Innovative
Integration

X3-SD16 FrameWork Logic User
Guide

X3-SD16 FrameWork Logic User Guide

The X3-SD16 FrameWork Logic User Guide was prepared by the
technical staff of Innovative Integration on July 27, 2011.

For further assistance contact:

Innovative Integration
2390-A Ward Ave
Simi Valley, California 93065

PH: (805) 578-4260
FAX: (805)578-4225

email: techsprt@innovative-dsp.com

Website: www.innovative-dsp.com

This document is copyright 2011 by Innovative Integration. All rights
are reserved.

VSS \ Distributions \ X3-SD16 \ Documentation \ Manual \ X3-
SD16Master.odm

Revision Changes Author | Date
1.0 Initial release for X3 family. DPM 06/25/07
1.1 Revised into new manual format. Added X3-SD16 chapter. DPM 07/24/11

mailto:techsprt@innovative-dsp.com

Innovative Integration

Table of Contents

X3-SD16 FrameWork Logic UsSer GUIde.......ccovurererercscnicssencssanicssnnissssnesssssessssssssssssssssssssssssssssssssssssses 2
INErOAUCTION....cueeeiniriitieenttecnneecsaeecseeecsnteecssaeesssteesssseessssesssssesssssessssnessssssssssesssssssssssassssasssssnsssssnsssssnanes 13
Prerequisite Experience and ReqUITEA TOOIS........cuiiiiiiciiiiieeiieiie ettt estee sttt e et e et eeaeeteesateesseessseeseesssesnseesssesnsesesnnns 13
Organization Of this MANUAL..........c.occiiiiiiiiitieieciet ettt ettt et e e et e et b e e teesbeeteesbeeseesbeeseesseesaesseessesseessseessseeesseens 14
Logic Directories and Files OrganiZation............coevererierieiieieeiesie et ese ettt ete et eseesateseesseesaesseesteessesseeneesseensesneeseeneeesnseenn 14
Logic Component Naming CONVENTIONS.eerutruieruerierieeiierteetesteetesteeteeteeseaseesseameenseaseesseaseesseansesseensesseenseesnseeeaseeesseeans 16
WRETE 10 GOt HEIP. ... oottt ettt et e st et e st e s st esse s st ense et e enseessenseassesseensesseensesseensesseensesnsesnseeennneannses 17
Logic Development Process .18
Developing USING VHDL........cooiiiiieieeeet ettt ettt ettt s h et b et e e bt e e ea e e et ea e e et emeesaeemeesseenseeeeenseentansaeesnneeennees 19
USING XIAHNX ISE ...ttt ettt ettt et e et et e e e e bt e et e bt em e eb e em b e ehe et e es e e bt emeenbeemeesaeentesneanseennes 20
USING the FrameWOTK LIDTATY.....c..co.iotiiiiriiiiieieciieericeteet sttt ettt sttt st ettt ettt beeb e b sbesaesbenaees 22
Y5 1B 10 e o RS S 22
Logic Development using MATLAB SImMUINK...........cccoiiiiiiiieiicieieetee ettt se et ste et eeteeseeseeseesaesseeesneessseesnsseens 27
Place and ROULE REPOTLS........ciuiiiiiiieiieiieii ettt sttt sttt e et e s e ess et e essesseesaesseensesseessasssensesssensenssensenanns 29
LOAAING LLOZIC...euvieititietietietiett et et et e ett e st et e s te et e et e e b e eteesbeetsesseessesseessesasessesssessesssesseessesbeessasseessaseesseeseessesssessesssessensnesnneeas 30
JTAG ettt a et b e h e ekt eh e e bt e 4tk H e 4ot e et e n e e Rt e a e Rt ekt eh e eh e bt bt bt eh et e bt e bt e eatenabesane s 30
Loading the Logic Using BIT IMa@ES........cccueiuiiiiiieiieieieeteee ettt ettt ettt ee et e seeeeesaeeaeeeaneeenees 35

) o ea (o B 1o} 01 o I OSSOSO 35
DIEDUZZING. ..ttt ettt b e bt ettt ettt et a e eb bt e bt bbbt et b bttt et ea e bt e bt bt bt bttt eb b 37
BUIIE-10 TSt IMOAES. ..ottt ettt ettt ettt e st e e e st e e s e e st emseeseentees e e s e eneanseeneenseeneesseensesseensesseensesseensenseenseeneann 38
XAINX CRIPSCOPE. .. eeuvitieiieiietieiieteeetesttetesteestesteetesteessesseessessaesseesaesseessanseassasssassenseassesseessesseensesssensesssensenssensennsesensseenns 39
X3-SD16 FrameWorkK LOGIC....coueevieireniseensnnssnnnsuenssnnssansssnssssesssnssssesssnssssesssnssssssssassssssssssssssssassssssassssss 44
L 03 74 TSR 44
T ¢ B) Lo TSRS 44
DEVEIOPIMENT TOOLS. ... eeutieiieiieieit ettt ete sttt et et et e et et e ete e seeseesseessesseensesseensesssensaessesseessenseassanseessesssensesseensesssensenssesnseenn 45
FramEWOTK LLOZIC.euieieiiieiieiieieetes ettt ettt ettt et e st e e st e bt e st e bt ens e et e enseeseanseeseeseensesseansesseenseeseensenssansennsenseansenseenseannses 45
X3-SD16 FrameWork LOZIC POTES........cciiciiiiiiieiiieiiiieieseete ettt ettt et sttt s te e b e s e e b e esa e b e essesseessesseessessneensaeenssesenseas 49
APPLICAtion LOZIC HEIP FILES.....c.eiiiiiiiiieieitieiesieeie sttt ettt ettt ettt ebeese e beesee s s e esbesseessesseessassaessenseensenseessesseensennsens 52
Y 5350107 o 201 3 o T OO OSSPSR 53
Registers in the X3-SD16 FrameWork LOZIC.cocuiuiriiriiiiiiiierieeeree ettt ettt sttt s s saee e 55
USER FPGA Logic Version — 0X00 (T€AA).......ccuerieriiiierieeiesieeieritetesie et te st see st saeseesaesneessesseesseensesneeeanseennnes 55
Control Register 0 — OXOT (WIILE)....eueeueeierierieeieet ettt ettt ettt ettt e sttt e see et e s bt emee bt enteeseentesseeneeeneenseeneeneeensees 55

TSt REGISEET — OX02......eieiieiieeieiieiecte ettt et et e e st et e e seesseeseessesseenseaseesseeseessesssesseensenseensenseensenseensenseansensseesnseenn 56
TemMPErature = OX3 Rucooueieieiieeee ettt ettt e b e st e bt e s et e e bt e sabe e bt e e b e enbeesabeebeesateenbbeeas 56
Temperature Warning — 0X4 R/Wccueoiiiiiiieieiieiesie ettt ettt te et e st ste e b e esaesbeesaesseessasseessesseesseessnseesneans 57
Temperature Failure — 0XS5 R/W .. .ooviiioiiiciiceeeeee ettt ettt s b sb e e te e s e eaeessesseessesssessesssesessseenssens 57

PLL Clock Controls — OX8 R/eiiiiiiiieieiee ettt ettt sttt sttt e bt s st e bt eseenbeenaesnbeeeeneeennnes 57

