAvailable even. By hooking this
event, your application can perform processing on each acquired packet. Note, however, that this event is signaled from
within a background thread, so, you must not perform non-reentrant OS system calls (such as GUI updates) from within your
handler unless you marshal said processing into the foreground thread context.

//---
// ApplicationIo::HandleDataAvailable() -- Handle received packet
//---

void ApplicationIo::HandleDataAvailable(PacketStreamDataEvent & Event)
{
 if (Stopped)
 return;

 static Buffer Packet;
 //
 // Extract the packet from the Incoming Queue...
 Event.Sender->Recv(Packet);
 IntegerDG Packet_DG(Packet);

When the event is signaled, the data buffer must be copied from the system bus-master pool into an application buffer. The
preceding code copies the packet into the local Buffer called Packet.

 //
 // Process the data packet
 PacketBufferHeader PktBufferHdr(Packet);
 size_t Channel = PktBufferHdr.PeripheralId();

 // Discard packets from sources other than analog devices
if (Channel >= Channels())

 return;

Each Buffer consists of a header and a body of data. The header may be interrogated to determine the data source. In the
fragment above, packets containing peripheral IDs greater than the number of enabled channels are discarded. Consequently,
alert packets are not retained or processed.

 // Calculate transfer rate in KB/s
 double Period = Time.Differential();
 if (Period)
 FBlockRate = Packet_DG.SizeInBytes() / (Period * 1.0e3);

The code fragment above calculates the nominal block processing rate. The AveragedRate object, Time, maintains a moving
averaged filtered rate. This rate is stored in FBlockRate for use by display method of the GUI.

 if (Settings.LoggerEnable && !Logger.Logged)
 {
 // Start counter
 Clock.Start();

 std::stringstream msg;
 msg << "Packet size: " << Packet.Size() << " samples";
 UI->Log(msg.str());
 }

X3-SD16 User's Manual 68

 // If enabled, log the data stream
 if (Settings.LoggerEnable || Settings.PlotEnable)
 if (FBlockCount < BlocksToLog)
 Logger.LogWithHeader(Packet);

 //
 // Count the blocks gone by on each Channel...
 ++FBlockCount;

In this example, each received packet is logged to a disk file. The packet header and the body are written into the file, which
implies that a post-analysis tool (such as BinView) will be used to parse channelized data from the file. Alternately, custom
applications may use the Innovative::PacketDeviceMap object to conveniently extract channelized data from a packet data
source.

 //
 // Stop streaming when both Channels have passed their limit

if (Settings.AutoStop && IsDataLoggingCompleted() && !Stopped)
{
// Stop counter and display it
double elapsed = Clock.Stop();

 StopStreaming();
 UI->AfterStreamAutoStop();
 UI->Log("Stream Mode Stopped automatically");
 UI->Log(std::string("Elasped (S): ") + FloatToString(elapsed));
 }

Packets are processed until a specified amount of data is logged or the GUI Stop button is pressed.

 // Auto-analyze and retrigger in framed mode
 if (!Settings.Framed)
 return;

 if ((Settings.ExternalTrigger == 0) && Settings.AutoTrigger)
{

 __int64 samples = FBlockCount * Settings.PacketSize;
 int triggers = static_cast<int>(samples/Settings.FrameCount);

 if (triggers != FTriggered)
 SoftwareTrigger();
 }
}

In the event that were operating in framed trigger mode, the example code re-asserts a software trigger each time a frames-
worth of data packets have been received. If we're in continuous mode, no action need be performed to sustain data flow.

EEProm Access

Each PMC module contains an IDROM region that can be used to write information associated with the module. In the next
line of code we make a call to Malibu method IdRom(), which returns an object that acts as interface to that region. The
following methods illustrate how to write and read information from IDROM. StoreToRom() and ReadRom() are the two
IdRom methods used to save and retrieve data to/from memory.

//---
// ApplicationIo::WriteRom() -- Write rom using relevant settings
//---

X3-SD16 User's Manual 69

void ApplicationIo::WriteRom()
{
 Module.IdRom().Name(Settings.ModuleName);
 Module.IdRom().Revision(Settings.ModuleRevision);
 Module.Clock().ReferenceCalibrationFactor(Settings.PllCorrection);

 for (size_t range = 0; range < Ranges(); ++range)
 {
 for (size_t ch = 0; ch < Channels(); ++ch)
 {
 Module.Input().Gain(range, ch, Settings.Gain[range][ch]);
 Module.Input().Offset(ch, Settings.AdcOffset[range][ch]);
 }
 Module.Input().Calibrated(range, Settings.Calibrated);
 }
 Module.IdRom().StoreToRom();
}

//---
// ApplicationIo::ReadRom() -- Read rom and update relevant settings
//---

void ApplicationIo::ReadRom()
{
 Module.IdRom().LoadFromRom();

 Settings.ModuleName = Module.IdRom().Name();
 Settings.ModuleRevision = Module.IdRom().Revision();
 Settings.PllCorrection = static_cast<float>(Module.Clock().ReferenceCalibrationFactor());

 bool calibrated = true;
 for (size_t range = 0; range < Ranges(); ++range)
 {
 for (size_t ch = 0; ch < Channels(); ++ch)
 {
 Settings.Gain[range][ch] = Module.Input().Gain(range, ch);
 Settings.Offset[range][ch] = Module.Input().Offset(range, ch);
 }

 calibrated &= Module.Input().Calibrated(range);
 }

 Settings.Calibrated = calibrated;
}

X3-SD16 User's Manual 70

Writing Custom Playback Applications

This chapter explains how to write an application that plays a pre-defined waveform, the source of the waveform data maybe
a disk file or calculated by the program on a per-buffer basis.

Wave Example
The Wave example, in the software distribution, demonstrates such functionality. It consists of a host program in Windows or
Linux, which simultaneously works with user defined interface logic. It uses the Innovative Malibu software libraries to
accomplish the tasks.

Tools Required

In general, writing applications for an X3 module requires the development of host program. This requires a development
environment, a debugger, and a set of support libraries from Innovative.

Table 15. Development Tools.

Processor Development Environment Innovative
Toolset

Project Directory

Host PC
(Windows)

Borland Developers Studio C+
+

Microsoft Visual Studio 2008

Common Host Code

Malibu Examples\Snap\Bcb

Examples\Snap\VC9

Examples\Snap\Common

Processor Development Environment Innovative
Toolset

Project Directory

Host PC
(Linux)

DialogBlocks

Common Host Code

Malibu Examples\Snap\DialogBlocks

Examples\Snap\Common

On the host side, the Malibu library is source code compatible with the above environments. The code that performs much of
the actual functioning of the program, outside of the User Interface portion of the program, is therefore common code. Each
project uses the same file to interact with the hardware and acquire data.

X3-SD16 User's Manual 71

Program Design

The Wave example is designed to allow repeated data playback operations on command from the host. As mentioned earlier,
data can be sourced from disk file or calculated on the fly on a per buffer (packet) basis. The example application software is
written to perform minimal processing of played data and is a suitable template for high-bandwidth applications.

The example uses various configuration commands to prepare the module for data flow. Parametric information is obtained
from a Host GUI application, but the code is written to be GUI-agnostic. All board-specific I/O is performed within the
ApplicationIo.cpp/.h unit. Data is transferred from the Host to the module as packets of Buffers.

The Host Application
The picture to the right shows the main window of Wave example. This form is from the designer of the Borland Turbo C++
version of the example. It shows the layout of the controls of the User Interface. The timer, pop-up menu and folder icons to
the upper right are non-visual components in Builder. Timer controls timer ticks and pop-up menu facilitate user to select
channels on right click, where the folder controls the posting of a File Open Dialog box. They will not appear in the running
application.

User Interface

This application has four tabs. Each tab has its own significance and usage, though few could be inter-related. All these tabs
share a common area, which displays messages and feedback throughout the operation of the program. Logic Tab

Configure Tab

As soon as the application is launched, device driver is
opened and hardware is attached to the selected target
number. In this tab we configure user interface logic.

The target board number is set to zero. The order of the
targets is determined by the location in the PCI bus, so it
will remain unchanged from run to run.

While application is being launched, the device driver is
automatically opened for the baseboard and internal
resources are allocated for use. At this point, stream is
simply connected to the board and board has been reset to
be in known good state. Also, if ID ROM is properly
initialized, module name and revision in addition to the
“Device Opened” message is displayed in the message
box.

Next, we load the desired user interface logic . The user
logic for the module must be loaded at least once per

X3-SD16 User's Manual 72

session (it remains valid until power is removed from the board). Use “Configure” button is to load the logic from an BIT
file.

Setup Tab

This tab has a set of controls that hold the
parameters for data playback. These settings are
delivered to the target and configure the target
when streaming is initiated via controls on the
Stream tab, described in the next section.

The setup tab contains a large number of controls
used to configure the on-board timebase, alert
notifications, analog channel selection, range and
triggering, etc. Each of these controls is described
below.

Clock Group. The module features an on-board
AD9510 PLL which may be used as a sample
clock during analog acquisition. Alternately, an
external sample clock may be used. The Clock |
Source radio control governs which timebase is
used as the analog sample clock. If the internal
PLL is selected, the sample rate entered in the
Output | Khz edit control is used to program the PLL to generate the specified sample rate during acquisition. However, if
the clock source is external, then the Output | KHz control is used to inform the program of your intended (external)
sample rate. In that case, you are expected to supply a clock running at the rate listed in the Clock | Source | KHz
control to the external clock input connector on the module.

Active Channels Group. The X3 modules support simultaneous playback to all their channels.

Decimation Group. These controls govern the behavior enable the decimation logic. When enabled, the DAC(s) update rate
will be affected, thus the interrupt to the Host PC will be decreased. All waveform samples will be deliver to the DAC(s) but
the DAC(s) will be clocked at a slower rate.

Trigger Group. Playback may be TRIGGERED using an external signal or via software. The Trigger | Source list
control provides the means of selection. Triggers act as a gate on data flow - no data flows until a trigger has been received.
Triggers may be initiated via software or hardware, depending on the Trigger | Source control. If software, the
application program must issue a command to initiate data flow. If hardware, a signal applied to the external trigger
connector controls data flow.

Triggers are modal depending on the Trigger | Mode control. In Unframed mode, triggers are level sensitive and data
flow proceeds while the trigger is in the high (active) state and stops while the trigger is in the low (inactive) state. This
mode is ideal for conventional data playback applications. In Framed mode, triggers are rising edge sensitive. Upon
detection of each edge, Trigger | Frame Count samples are played from all active channels, then playback terminates
until the next trigger edge is detected. If Trigger | Auto is checked and the Trigger | Source is software, the

X3-SD16 User's Manual 73

application automatically re-triggers upon completion of processing of the previous packet. This mode is ideal for
application such as stimulus response, etc .

Communications Group. All X3 modules support data transfer between Host memory and the on-board FPGA via a
dedicated PCI Express bus interface. Data is transferred in packets, which consist of a two word header followed by a fixed-
length data buffer. Header word zero contains the buffer length in bits 0:23 and a peripheral ID in bits 24:31.

The Communications | Pkt Size edit control specifies the size of the packets transferred between the target and the
Host. Each packet transferred results in a Host interrupt, handled by the Malibu libraries. Consequently, larger packets
amortize the Host interrupt processing more efficiently. However, packets are transferred using a contiguous, page-locked
memory region of Host memory known as bus-master memory, which is allocated during installation via the
ReserveMemDsp.exe applet (Windows). Since bus-master memory is Host memory, it is limited in size by the amount of
physical memory installed in the PC. By default, 32 Mbytes (4MBytes observed under Linux) are allocated as bus-master
memory, which implies that the Pkt Size must be restricted to fit within this region. The packet size is in terms of “samples
per enabled channel”, so if a module has 4 enabled channels of 16 bits each, then a packet size of 1000 translates to 2000 32-
bit words. Thus we recommend a packets size that fits eight times in the bus-master region. So if your bus-master region is 32
Mbytes, then 4 Mbytes is a good size, packets of less data will cause more interrupts to the host PC and thus less time for
your software to do other tasks.

Alerts Group. Enables out of band information packets to be delivered to the Host PC informing different conditions of the
hardware.

Waveform Group. Selects the type of waveform to be calculated by the software, also external files can be used as the data
source.

Frequency and Amplitude Group. They determine, in the case where data source is not a disk file, the output waveform's
frequency and percentage of full scale.

Digital I/O Group. This control governs the configuration of the P16 DIO port on the module. The DIO port can be
configured for input or output on a byte-wise basis, as a function of the configuration code in Digital I/O | Config
Mask. See the DIO Control Register description (user logic offset 0x14) for details.

Front Panel I/O Group. This control governs the configuration of the Front Panel DIO port on the module. The DIO port
can be configured for input or output on a byte-wise basis, as a function of the configuration code in Front Panel I/O |
Config Mask. See the Front Panel DIO Control Register description (user logic offset 0x07) for details.

X3-SD16 User's Manual 74

Data Streaming

Select the Stream tab. The controls on this tab control
data flow. The meaning of each of the fields on this tab
are explained below:
Data playback is initiated when the “running man”
button is pressed, and terminates when the Stop button
is pressed (Unframed mode) or when an entire frame
has played and trigger is not in “re-trigger” mode
(framed mode).

To accommodate custom logic development, the
application supports execution of simple, user-authored
scripts before and after the commencement of data flow.
The Start Scripts | Before edit box specifies the
full path spec to a text file containing valid script
commands (described below) which will be executed
prior to data flow. Similarly, the Start Scripts |
After edit box specifies the file containing commands
to be executed after data flow is underway.

The following script commands are supported:

-- l! (n a -) Store n to logic register address a

-- l@ (a - n) Fetch n from logic register address a

-- p! (n a -) Store n to port register address a

-- p@ (a - n) Fetch n from port register address a

-- ms (n -) Delay n milliseconds

All commands use postfix notation so parameters go before the command. For instance, 0x01, 0x02 l! causes the value
0x01 to be stored to logic address 0x02.

During data flow, the number of played data packets, data transfer rate, board temperature, current DIO and Front Panel DIO
pins state is shown in real time on the statistics status bar located at the bottom of the Streaming tab.

EEPROM Access

Select the EEPprom tab. The controls on this tab allow the contents of the onboard EEPROM to be queried or changed.

The onboard EEPROM is used for non-volatile storage of module identification strings, digital calibration coefficients for
each of the A/D channels and for a calibration coefficient for the reference clock for the onboard PLL. These values are
determined during factory calibration and need not normally be changed by the user.