PLL Clock Divider and Distribution Control Interface — 0x9 R/W (A4D4, Servo only).......cccceveeviiiieneiineeenne. 58

PLL Interface — OXOA R/W ... oottt ettt et e et e e et e et s st e ae e st e sesneesseeneenseennseeenseeennneas 58

A/D channel enables — OXOBh...........oiuiiiiiieieiee et ettt ettt et ettt e st e e e st etesaeessessee bt eneeabeenseeneeeanneeennes 58

DAC channel €nables — OXOC........c.coiiiriiirininerie ettt ettt ettt b ettt b e s bbbt sa et e et et eatestese e bt ebeebesbeeaee 58

Front Panel DIO output enables — 0xX0D (25M, Servo, A4D4, SD16).......cceeieiirieieeiee et 59

ZBT SRAM TSt INTETTACE.etetieeieiee ettt sttt ettt e e et eb bt bt e bt e b e sbe st et e be st e beenbe e beenneas 59

ZBT SRAM Address — OXOE........cooiiiiiiiiiiiie ettt b bt bttt b e sttt et et e st et eneebe e bt eaeebeenees 59

X3-SD16 FrameWork Logic User Guide

Innovative Integration

ZBT SRAM Data — OXOF......cc.eiiiiiieieeee ettt ettt ettt et b e bt b ettt e b e sb e st et et e e bt emseebeenteenaeens 59

DAC Control Register — 0x11 (Servo, 25M, A4D4 ONLY)...cc.eiiiiiiiiiieieeieee ettt 59

ADC Control Re@ISTET — OX12.....cuiiiieiiiieie ettt ettt et sttt e bt e bt s et e bt e st e beeseenbeesaeembeeeneeennnes 60

P16 DIO Data Low ReIStEr — OX13......coiiiiiiriiiiiiiiet ettt sttt sttt ettt ettt ebe e 60

o (O30 (@ 2 Oe) 113 o) B 0 SRS 61

P16 DIO Data High ReGIStEr — OX16......c..couiiiiiiieieiieieiieie ettt ettt estesteeseesaeesaessaessesssessesssensesssensenssseensses 61

Front Panel DIO Data Register — 0x15 (25M, Servo, A4D4, SD16)......cccovieviirieniieierieeeenie et eve e e s 61

DAC Packet Headers — 0X1B (25M, SETVO, A4DA)......ooiiiiiieie ettt ettt ettt st seaesbeesaesbeessaeensaessnnnneas 62

A/D Packet HEAETS — DX T C....ouiiiiiiiieiietieie sttt ettt ettt b ettt sttt et e e st e st estebeebeebeebeabeenneas 62

Gain and Offset Error Coefficient REGISIEIS.coruiiiiiiiieieiee ettt st et e e as 62

A/D Gain Error Correction — 0x20 + channel NUMDET............cciioiiiiiiiiiei e 62

A/D Offset Error Correction — 0x30 4 channel NUMDET.............ccooriiiiiieiiriee e 62

DAC Gain Error Correction — 0x40 + channel NUMDET.............ccooiiiiiiiieie e 63

DAC Offset Error Correction — 0x50 + channel NUMDET............cccooiiiiiiiiininiieeeeeeceeere e 63

A/D Analog Gain Control — 0x70..0x7B (Servo, 10M, A4D4).......cccooieieiieieciieieeieeieetete et sevae e 63
TTIZEET COMNLIOIS. .. .eouvitieiieteeieceet ettt ettt et et et e e tt e beeseesaeesaeeaeessesaeessesssessesssesseessesseessasseessanseessessseessseesssesansneans 63

A/D Trigger Controls — 0x17; DAC Trigger Controls = 0X18........c.ccvveiiiierieiieieiieieeeeie et e v sre v saeesee e 64

A/D Decimation — 0x19; DAC Decimation = OX 1Aoooiuiiiiiiiiiieeeeecee e et e e e eeraee e e e eeeaae e e e s eessaaeeeseeeeeeereeeeees 64

ALBIES .. ettt ettt ettt ettt h et h e bt e e bt e ekt ea e e ekt ea et ekt e a et eheen bt eh e e bt et e bt eeee bt ent e st e e enbeeenbeeennteas 64

Alert Control Re@ISter — OXTE.......ciiiiiiiiiiiiirieie ettt ettt ettt et ettt be e ebe s 64

Alert Log ENables — OXLFottt ettt st ae st e b e s s e tess e et e eseeteeneeeseeneesneennesneanne 65

LOGIC CLOCKS. ... tiiieiieiieiieie ettt ettt ettt ettt ettt et e e st et e este s e essesseessesseensesseesseassessaessenseessanseesseaseenseeseessesssensesnnenseenssaesnsaeas 65
A/D INtETfaCe COMPONENL......ccuieiirtieieetierteiteteetesteeteteete st estesstesseastasseassesessseseessesseessensaesseessensessserssassesseensesseensesseensennses 67
ADS 1278 DEVICE INEETTACE. ... eeuieiieiietietiitt ettt ettt ettt b e st et e b e s e et e et et en e e st e st eneebeebeeeeeaee 67

ETTOT COTTEOLION. 1.ttt ettt ettt sttt sttt et et e st es e e st eaeeb e e bt eb e eheeb e e bt s e et e b e s emtenteneeneeneeseeneebeebeane s 68

FIFO Data BUTTET.......coeiiiiieeeeee ettt ettt ettt et e bt e e b e m et e em e e e bt emteeae e et eneeemseeennteeenseeenneeas 69
WHhere to Grab the A/D Dat........cocuoiuiiiiiiieieeeee ettt s h et bt et e bt et e ea e e bt eaee bt eseenbeeaeesbeeneesbeenaesneeens 69
DAC INterface COMPOMENL.......c.ceutruiriiriirtirtirtietertert ettt ettt ettt et s et sttt et e st ettt eseestesteseeseeaeebeebeebesbe sttt ebe st enbeenbeenbeenseen 69
PCMIO81 DEVICE INEITACE. ... c.eieeieiieieiieieeiiete ettt ettt ettt ettt et e st et e st eee s st eee s et ensesmeesseeneenseanseenneeeanseennnes 70

ETTOT COTTECLION. ¢..c.etetetetet ettt et sttt et e st eb e at e bt eb e bt e bt e bt e bt s bt s b e b et et et en b et eneeatebe e bt ebeebenne s 71

FIFO Data BUST@T......coueiuiiiiitiitiiteiee ettt ettt ettt b e bbbttt b e s b st ettt et embeenaeenbeenbeens 71
Where to Access the DAC Data SIIEAIMN.cc.eueierieieieceitet ettt ettt ettt et eseeaeeteebesbessebenteeabe e st enseenaeenaeans 71
TTIZEEIING COMPONENL.......cueiiiieeieitietertieteeteeteetteteestesseestesseessesseessesssessasssessesssasseassesseessesseassesssessesssessesssessenssessenssensesssensees 72
Adding a Unique Trig@er MEthod.ooui ittt ettt ettt ettt s bt et e s bt e e sbeenteeseeneeeas 72
PaCKEtiZINg COMPONEGNL.eiitieiiiiieteeiieiteei ettt ettt et e e e te e te s bt e tesbeeateeb e e teeseen s e ea e e aees e e st emeesbeemeeseeensesmeenseemeeemneeenneeannnes 73
Adding a New Packet Sources to the X3-SD16 FrameWorkcccoccoivierininiiiiniiiiinenceenencscene e 74
Deframer COMPONENL......c..couirtirtirtirtetetetet ettt ettt sttt et et st st et et et esseatestebeeaeeaeebe et e ebesae et et et et eatemsenteneenteseesaeesabeseneeareenneen 75
Multi-QUEUE VEFIFO COMPONCNL.......cc.criiriiitieiertieiieiiesieettestestessestessesssessesssessesssessesssesseessesssessesseessesssessesssessesssessesssessensses 76
AddIng MOTE Data QUEUES.........ccuveiieiieiieiertietesteetesteetesteetesseessesseessesseesseaseesseassasseassesseassesseassesseessesseensessennsenseensenseens 77
Data Link t0 PCIE CONLIOLIET.ciuiititiieieeiee ettt sttt sttt s e ea e bt s bt et e e bt sbesb et e beee s eneeneeneeseebesaeebeenseens 77
Command Channel COMPONENL.............ccueiieriiiierieeiesieetesteetesteetesseetesseessesseessesseessesssessesssasseessessesssesseessesssessesssessessasssseees 78
PLL CONLIOl COMPOMNENL......euiitieiiietietteiieete ettt ettt et e e et e et e es e este et e eseemeeeseeneesseeeeemeenseemse st emseebeenseeseenseeemseeanneeeenneeenneas 79
D QLY (O o 30 B3 1<) 1o TSSOSO 79
SRAM COMPONENL......cotiiiiiiiiiitieiieti ettt ettt ettt ettt et e st e b e sae e bt et s et e ess e bt eseesseessesatessesatensesaeensesasenseeasensneenanaeentneesaneennns 79
Adding Functionality to the X3-SD16 FrameWork LOZIC.........cccoviiiiiiieiiiieeeeeeee ettt 80
Adding registers and status readback to the command channel...............ccccoovieriiiieiiiiienieeee e 80
Software Scripts for Interacting with Command Channel During Development..........c.ccecvviririneneneneneeneeniennenan 81
Adding Signal Processing to the Data StrEaM...........ccecvviiieriiiieiiieiesieeteseee ettt ereesesteesesreessesseessessaesseesssessnsaeessseesnns 82
DESIGN CONSIACTALIONS. ... eeuvietieetietietieeesteetesteetesteestesteeesesteessesseessaeseessesseessesseessesssessesssessesssessaessesseessenssesassesensseesseeans 83
AdAING NEW COMPONEIILS.cueieteitieeietteieeete e et eteeteetesteeteeueente et een st esee st eseeaseeneesseemeeaseensesaeensesseenseaseenseeseenseenseeeanseenns 84
Terminating Unused IO SIZNAlS........coouiiiiiiiiieiieee ettt ettt ettt et e et e s bt eaeesbeemte e bt e e sateeeabeeeaneeeas 84

X3-SD16 FrameWork Logic User Guide

Innovative Integration

I/O Signals From the FPGAL........c.ooiiiioieit ettt ettt ettt ettt et e s teesaesseessesssesbeessessaessesseessenseessesseensesanesseseeas 86
) D €Y (O (O) 111! o1 1) SRRSO 87
JP1, Front Panel IO CoOMMECTOT.cuuuviiiiiieieeie ettt ee ettt e e e et e e e e e eate et e e e eeaaaaeeesseaaeeeeesesaaaeeeesannnteeeessannraneeeeeas 89

SYNHESTS ANA FIEHIZ. c..c.eitiieiiteieee ettt ettt ettt b e bbbttt b et ettt et et eaaeaeebte bt ebeebesbeebesbesbenneent 90
COMSITAINES.veevteetieeiteeteesteeteestteeteeetteesbeessaeesseessseasseessseassaessseasseasseasseesssaassaassseasseansseassaensseasseessseanseessesanseeseesnseanssenns 90
TIMING CONSLIAINTS. ...c.vievieveeieitretesteesteetteteesteteetesseessesseessesssessesssessesssessesssensesssesssassesssensesssessesssessesssessesssensenssenssenssnenns 91
TOB COMNSIIAINLS.evetietertertiteteste sttt ettt ettt eh e eb bt sb et be bttt e e ea s es s e st ebeebeebeshe e bt e bt sb et e b et et eatentententebtebeebeebesbesbenbeens 92

LO@IC ULIHZATION.e.vieivieeieiieeiete ettt ettt ettt e e e st et e ett e seesseeseessesseessesssesseassesseessasseessanseesseaseesseeseessesssensesrnesseesssaeanseeas 92
PIACE ANA ROULE. ...ttt ettt s e st e st e h e bt e bt s bt et e b sb et e et et en s eneenteneebeebeebe et e abeenees 93

MATLAB Simulink Board Support PaCKage..........cccuieuiiiiieieeee ettt et 96

STMULATION. ..ttt ettt ettt e e bt e ekt ea e e b e em et eh e em et ea e e bt ea e e s bt e meeebeem e e bt emteebeemseebeenteeaeenteeneenbeeneeennbeeann 96
Setting Up the STMUIALION.ccueiiiriiiitiitcie ettt ettt ettt et et e b e bt s bbb s b e eaesaeesanesanesane 96

Simulation Models fOr XB-SD16........cciieiieirieiiieiiecie et eete et et et esaeebeesteeebeessteesbeasseeesseessseasseessssssaessessseesseenns 96
MoOdifying the STMUIALIONS.cc.eerieiiiieeieteeiee ettt ete et este st e sbesseesbesssesseessesseessesseesseeseessesssesesssessesssesseessensesanns 101

Some Things to Watch Out FOr in STmMUIALION.ccveriiieriieierieieeteiest ettt et saesaesseeeaesseessesseessesseesseesneens 102
Making the logic images fOr dOWNIOAAING..........ccoeiiriiiiiriiiieieet ettt ettt e et e saesre e beesaesbeesaesbeessesseessaeessseesnsesanns 102
LOAAING OVET PCIC.....ccutiiiieiieiieie ettt ettt ettt e et esbe e b e s aeesbesaaessesssesseessessaessesseessesseensesseessesssessessneens 102

L0AdING OVEE JTAG ... ettt ettt ettt h et e et e et e st e et eaeesaeemeesbeemeeabeemtesbeemteebeenteeneanseenteesnneenn 102
Module-Specific Logic Components ...104

X3-SDF LOZIC COMPONENLS.......ceeruirurerreirerreetesteessesteesesseesesseessesseessesssessesssessesssessesssessesssesssessesssessesssessessessssseesssessssssenns 105

ComPONENE: T1_SAE AAC....uiiiietieiiiieie ettt ettt et e e e e e saeebe s st e besss e seessesseessesseessesseessesssaesssaesnseeesseens 105
I Tl wr | 015 o) 4 OO 105
DIALA IMLOTLS ...ttt et sttt e h ettt h e etk e st h e n bt e h et e h e e bt e et e bt et e e bt et e bt et e eh e e bt eneenteentee 105
TTIEIINE. ..ottt ettt et ettt et e et e s aeeaesa e e se e st entees e e s e essen st ens e et aneeeseemsesaeenseestenseemeenseeneenseensanseenseanseesnseeenns 105
A/D OVETTIOW INAICALOTS. ...c.eveeiiiiitiieieeitie et eeie et e st e et et e et e et e ebeesteessbeessaessse e saassseesseeasseesseessseensaessseessesnsseeannnns 106
FLOW COMIIOL ...ttt ettt et a bbbt e bt e bt s bt ekt be s b et e b e b et et et et et entebeeneenbe s 106
A/D Configuration and STATUS.........c.eecerieiieeietieierie et ete st e e steestesseesessaesteeseeseeseesseessesseensesseesesseesnsseesnseesnseens 106
TESE IMIOME. ...ttt ettt b ettt et e et et e st e bt e bt eb e e bt eb e e bt s btk b e b et et et et enten e eneeneesate e 106