X3-SD16 User's Manual 75

Debugging

Select the Debug tab. The controls on this tab support a few low-level debug operations to be performed.

A debug script may be executed at any time to perform low-level register fetches or stores to exercise custom FPGA
firmware or determine the current hardware state. Unlike the stream scripts described earlier, this script executes manually
(via the button), so you need not be streaming to put it to use.

A software alert may be generated by pressing the Software button. The value in the edit control to the right of this button is
supplied as the code for the alert, which is returned and displayed in the log if software alerts are enabled for display.

Host Side Program Organization

With the exception of OS_Mb.lib (libOs_mb.a) and Analysis_Mb.lib(libAnalysys.a), the Malibu library is designed to be re-
buildable in each of the different host environments: Borland C++ Builder, Microsoft Visual Studio 2003, Microsoft Visual
Studio 2005 using the .NET UI, and GNU GCC(Linux). Because the library has a common interface in all environments, the
code that interacts with Malibu is separated out into a class, ApplicationIo in the files ApplicationIo.cpp and .h. This class
acts identically in all the platforms.

The Main form of the application creates an ApplicationIo to perform the work of the example. The UI can call the methods
of the ApplicationIo to perform the work when, for example, a button is pressed or a control changed.

Sometimes, however, the ApplicationIo object needs to 'call back into' the UI. But since the code here is common, it can't use
a pointer to the main window or form, as this would make ApplicationIo have to know details of Borland, VC,
DialogBlocks(Linux) or the environment in use.

The standard solution to decouple the ApplicationIo from the form is to use an Interface class to hide the implementation. An
interface class is an abstract class that defines a set of methods that can be called by a client class (here, ApplicationIo). The
other class produces an implementation of the Interface by either multiple inheriting from the interface, or by creating a
separate helper class object that derives from the interface. In either case the implementing class forwards the call to the UI
form class to perform the action. ApplicationIo only has to know how to deal with a pointer to a class that implements the
interface, and all UI dependencies are hidden.

The predefined IUserInterface interface class is defined in ApplicationIo.h. The constructor of ApplicationIo requires a
pointer to the interface, which is saved and used to perform the actual updates to the UI inside of ApplicationIo's methods.

ApplicationIo

Initialization
The main form creates an ApplicationIo object in its constructor. The object creates a number of Malibu objects at once as
can be seen from this detail from the header ApplicationIo.h.

PmcModule Module;
Innovative::PacketStream Stream;
IUserInterface * UI;
Innovative::Scripter Script;
Innovative:: Buffer * Packet;

X3-SD16 User's Manual 76

 Innovative::AveragedRate Time;
 Innovative::SoftwareTimer Timer;

...

In Malibu, objects are defined to represent units of hardware as well as software units. The PmcModule, defined in Target.h,
represents the X3 specific board. The PacketStream object encapsulates supported, board-specific operations. Scripter object
can be used to add a simple scripting language to the application, for the purposes of performing hardware initialization
during FPGA firmware development. Buffer class object can be used to access buffer contents.

In addition, under the “Open()” method we hook up event handlers to various events.
 // Hook script event handlers.
 Script.OnCommand.SetEvent(this, &ApplicationIo::HandleScriptCommand);
 Script.OnMessage.SetEvent(this, &ApplicationIo::HandleScriptMessage);
 //
 // Configure Module Event Handlers
 Module.Logic().OnFpgaFileReadProgress.SetEvent(this, &ApplicationIo::HandleProgress);
 Module.Logic().OnFpgaFileReadComplete.SetEvent(this, &ApplicationIo::HandleParseComplete);
 Module.Logic().OnFpgaParseProgress.SetEvent(this, &ApplicationIo::HandleProgress);
 Module.Logic().OnFpgaParseComplete.SetEvent(this, &ApplicationIo::HandleParseComplete);
 Module.Logic().OnFpgaParseMessage.SetEvent(this, &ApplicationIo::HandleLoadError);
 Module.Logic().OnFpgaLoadProgress.SetEvent(this, &ApplicationIo::HandleProgress);
 Module.Logic().OnFpgaLoadComplete.SetEvent(this, &ApplicationIo::HandleLoadComplete);
 Module.Logic().OnFpgaLoadMessage.SetEvent(this, &ApplicationIo::HandleLoadError);

This code attaches script event handlers and X3 module logic loader's informational event handlers to their corresponding
events. Malibu has a method where functions can be 'plugged into' the library to be called at certain times or in response to
certain events detected. Events allow a tight integration between an application and the library. These events are
informational messages issued by the scripting and logic loader feature of the module. They display feedback during the
loading of the user logic and when script is used.

 //
 // Alerts
 Module.Alerts().OnTimeStampRolloverAlert.SetEvent(this,
&ApplicationIo::HandleTimestampRolloverAlert);
 Module.Alerts().OnSoftwareAlert.SetEvent(this, &ApplicationIo::HandleSoftwareAlert);
 Module.Alerts().OnWarningTemperature.SetEvent(this, &ApplicationIo::HandleWarningTempAlert);
 Module.Alerts().OnPllLost.SetEvent(this, &ApplicationIo::HandlePllLostAlert);
 Module.Alerts().OnInputFifoOverrun.SetEvent(this, &ApplicationIo::HandleInputFifoOverrunAlert);
 Module.Alerts().OnInputTrigger.SetEvent(this, &ApplicationIo::HandleInputTriggerAlert);
 Module.Alerts().OnInputOverrange.SetEvent(this, &ApplicationIo::HandleInputFifoOverrangeAlert);

This code attaches alert processing event handlers to their corresponding events. Alerts are packets that the module generates
and sends to the Host as packets containing out-of-band information concerning the state of the module. For instance, if the
analog inputs were subjected to an input over-range, an alert packet would be sent to the Host, interspersed into the data
stream, indicating the condition. This information can be acted upon immediately, or simply logged along with analog data
for subsequent post-analysis.

 Module.OnBeforeStreamStart.SetEvent(this, &ApplicationIo::HandleBeforeStreamStart);
 Module.OnBeforeStreamStart.Synchronize();
 Module.OnAfterStreamStart.SetEvent(this, &ApplicationIo::HandleAfterStreamStart);
 Module.OnAfterStreamStart.Synchronize();
 Module.OnAfterStreamStop.SetEvent(this, &ApplicationIo::HandleAfterStreamStop);
 Module.OnAfterStreamStop.Synchronize();

Similarly, HandleBeforeStreamStart, HandleAfterStreamStart and HandleAfterStreamStop handle events issued on before
stream start, after stream start and after stream stop respectively. These handlers could be designed to perform multiple tasks
as event occurs including displaying messages for user. These events are tagged as Synchronized, so Malibu will marshall

X3-SD16 User's Manual 77

the execution of the handlers for these events into the main thread context, allowing the handlers to perform user-interface
operations.

The Stream object manages communication between the application and a piece of hardware. Separating the I/O into a
separate class clarifies the distinction between an I/O protocol and the implementing hardware.

In Malibu, high rate data flow is controlled by one of a number of streaming classes. In this example we use the events of the
PacketStream class to alert us when a packet is required by the target. When a data packet is delivered by the data streaming
system, OnDataRequired event will be issued to supply more data. This event is set to be handled by HandleDataRequired.

//
// Configure Stream Event Handlers

 Stream.OnDataRequired.SetEvent(this, &ApplicationIo::HandleDataRequired);

In this example, a Malibu SoftwareTimer object has been added to the ApplicationIo class to provide periodic status updates
to the user interface. The handler below serves this purpose.

 Timer.OnElapsed.SetEvent(this, &ApplicationIo::HandleTimer);
 Timer.OnElapsed.Thunk();

An event is not necessarily called in the same thread as the UI. If it is not, and if you want to call a UI function in the handler
you have to have the event synchronized with the UI thread. The call to Synchronize() directs the event to call the event
handler in the main UI thread context. This results in a slight performance penalty, but allows us to call UI methods in the
event handler freely.

Creating a hardware object does not attach it to the hardware. The object has to be explicitly opened. The Open() method
open hardware.

 //
 // Open Devices
 Module.Target(Settings.Target);
 Module.Open();
 Module.Reset();
 UI->Status("Module Device Opened...");
 Opened = true;

This code shows how to open the device for streaming. Each baseboard has a unique code given in a PC. For instance, if
there are three boards in a system, they will be targets 0,1 and 2. The order of the targets is determined by the location in the
PCI bus, so it will remain unchanged from run to run. Moving the board to a different PCI slot may change the target
identification. The Led property can be use to associate a target number with a physical board in a configuration.

Malibu method Open() is called to open the device driver for the baseboard and allocate internal resources for use. The next
step is to call Reset() method which performs a board reset to put the board into a known good state. Note that reset will stop
all data streaming through the busmaster interface and it should be called when data taking has been halted.

 //
 // Connect Stream
 Stream.ConnectTo(&Module);
 StreamConnected = true;
 UI->Status("Stream Connected...");
 PrefillPacketCount = Stream.PrefillPacketCount();
 FHwPciClk = Module.Debug()->PciClockRate();
 FHwBusWidth = Module.Debug()->PciBusWidth();
 DisplayLogicVersion();

 FChannels = Module.Input().Info().Channels().Channels();

X3-SD16 User's Manual 78

Once the object is attached to actual physical device, the streaming controller associates with a baseboard by the
ConnectTo() method. Once connected, the object is able to call into the baseboard for board-specific operations during data
streaming. If an objects supports a stream type, this call will be implemented. Unsupported stream types will not compile.

The prefill method is used to fill the bus-master region with default data so that an immediate underflow may be avoided.

//---
// ApplicationIo::Close()
//---

void ApplicationIo::Close()
{
 Stream.Disconnect();
 Module.Close();
 FStreamConnected = false;
 FOpened = false;
 UI->Status("Stream Disconnected...");
}

Similarly, the Close() method closes the hardware. Inside this method, first we logically detach the streaming subsystem from
its associated baseboard using Disconnect() method. Malibu method Close() is then used to detach the module from the
hardware and release its resources.

Logic Loading
The user interface logic for the module must be loaded at least once per session (it remains valid until power is removed from
the board). In the following code we show how to browse and configure the desired logic.

In the UI, when the logic browse button is pressed, LogicLoadBrowseBtnClick() method gets called as shown below.

//---
// TMainForm::LogicLoadBrowseBtnClick() --
//---

void __fastcall TMainForm::LogicLoadBrowseBtnClick(TObject *Sender)
{
 std::auto_ptr<TOpenDialog> Dialog(new TOpenDialog(NULL));
 Dialog->Filter = "Logic File (*.bit)|*.bit|Logic File (*.exo)|(*.exo)|All Files|*.*";
 Dialog->Title = "Select FPGA Logic File";
 if (LogicFilenameEdit->Text.Length())
 Dialog->InitialDir = ExtractFilePath(LogicFilenameEdit->Text);

 if (Dialog->Execute())
 LogicFilenameEdit->Text = Dialog->FileName;
}

The code above opens a dialog allowing the user to browse for logic file. The filter property of this dialog masks out all the
files in a folder other than bit file or exo file. If the user cancels out, no change will occur in the selection box. If logic file is
selected then we will move on to the loading it.

X3-SD16 User's Manual 79

//---
// TMainForm::LogicLoadConfigBtnClick() --
//---

void __fastcall TMainForm::LogicLoadConfigBtnClick(TObject *Sender)
{
 Io->LoadLogic();
}

In UI, LogicLoadConfigBtnClick() shown above, is executed in response to the “Configure” button click. It immediately
checks whether the device is opened and stream is connected. If the condition is true we exit the routine after logging the
message in the message log. We can also do some more UI tricks here, such as setting up the progress bar limits and
disabling the configure button etc. We further extract the file name from the Textbox and pass it to the ApplicationIo method
LoadLogic() shown below.

//---
// ApplicationIo::LoadLogic() -- Initiate Logic Load Process
//---

void ApplicationIo::LoadLogic()
{
 if (!Opened)
 {
 UI->Log("No module on specified target");
 return;
 }

 UI->Log("---");
 UI->Log(" Parsing Module logic file");

 UI->GetSettings();
 Module.Logic().ConfigureFpga(Settings.ExoFile);
}

In this method, we make a call to the Malibu function ConfigureFpga() which allows new logic image to be loaded. This
method takes name of the image file as an argument, which will be read and loaded into the interface logic. Logic loading
triggers a series of events, which are managed by the background thread.

//--
// ApplicationIo::HandleProgress() -- Incremental logic load event
//--

void ApplicationIo::HandleProgress(ProcessProgressEvent & event)
{
 UI->UpdateLogicLoadProgress(event.Percent);
}

Process progress events are issued to give a percentage progress of the entire operation . These event are handled by
HandleProgress(). This handler calls a UI method UpdateLogicLoadProgress() , where a Progress bar control is updated to
give a visual effect of the loading progress.

//--
// ApplicationIo::HandleLoadComplete() -- Logic load completion event
//--

void ApplicationIo::HandleLoadComplete(ProcessCompletionEvent & event)
{
 UI->Log("Load completed ok");

 DisplayLogicVersion();

X3-SD16 User's Manual 80

}

Finally, the logic loader issues a process completion event, when the load is complete. This event is handled by
HandleLoadComplete as shown above. In this case, all we do is update the UI so the user can see that the logic configuration
is complete and application status is idle. In other cases this could trigger the application to automatically perform additional
tasks.

Starting Data flow

After downloading interface logic user can setup clocking and triggering options. The stream button then can be used to start
streaming and thus data flow.

//---
// ApplicationIo::StartStreaming()
//---

bool ApplicationIo::StartStreaming()
{
 //
 // Set up Parameters for Data Streaming
 // ...First have UI get settings into our settings store
 UI->GetSettings();

Before we start streaming, all necessary parameters must be checked and loaded into option object. UI-> GetSettings() loads
the settings information from the UI controls into the Settings structure in the ApplicationIo class.

 if (!FStreamConnected)
 {
 Log("Stream not connected! -- Open the boards");
 return false;
 }

 //
 // Make sure packets fit nicely in BM region.

if (FBusmasterSize/4 < (unsigned int)Settings.StreamPacketSize)
 {
 Log("Error: Packet size is larger than recommended size");
 return false;
 }

Next we test that the Stream object has been successfully connected to the module object (happens at Open()). And then we
verify that at least four packets will fit in the bus-master are.

 if (SampleRate() > Module.Output().Info().MaxRate())
 {
 Log("Sample rate too high.");
 StopStreaming();
 UI->AfterStreamStop();
 return false;
 }

 // Clock config
 ActualSampleRate = SampleRate();

// Route clock to active analog devices
// Set reference based on clock source to obtain correct FrequencyActual
double reference;
if (Settings.SampleClockSource == 0)

{
reference = SampleRate() * Module.Output().Info().ClockFactor();
Module.Clock().OutputClock(PmcModule::Timebase::oExternal);

X3-SD16 User's Manual 81

}
else

{
reference = Module.Output().Info().ReferenceClock();
Module.Clock().OutputClock(PmcModule::Timebase::oVco);
}

Module.Clock().Reference(reference);
Module.Clock().Frequency(SampleRate());

The module may accept an external sample clock but also features a programmable PLL clock source which may be used as a
sample clock for the A/D input channels.