X3-Serv0 LOZIC COMPONEILS.ecieiiieieriietertieteeteeteeseeseeseesseeseessesssessesssesseessesseessasseessesssessesseessesssessesssessessssessssseesssessnns 109

COMPONENE: 11 SEIVO AUC...c.ueeuii ittt ettt e bt e e bt et e s bt e s tesbeea b e e b e em e e eb e et e ebe e et es e e et eseesaeentesaeeneesneennas 109
DESCTIPLION ..veiviiiiieeiieeiieite et e sttt et e teeeteesteesebeessteesseeseeassaenseesssaenseesssaenseeasseessaeensaenseeassaenseessseenseesnsssaessnnsseesannnnn 109
AVD INEETTACE. ... veetii ettt ettt ettt e bt e e ab e e teeesbe e beessbeeseessbeessseasseesbaaasseasseessseensaessseasaeanseeensseaennnns 109
Dy (o) GO0 01013 1T 3) SR 109
Data Stacking and BUFfEring..........ccveoiiiieiiieieiieiei ettt s e eseesaeessesseensesseesnsaeesnsaesnseeas 109
D o) g 2] 00 4 <SPS 109
TEST FEALUIES ...c.eiieiieiiieitee ettt ettt et b et s b et s b e et s bt e bt et s e bt eb e et e eatesbe e et sbeenaesmaeens 110

COMPONENE: T1_SEIVO _AAC.....ueetiieieitiiieitietesteete st etesttesteeteeseetteseesee st aseesseessesseessesseessanssessesssasseessenseassesseessesssessesseenses 112
D Tl wr | 015 o) 4 OO 112
Data Unstacking and BUffering...........coouoiuiiiiiiiiiie ettt ettt et sttt et e e s 112
DAC INLETTACE. ...t etieeiie ettt ettt et et e et e e e e et e e teeesbeesteeeabeeseessseassseasssessaaasseessaeesseenseessseeeanssaaeesssseesannnes 112
Dy (o) 000103 ET: 3) RS RS 112
EITOT REPOTEING. ... vitieiiieiieiieiieste ettt ste ettt e e et et e et e s e e st e e s e essesseessesseensesssensenssensaassenseensenseansesseensesnsensennneens 112

X3-SD16 LOGIC COMPONEILS......cuveviereriererseetiasteteetesseaseasseessesseesesseessesssessesssensesssesseessesssassesseessesssessesssensesssessesssensesssen 115

CompPonent: 11_SALO AAC.......ccviiieiieiieiieiee ettt ettt et e et e e te e b e eteebeeseesseessesseesaesssessesssessesssensenssasseesseseenseas 115
DIESCIIPLION: ..viiviitieiieitieteetete et este et e beeetesteesseeteesseeseesseaseessesssesseassasseessenseessanseessanssasseessanseessensesssessaeassassnsseesssensnns 115
ADSI278 DEVICE INTEITACE.eieieiiiiiieie ettt ettt et b et b et e b et eae et e ssee et eaeesbeeneeseeenees 115
A/D SYNCHAIONIZALION. ...ttt ettt et ettt ettt et e bt et e s b e ea e e bt e st e e bt enteea e e bt s st e saeemtesbeembesbeenbeenneeesaneean 116
EITOT COTTEOTION. ...c.utiiitieeeii ettt et ettt e et e st e ettt estteebe e teeesbe e aseesbeeseseaaseessseasseessseessaesseasseessseasseessaansaesseesseesseenns 116
FIFO Data BUTTET.......eiciiiiieieceece ettt tte et e et e st e e te e st e e seesabe e saeasseessaasssaesseasssaeeasssseeesssneesannnes 116
EITOT REPOTEING. ... vitieiiieiieiieiieste ettt ste ettt e e et et e et e s e e st e e s e essesseessesseensesssensenssensaassenseensenseansesseensesnsensennneens 117

X3-SD16 FrameWork Logic User Guide

Innovative Integration

TESE FEALUIESeiieiieiieeiee ettt ettt bt et bt et s bt e bt s bt et e bt et eb e e st e eatesbe e et sbeenaesbneens 117
L0103 v01 07020153 0 Ll VT« B - T2 SRS 120
D Tl wr | 015 o) 4 OO 120
PCMIO81 DEVICE INEITACE. ... etieuiieeieiieeiet ettt ettt ettt ettt e teentesseenaesseensesseenseeseanseensanssaesnseeeneens 120
D/A SYNCRIONIZATION. ...ttt ettt ettt ettt ettt et b e bbbttt e b s et et et et et et et eseeaeeneeeaneeaeeens 121
ETTOT COTTECLION. 1. ettt ettt sttt b ettt et ea st e st e bt e bt e bt e bt e bt e b e e bt s bt b et e b et et et et enbeneeneeneebeans 121
FIFO Data BUST@T......ccueiuiiiiiiitiieitetetetet ettt ettt ettt et e bt e bt eb e bbbttt ebeebeenbeenbeenne 121
EITOT REPOTTINE.vteeivieiie ettt ettt s e et e st e e bt e s st e esbeeesaeenbaeasbesaseesssaenseessseenseensseansaeassesnsaesssesnseesssennnnns 121
X3-10M LOZIC COMPONENLS.uvievreriierereiresteetesteesesteesesseesesseessesseessesseessesssessesssessesssessesssessesssesseessesseessesssessessssessssesaes 124
CompPOonent: 11 LTOM AAC. ... ceuieiiiie ettt ettt ettt e et e et e s et e te s et e tees e e eees e e teese et e ene e nteeenteeeneeas 124
I Tl wr | 015 o) 4 OSSOSO PRSPPI 124