 Module.Trigger(PmcModule::tOutput, false);

The code above states that the output trigger is in a inactive state.

 FBlockCount = 0;
 FBlockRate = 0;
 FTriggered = -1;
 TestCounter = 0;
 Time.Reset();

The class variables above are used to maintain counts of blocks received, reception rate and whether the module is currently
triggered. These values are initialized prior to each streaming run. The Time.Reset() is to clear any pass data rate
calculations.

 PrefillCount = std::max(Settings.PrefillPeriod, 1);

The above code extract the prefill count in seconds up to one second. This variable will be used to prevent any instantaneous
uderflow caused by the DACs wanting data. The prefill count will be used to prefill the bus-master region.

 Module.Dio().DioPortConfig(Settings.DioConfig);
 Module.FrontPanel().FrontPanelPortConfig(Settings.FrontPanelConfig);

The module supports programmable bit I/O, available on connector JP16 and on the Front Panel connector. The code
fragment above programs the direction of these DIO bits in accordance with the settings from the GUI.

 //
 // Channel Enables
 Module.Input().Info().Channels().DisableAll();
 Module.Output().Info().Channels().DisableAll();
 for (int i = 0; i < Channels(); ++i)
 if ((Settings.ActiveChannels[i] ? true : false))
 Module.Output().Info().Channels().Enabled(i, true);

 int ActiveChannels = Module.Output().Info().Channels().ActiveChannels();
 if (!ActiveChannels)
 {
 Log("Error: Must enable at least one channel");
 UI->AfterStreamStop();
 return false;
 }

Disable input channels (since this is DAC example), and enable output channels. fragment above programs the direction of
these DIO bits in accordance with the settings from the GUI.

 FStreaming = true;

X3-SD16 User's Manual 82

 // Set Decimation Factor
 int factor = Settings.DecimationEnable ? Settings.DecimationFactor : 0;
 Module.Output().Decimation(factor);

Sample clocks will be affected by the decimation factor used. All data will be played by the DAC(s), but at a slower rate if
decimation is enabled.

 // All channels trigger together
 Module.Output().ExternalTrigger((Settings.ExternalTrigger == 1));
 // Frame count in units of packet elements
 if (Settings.Framed)
 Module.Output().Framed(Settings.FrameCount);
 else
 Module.Output().Unframed();

Samples will not be played until the channels are triggered. Triggering may be initiated by a software command or via an
external input signal to the Trigger SMA connector. The code fragment above selects the trigger mode.

 enum IUsesX3Alerts::AlertType Alert[] =
 {
 IUsesX3Alerts::alertTimeStampRollover,
 IUsesX3Alerts::alertSoftware,
 IUsesX3Alerts::alertWarningTemperature,
 IUsesX3Alerts::alertPllLost,
 IUsesX3Alerts::alertOutputFifoUnderrun,
 IUsesX3Alerts::alertOutputTrigger
 };

 for (unsigned int i = 0; i < Settings.AlertEnable.size(); ++i)
 Module.Alerts().AlertEnable(Alert[i], Settings.AlertEnable[i] ? true : false);

The fragment above enables alert generation by the module. The GUI control includes check boxes for each of the types of
alerts of which the module is capable. The enabled state of the check boxes is copied into the Settings.AlertEnable array.
This code fragment applies the state of each bit in that array to the Alerts() sub-object within the module. During streaming,
an alert message will be sent to the Host tagged with a special alert packet ID (PID), to signify the alert condition.

 // Calculate waveform buffer
 ShortDG Packet_DG(WaveformPacket);
 //
 // Calculate Packet Size in shorts
 int packet_size_shorts = Settings.StreamPacketSize*ActiveChannels;
 while ((packet_size_shorts%4)!=0)
 packet_size_shorts += ActiveChannels;

 Packet_DG.Resize(packet_size_shorts);

 PacketBufferHeader PktBufferHdr(WaveformPacket);
 PktBufferHdr.PacketSize(Settings.StreamPacketSize);
 PktBufferHdr.PeripheralId(Module.Output().PacketId());
 PktBufferHdr[1] = HeaderTagValueOriginal;

The buffer size is calculated in terms of samples per active channel based on the packet size specified in th GUI, so for
example is 1000 is the Packet size in the GUI and two channels are enabled, then the short buffer (16-bit word) will be of size
2000. In this example w chose a ShortBuffer since all X3 modules (up to date) have 16-bit DACs.
The PeripheralId for DAC = 0x02.

 //
 // Builds waveform buffer

X3-SD16 User's Manual 83

 BuildWave(WaveformPacket, Settings.WaveType);

 // Start Streaming
 Stream.Start();

The Stream.Start command applies all of the above configuration settings to the module, then enables PCI data flow.
However, samples will not be played until the module is triggered.

 Log("Stream Mode started");
 UI->Status("Stream Mode started");

 FTicks = 0;

 return true;
}

Handle Data Required

Once streaming is enabled and the module is triggered, data flow will commence. Samples will be bus-mastered into the
Module's FIFO and sent to the proper DAC. The Buffer header is used by the Module's logic as a steering mechanism. Note,
however, that this event is signaled from within a background thread, so, you must not perform non-reentrant OS system
calls (such as GUI updates) from within your handler unless you marshal said processing into the foreground thread context.

//---
// ApplicationIo::HandleDataRequired()
//---

void ApplicationIo::HandleDataRequired(PacketStreamDataEvent & Event)
{
 SendOneBlock(Event.Sender);
}

//--
// ApplicationIo::SendOneBlock()
//--

void ApplicationIo::SendOneBlock(PacketStream * PS)
{
 ShortDG Packet_DG(WaveformPacket);

 // Calculate transfer rate in kB/s
 double Period = Time.Differential();
 if (Period)
 FBlockRate = Packet_DG.SizeInBytes() / (Period*1.0e3);

 //
 // No matter what channels are enabled, we have one packet type
 // to send here
 PS->Send(WaveformPacket);

 ++FBlockCount;
}

HandleDataRequired() will be called when a buffer is needed, here we show that we will play a pre-filled buffer at callback
time (every module interrupt).

X3-SD16 User's Manual 84

EEProm Access

Each PMC module contains an IDROM region that can be used to write information associated with the module. In the next
line of code we make a call to Malibu method IdRom(), which returns an object that acts as interface to that region. The
following methods illustrate how to write and read information from IDROM. StoreToRom() and ReadRom() are the two
IdRom methods used to save and retrieve data to/from memory.

//---
// ApplicationIo::WriteRom() -- Write rom using relevant settings
//---

void ApplicationIo::WriteRom()
{
 Module.IdRom().Name(Settings.ModuleName);
 Module.IdRom().Revision(Settings.ModuleRevision);
 for (int ch = 0; ch < Channels(); ++ch)
 {
 Module.Output().Gain(ch, Settings.DacGain[ch]);
 Module.Output().Offset(ch, Settings.DacOffset[ch]);
 }

 Module.Output().Calibrated(Settings.Calibrated);
 Module.IdRom().StoreToRom();
}

//---
// ApplicationIo::ReadRom() -- Read rom and update relevant settings
//---

void ApplicationIo::ReadRom()
{
 Module.IdRom().LoadFromRom();

 Settings.ModuleName = Module.IdRom().Name();
 Settings.ModuleRevision = Module.IdRom().Revision();

 for (int ch = 0; ch < Channels(); ++ch)
 {
 Settings.DacGain[ch] = Module.Output().Gain(ch);
 Settings.DacOffset[ch] = Module.Output().Offset(ch);
 }
 Settings.Calibrated = Module.Output().Calibrated();
}

A one-second timer handler is used to calculate data rates and provide status on Digital I/O, temperature, etc. It is also to fire
the very first trigger. If the module is configured for Framed Mode, then only one frame will be played. If the module is
configured to run in Un-Framed Mode, then one trigger is sufficient until the module is instructed to stop streaming.

//---
// ApplicationIo::HandleTimer() -- Per-second status timer event
//---

void ApplicationIo::HandleTimer(OpenWire::NotifyEvent & Event)
{
 int DigIn = DioData();
 int FrontIn = FrontPanelData();

 // Display status
 UI->PeriodicStatus();

X3-SD16 User's Manual 85

 FrontPanelData(~FrontIn);
 DioData(~DigIn);

 // Initial trigger state machine below
 if (IsTriggered() || !Settings.AutoTrigger)
 return;

 if (PrefillCount)
 --PrefillCount;

 if ((Settings.ExternalTrigger == 0) && (PrefillCount == 0))
 SoftwareTrigger();
}

X3-SD16 User's Manual 86

X3-SD16 Hardware

Introduction

The X3-SD16 is a member of the X3 XMC family that has 16 channels of 24-bit, 144 kHz A/D conversion and 16 channels
of 24-bit, 192 kHz DAC with FPGA computing core designed for monitoring, analyzing and generating wide dynamic range
signals. A dynamic range of over 100 dB with real-time signal processing makes the X3-SD16 suitable for demanding
applications in vibration and acoustic measurement, generation and control.

A high performance computing core for signal processing, data buffering and system IO is built around a Spartan3A DSP
1.8M gate FPGA. Supporting peripherals include 4MB SRAM, conversion timebase and triggering circuitry, 44 bits digital
IO, and a PCI Express interface. The module format is a single slot XMC conforming to IEEE 1386 CMC standard and is
compatible with XMC.3 (VITA 42.3) host sites.

Figure 13. X3-SD16 Module (with analog shield installed)

Custom application logic development for the X3-SD16 is supported by the FrameWork Logic system from Innovative using
VHDL and/or MATLAB Simulink. Signal processing, data analysis, and application-specific algorithms may be developed
for use in the X3-SD16 logic and integrated with the hardware using the FrameWork Logic.

Software support for the module includes host integration support including device drivers, XMC control and data flow and
support applets.

X3-SD16 User's Manual 87

Figure 14. X3-SD16 Block Diagram

A/D Conversion Features

A/D Converters

The X3-SD16 has 16 channels of 24-bit A/D sampling at up to 144 kHz using Texas Instruments ADS1278 A/Ds. There are
two ADS1278 devices on the card, eight A/D channels per device. The inputs are not multiplexed and all 16 channels sample

X3-SD16 User's Manual 88

simultaneously. The ADS1278 is a sigma-delta converter (SD) that has a sample rate at 128 or 256 the output data rate, and
digital filter in the device for out-of-band signal rejection and noise shaping. As is typical of SD converters, the device has a
latency that is inherent in its sampling techniques corresponding to several samples.

Feature Description

Inputs 16, independent

Input Ranges 20V, 10V, 4V.
Programmable.

Input Impedance 20K ohm || 15 pF (excludes cable)

Maximum input voltage (do not exceed or
damage may occur)

+/- 20V

Anti-alias filtering Single pole at 200 kHz;
Digital filter in A/D rejects signals above Fs/2

A/D Devices Texas Instruments ADS1278

Output Format 2's complement, 32-bit

Number of A/D Devices 16 simultaneously sampling

Sample Rate 0 to 144 kHz

Sample Clock Rates 1.2 kHz to 144 kHz;
(PLL can generate clocks up to 280 MHz)

Calibration Factory calibrated for gain and offset errors. Non-
volatile EEPROM coefficient memory.

Table 16. X3-SD16 A/D Features

Conversion clocking is provided through separate, special circuitry that minimizes jitter on the clocks. The clock circuitry
allows for a variety of clock sources, including two external sources, to be used as conversion timebases. See the clock
discussion for more details.

The following block diagram shows the general arrangement of the A/D. The differential inputs, from the front panel
connector, are adjusted for range through a differential amplifier and input to the A/D.

X3-SD16 User's Manual 89

Figure 15. X3-SD16 A/D Channel Diagram

Input Range and Conversion Codes

The A/D conversion codes for the analog ranges are shown in the following table. All voltages are differential- meaning that
+10V requires that the voltage difference between inputs is +10V.

The output codes are 2's complement, 24-bit numbers.

Differential Input
Voltage

Range = 20V Range = 10V Range = 2V Nominal Conversion
Code (hex)
24-bit, 2's complement

+20V +10V +1V 0x7FFFFF

+10V +5V +0.5V 0x400000

0V 0V 0V 0x000000

-10V -5V -0.5V 0xA00000

-20V -10V -1V 0x800000

Table 17. A/D Conversion Coding

X3-SD16 User's Manual 90

Driving the A/D Inputs

The X3-SD16 has fully differential inputs with 20K ohms input impedance. The input range is specified as a differential
voltage for the V+ and V- input with a common mode voltage of 0V for full range. A full scale input is 10Vp-p,
complementary wave on EACH of the inputs for a gain of 1.

The input signals should be driven differentially to realize the full performance of the A/D. The differential inputs reject
common mode noise from the system and the card itself to improve the conversion results. If you drive the inputs single-
ended, the results will be worse by at least 6dB in most cases, worse if the system noise is high.

For signal ended use, the unused input must be grounded. Input voltage range is limited to +10V to -10V for single-ended
use for the standard configuration. This means that single-ended inputs sacrifice half of the available dynamic range.

The input signal must be able to drive a 20K ohm load. This is the input resistance of the X3-SD16.

Unused inputs should be grounded when the MDR68 cable is used to minimize crosstalk and noise pickup.

A/D Filter Characteristics

The A/D channels have an anti-alias filter to suppress high frequency noise. This filter is a single-pole set to 200 kHz. In
addition to the analog filter, the A/D device itself has a digital filter that effectively removes inputs above Fs/2, See the test
data section for measured result.

Figure 16. A/D Frequency Response (Differential input to A/D).

X3-SD16 User's Manual 91

Overrange Detection

The logic is used to detect overrange conditions on the A/D devices. When the input is at or above 99% of full scale,
(0x7FFF00) or negative (0x8000FF), an analog overrange is likely to have occurred. Overrange occurs when the input signal
is above the input range selected is exceeded. For small overrange conditions of less than 5% overrange, the A/D will
recover in a few samples to proper readings. For larger overrange conditions, the A/D may require longer to recover.

The A/D overrange detection in the logic be used to trigger an alert in the logic to notify the application when this error
condition has occurred. The alert message shows when the overrange occurred in system time and which channels
overranged.

Custom logic has access to the overrange bits in the A/D interface component. Each data sample indicates when an overrange
occurs as part of its status byte appended to the data. This allows implementation of automatic gain controls for auto-ranging
external front end signal conditioning.

A/D Sampling Rates

The ADS1278 supports sample rates from DC to 144 kHz. The sample clock can be either an external clock input or
generated on the card by a PLL. A full description of the sample clocks is described in the sample rate generation section of
this manual.

The ADS1278 requires a clock that is either a 256 or 512 multiple of the output data rate (sample rate). The standard logic
and firmware use the high resolution mode of the converter for sample rates below 52 kHz or the high speed mode for sample
rates above 52 kHz. The high resolution mode requires 512 clocks per sample, while the high speed mode requires 256
clocks per sample.

Parameter Min Max Units

Sample rate 0.39 144 Ksps

A/D Clock Rate 10000 27 ns

Clock Divisor 256 (Fs ≥ 52 kHz)
High Speed Mode

512 (Fs<52 kHz)
High Resolution Mode

clks/sample

PLL Clock 0.12 280
(A/D limited to 37 MHz)

MHz

Table 18. A/D Clock Rate Requirements

When the PLL is used, the sample clock has a minimum rate of 1.2 kHz. Sample rates lower than 1.2 kHz are supported
using decimation in the logic. The FrameWork logic supports 1:N decimation to which means that 1 point is kept for every
N collected. All channels must be decimated at the same rate when this mode is used in the standard logic. Note that the
PLL can generate clocks up to 280 MHz, but the A/D is limited to 37 MHz maximum clock rate.

If you use an external clock, you MUST input input the sample rate multiplied by the clock divisor. For example, a 100 kHz
sample rate requires

100,000 samples/sec * 256 clocks/sample = 25.6 MHz

X3-SD16 User's Manual 92

Be sure that your A/D mode is set to either high resolution (divisor = 512) for sample rates below 52 kHz or high speed
(divisor = 256) for rates at or above 52 kHz.

Supporting software functions in the Malibu library are used to configure the sample clock mode and decimation to achieve
the desired sample rate. Since the PLL configuration is somewhat complex, it is recommended that these functions be used
for most applications.

D/A Conversion Features

D/A Converters

The X3-SD16 has 16 channels of 24-bit D/A conversion at up to 144 kHz consisting of two Texas Instruments PCM1681
DACs. The two PCM1681 devices are configured so that all channels update simultaneously. The PCM1681 is a sigma-
delta converter architecture.

Feature Description

Outputs 16, independent

Output Range +2V to -2V

Output Drive Current 10 mA, max

D/A Devices Texas Instruments PCM1681

Output Format 2's complement, 24-bit

Number of DAC Devices 16 simultaneously updated

Updated Rate DC-192 kHz**
** Must be equal to A/D clock rate

Sample Clock Rates from PLL 1.2 kHz to 280 MHz

Calibration Factory calibrated for gain and offset errors. Non-
volatile EEPROM coefficient memory.

Table 19. X3-SD16 DAC Features

Conversion clocking is provided through separate, special circuitry that minimizes jitter on the clocks. The clock circuitry
allows for a variety of clock sources, including two external sources, to be used as conversion timebases. See the clock
discussion for more details.

The following block diagram shows the general arrangement of the DAC. The DACs are directly connected to the FPGA,
which provides direct control of the devices for custom logic designs. The analog circuitry for the DAC output converts from
the DAC output to a voltage range of -2 to +2V on the connector, with reconstruction filtering. Special output voltage ranges
can be ordered to meet application requirements.

X3-SD16 User's Manual 93

Figure 17. X3-SD16 DAC Channel Diagram

Output Range and Conversion Codes

The DAC conversion codes for the output voltages are shown in the following table.

The output codes are 2's complement, 24-bit numbers.

Output Voltage Nominal Conversion Code (hex)

+2V 0x7FFFFF

+1V 0x400000

0V 0x000000

-1V 0xA00000

-2V 0x800000

Table 20. DAC Conversion Coding

X3-SD16 User's Manual 94

DAC Outputs

The X3-SD16 DAC outputs are single-ended voltage outputs with <1 ohm output impedance. The output voltage is
referenced to the card ground.

Each DAC channel has a reconstruction filter on its output. The filter reduces higher frequencies in the DAC outputs due to
the DAC switching. Output response is flat out to about 50 kHz.

Figure 18. DAC Output Filter Response

The DAC outputs are driven by an op-amp capable of +/-10 mA drive current. This is sufficient for most applications. If
more drive current is required, a power amplifier should be added to the system.

The DAC outputs should be carefully handled in the output cabling. Each DAC output has a ground pin adjacent to it on the
connector, and in most cases this ground should be used as the return path for that output.

DAC Sample Underrun

An underrun occurs when a DAC update is required but no new data is available. This can occur if the application cannot
keep up with the update rate. An underrun can be caused by conditions such as the host being too busy to provide data in a
timely fashion or a logic design that cannot meet the required update rate.

X3-SD16 User's Manual 95

When an underrun occurs, the last point provided to the DAC is simply repeated. For waveform generation, this means that
the output has a duplicated point. For servo controls, this creates a one sample delay in the output update. Repeated
underrun conditions result in large data latency and eventually the DAC FIFO overflowing. If an underrun occurs, it will
occur on all channels since the channels are updated as a group.

The logic detects data underrun conditions to the DAC devices and can provide a warning of this condition. The underrun is
used to trigger an alert in the logic that notifies the application when this error condition has occurred. The alert message
shows when the underrun occurred in system time.

DAC Update Rates

The PCM1681 supports update rates from DC to 192 KHz on the X3-SD16 module. At maximum rate, the transfer rate to
the DACs is

192,000 samples/sec * 16 channels * 4 bytes/sample = 12.288 MB/s

Large channel count systems may require attention to the system activity to support full rates to all channels. For most PCs,
up to 4 modules should be trouble-free. For more than 4 modules, consideration should be given to the overall system activity
and a test run to verify performance.

The PCM1681 requires a clock that is either a 128 or 256 multiple of the output data rate (sample rate), as set by the clock
mode of the DAC.

Parameter Min Max Units

Sample rate 0.39 192 Ksps

D/A Clock Rate - 25 ns

Clock Divisor 128 (Mode /= 000) 256 (Mode = 000) clks/sample

PLL Clock 0.12 280
(D/A limited to 40 MHz)

MHz

Table 21. D/A Clock Rate Requirements

When the PLL is used, the sample clock has a minimum rate of 1.2 kHz. Sample rates lower than 1.2 kHz are supported
using decimation in the logic. Note that the PLL can generate clocks up to 280 MHz, but the A/D is limited to 37 MHz
maximum clock rate.

The update clock can be either an external clock input or generated on the card by a PLL. A full description of the sample
clocks is described in the sample rate generation section of this manual.

If you use an external clock, you MUST input input the sample rate multiplied by the clock divisor. For example, a 100 kHz
sample rate requires

100,000 samples/sec * 256 clocks/sample = 25.6 MHz

X3-SD16 User's Manual 96

Supporting software functions in the Malibu library are used to configure the sample clock mode and decimation to achieve
the desired sample rate. Since the PLL configuration is somewhat complex, it is recommended that these functions be used
for most applications.

Notes About Matching the A/D and D/A Data Rates

Since the A/D and D/A must use the same clock rate on the X3-SD16, it is necessary to use a clock mode to match the A/D
clock divisor or provide data to the D/A to compensate for the rate difference. For A/D sample rates below 52 kHz, you must
either provide data to the DAC at twice the A/D rate or set the DAC decimation to 2. If the decimation is 2, then the data
rates are equal since the A/D is using 512 clock divisor, while the D/A is using 256 clock divisor. For rates above 52 kHz, the
D/A and A/D have the same clock divisors so the data rate is equal.

Sample Rate Generation and Clocking Controls
The X3-SD16 can use a sample clock from the PLL, the PLL locked to an external clock, or an external clock. This allows
the module to synchronize to a system clock or use software programmable sample rates. All clock selections are software
programmable on the module.

Clock Mode Use for Restrictions Benefits

PLL with internal
reference

Software programmable
clock

Clock rate has tuning resolution of about 10
Hz

Low jitter clock

PLL with external
reference

Software programmable
clock referenced to
external clock input

External reference must be 1 to 100 MHz,
50-50 duty cycle, see electrical requirements
below

Lock to an external clock and
generate an sample clock
locked to it; Clean up external
clock jitter using the PLL

External Clock Synchronize sampling to
system devices

External clock must be 1 to 100MHz, 50-50
duty cycle, low jitter

Sample rate can be
synchronized with other
devices in the system

Table 22. Sample Clock Modes

The PLL can generate many sample rates that suit most applications. The advantage of using the PLL is that the sample
clock is very clean and low jitter. The output frequency of the PLL is programmable and is determined by the reference clock
rate and the VCXO tuning range.

Software functions for PLL configuration, monitoring and clock distribution are provided in Innovative's Malibu software
toolkit that configure the operating mode and sample rate required for the desired sample data rate.

The X3-SD16 uses one AD9510 devices for its PLL, divider and clock distribution functions with a programmable VCXO.
This provides a clock generation range from 1.22 kHz to 280 MHz. The useful range for the A/Ds is limited to 144 kHz and
to 192 kHz for the DACs.

X3-SD16 User's Manual 97

Figure 1. X3-SD16 Clock Generation and Controls Block Diagram

The PLL reference is either a fixed 100 MHz reference clock or an external reference clock. The output of the PLL is
synchronous to the reference clock and the reference clock input, or integer division of the reference, determines the tuning
resolution of the PLL. To achieve an exact frequency that is not a division of the reference clock, it is necessary to supply an
external reference. The PLL will generate an output synchronous to the external reference.

The sample clock for the front panel DIO is direct from the clock distribution circuitry and is NOT derived from the
application logic clocks or PCI Express bus clock. This is because these clocks have more jitter (phase noise) .

Note: Conversion clocking is separate from triggering – sample clock is the time when samples are digitized, but trigger
determines when those samples are kept.

External Clock and Reference Inputs

The X3-SD16 has two external inputs that that may be used as sample clock plus two external inputs that may be used as the
PLL reference clock. The two external input clocks, Ext_Clk and PXI_DSTARA, can be directly used as the sample clock.
The 100 MHz clock oscillator and PXI_100M clock can be used as references to the PLL. The following table shows the
clock multiplexer controls for the X3 modules.

Control Signal Device Function Result

PLL_REF_SEL PLL Reference Mux Selects either PXI_100M or 100MHz fixed
oscillator as the PLL reference

0 = 100 MHz
1 = PXI_100M

X3-SD16 User's Manual 98

Control Signal Device Function Result

PLL_CLKA_SEL External Clock Mux Selects either Ext_Clk or PXI_DSTARA as
input to the clock distribution

0 = Ext_Clk
1 = PXI_DSTARA

Table 1. X3 External and Reference Clock Selection

To use an external clock, the external clock multiplexer must be configured to select either the front panel external clock or
the PXI_DSTARA input on P16. The control signal, PLL_CLKA_SEL is from the application logic FPGA and is set by the
host software when the standard logic image is used.

The following diagram shows the clock path when an external clock is used. Note that the PLL is bypassed when using an
external clock.

Figure 1. X3-SD16 External Clock Path

The selection of the PLL reference clock is also software programmable. The reference clock multiplexer selects the PLL
reference clock as either the 100 MHz oscillator or the PXI_100M input on P16. The control signal, PLL_REF_SEL is from
the application logic FPGA and is set by the host software when the standard logic image is used.

All external clock and reference inputs are LVDS and must be driven as a differential pair. Each differential pair is 100 ohm
terminated. The LVDS inputs cannot be driven single-ended – both inputs must be actively driven. Electrical characteristics
of the inputs are shown in the following table.

X3-SD16 User's Manual 99

Parameter Min Typical Max

Input Frequency 0 100 MHz

Input Common Mode Input Voltage 0.5V 2.4V

Input Amplitude 0.2 1Vp-p

Input Termination 100 ohms

Input Capacitance 15 pF
Table 1. X3 External Clock and Reference Input Requirements

The external clock and reference inputs are from either the front panel connector JP1 or XMC secondary connector P16. To
use the P16 connector inputs, the carrier card must support the P16 pinout shown later in this chapter. Here is where the
external clock inputs are connected:

Signal Connector + Input - Input Comments

External Clock (ext_clk) JP1 33 67 MDR68 front panel connector

PXI_DSTARA P16 A9 B9 XMC secondary connector

PXIE_100M P16 D9 E9 XMC secondary connector
Table 2. External Clock and Reference Signal Pinouts

PLL Output Range and Resolution Limitations

The sample rates that can be generated are limited by the VCXO tuning range, the PLL reference frequency, and the PLL
tuning parameter limits. For the standard VCXO and PLL circuitry, the sample clocks tuning resolution is st to 100 kHz.
Considering the divider that follows the VCXO, the output resolution is shown in this table for several dividers.

For VCXO tuning range of 10 to 280 MHz, and integer output divisors D = 1 to 32, the allowable output ranges are shown.

Output Divisor, D Lower Limit (MHz) Upper Limit (MHz) Resolution (MHz)

1 10.000 280.000 0.100

2 5.000 140.000 0.050

4 2.500 70.000 0.025

8 1.250 35.000 0.013

16 0.625 17.500 0.006

32 0.313 8.750 0.003
Table 3. Sample Clock Output Ranges and Resolution

Programming the PLL and VCXO

The VCXO used on the X3-SD16 is programmable to set the center frequency. The frequency is set so that PLL runs at the
maximum rate possible – an even multiple of the A/D clock rate. So if the A/D needs a 25 MHz clock, the VCXO will be set
to 25 MHz * 10 = 250MHz. This is the maximum frequency for the VCXO that is an even multiple of the desired clock rate.
The PLL will then run at 250 MHz and the dividers will be set to 10.

X3-SD16 User's Manual 100

Programming the PLL to run at 250 MHz rate requires that the internal dividers be set so that the phase comparison is done at
100 kHz. The remainder of this section discusses how to find these numbers for the PLL configuration. For most
applications, the Malibu support software configures the PLL according to the desired sample rate. The software configures
the VCXO to the desired PLL frequency and then all PLL registers so that the output frequency is as close as possible to the
required sample rate given the constraints of resolution as determined by the tuning parameters and the VCXO tuning range.