F B (ST g 217 SRR 124
EITOT COMPEISALION.c.eiutiiienieiieiteiteiteteett ettt ettt sttt ettt et et s et e bt eb e e bt e bt ebeebe s bt s et et e b et e e et et et eneennenteneeseeaeeueen 124
Data Stacking and BUFfEriNg..........ccveoiiiieiiiiieiiciee ettt ettt e e sseesaesseessesseesnssaesssaesnneeas 124
TESE FEALUIES ...c.eoitiiiiiiiiieie ettt et ettt h et s at et sae et e e et eas e bt emtesbeenaesueennesaneens 125
X3-SD LOZIC COMPONENLS.....cvieurierierriereeteeteesteetesseestesseessesseessasseessasseessesssessesssessesssessesssessesssessesssessesssesssessessesssessesssesseenns 127
ComMPONENE: 11 SA AAC....c.iiitiiiieiieiieteie ettt ettt et et e e ste e b e e te e b e eteesseeseasseeseesseessesseessesasessasssassesssessenssassensseseensss 127
I Tl er | o15 e 4 AU 127
ATD TNEETTACE. ...ttt ettt ettt ettt et e s bt e st e e bt e et e e b e e m e e bt eme e ea e e bt e et e ebeemeesaeemtesbeenteeanteesnneean 127
EITOT COMPEISALION.ttt ettt ettt ettt ettt et ea et e bbbt besb e ebe s b s bt st e b e et et ens et enee st eneeneeneeaeeneen 127
Data BUTTEIINE.ecueieiee ettt ettt et st e et e bt et e st e en e e st et e enee st eneeeneenseeneenaeeneeseeenneeeneenn 127
TEST FEALUIES ...c.eiiiniiiiiiiiete ettt et a et bt et s a et s et e bt e et et eat e e et e sbeenaesueenaesuneens 128
X3-25M LOZIC COMPOMNEILS.......verurererirererrestestesseesesteasesseesesssassesseassesssessesssessesssessesssensesssesseessesseensesseessesssessessssessnsesanns 130
Component: ii_X3 25m adC TNt ..ottt et re e beere e sae e saeesaeeaeennes 130
DIESCIIPLION: ..viiviitieiiiitieteetete et et e et et e et e s teesteeteesseeseessesseesseeseesseessasseessasseessasseessanssesseessesseeseesseessessaesssessnsseesssensnns 130

F Y B 1 (<T g 217 OSSPSR 130
Data BUTTEIINE. ...ttt ettt b et b et e b et h et e e st e bt e et e ebe e st e setemtesbeenteeenteesnnee s 130
EITOT COMPEISALION.c.eiutiuieiieiieiieiteicettett ettt ettt ettt ettt et et eb e bt e bt eb e e b s bt sb e st e b e e et et et et ente st enteneeueeaeeneen 131
TESE FRALUIES ...ttt ettt h ettt e s bt e b e s at e et e e sh b e e bt e sb et eabeesbeeeabee s st e sabeesbbeeabeenbeeenanee 131
Component: 1i_X3 25M daC TNccoiiiiiiiiiieeceeee ettt sttt et et ettt e be st e saeenaesreenaeereenns 133
LD Tl ea |13 o) 4 APPSR 133
Data BUTTETINE. ... ecuiiieiiiicieeic ettt ettt ettt e e b e s teesb e teesbesteesseeseesseeseeseessesseesseseeensesssenseesssaesnseeas 133
DIAC INEETTACE. ...ttt ettt a et e bt bt ettt et et et et et en e e st es e eaeeseeb e ebesateeabeenbeenteenneentes 133
ELTOT COMPENSALION. ...ttt ettt ettt ettt ettt et e e sa e e et e st e et eate bt em e e bt emte bt emeeeseenteeneeneeesee st emeesaeeneesneennes 133
IDIAC OULPULS. ..ottt ettt ettt ettt ettt et et et ea e estese et e eseeseea e et e ebeee et e se s e s ensenseneaneeaeenteseeseeseeseeteebesseasensansanseenseanseans 133
X3-A4D4 LOZIC COMPOMNENLS.......erueruiriiriirtirtintertenteeteterteteat et estettettebeeteetesueseeetesbesaesaestensentestestenteseeseautebeebeabesbestebesesesanens 135
Component: il X3 8404 adC......ccoooiiiiiiiiiii ettt ettt st sttt et 135
DIESCIIPLION: ...vieiietieeieeiieteettet e et et e et e st ete st e esseetaesseeseesseessesseessenseassesseessesseensesssessesssensaessensanssanseassensseennsaennsesensseens 135
AVD IIEETTACE. ...ttt ettt ettt ettt et b bt e bbbt e bt sb e e bt e b bttt b et ettt e st ebteb e e et et en 135
EITOT COMPEISATION.viitietieiieitieeteiteeeteeteeteeteesseeseesseessasseassesssessesssesseessessesssasseessanseessesssessesseessesssessesssessaessasenssens 135
DAt BUTTEIING. .. .cuviitiiiiiieieciee ettt ettt ettt et e et s et e ess e aeesaeeseessesseessesssessesssesseessessenssasseessansseesnsaeanes 135
Component: i X3 8404 AAC.... .ottt a et e a ettt ettt e bt eaee e bt e e enteeenbeeeneeens 139
D Tl wr | 015 o) 4 OO 139
Data BUFTEIINE. .c..cvitititet ettt ettt et et h e bbbt bt sttt e et et et et e st eat bt et eaneens 139

L YN O 1< o TSP 139
EITOT COMPEISATION.c.viiiieteeiieieeteeteeteetteteestesteestesseestesseessesseessesseesseessessesssanseassenssassesseessesseessesssessesssensenssensenssens 139
DDA C OULPULS. .ttt ettt ettt et et e st et e ettt e s bt e eabe e beesabeesbeesate e stesab e e baesabeenbeesabeenseesebeenseesaseenbeesabeenbeessnstaeesanns 140
X3-DIO LOZIC COMPONENLS.......cvierierierieriereereetesseetesseesesseessesseesesseessesssessesssessesssessesssessesssessesssessesssesssessessesssessesssesssens 142
COMPONENE: 11 10 OUL...ecuiiitieiiieietieteite et et et et e ste et e eteesbeeteesaeeseesseesaesseessesseessesseessanssesseassassenssenseassesseessesssessesssenss 142
I Tl er | 015 o) 4 AT 142
Data BUTTEIINE. ...ttt et h et h et e h e et e st e bt e et e saeemtesbeembesbeenteennteesnnee s 142

X3-SD16 FrameWork Logic User Guide

Innovative Integration

DIO OUL INEETTACE. ...ttt sttt a st a e bt b e s bttt ebe s b e st et e b et entemteneeneeneeseeneenseeaee 142

DIO OUL OULPULS. ...ttt ettt ettt ettt e e et e bt et e et e e st e eteeaeeebeemeeeaeemeess e e s e eseemseeseenseense st eneeeseeeenseesnneeeneeans 143
Component: 1i_dio OUE DUTTET.......cc.oiiiiiie ettt ettt ettt e bt e ee bt eaeeeeeas 145
DIESCTIPLION: ..ttt ettt ettt et e h bt b e st b e b st ettt et e st e st e st e bt et e e bt ebe e bt ebenb e et e e b e e beenbeenbeeae 145
Component: 11 X3 IO TMccueiuiriirtiitirierieieieee ettt sttt ettt et ettt e bt e bt bttt s bt et b e ettt et eaneat st ebeebeeas 147
DIESCIIPLION:viiietieeieetieteettet e et e st e e e steetesteesbesteesseeseesseessesseessenseessesseessesseensesseensesssensesssensanssanseassensseenssaennseeensseens 147

Data BUFTEIINE.ciioiieiieieie ettt ettt e et e st e et e b e e s s e s saesse et eesseeseenseassesseensesseensesseenseesseesnneens 147
Generic Logic LiDIrary... v eiiiiiiinnnniinsnicnssicsssissssssssssnessssssssssnsssssssssssssssssssssssssssasssssssssssssssssssssss 150
L0 T 1 (<)< TSP 151
Source Files: ii_cmd_reg.vhd, ii_command bus.VRd............ccoeriirieiieiiiieieeee e 151