Note: It is best to use the Malibu drivers for almost all applications and the following discussion is only for users who need to
modify the PLL tuning for very unique applications.

The tuning equation for the AD9510 is :

FVCXO = (Fref/R) x (PB +A)

where Fref = 100 MHz (or external reference frequency)

R = 1 to 16383, integers

B= 3 to 8191, integers; 1 = bypass

A= 0 to 63, integers, used only in dual modulus mode

P= 1,2,3,4,8,16, or 32

and 10 MHz < FVCXO < 280 MHz

All PLL tuning parameters R, B, A and P are software programmable through the PLL interface.

Step

1 Pick a phase detector frequency close to 100 kHz. This
matches the PLL configuration on the card.

Fphase_detector ≈ 100kHz

2 Calculate a reference divisor so that the phase detector
frequency is close to 100kHz.

Fphase_detector = Fref / R ≈ 100kHz
R = 1 to 16383
100 kHz ≤ Fref ≤ 250 MHz
R= 1000 for on-board reference

3 For an output sample clock Fout, find the output
divisor D that keeps the VCXO within its tuning range.

FVCXO = Fout/D
D= 1,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30 or 32
100 MHz ≤ FVCXO ≤ 140 MHz

4 Find PLL feedback divisor M = int (FVCXO / Fphase_detector)
1 ≤ M < 262144

5 Find operating mode, fixed modulus or dual modulus
and value of A.

A= FVCXO mod Fphase_detector
If A = 0, then mode should be fixed divide;
if A> 0 then dual modulus mode is used

X3-SD16 User's Manual 101

6 Select value of prescaler P based on operating mode
and divisor ratio M.

Pick P and B such that M= P*B using smallest values
possible.

For fixed divide, P = 1, 2, or 3.
For dual modulus, P= 2, 4, 8, 16 or 32.
B = 3 to 8191, integers; 1 = bypass

7 Check calculations. Fout = FVCXO/D
FVCXO = (PB+A) * Fref / R , 100 MHz ≤ FVCXO ≤ 140
MHz

Table 4. Selecting values for PLL Divisors

Table 5. PLL Example Settings

The software tools provide hooks for direct programming of the PLL divisors to override the automatic functions in Malibu.
During experimentation, the PLL registers can also be written using Peek/Poke functions or scripts. These functions are
supported on the Debug tab in the example applications SNAP and WAVE. Consult the AD9510 register map for details on
register formats.

PLL Lock and Status

The PLL has a status pin that can be programmed to show when the PLL is locked or other status information. The software
in the SNAP example configures this pin to be digital lock detect. It indicates when the PLL is locked and ready for use. If
the PLL lock is false, the PLL is not working properly and may give poor results or inaccurate frequencies. Even when the
PLL is unable to lock, it will produce an output so the mere presence of data does not indicate that the PLL is operating at the
correct frequency or is stable.

The PLL lock can also generate an alert to the system if an unlock condition occurs. In this mode, when the PLL falls out of
lock, as indicated by a falling edge on the PLL status pin an alert message is created showing the time of the unlock and other
system information. See the Alert Log section for further information on using Alerts.

PLL lock is only valid for phase comparisons < 25 MHz. It is unreliable above this frequency.

X3-SD16 User's Manual 102

D FVCO R M A P B
31.100 4 124.4 100 1000 311 0 1 311
11.000 10 110 100 1000 110 0 1 110
5.100 20 102 100 1000 51 0 1 51
3.300 32 105.6 100 1000 33 0 1 33
3.200 32 102.4 100 1000 32 0 1 32

Fs (MHz) Fref (MHz)

PLL Control Interface

There are two AD9510 devices is mapped into the PCI Express memory space. This allows the host to access the PLL
control ports for configuration and status. Writes to the PLL interface ports generate a serial data stream to the PLL that is
used to configure the PLL.

Device Function Address

U36 PLL/clock divider BAR1 + 0xA
Table 6. Clock Device Address

This interface is only for configuration, accesses should be spaced by the host computer to be at least 2 ms apart. The
Malibu library handles this restriction as part of the function.

The PLL interface uses a 24-bit word to communicate with the PLL that specifies a read or write access, the PLL register
address and the data byte to transfer. For reads, the data byte is a don't care. The 24-bit word is as follows.

Bits Function

31..24 Not Used.

23 R/W; 1 = read PLL.

22..15 X“00”

14..8 PLL register address.

7..0 Data byte (don't care for reads)
Table 7. PLL Interface Word Format

Writes

Writes to the PLL are pokes to register 0xA, located in the system memory at BAR1 + 0xA. The data value is the 32-bit
word as described above.

Step Read/Write Address Value Comments

1 Write BAR1+0xA X”00801C12” Write to PLL register 0x1C value 0x12
Table 8. PLL Read Sequence

Reads

Reads from the PLL require a two step process consisting of first a write to the PLL register specifying a read at an address,
followed by a read from the PLL register that returns the value of the PLL register specified by the address in the PLL word.
The PLL is read is a single byte.

For reads, the PLL must be written to with a bit 23 as '1' and the address that is to be read, then read from the PLL register.
For example, a read to PLL register X”40” would be performed as

X3-SD16 User's Manual 103

Step Read/Write Address Value Comments

1 Write BAR1+0xA X”00804000” Set up a read from PLL address X”40”

2 Read BAR1+0xA X”x01303xx” See format below
Table 9. PLL Read Sequence

The PLL readback word has the following format. The PLL read must be performed before any additional writes are
performed.

Bits Function

31 PLL Status Pin

30..24 “0000000”

23..8 X“1303”

7..0 Data byte
Table 10. PLL Read Word

Notes About the PLL Configuration

The PLL must be initialized through software before it will make a the correct sample clock rate. This device has many
configurations that require programming of a large number of registers prior to use. The X3 support software provides PLL
configurations that satisfy most applications and should be used if possible.

For custom configurations, the AD9510 data sheet should be consulted. The X3-SD16 requires the clock assignments as
show in the following table. The sample clock (fs) in the FPGA clock is connected to AD9510 output 0. The divider should
be programmed to use LVPECL output to the FPGA, while the other clocks are CMOS.

Channel AD9510 Output Signal Type

FPGA 0 +/- LVPECL

A/D device 0 (even channels) 4+ CMOS

A/D device 1 (odd channels) 5+ CMOS

DAC device 0 (channels 0-7) 6+ CMOS

DAC device 1 (channels 8-15) 7+ CMOS
Table 11. PLL Output Assignments

The VCXO is connected to the CLK2 input to the PLL. The standard reference clock is 100 MHz to the PLL, although an
external reference may be used. The output of the PLL section of the AD9510 can therefore be programmed to many
numbers in the range of 10 to 280 MHz, that may be subsequently divided in the outputs. The dividers in the clock
distribution section of the AD9510can be used to further divide the clock by 1 to 32, with the restriction only even numbers
are used to make the clock a 50% duty cycle.

X3-SD16 User's Manual 104

The external clock and optional fixed oscillator are connected to the CLK1 input. The PLL must be programmed to use one
of these two clock sources for the outputs. The clock dividers on the outputs should be programmed to the same divisor to
work with the standard logic.

The AD9510 is programmed during initialization of the card. All configuration registers are written, then an update
command is sent to the PLL that makes the outputs update simultaneously. After an update, the clock is stable when the PLL
status bit indicates a lock.

Timing Analysis

There are several timing parameters associated with the clock control circuitry that affect the measurement process. The
following table summarizes two important effects.

Timing propagation delay through the logic for external clocks are shown for the maximum and typical timing. The external
clocks go through one or two multiplexers, accounting for the differences in propagation delay to the various devices.

Jitter is summed as the root sum of squares for random jitter.

Clock Source Clock Destination Propagation Delay (ns) Additive Jitter (ps RMS)

External clock or
PXI_DSTARA

A/D and DAC
conversion clocks

3.6 typical
5.0 maximum

0.07

100 MHz or PXIE_100M PLL Reference clock 1.2 typical
1.5 maximum

0.05

Table 12. X3-SD16 External Sample Clock Timing

Triggering
The X3-SD16 has a triggering component in the FPGA that controls the data acquisition process. The sample clock specifies
the instant in time when data is sampled, whereas triggering specifies when data is kept. This allows the application to
collect data at the desired rate, and keep only the data that is required.

On the X3-SD16 module, all A/D and DAC channels operate synchronously using the same clock and trigger. The trigger
controls allows data to be acquired continuously, or during a specified time, as triggered by either a software or external
trigger. Data can also be decimated to reduce data rates.

X3-SD16 User's Manual 105

Trigger Mode Data Collected/Played Back Start Trigger Stop Trigger

Continuous All enabled channel pairs Software or rising edge of
external trigger

Software or falling edge of
external trigger

Framed N sample points for each of
the enabled channel pairs

Software or rising edge of
external trigger

Stops when N samples are
collected back

Decimation M points are discarded for
every point kept. May be
used with either trigger
mode.

- -

Table 13. Table 2: Trigger Modes

The sample rate is equal to the clock rate on the X3-SD16 module. The trigger component operates at the sample rate for its
data collection process. The trigger is synchronized to the sample clock rate.

Figure 2. Sample Triggering

As shown in the diagram, A/D samples are captured when the sample period and the trigger are true on rising edges of the
sample clock. The trigger is true in continuous mode after a rising edge on the trigger input, software or external, until a falling
edge is found. The trigger is timed against the sample clock and may have a 0 to +1 sample uncertainty for an asynchronous
trigger input.

The trigger control on the X3-SD16 module always ensures that a complete set of samples for the time period are acquired no
matter when the trigger is de-asserted. This means that for an unsynchronized trigger input such as an external device, you will
always get samples for all enabled channels no matter when trigger is enabled or disabled.

DAC updates are identical in functionality to the A/D sampling. A/D and DAC samples are always synchronous. DAC updates
occur only when the trigger is true on rising edges of the sample clock.

X3-SD16 User's Manual 106

Fs

Analog
Input

Trigger

Samples are acquired for each sample period when
trigger is true.

The Malibu software tools provide trigger source configuration and methods for software triggering, re-triggering in framed
mode and trigger mode controls.

Trigger Source

A software trigger or external trigger can be used by the trigger controls. Software trigger can always be used, but external
triggering must be selected. This prevents spurious triggers from noise on external inputs. The trigger source is level-
sensitive for the continuous mode or edge-triggered for the framed mode triggering.

External Trigger JP1 Pin Number

ADCC Trigger 68

DAC Trigger 34

Table 14. External Trigger Input

The ADC trigger may be used to also trigger the DAC by setting bit 28 in control register 24.

External trigger is an LVTTL input and has the following electrical characteristics.

Typical Maximum

Logic High > 1.4 V 3.6V**
Up to 5.5V if a 100 ohm series resistor is used

Logic Low < 0.7V -0.3V

Input Impedance >1M ohm

Table 15. External Trigger Electrical Characteristics

Framed Trigger Mode

Framed trigger mode is useful for collecting data sets of a fixed size or playing a fixed number of samples each time the input
trigger is fired. In framed mode, the trigger goes false once the programmed number of points N have been collected. Start
triggers that occur during a frame trigger are ignored.

The maximum number of points per frame is 16,777,216 (2^24) points, while the minimum number of points is 2.

Data flow to the host is independent of the framed triggering mode. In most cases, packet sizes to the host are selected to be
integer sub-multiples of the frame size to allow the entire data set to flow to the host. That way, the entire data frame can be
moved immediately to the host without waiting for the next trigger frame. The only restriction is that packet sizes are limited
to a minimum of 2 32-bit words, meaning that a packet must be at least 4 samples, the samples composed of one or more
channels of data.

X3-SD16 User's Manual 107

Decimation

The data may be decimated by a programmed ratio to reduce the data rate or match the A/D and DAC data rates. Depending on
the A/D sample rate, the DAC data rate may be 2x the A/D data rate. In this case, a decimation rate of 2 to the DACs is used to
compensate for this disparity when the same data rate is desired.

The decimation simply discards N points for every point kept – no averaging or filtering is used. When decimation is true, the
number of points captured in the framed mode is the number of decimated points, in other words the discarded points do not
count. Maximum decimation rate is 1/4095.

When decimation is used in the framed trigger mode, the number of points captured is after decimation. The frame count is
always the actual number of points inserted into the FIFO.

Synchronizing Multiple X3-SD16
Synchronizing multiple X3-SD16 for large channel-count systems is supported so that simultaneous sampling and DAC
updates are achieved. This requires that the modules first be started in synchronization, then that the clock and triggers be
synchronous to one another.

In a multiple card system, the sync signal is either from an X3-SD16 designated as the sync master or may be provided by a
system signal. The sync is connected to all of the slave cards in the slave system.

The sample clock must also be synchronized to all cards. This can be achieved using a common clock signal or clock
reference to the cards. For example, a 10 MHz signal from the system GPS or clock reference can be provided to each card
so that its PLL can lock to the reference and generate the sample clocks. All cards must run at the same frequency, or an
integer sub-multiple, for synchronization to work.

The system trigger must also be synchronous to the system clock to achieve simultaneous sampling. It is not sufficient to
simply drive the same signal to all cards since this may result in an indeterminate relationship to the clock. The trigger must
be synchronized to the clock. If a clock reference is being used, the trigger must be synchronous to the reference.

Sync Signal

Sync is a bidirectional signal used to control the A/D and D/A timing. The direction of sync is specified a software
programmable register. When the sync is designated as a master, the sync signal is an output. When designated as a slave,
the sync is an input. The logic synchronizes sync to the sample clock.

Bit Function
13 Sync Master control

'1' = master (sync is OUTPUT from this card on trigger 1)
'0' = slave (sync is INPUT to this card on trigger 1) (default)

Table 16. Sync Control Bit (Register 0x1)

X3-SD16 User's Manual 108

External Sync JP1 Pin Number Direction

SYNC 34 Master: output
Slave: input

Table 17. Sync Signal

The Sync signal is an LVTTL IO standard and has the following electrical characteristics.

Typical Maximum

Logic High > 1.4 V 3.6V**
Up to 5.5V if a 100 ohm series resistor is used

Logic Low < 0.7V -0.3V

Input Impedance >1M ohm

Table 18. Sync Signal Electrical Characteristics

64-channel System Example

As an example, a 64 channel system can be created using four X3-SD16 cards. An Innovative X3-Timing card is used in this
example to provide the synchronized triggers and clocks. The X3-Timing card is configured to provide a 10 MHz reference
clock to the system and triggers that are synchronized to this reference clock. One of the X3-SD16 cards, designated the
synch master, drives a sync to the other cards. When the software releases the master sync, all cards then start sampling in
synchronization. A trigger from either the system software or an external source begins the data acquisition/playback
process.

X3-SD16 User's Manual 109

Figure 3. Example 64-channel System Architecture

To synchronize the system, the following steps must be followed.

1. Software configures the cards for sync master/slave.

2. A common clock is provided to the X3-SD16 cards. If a common reference clock is used, then the X3-SD16 cards
must be configured to use an external reference then the PLL for each card must lock to this signal. Do not proceed
until all cards in the system have their PLL locked.

3. Wait 65K clocks, then the master should release the sync. For best DC accuracy, wait 5 minutes for thermal
stabilization.

4. The cards are now ready to collect data or playback. At this point, trigger can be fired at any time to control the data
acquisition process.

FrameWork Logic Functionality
The FrameWork Logic implements a data flow for the X3-SD16 that supports standard data acquisition and playback
functionality. This data flow, when used with the supporting software, allows the X3-SD16 to act as a data acquisition card
with 2MB of data buffering and high speed data streaming to the host PCI Express. The example software for the X3-SD16
demonstrates data flow control, logic loading and data logging.

X3-SD16 User's Manual 110

X3-SD16

Ref Clock X3-Timing

Master

X3-SD16

X3-SD16

X3-SD16

Clock,
Trigger

Clock,
Trigger

Clock,
Trigger

Clock,
Trigger

Slave

Master

Slave

Slave

A/D 0-15
D/A 0-15

A/D 16-31
D/A 16-31

A/D 32-47
D/A 32-47

A/D 48-63
D/A 48-63

A 64-channel simultaneously sampling system
employing 4x X3-SD16 and X3-Timing.

Figure 4. X3-SD16 FrameWork Logic Data Flow

The data flow is driven by the data acquisition process . Data flows from the A/D devices into the A/D interface component
in the FPGA as they are acquired. The data is then error corrected and the enabled channels are stored into the A/D data
buffer when trigger is true, which is implemented a data queue in the SRAM. When data is available in the buffer, the
packetizer pulls data from the queue, creates data packets of the programmed size and sends those to the PCIe interface logic.
From here, the Velocia packet system controls the flow of data to the host. Data packets flow into host memory for
consumption by the host program.

The DAC data flow is essentially the inverse of A/D flow: sample data flows from the PCI Express interface, into the DAC
data buffer, and then into the DAC interface. In the DAC interface, the samples are modified to correct to analog gain and
offset errors then converted to straight binary for the DAC device.

The Board Basics and Host Communications chapters of this manual discuss the use of the packet data system used on the
X3 module family. The X3-SD16 module FrameWork Logic connects the data from A/D interface to the packet system by
forming the 24-bit data into 32-bit words of consecutive enabled channels (channels 0, 1 etc). Status indicators for the A/Ds
are integrated with the alert log to provide host notifications of important events for monitoring the data acquisition process,
some of which are unique to the X3-SD16. DAC data is also delivered as 32-bit words by the host, then dissembled into
channel data on the X3-SD16. The data sequence is ordered consecutively for the enabled channels channels (0, 1 etc).

The complete description of the FrameWork Logic is provided in the FrameWork Logic User Guide including the memory
mapping, register definitions and functional behavior. This logic is about 25% of the available logic in the application FPGA
(1.8M gate device). In many custom applications, unused logic functions can be deleted to free up gates for the new
application.

X3-SD16 User's Manual 111

Power Controls and Thermal Design
The X3-SD16 module has temperature monitoring and power controls to aid in system integration. Also, the module has
been designed to include conduction cooling to improve heat dissipation from the module. These features can make the
module more reliable in operation and also reduce power consumption.

System Thermal Design

The X3-SD16 dissipates about 6.6 Watts typically for all analog channels running at full rate. In standby mode, the power
dissipation is about 3.5W.

In an office or lab environment, the module can run without forced air cooling. Operating temperature is about 48C for a
typical 24C office environment.

If your operating environment exceeds 40C you should carefully consider how to cool the module in your application.
Conduction or forced air cooling can be used to keep the module from exceeding its maximum operating temperature of 70C.
If the module temperature exceeds 85C as measured by the temperature sensor in the card, the module will disable the analog
power supplies to reduce power consumption.

Conduction cooling is supported for the module and provides an effective method in many applications. A thermal plane in
the card is attached to the center stripe on the card. The card can then be cooled by mounting the card on host card that
supports conduction cooling. The conduction cooling method allows the module heat to be flowed out to the chassis. The
thermal plane has NO electrical connection in the module and cannot be used as a ground.

The front panel bracket is used for cooling and is attached to the thermal plane. The front panel is not electrically connected
to the module ground plane- its is only connected to the thermal plane. When the module is operating, the front panel usually
feels slightly warm; this is normal.

Temperature Sensor and Over Temperature Protection

The temperature sensor is described in detail in the Board Basics chapter of this manual. The temperature sensor is used to
monitor the module temperature and protect it from overheating. Temperature readings from the module are provided for
system monitoring and are also reported in each alert packet. During system development, it is a good idea to have a look at
the temperature and verify that everything is OK inside the system during actual use.

When the module exceeds 85C, the analog power supplies shut down, reducing the power consumption to about 3W. The
module can continue to communicate but no valid data will be collected. A temperature warning may be enabled via the
Alert Log when the temperature is above 70C. If a warning occurs, it is best to do something either to reduce power
consumption, such as turning off the A/D channels, turning on a system fan or turning off other things in the system.

The application LED on the X3 module will flash when the module is too hot (>85C). The module must be completely
powered down to restart once a failure occurs.

X3-SD16 User's Manual 112

Reducing Power Consumption

The X3-SD16 has power controls that allow the application software to power down unused channels and run in reduced
power mode for the A/Ds. If you incorporate these into your application, you may be able to avoid problems later in hot
installations.

Feature Power Saved Comments

A/D Channel enables 120 mW per channel; 1.9W total (min) The A/D channels and input amplifiers for that
channel are powered off.

D/A not used 60 mW per channel; 1 W total (min) Turn off the clock to the D/A devices.

Application FPGA not
configured

3.1W Must reload the FPGA to resume operation.

33 MHz system clock 0.5W 33 MHz FPGA system clock. Data rate to host
is limited to <100 MB/s typically. Requires
custom logic design.

Table 19. Reduced Power Options

The 33 MHz system clock feature requires that the card reconfigured by installing a 0 ohm jumper for R228. This jumper is
located near the PCIe interface device (XIO2000A) and is on the back of the card. The factory can pre-configure this if you
decide to use this option in production. As shipped, the system clock is 66 MHz because this allows the system logic to
support custom logic developers more easily. Tests have shown that this reduces operating temperature by 4 C for room
temperature testing with no forced air. Total data rate from the module must be limited to 50MB/s when a 33 MHz clock is
used.

Alert Log

Overview

X3 modules have an Alert Log that can be used to monitor the data acquisition process and other significant events. Using
alerts, the application can create a time history of the data acquisition process that shows when important events occurred
and mark the data stream to correlate system events to the data.. This provides a precision timed log of all of the important
events that occurred during the acquisition and playback for interpretation and correlation to other system-level events. Alerts
for critical system events such as triggering, data overruns, analog overranges, and thermal warnings provide the host system
with information to manage the module.

The Alert Log creates an alert packet whenever an enabled alert is active. The packet includes information on the alert, when
it occurred in system time, and other status information. The system time is kept in the logic using a 32-bit counter running
at the sample clock rate. Each alert packet is transmitted in the packet stream to the host , marked with a Peripheral Device
Number corresponding to the Alert Log.

The Alert Log allows X3 modules to provide the host system with time-critical information about the data acquisition to allow
better system performance. System events, such as over-ranges, can be acted on in real-time to improve the data acquisition

X3-SD16 User's Manual 113

quality. Monitoring functions can be created in custom logic that triggers only when the digitized data shows that something
interesting happened. Alerts make this type of application easier for the host to implement since they don't require host activity
until the event occurs.

Types of Alerts

Alerts can be broadly categorized into system, IO and software alerts.

System alerts include monitoring functions such as temperature, time stamp rollover and PLL lost. These alerts just help keep
the system working properly. The temperature warning should be used increase temperature monitor and to prepare to shut
down if necessary because thermal overload may be coming. Better to shut down than crash in most cases. The temperature
failure alert tells the system that the module actually shut itself down. This usually requires that the module be restarted when
conditions permit.

The data acquisition alerts, including over ranges, overflows and triggering, tell the system that important events occurred in
the data acquisition process. Overflow is particularly bad – data was lost and the system should try to alleviate the system by
unclogging the data pipe, or just start over. If you get an overrange alert, then the data may just be bad for a while but
acquisition can continue. Modules with programmable input ranges can use this to trigger software range changes.

Software alerts are used to tag the data. Any message can be made into an alert packet so that the data stream logged includes
system information that is time-correlated to the data.

Table 20. Alert Types

Alert Purpose
Timestamp rollover The 32-bit timestamp counter rolled over. This can be used to extend the

timestamp counter in software.
Software Alert The host software can create alerts to tag the data stream.
Over Temperature Alarm/ Sensor Failure The module temperature exceeded 85C.
Temperature Warning The module temperature exceeded 70C.
PLL Lost The sample clock PLL lost lock. The PLL must be reconfigured.
ADC Queue Overflow The ADC data queue overflowed indicating the host did not consume the

data quickly enough.
ADC Trigger The ADC trigger went active.
ADC Overrange An ADC channel was overranged.
DAC Trigger The DAC trigger went active.
DAC Queue Underflow The DAC data queue underflow indicating the host did provide data when

required by the DAC

Alert Packet Format

Alert data packets have a fixed format in the system The Peripheral Device Number (PDN) is programmable in the software
and is included in the packet header, thus identifying the alert data packets in the data stream. The packet shows the
timestamp in system time, what alerts were signaled and a status word for each alert.

X3-SD16 User's Manual 114

Dword # Description
0 Header 1: PDN & Total #, N, of Dwords in packet (e.g. Headers + data payload)
1 Header 2: 0x00000000
2 Alerts Signaled
3 Timestamp
4 0
5 Software Word
6 temp_sensor_error & temp_error & "00" & X"000" & temp_data;
7 temp_warning & "000" & X"000" & temp_data;
10..8 0
12 X"1303000" & "000" & mq_overflow(0);
15..13 0
16 X"1303” & adc_overrange
23..17 0
24 DAC Underflow
35..25 Unused (0)
Table 21. Alert Packet Format

Since alert packets contain status words such as temperature for each packet, a software alert can essentially be used to read
temperature of the module and so that it can be recorded.

Software Support

Applications have different needs for alert processing. Aside from the bulk movement of data, most applications require some
means of handling special conditions such as post-processing upon receipt of a stop trigger or closing a driver when an
acquisition is completed.

When the alert system is enabled, the module logic continuously monitors the status of the peripheral (usually analog)
hardware present on the baseboard and generates an alert whenever an alert condition is detected. It's also possible for
application software to generate custom alert messages to tag the data stream with system information.

The Malibu software provides support for alert configuration and alert packet processing. See the software manual for usage.

Tagging the Data Stream

The Alert Log can be used to tag the data stream with system information by using software alerts. This helps to provide system-
level correlation of events by creating alert packets in the data stream created by the host software. Alert packets are then created by
the X3 module and are in the stream of data packets from the module. For example it is often interesting when something happens
to the unit under test, such as a change in engine speed or completion of test stimulus.

X3-SD16 User's Manual 115

Using the X3-SD16

Where to start?

The best place to start with the X3-SD16 module is to install the module and use the SNAP example to acquire some data.
This program lets you log data from the module and use all the features like triggering, clocks, alerts and calibration ROM.
You can use this program to acquire some data and log it to disk. This should let you verify that the module can acquire the
data you want and give you a quick start on deciding what sample rates to use, how to trigger the data acquisition best for
your application, and just get familiar with using the module.

The program also shows how to use BinView, a data analysis and viewing program by Innovative, that will let you see what
you acquired in detail. Both time domain and frequency domain data can be viewed and analyzed. Data can also be exported
to programs like Excel and MATLAB for further analysis.

Before you begin to write software, taking a look at SNAP will allow you see everything working. You can then look at the
code for SNAP and modify it for your application or grab code from it that is useful.

A similar program for DAC outputs is provided call WAVE. WAVE allows you to generate various waveforms on the host
and play them out through the DAC channels. DAC features such update clock controls and channel enables are shown.
WAVE allows you to become acquainted with the features and provides an example to the programmer for using the DACs.

Getting Good Analog Performance

The X3-SD16 has analog dynamic range exceeding 100 dB. To take advantage of this, it is important to do the following:

● Use differential input signals to eliminate system noise. Single-ended signals give typically 10 to 20 dB worse
results because of noise pickup.

● Band limit input signals. Even though the A/D has filtering and rejects most out-of-band noise, it is a good
idea to filter the incoming signal just to get rid of as much noise as possible.

● Scale your input signals to utilize the full range of the input and outputs. Make the signal as big as possible so
that the noise is a not as much a factor. Custom ranges can be ordered if necessary.

● Use a high quality shielded cable. The MDR68 cable was selected because it has a foil shield and delivers
near-coax performance.

● Twist DAC outputs with the return current wire as a pair. Use the GND on the adjacent pin for each DAC
output.

● Reference input signals to the module ground. Be sure not to introduce ground loops.

If you decide to test the X3-SD16 to verify its performance, be aware that most signal sources are not good enough without
additional filtering and careful use. Most single-ended lab instruments are limited by their distortion to about 80 dB. Post-
filter is necessary to clean them up if you want to test the X3-SD16.

X3-SD16 User's Manual 116

Application Logic

The application logic must be loaded after every system boot-up or reset. There is no on-card storage for the logic image.
The logic can be loaded using the LogicLoad software applet or is loaded as part of the application itself, such as SNAP. If
you write your own application, you will need to either use LogicLoad or incorporate a logic loader in the application. The
code in SNAP is a good example of how to do this. Logic loading takes about 5-10 seconds using the PCIe interface.

Calibration
Every A/D and DAC sample is error corrected on the X3-SD16 module in real-time by the application FPGA. This error
correction is done as the samples flow through the FPGA and is done digitally. This results in improved performance and
reliability for the module because the error correction does not change over time or temperature.

The basic error terms for offset and scale factor are corrected by the logic. This is a first order error correction where

y = mx + b

The gain m is programmed as

m = X”C000” + gain/2; where gain =0x20000 for unity gain. Gain is a 16-bit number.