LD T Ter)14 e o ST 151
Command Channel Control SIZNAIS..........cceivieriieieriieiieieieee ettt ettt e e e be e s e teessesteessesseessesseesseesssseesseenns 151
Decoding a Command Channel WIIte ACCESS......ccuieveruiriieriirierieitesieetesteetesteesesseesesseessesseessesssessasessseesssessssseenes 151
Decoding a Command Channel Read ACCESS.c.eeruiruiiiiiiiiieie ettt sttt es 152
Command Channel REGISTETS.ccuteuiiiiiiiiiee ittt sttt st et s e et s e bt sstesbeee e sbeenbbeesnbeeenbeeenes 152
Summary of Command Channel DECOTES...........coueruiriiiiiiiiiiineeiteecreteese ettt ettt seae e 152
Important IMplementation NOLE:...........eiiiieiieeei ettt ettt ettt ettt e e e bt et e eseeeesseensesseensesneeeanseesnseeann 153

LT T e T 11T A< PSSP 155
Source files: 1i_data MOVEI.VId.........ccuiriiiiiiieii ettt ettt sttt e sesaaesseesaesseensesseesnseennnes 155
DIESCTIPLION ... eettitieteettet ettt ettt et eteesteeteesbe s st ebeesaebeessesseess e seesseeseesseeseesseeseesseessesseessesseessesseesbeesaenbeeseenseesseesnneeennes 155

L STAIMNL TN L..ocutiitiitieiietc ettt et et e bt e st e et e et e ese e aeestebeessesseessesseessessesseessenseessenseeseenseesseseessesseensesseensessaensessseesnns 158
Source file: 11 STam_ INEE VI ..ottt et na e et neas 158

I D TTe7 5172 (o) 4 o TP RPRRP 158
USINE 11 STAML TN L.ttt ettt et ettt et b e bt e bt bt bt e b s bt et et et et et et eneeaeeneeeanesaneens 159

ST 1001 3 11U TSRS PRUTSNE 161
Source file: i1_STaAM32 INtEVIA......cciiiiiiieieieee ettt ettt b e e nre e e nneennnes 161

LD T Ter)14 e o ST 161
USING 11_STAM32 INEE.....oiiiiiiiiiiice ettt ettt e e b st eesb e st e esbeetaesbeeseesseeseesseeseesseessessaessesseessesssseesnseens 162

I PACKETIZET ... veieeiietieieetee ettt et ettt et et e st e et e st e e b e b e esbe s eesseeseesseaseesseeseesseeseesseasteseesse s e essesseessenseesseseensenseensenseenseennnes 164
Source file: 11 PACKETZET. VI,c.eiitiiiiie ettt ettt sttt sbe e st e e 164

I D17 5172 (o) 4 APPSR 164

U 362 14 L) PRSP 167
Source file: i1 deframer.VRd..........c.ooiiiii et ettt b et 167

LD Tl er 013 e o LSRR PRR 167

ST 1 1<) £ TSR RURRPSRUPRR 169
Source files: ii_alerts.vhd, fifo 1k X32 VIA.VRd......ccooiiiiiiiciiiceeee et e 169
DIESCTIPLION ... eeuteitieteeitete ettt et e e eteesteete e ae s st e besseesseessesseessanseesseaseesseeseesseeseesseessesseesse b e essesseesbeeseenseeseenseesseennseeennes 169
ALCTE DAta FOITNAL.eeeitieiie ettt ettt et b et e b e m e e bt en bt e bt e bt eae e bt eaeesbeentesbeentesbeenneesnneas 169
AAING NEW ALCTES ...ttt ettt et a et e e h e et e e et e bt e st e e bt es b e e bt ea s e ebeemteeb e e et eate bt emtenbeeneesnneees 170

L 10 o [T 2 OSSOSO 173
Source files: ii_mq_sram.vhd, ii_sram_intf.vhd.........cocoooiiiiiii e 173

LD Tl er 013 e 1 TSP 173
MEMOTY TNEEITACE. ... eetieiietieiiecteee ettt ettt ettt et e et e e e st et e eseeseeseesseensesseenseeseensenseanseessansseesnsaeensnens 174
BUFTET STALUS. ...ttt ettt ettt e st b e b bt e bt e bt s bt sb ek et e s et et et et enteneeneeatesaneeeee 174

Data Rates and PaACINE.......cc.ecieriieieciieiecie ettt sttt e et e teesaesaeessesseessessaessesssessaessensenssasseessansseesssenanes 174
QUEUE PriOTItY COMIIOL......eiiiiiieeiete ettt ettt et eh et e e e bt e st et e e st e bt estenbeenteebeensbeesnbeeenbeeenns 175
Changing the QUEUE SIZE......c..eiiiiuiiieiieiieii ettt sttt e bt e st e bt e et e eb e ea et sb e e et saee bt satenaeesabeesabeeenateesnne 176
Changing the NUMDbEr Of QUEUES.c.cceriiriirieieieieieteieeiercet ettt ettt ettt be bbbttt be s saaesanesanesane 177

ST 10 o [T 21 0015 SRS 178
Source files: ii_mq_sram32.vhd, ii_sram32 intf.VhRd........cccooieiiiiiiiieiecc s 178

X3-SD16 FrameWork Logic User Guide

Innovative Integration

DESCTIPLION ... iittiitieteettete ettt et et eat e eteesteeteesbe s st esbeesa e beessesseessasseesseeseesseeseesseessesseessesseessesseessesseesbeesaenseesaenseesseesnneeennns 178
IMEMOTY TNEEITACE. ...ttt ettt ettt e bt e ettt e st e e et e sbeemeeebe e tesbeenteeseanteene e seeesnteeeneeas 179
BUTTET STALUS. ...ttt ettt et b e st be bttt et et ean et nteae s e et ens 179
Data Rates and PaCINE......cc.coueieiiiiiiietiieitrcrt ettt ettt ettt ettt ettt sb et b e b st et a ettt et eae bt ettt ens 179
QUEUE PrIOTIEY CONIIOL ... vttt ettt ettt et ettt be bttt sa e naeesanesane e 180
Changing the QUEUE SIZE.........eccuerierieriieiesiieteettete et estestestesstestestesseestesseessasseessesssessesssassesssessesssessessssessnsseesssensnns 181
Changing the NUMDEr Of QUEUES.........ccveriiiieriiiierieiierte ettt sttt et e et esaesseessesseessessaessesssesseessesseessseessseesnsseenes 182

I ETTEZCT ot euveteeteeteeteetteteeet e bt eeteeteesseeseesseeseessessaesseeseesseessesseessasseessasseesseeseesseeseenseeseesseessesbeessesbeessebeesseeteesbeeseenseereenseeneenns 183

Source file: 1 trGZET. VIoouiiiiiieieeiiet ettt ettt ettt et e et e st et e beesbeeseesbeeseessesseesseasaesseessesseessesseessanseeanns 183

LD T ler 015 o) o OSSR 183

TE DKttt b b bbb ettt et et e b e bbbt be bttt et eaneeane 185

Source files: ii_link.vhd, fifo 1kx32 async vId.Vhd.......ccccooiiiiinininincctceccee e 185

LD T Ter 15 e o G ST 185

T LINKD ot h bt h e h ettt a bbbttt n bt a et a oo 188

Source files: ii_link2.vhd, fifo 1kx32 async_ vIA.VId.........cccooviriiiiiiiiice e 188