The offset is programmed as

b = offset*32; where offset is an 18-bit number.

wherein x = the input sample, m = gain correction and b = offset correction. The resultant samples are the error corrected
output samples. Trim range is about 1.5 for gain and 10% for offset.

Production Calibration

Each X3-SD16 is calibrated as part of the production tests performed. The calibration results are provided on the production
test report with each module. The results of the calibration are stored in the on-board EEPROM memory. These calibration
values are used by the logic to correct the analog errors and are loaded into the A/D and DAC components as part of the
initialization by the software.

The calibration technique used during factory test determines the A/D errors by first measuring the output with ground
connected, then a known voltage. A value close to 95% full scale for each range are recommended. The measurements are
the average of 64K samples at each test voltage. From these three points across the input range, the gain and offset errors are
calculated.

DACs outputs are calibrated using a precision voltmeter. Outputs of 0V, +95% FS, -95% FS are commanded on the module
and these points are used to calculate the gain and offset errors. The voltmeter provides a high precision measurement that
is the average over a 1 second period, effectively rejecting the noise for this measurement.

X3-SD16 User's Manual 117

All test voltages are measured as part of the procedure with NIST traceable equipment. Production calibration is performed at
room temperature (~24C) with the module operating temperature at about 50C. A minimum warm-up period of 5 minutes is
used for the testing.

Under normal circumstances, calibration is accurate for one year. For recalibration, the module can be sent to Innovative or
re-calibrated using a similar test procedure.

Updating the Calibration Coefficients

A software applet for writing the calibration coefficients to the EEPROM is provided (EEPROM.exe). New coefficients are
simply typed into the offset and gain field for each channel.

Calibration coefficients for gain should not be greater than 1.1 and offset < 0x8000 . If the calculated coefficients are larger
than this, they are either wrong or the channel is damaged.

X3-SD16 User's Manual 118

Performance Data

Power Consumption

The X3-SD16 requires the following power for typical operation with when using the FrameWork Logic. This typical
number assumes a 107 MHz system clock rate and all analog channels active for the application logic.

Table 22. X3-SD16 Power Consumption

Voltage Maximum
Allowed
Current (A)

Condition Typical
Current
Required (A)

Typical
Power
(W)

Derived from Supplies these Devices

3.3V 5A
(recommended)

Before
application
logic is loaded
24C

1.16 3.8 Direct connect to
the PCIe host

All devices; on-card power
supplies use 3.3V as
source

3.3V 5A
(recommended)

After
application
logic is loaded
27C

1.28 4.2 Direct connect to
the PCIe host

All devices; on-card power
supplies use 3.3V as
source

3.3V 5A
(recommended)

144 ksps
sample rate;
30C card
temperature

1.99 6.6 Direct connect to
the PCIe host

All devices; on-card power
supplies use 3.3V as
source; no loading for D/A
output or digital IO

12V - 0 0 Not required -

Surge currents occur initially at power-on and after application logic initialization. The power-on surge current lasts for
about 10 ms @ 5A on the 3.3V supply. This surge is due primarily to charging the on-card capacitors and the startup current
of the FPGAs. After initial power-up, the logic configuration will also result in a step change to the current consumption
because the logic will begin to operate. In our testing and measurements, this has not been a surge current as much as a just a
step change in the power consumption.

Power consumption varies and is primarily as a function of the logic design. Logic designs with high utilization and fast
clock rates require higher power. Since calculating power consumption in the logic requires many details to be considered,
Xilinx tools such as XPower are used to get the best estimates.

X3-SD16 User's Manual 119

Environmental

Table 23. X3-SD16 Environmental Limits

Condition Limits

Operating Temperature 0 to 70 C ambient
(70C as measured by the on-card temp sensor)

Humidity Up to 95 %, non condensing

Storage Temperature -40 to 125 C

Vibration, operating ETS 300 019- 1.3 [R3], class 3.3

Vibration, storage ETS 300 019- 1.1 [R1], class 1.2

Vibration, transportation ETS 300 019- 1.2 [R2], class 2.3
except for free-fall: class 2.2

Analog Input

A summary of the analog performance follows for the X3-SD16 module.

All tests performed at room temperature with the module at approximately 48C. Test environment was PCIe adapter card in
PC running testbed software using FrameWork Logic.

Five minutes were allowed for thermal stabilization.

Table 24. X3-SD16 Analog Input Performance Summary

Parameter Measured Units Test Conditions

Analog Input Flatness 1 dB 0 to 70 kHz

Settling Time to 5% 1 ms 1.01 kHz, 10Vp-p square wave; digital filter in the A/D limits settling
time. See graph.

Input Ranges 2, 10, 20 Vp-p Standard on X3-SD16, calibration results may limit input range to 95%
of full scale nominal.

Offset 0.5 mV Factory calibration, average of 64K samples

Gain 0.02 % of FS Factory calibration, average of 64K samples

Ground Noise 620 uVp-p Input Grounded, sample rate = 144 ksps, 64k samples

X3-SD16 User's Manual 120

Parameter Measured Units Test Conditions

Ground Noise <-120 dB Input Grounded, sample rate = 144 ksps, 64k samples FFT, no
averaging

SFDR 103 dB 1.01 kHz sine input, 1.9Vp-p , differential input, 64K point FFT

S/N 85.9 dB 1.01 kHz sine input, 1.9Vp-p , differential input, 64K point FFT

THD -119.9 dB 1.01 kHz sine input, 1.9Vp-p , differential input, 64K point FFT

ENOB 14 bits 1.01 kHz sine input, 1.9Vp-p , differential input, 64K point FFT

Crosstalk <-100 dB 1.01 kHz, 19Vp-p input, cable included, all channels

Common Mode Rejection 69 dB 1.01 kHz, 19Vp-p differential; tested with MDR68 cable and screw
terminal

Intermodulation Distortion -116 dB 900 Hz and 1.1 kHz sine, 2Vp-p each, differential input

Figure 5. Analog Input Bandwidth 0 to 1 MHz
(sample rate = 144 KHz)

Figure 6. Analog input settling time for 1.01 kHz,
10Vp-p square wave (sample rate = 144 KHz)

X3-SD16 User's Manual 121

1E+2 1E+3 1E+4 1E+5 1E+6
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
Analog Input Frequency Response

Hz

Figure 7. Signal quality measurement (1.01 kHz input, 19.9Vp-p, sample rate = 144 ksps, 64K FFT, no averaging)

Table 25. A/D Signal Quality vs Sample Rate

X3-SD16 User's Manual 122

Signal source noise

SFDR = 103 dB
S/N = 85.9 dB
ENOB = 14.0 bits
THD = -119.9dB
64K pt FFT

Fs S/N SFDR ENOB THD
kHz dB dB bits dB

10 90.2 107.6 14.7 -126.5
20 88.3 102.3 14.3 -121.5
50 87.7 103.6 14.3 -125.6
100 86.5 102.9 14 -118
144 86 104 14 -120.4

Figure 8. A/D SNR vs Input Amplitude (Vin = 19.9Vp-
p, 1.01 kHz sine)

Figure 9. A/D ENOB vs Sample Rate (Vin = 19.9Vp-p,
1.01 kHz sine)

Figure 10. A/D SFDR vs Sample Rate (Vin = 19.9Vp-
p, 1.01 kHz sine)

Figure 11. A/D THD vs Sample Rate (Vin = 19.9Vp-p,
1.01 kHz sine)

X3-SD16 User's Manual 123

10 20 50 100 144
83

84

85

86

87

88

89

90

91
S/N vs Sample Rate

S/N

Sample Rate (kHz)

dB

10 20 50 100 144
13.6

13.8

14

14.2

14.4

14.6

14.8
ENOB vs Sample Rate

ENOB

Sample Rate (kHz)

bi
ts

10 20 50 100 144
99

100
101
102
103
104
105
106
107
108
109

SFDR vs Sample Rate

SFDR

Sample Rate (kHz)

dB

10 20 50 100 144
-128

-126

-124

-122

-120

-118

-116

-114

-112
THD vs Sample Rate

THD

Sample Rate (kHz)

dB

Table 26. A/D Signal Quality for 20V Input Range

Table 27. A/D Signal Quality for 10V Input Range

Table 28. A/D Signal Quality for 2V Input Range

X3-SD16 User's Manual 124

20V Range

Vin
Vp-p db dB bits dB

0.1 40.3 59.9 6.4 -72.7
0.2 46.2 66.5 7.4 -78.8
0.5 54.8 77.2 8.8 -88.5
1 61 83.3 9.8 -91.6
5 75.4 96.7 12.2 -108.2
9.9 80.4 101 13 -114.9
12 82.1 102.1 13.3 -118.9
15 84.2 105.5 13.7 -117.3
19.9 87.2 105.2 14.2 -116.7

S/N 20V
Range

SFDR 20V
Range

ENOB 20V
Range

THD 20V
Range

10V Range
Vin S/N 10V RangeSFDR 10V RangeENOB 10V RangeTHD 10V Range
Vp-p db dB bits dB

0.1 45.2 64.6 7.2 -80.9
0.2 51.3 68 8.2 -82.4
0.5 59.3 77 9.5 -91.8
1 66 84.9 10.6 -99.4
5 80.2 99.3 13 -114.8
9.9 86 104 14 -120.4

4V Range

Vin
Vp-p db dB bits dB

0.1 59.1 71.5 9.5 -94
0.2 62.6 74.2 10.1 -96.6
0.5 73.3 85.5 11.8 -102.8
1 79.9 91.5 12.9 -113.3

S/N 4V
Range

SFDR 4V
Range

ENOB 4 V
Range

THD 4V
Range

Figure 12. A/D SNR vs Input Amplitude (Fs = 144
ksps, Vin = 1.01 kHz sine)

Figure 13. A/D SFDR vs Input Amplitude (Fs = 144
ksps, Vin = 1.01 kHz sine)

Figure 14. A/D ENOB vs Input Amplitude (Fs = 144
ksps, Vin = 1.01 kHz sine)

Figure 15. A/D THD vs Input Amplitude (Fs = 144
ksps, Vin = 1.01 kHz sine)

X3-SD16 User's Manual 125

0.1 0.2 0.5 1 5 9.9 12 15 19.9
0

10
20
30
40
50
60
70
80
90

100
S/N vs Input Amplitude

S/N 20V Range
S/N 4V Range
S/N 10V Range

Vin

dB

0.1 0.2 0.5 1 5 9.9 12 15 19.9
0

20

40

60

80

100

120
SFDR vs Input Amplitude

SFDR 20V Range
SFDR 10V Range
SFDR 4V Range

Vin

dB

0.1 0.2 0.5 1 5 9.9 12 15 19.9
0

2

4

6

8

10

12

14

16
ENOB vs Input Amplitude

ENOB 20V Range
ENOB 10V Range
ENOB 4 V Range

Vin

bi
ts

0.1 0.2 0.5 1 5 9.9 12 15 19.9
-130

-120

-110

-100

-90

-80

-70
THD vs Input Amplitude

THD 20V Range
THD 10V Range
THD 4V Range

Vin

dB

Analog Output

A summary of the analog output performance follows for the X3-SD16 module.

All tests performed at room temperature with the module at approximately 30C using force air cooling. Test environment
was PCIe adapter card in PC running testbed software using FrameWork Logic.

Table 29. X3-SD16 Analog Output Performance Summary

X3-SD16 User's Manual 126

Parameter Measured Units Test Conditions

Bandwidth 0.4 dB 0 to 90 kHz, 3.9Vp-p.

Output Range 4 +0/-2% Vp-p
differential

Standard on X3-SD16, calibration results may limit input range to 95%
of full scale nominal.

Offset 0.5 mV Factory calibration, average of 64K samples

Gain 0.02 % Factory calibration, average of 64K samples

Ground Noise 622 uVp-p Output commanded to 0V, update rate = 128 ksps

Ground Noise <-110 dB Output commanded to 0V, update rate = 128 ksps, 0 to 64kHz span. At
limit of measurement.

SFDR 95.6 dB 1.01 kHz sine input, 2Vp-p , 128 ksps update rate, 64K point FFT

S/N 80.3 dB 1.01 kHz sine input, 2Vp-p , 128 ksps update rate, 64K point FFT

THD -95.8 dB 1.01 kHz sine input, 2Vp-p , 128 ksps update rate, 64K point FFT

ENOB 12.8 bits 1.01 kHz sine input, 2Vp-p , 128 ksps update rate, 64K point FFT

Crosstalk <-100 dB 1 kHz, 19Vp-p sine on active channel input, cable included, all
channels, at noise floor

X3-SD16 User's Manual 127

Figure 16. DAC Output for 1.01kHz sine, 2Vp-p, 128 ksps update rate (as measured by X3-SD16 A/D with single-
ended input).

X3-SD16 User's Manual 128

SFDR = 95.6 dB
S/N = 80.3 dB
ENOB = 12.8 bits
THD = -95.8 dB
64K pt FFT

Figure 17. DAC Output for 2kHz sine, 2Vp-p, 10 ksps update rate (as measured by X3-SD16 A/D with single-
ended input).

X3-SD16 User's Manual 129

Connectors

Input Connector JP1

JP1connector is the front panel connector for the analog inputs, external clock and external trigger inputs.

Connector Type: MDR

Number of Connections: 68

Connector Part Number 3M part number 10268-55H3VC

Mating Connector: 3M part number 10168-6000EC (IDC)
Digikey (www.digikey.com) P/N MPB68A-ND

Cable Innovative part number 65057
MDR68 male to-male, 36 inches (0.91 meters)

This is the MDR68 as viewed from the front panel.