I DT w172 (o) 4 A PSPPSR 188

L PIL SPluuiitieiiiitiete it et ettt ettt et e bt et e bt ettesbeestesbeessesaeesbeeaeesbe et s es b et s enb e et s e st e es s e st es s e aeeRaeeheenbe Rt esbeeReenbe st enbeenneeetbeeanreeentas 191

Source files: 11 Pl SPIVI...c..eiiiiiie ettt ettt a ettt ettt be et b et e b e neeeenees 191

L T ler 015 o) o AU 191

T ERIMIP. SISO ..ttt ettt ettt et e bt et b e s bttt e st et ea s e st e st ebeeae e bt eb e e bt ebe s et e bt b e b et et em s emteatebtemtebeeb e e bt sbe et e benb et et e eeneeaneenee 193
Source Files: ii_temp _sensor.vhd, i2¢_bus.vhd, i2c_master top.vhd, i2c.vhd, i2c_master bit ctrl.vhd,

12C_MASLEr DYLE CLILVIIA..ouiiiiiiiiecieeeece ettt ettt e e e b e e s e s st essesseesbeeneessaeesseensseesnsaeenes 193

DIESCIIPLION: ...tiiuieitieieeiieie ettt ettt et e et est e et eae st e bessaesseessesseessansaessenseanseeseasseeseenseassenseassesseessenseansensaenseaseensensseesnseeennns 193
USING 11_TOIMNIP SCIISOT ... e.ueeveeereereesteeteeteeseesseeseesseessesseessesseessesssesseessessesssesseassessesssessssssesssessesssessesssessesssesssessssessssses 193
TeMPEIature REAAING.cccveiiiieiieieitiei ettt ettt e et este st e be et esbeesbesseesbesseesseessessesseesseessessaeensseenssesessaeenes 193
Setting the Warning and Failure TempPeratures.o.cecuieuieriieiereeiere ettt ettt et esee e sneee e 194
EITOT F1AZ OULPULS. ...ttt ettt ettt et et e b e bt e at e bt s et e e be et e ebeemtesbeemteabeemteeneenteenteesnneeas 194

T OTTZAIN. ettt h et sttt bttt et s e bbbt bt h e h e eh bttt et et a bt ebe bt b et e 197
Source file: 11 OffZaIN. VIcoiiiiiiii ettt ettt 197

X3-SD16 FrameWork Logic User Guide

Innovative Integration

List of Tables
Table 1. Supported Logic DevelopmeEnt TOOIS........c.ccuiiieriiiiieiieieriieteeteet ettt stesteeste s e e ssesesesbeessesbeessesseessesseessessseesnseeas 13
Table 2. FrameWork Logic Directories and OrganizZation..............ccuevieierueeriesieerentieseereesseeseesseseesseessessesssessessssseesssessssees 16
Table 3. Logic Environment Pros and COMS.........c..ueiuirieiiirieieeeeee ettt ettt et eaeeee st enaeemeesbeesnteeeneeas 18
Table 4. Xilinx Report Files Generated During Implementation............co.oeieriiiiniiienieesceieseee e 29
Table 5. X3-SD16 FPGA Device Part NUMDET.cccoeiiiiieieiieie ettt ettt sae st e s e ssaesseenae st e ensesseensaeenneas 44
Table 6. Logic Development Tools fOr X3-SDI16.......cccooirimiririininitieeeteietetet ettt sttt e sae et saeenaeens 45
Table 7. X3-SD 16 LOZIC POIS......cccieiiiieitieieeieieeieete ettt e ste et e steeaesteesbesseesseeseesseeseessesseesseassesseassesssensesnsseesnseesnsseesnseens 52
Table 8. X3 FrameWork LogicC MemOTY IMaP........ccccieieriiiieieiieieeeeteetesieetesteestesseessessaessessaessesssessesssensesssenseessenseessennses 55
Table 9. 11_TEV._COUC REZISET.....ccuiiiieiiieiieiiietieie ettt ettt ettt ettt e et e e teesseeteesbeeseesseeseebeesseseessesseessesseessesseensseessseesnseeas 55
Table 10. X3 Control REGISTET 0.......ccuieieiiiiiiiiieieieeieseerte st ettt ete et esteeetesteessesseesaesseessessaessesssessesssessesssasseessesseessesssessnseens 56
Table 11. X3 Control REGISTET 0.......ccuiiiiiieieii ettt ettt ettt et e st e e sae e et s st e aeese e beeseenbeeneenbeeneeeneeneesnseesnneean 56
Table 12. X3 Temperature Sensor REAAING.cccuiiiiiiiiiiiieee ettt ettt ettt et st st esaeeeee e s 57
Table 13. X3 Temperature Warning REZISTET........cc.ccueiririririiininerereet ettt sttt st ettt ettt ebe e e 57
Table 14. X3 Temperature Failure REGISEr.........cciiriiiiiiiiieiieee ettt ettt ettt e st et esneeeeneeesnseeens 57
Table 15. X3 PLL CLOCK CONIOIS.cotiiiiiriiitiitistirtestet ettt ettt ettt ettt eb e ebteb e b e s bt sb e st e st e sb et ebebeebeebeens 58
Table 16. X3 PLL SPI POTt INEITACE.c..eouiiiieiiiieiieiieereeet ettt ettt ettt ettt ebe bbb sae e 58
Table 17. X3-SD16 A/D channel ENabIEs..........cc.ooiiiiiiiiieieeee ettt ettt b e sttt sae e e b e beenaeen 58
Table 18. X3 DAC Channel ENables............coiiiiiiiiiiieeee ettt ee bbbttt sae st e te b e beeaeens 59
Table 19. X3 Front Panel DIO ENabIEs.........c.cooiiiiiiiieieiieieeeeee ettt ettt ettt b et e et et e ebeenee e snteesnneeas 59
Table 20. X3 ZBT SRAM Address REGISTET.......cccuiiieiiiiieiieiietietet ettt ettt sttt sb et e st et e s b et e seeeennaee s 59
Table 21. X3 ZBT SRAM Data REZISLET....c..ccueteieiiriiriiriietinteriest ettt ettt ettt ettt ettt eatebesbeebesbesbesneens 59
Table 22. X3 DAC CONLIOl REZISTET......c.couiiiiiieieiiiiiiteeteetese sttt ettt ettt ettt sttt et se ettt et eaeesbeesueesbeesaeesaneaas 60
Table 23. X3 A/D CONLIOL REEISTET........ciieieiieitieieitieiesteetesteeteeteesteseeessesseessessaessesssesseassenseessesseessesseessesssessesssesseesssassnsees 60
Table 24. X3 Digital IO Data REGISIET.......cceecieriieieriieieeiesteeiesteetesteste e stesseessesseessessaesseeseessesssesseessessesssesseessseessesensseens 61
Table 25. X3 DIO bits 31..0 CONIOL REZISIEI.......cueiiiieeiiiiieiiiciicieeeete ettt ettt te et e teesbeeteesseeseessesreessessnesseessseeenssens 61
Table 26. X3 DIO bits 43..32 CONLrOl REGISTET........ccviiiiiieiieiietieteete ettt ettt et teetb e teesbesseesesseessesssessessnesseesssasenseens 61
Table 27. X3 Front panel DIO Control REZISTET.........cc.iiiiiiiieiieieie ettt ettt ettt see e e eee e st e eeeeeeneeeas 61
Table 28. X3 DAC PacKet HEACT.....c..coiiiiiieieieeeteee ettt ettt e s ettt eae et e s et e bt satenaeeseesmnee s 62
Table 29. X3 A/D PaCKet HEAAECTccuiouieieeieieeeeieee ettt ettt ettt et e st e e st e st e eseenteeseanseeneenseeennneesnseeenneeens 62
Table 30. X3 A/D Gain Correction REZISIETS.cccuiiririririrtinierterteteteteteet ettt sttt st sttt ettt eaeebeebesaesteeneens 62
Table 31. X3 A/D Offset COrrection REZISIEIS.......c.ueeviiieriieieriieiesietese e st eaesteteste e eaesteessesseessesssessesseesesssessesssessesses 63
Table 32. X3 DAC Gain Correction REGISIEIS.ccuevieriirieiiieierieeierie sttt ete sttt et et ete et essesseessessaesseessesseessseesnseeesseens 63
Table 33. X3 DAC Offset COrreCtion REZISTEIS.......ccuieiiiiieiietieiietieteeteesieetteste ettt ee e reetsesteessesseeseeseessesseessesssesseesssesanseens 63
Table 34. X3 ANAlog GaiN CONIIOIS.cciiiiiirieiiiieteiteteetesteeteste et e teesseeteesseeseesseeseeseeseessesssesssessesseessesseessesseenssessssessseens 63
Table 35. X3 TTIGEET COMLIOIS.cuiiuiiitieieet ettt ettt ettt ettt et e bt ee e e te e st e st e emeesseenbeeseentesseenseeseenteeneenseeneenneeas 64
Table 36. X3 DAC DECIMALION.couieuiiitieieietete ettt ettt ettt ste e teebee et st e e besaee et eseesbeeseeabeemse bt entesbeenseesmneeeneeennseeans 64
10 (I A G N 1< A 03 113) USSR 65
1o (R T G N 1S 23 1T o) (T USRS 65
Table 39. X3 LOZIC CLOCKS......ciotiiiiiieieiteie st ete it e et et e s st et e s teessesaeessessaessesseessesssesseassansaesseaseensesssessesssensesnsenseesssassnseens 66
Table 40. A/D Clock and Sample Rates for Sample MOAES.........ccovivieriieiiniieierieieeiee st sesseenseeneees 68
Table 41. X3-SD16 A/D Component OQutput Data FOIMAL.............ccuevuiiiiiiiiiiiieeiieieteeeere et et eee e ae e seseessreeeaneeas 69
Table 42. X3-SD16 DAC INterface COMPONENL.........c.ccieciirrieieiieieitieteetesteetesteetesseessesseessesseessesssessesssessesssessesssessesssensees 70
Table 43. D/A Clock and Sample Rates for Sample MOdes.........coouiiieiiiiiirieiiee ettt 70
Table 44. X3-SD16 DAC Component INPut Data..........ccooeevuiiiiiiiieeeieeeee ettt sttt sttt et sae et eeeaneees 71
Table 45. X3-SD16 EXtEINal TTIZEETS.....ccueovirteteieteieiieieeieet ettt sttt ettt et ettt ettt be bt ettt se et et et et easeaeebeebeeasesaneens 72
Table 46. X3-SD16 Data Buffer QUEUE SiZES.........cceiieiiiiieiieieieeieee ettt ettt st et eete st et e sseentesseensaeesnseesneeas 77
Table 47. X3 SCript COMMANGS........c.ecieriieieriieiertietesteete st etesteesesteesseeseesseesseseassesseessesseassesssessesssessesssesesssensenssensesssensees 81