X3
 X

M
C

Pin 35

Pin 1 Pin 34

Pin 68

X3 XMC Front Panel View

JP1 Front Panel Connector Pin Assignments

X3-SD16 User's Manual 130

http://www.digikey.com/

AGND 1 P P 35 AGND

DAC 0 2 O O 36 DAC 8

DAC 1 3 O O 37 DAC 9
DAC 2 4 O O 38 DAC 10

DAC 3 5 O O 39 DAC 11

AGND 6 P P 40 AGND

DAC 4 7 O O 41 DAC 12

DAC 5 8 O O 42 DAC 13

DAC 6 9 O O 43 DAC 14

DAC 7 10 O O 44 DAC 15

AGND 11 P P 45 AGND

A/D 1 IN- 12 I I 46 A/D 1 IN+

A/D 3 IN- 13 I I 47 A/D 3 IN+

A/D 5 IN- 14 I I 48 A/D 5 IN+

A/D 7 IN- 15 I I 49 A/D 7 IN+

A/D 9 IN- 16 I I 50 A/D 9 IN+

A/D 11 IN- 17 I I 51 A/D 11 IN+

A/D 13 IN- 18 I I 52 A/D 13 IN+

A/D 15 IN- 19 I I 53 A/D 15 IN+

A/D 0 IN- 20 I I 54 A/D 0 IN+

A/D 2 IN- 21 I I 55 A/D 2 IN+

A/D 4 IN- 22 I I 56 A/D 4 IN+

A/D 6 IN- 23 I I 57 A/D 6 IN+

X3-SD16 User's Manual 131

A/D 8 IN- 24 I I 58 A/D 8 IN+

A/D 10 IN- 25 I I 59 A/D 10 IN+

A/D 12 IN- 26 I I 60 A/D 12 IN+

A/D 14 IN- 27 I I 61 A/D 14 IN+

AGND 28 P P 62 AGND

FP DIO 1 29 I/O I/O 63 FP DIO 0

FP DIO 3 30 I/O I/O 64 FP DIO 2

FP DIO 5 31 I/O I/O 65 FP DIO 4

AGND 32 P P 66 AGND

EXT CLK + 33 I I 67 EXT CLK -

SYNC 34 I/O I 68 TRIGGER

Note : - = No Connect, P = Power, I= Input, O = Output, I/O = Bidirectional. All are relative to X3 module.

XMC P15 Connector

P15 is the XMC PCI Express connector to the host.

Connector Types: XMC pin header, 0.05 in pin spacing, vertical mount

Number of Connections: 114, arranged as 6 rows of 19 pins each

Connector Part Number Samtec ASP-105885-01

Mating Connector: Samtec ASP-105884-01

X3-SD16 User's Manual 132

Figure 18. P15 XMC Connector Orientation

X3-SD16 User's Manual 133

Column

Row A B C D E F

1 PET0p0 PET0n0 3.3V VPWR

2 GND GND GND GND MRSTI#

3 3.3V VPWR

4 GND GND GND GND MRSTO#

5 3.3V VPWR

6 GND GND GND GND +12V

7 3.3V VPWR

8 GND GND GND GND -12V

9 GA0

10 GND GND GND GND VPWR

11 PER0p0 PER0n0 MBIST# MPRESENT#

12 GND GND GA1 GND GND VPWR

13 3.3VAUX MSDA

14 GND GND GA2 GND GND VPWR

15 MSCL

16 GND GND MVMRO GND GND

17

18 GND GND GND GND

19 PEX REFCLK+ PEX REFCLK- WAKE# ROOT#

Table 30. X3 XMC Connector P15 Pinout

Note: All unlabeled pins are not used by X3 modules but may defined in VITA42 and VITA42.3 specifications.

X3-SD16 User's Manual 134

Table 31. P15 Signal Descriptions

Signal Description P15 Pin

PET0p0/PET0n0 PCI Express Tx +/- A1/B1

PER0p0/PER0n0 PCI Express Rx +/- A11/B11

PEX REFCLK+/- PCI Express reference clock, 100 MHz +/- A19/B19

MRSTI# Master Reset Input, active low F2

MRSTO# Master Reset Output, active low F4

GA0 Geographic Address 0 F9

GA1 Geographic Address 1 C12

GA2 Geographic Address 2 C14

MBIST# Built-in Self Test, active low C11

MPRESENT# Present, active low F11

MSDA PCI Express Serial ROM data F13

MSCL PCI Express Serial ROM clock F15

MVMRO PCI Express Serial ROM write enable C16

WAKE# Wake indicator to upstream device, active low D19

ROOT# Root device, active low E19

X3-SD16 User's Manual 135

XMC P16 Connector

P16 is the XMC secondary connector to the host and is used for digital IO, data link and triggering functions.

Connector Types: XMC pin header, 0.05 in pin spacing, vertical mount

Number of Connections: 114, arranged as 6 rows of 19 pins each

Connector Part Number Samtec ASP-105885-01

Mating Connector: Samtec ASP-105884-01

Figure 19. P16 XMC Connector Orientation

X3-SD16 User's Manual 136

Table 32. X3 XMC Secondary Connector P16 Pinout
Column

Row A B C D E F

1 - - DIO0/PXI_TRIG0 - - DIO19

2 DGND DGND DIO1/PXI_TRIG1 DGND DGND DIO20

3 - - DIO2/PXI_TRIG2 - - DIO21

4 DGND DGND DIO3/PXI_TRIG3 DGND DGND DIO22

5 - - DIO4/PXI_TRIG4 - - DIO23

6 DGND DGND DIO5/PXI_TRIG5 DGND DGND DIO24

7 - - DIO6/PXI_TRIG6 - - DIO25

8 DGND DGND DIO7/PXI_TRIG7 DGND DGND DIO26

9 DIO38
/PXI_DSTARA+

DIO39
/PXI_DSTARA-

DIO8/PXI_STAR DIO40
/PXIE_100M+

DIO41
/PXIE_100M-

DIO27

10 DGND DGND DIO9/
PXIE_SYNC100+

DGND DGND DIO28

11 - - DIO10
/PXIE_SYNC100-

- - DIO29

12 DGND DGND DIO11 DGND DGND DIO30

13 - - DIO12 - - DIO31

14 DGND DGND DIO13 DGND DGND DIO32

15 - - DIO14 - - DIO33

16 DGND DGND DIO15 DGND DGND DIO34

17 - - DIO16 - - DIO35
/PXI_10M

18 DGND DGND DIO17 DGND DGND DIO36
/PXI_LBL6

19 DIO42/
PXIE_DSTARB+

DIO43/
PXIE_DSTARB-

DIO18 DIO_CLK+
/PXI_DSTARC+

DIO_CLK-/PXI
_DSTARC-

DIO37
/PXI+LBR_6

Note: all unused pins are not labeled.

X3-SD16 User's Manual 137

Table 33. P16 Signal Descriptions
Signal Description P16 Pin

DIO0/PXI_TRIG0 Digital IO 0/ PXIE trigger 0 C1

DIO/PXI_TRIG1 Digital IO 1/ PXIE trigger 1 C2

DIO2/PXI_TRIG2 Digital IO 2/ PXIE trigger 2 C3

DIO3/PXI_TRIG3 Digital IO 3/ PXIE trigger 3 C4

DIO4/PXI_TRIG4 Digital IO 4/ PXIE trigger 4 C5

DIO5/PXI_TRIG5 Digital IO 5/ PXIE trigger 5 C6

DIO6/PXI_TRIG6 Digital IO 6/ PXIE trigger 6 C7

DIO7/PXI_TRIG7 Digital IO 7/ PXIE trigger 7 C8

DIO8/PXI_STAR Digital IO 8/ PXIE star trigger C9

DIO9/PXIE_SYNC100+ Digital IO 9/ PXIE sync 100+ C10

DIO10/PXIE_SYNC100- Digital IO 10/ PXIE sync 100- C11

DIO11 Digital IO 11 C12

DIO12 Digital IO 12 C13

DIO13 Digital IO 13 C14

DIO14 Digital IO 14 C15

DIO15 Digital IO 15 C16

DIO16 Digital IO 16 C17

DIO17 Digital IO 17 C18

DIO18 Digital IO 18 C19

DIO19 Digital IO 19 F1

DIO20 Digital IO 20 F2

DIO21 Digital IO 21 F3

DIO22 Digital IO 22 F4

DIO23 Digital IO 23 F5

DIO24 Digital IO 24 F6

DIO25 Digital IO 25 F7

X3-SD16 User's Manual 138

Signal Description P16 Pin

DIO26 Digital IO 26 F8

DIO27 Digital IO 27 F9

DIO28 Digital IO 28 F10

DIO29 Digital IO 29 F11

DIO30 Digital IO 30 F12

DIO31 Digital IO 31 F13

X3-SD16 User's Manual 139

Signal Description P16 Pin

DIO32 Digital IO 32 F14

DIO33 Digital IO 33 F15

DIO34 Digital IO 34 F16

DIO35/PXI_10M Digital IO 35/ PXI 10M Ref Clk F17

DIO36/PXI_LBL6 Digital IO 36/ PXI local bus left 6 F18

DIO37/PXI_LBR_6 Digital IO 37/ PXI local bus right 6 F19

DIO38/PXI_DSTARA+ Digital IO 38/ PXIE Differential STAR A+ A9

DIO39/PXI_DSTARA- Digital IO 39/ PXIE Differential STAR A- B9

DIO40/PXIE_100M+ Digital IO 40/ PXIE 100M ref clk- D9

DIO4/PXIE_100M- Digital IO 41/ PXIE 100M ref clk- E9

DIO42/PXIE_DSTARB+ Digital IO 42/ PXIE Differential STAR B+ A19

DIO43/PXIE_DSTARB- Digital IO 43/ PXIE Differential STAR B- B19

DIO_CLK+/PXI_DSTARC+ Digital IO Clk+/ PXIE Differential STAR C+ D19

DIO_CLK-/PXI_DSTARC- Digital IO Clk-/ PXIE Differential STAR C- E19

Note: PXI Express signals are only available when PXIE adapter card is used.

X3-SD16 User's Manual 140

Xilinx JTAG Connector

JP3 is used for the Xilinx JTAG chain. It connects directly with Xilinx JTAG cables such as Parallel Cable IV or Platform
USB.

Connector Types: 14-pin dual row male header, 2mm pin spacing, right angle

Number of Connections: 14, arranged as 2 rows of 7 pins each

Connector Part Number Samtec TMM-107-01-L-D-RA or equivalent

Mating Connector: AMP 111623-3 or equivalent

Figure 20. X3-SD16 J3 Orientation Figure 21. X3-SD16 J3 Side View

Table 34. X3 JP3 Xilinx JTAG Connector Pinout

Pin Signal Direction

1,3,5,7,9,11,13 Digital Ground Power

2 3.3V Power

4 TMS I

6 TCK I

8 TDO O

10 TDI I

12,14 No Connect -

X3-SD16 User's Manual 141

Top of PCB

Pin
13

Pin
14

Pin 1

Pin 2

Edge of PCB

Pin 1

Mechanicals
The following diagram shows the X3-SD16 connectors and physical locations. The bottom view of the XMC is shown which
is the side against the host card when mounted. The XMC conforms to IEEE 1386 form factor, 75mm x 150mm. The
spacing to the host card is 10 mm and consumes a single slot in desktop and Compact PCI/PXI chassis.

The following views of the X3-SD16 show the connector placements. The bottom view of the board is faces the carrier card
when installed. An EMI shield over the analog section is normally installed.

Detailed drawings for mechanical design work are available through technical support.

Figure 22. X3-SD16 Mechanicals (Top View) Rev B

X3-SD16 User's Manual 142

JP3 - JTAGP16 – DIO/Host
Link

P15 – PCIeJP2 – Power TestJP1 – IO

Figure 23. X3-SD16 Mechanicals (Top View) Rev A

X3-SD16 User's Manual 143

D4 – PCI
LED

D4 – Application LED

Applets for the X3 Modules

EEProm

X3-Servo has two logic devices on it. One controls the
analog hardware. This logic can be modified by the user, and
must be loaded by the user with an image on each session.
The second device performs the baseboard enumeration and
PCI interface and has a ROM so that it can function at power
up. The EEProm applet is designed to allow field-upgrades
of this PCI logic firmware on the X3-Servo. The utility
permits an embedded firmware logic update file to
reprogrammed into the module Flash ROM, which stores the
"personality" of the board. Complete functionality is
supplied in the application’s help file.

X3-SD16 User's Manual 144

Finder

The Finder is designed to help correlate board target numbers
against PCI slot numbers in systems employing multiple
boards.

Target Number

Select the Target number of the board you wish to identify
using the Target Number combo box.

Blink

Click the Blink button to blink the LED on the board for the
specified target. It will continue blinking until you click
Stop.

On/OFF

Use the On and Off buttons to activate or deactivate
(respectively) the LED on the baseboard for the specified
target. When you exit the application, the board’s LED will
remain in the state programmed by this applet.

X3-SD16 User's Manual 145

Logic Loader

The logic loader applet is used to deliver known-operational
logic images to the user logic device installed on a X3-Servo.
The user logic must be loaded once per session, as the logic
part is cleared on bus reset or power up.

The utility may be used to configure the firmware either
through its command line interface or from its GUI Windows
user interface. The former is often convenient during PC
boot-up to install a standard logic file. Place a short cut with
the command line option set into the Windows Startup folder
to execute the program when the system is started.

This application supports configuration of the onboard
Spartan 3 logic device from a .bit file produced by popular
logic design tools (including Xilinx’s). It is essential that the
Spartan 3 be programmed before using related applications,
since some of the baseboard peripherals are dependent on the
personality of the configured logic.

X3-SD16 User's Manual 146

Applets

The software release for a baseboard contains programs in addition to the example projects. These are collectively called
“applets”. They provide a variety of services ranging from post analysis of acquired data to loading programs and logic to a
full replacement host user interface. The applets provided with this release are described in this chapter.

Shortcuts to these utilities are installed in Windows by the installation. To invoke any of these utilities, go to the Start Menu |
Programs | <<Baseboard Name>> and double-click the shortcut for the program you are interested in running.

Common Applets

Registration Utility (NewUser.exe)

Some of the Host applets provided in the Developers Package are keyed to
allow Innovative to obtain end-user contact information. These utilities allow
unrestricted use during a 20 day trial period, after which you are required to
register your package with Innovative. After, the trial period operation will be
disallowed until the unlock code provided as part of the registration is entered
into the applet. After using the NewUser.exe applet to provide Innovative
Integration with your registration information, you will receive:

The unlock code necessary for unrestricted use of the Host applets

A WSC (tech-support service code) enabling free software maintenance
downloads of development kit software and telephone technical hot line
support for a one year period.

X3-SD16 User's Manual 147

Reserve Memory Applet (ReserveMemDsp.exe)

Each Innovative PCI-based DSP baseboard requires 2 to 8 MB of memory to be reserved for
its use, depending on the rates of bus-master transfer traffic which each baseboard will
generate. Applications operating at transfer rates in excess of 20 MB/sec should reserve
additional, contiguous busmaster memory to ensure gap-free data acquisition.

To reserve this memory, the registry must be updated using the ReserveMemDsp applet. If at
any time you change the number of or rearrange the baseboards in your system, then you
must invoke this applet to reserve the proper space for the busmaster region. See the Help
file ReserveMemDsp.hlp, for operational details.

Data Analysis Applets

Binary File Viewer Utility (BinView.exe)

BinView is a data display tool specifically designed to
allow simplified viewing of binary data stored in data
files or a resident in shared DSP memory. Please see the
on-line BinView help file in your Binview installation
directory.

X3-SD16 User's Manual 148