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Table 48. X3-SD16 Unused Signal TermiINations.cecveruieeerreerierieeiesieesesseesesseeseessessesseessesseessesssessesssesseessseesssessssseens 86
Table 49. X3-SD16 Connectors Connected to the FPGA.........ooi ittt e 87
Table 50. X3-SD16 P10 CONNECLIONS.ccuteiiitieieitieieetieie ettt ettt ettt e e st e ete et e e beeae e beesee bt eneeeseeneeeaeeneesaeentesaeensesseesaneeas 89
Table 51. X3-SD16 JP1 Connections t0 the FPGA.........cciiiiieeeiee ettt sttt se e saeesnseeeneees 90
Table 52. X3-SD16 Xilinx ISE Project FIIENAME.........cccccevviriririririniieccieteecteee ettt sttt n 90
Table 53. X3-SD16 CONSLIAINt FIlE.....c.coeiuiiiiiiiiitiiiniteee ettt ettt ettt st e b e s b bbbt et enbeeeeens 91
Table 54. X3-SD16 Simulation MOEIS..........ccueoiiiiiiiiiiinineneee ettt sttt ettt ebe e b e saeesbeesbeesaeeaae 96
Table 55. X3-SD16 Simulation Macro FILEs..........coiiiriiriieieeee ettt ettt ettt st sa et st nae e beesbeesnee e 97
Table 56. 1i_Sdf adc COmMPONENE POTLS......c.cccuiiiiiiiiiieieitieieeieet ettt ettt st sae e e sbesssesbeesbesseesbesseenseeseensesseensesnnnes 108
Table 57. 11_servo_adc ComPONENE POITS.........cooiiiuiiiiiieieit ettt ettt ettt b et e e et et e e s et e enteesmeeeennee 111
Table 58. 1i_servo_dac ComPONENTt POTITS......c..ciiiiiuiiiiitiiiiit ettt ettt st b et s b e e e b et esteesmeeeenaes 114
Table 59. A/D Clock and Sample Rates for Sample MOES.........co.eeireriririenienieiiieieteenceee ettt 115
Table 60. X3-SD16 A/D Component Output Data FOTmMat.........c.ccecvriririirininininicecteieteceeeese e 117
Table 61. 1i_SA16_adc COMPONENE POITS......cc.eeieriieieiieierie ettt eie sttt et eteesbesteesesseesseesaesseessesseessesseensesssseesnsesnnnes 119
Table 62. D/A Clock and Sample Rates for Sample MOdES..........ccveririeriiriiiiieieeieieeiee ettt eae e essesseeenes 120
Table 63. X3-SD16 DAC Component INPUt Data..........ccceeriiiiiiiiieiiieieeieeste ettt e ettt eaeesaeesbeessaesaseessneessnsneeas 121
Table 64. 1i_SA16_dac COMPONENT POITS.......c.eccviriieiiiiieieie e sttt ettt et et e eteesbeeteessesseesseesaesseessesseessesssessessseesssesnnnes 123
Table 65.1i_10m_adc CompPONENt POTES.cc.iiiiiiiieii ettt ettt b et e st e e st e e e sbeenteeseeneeeneenns 126
Table 66. 1i_sd_adc COMPONENT POITS......cc.oiiiiiiiiiiiee et ettt ettt se et e bt et bt et e b e e e e naeeesneeeemees 129
Table 67. 11 x3 25m_adc intf COMPONENE POTTS......c.couiriiiiiiieiiiiieet ettt ettt s e e 132
Table 68.ii_x3 25m_dac_intf Component POTtS............cciiieiiiriiiieiee ettt e e 134
Table 69. ii_x3 ad4d4 adc ComMPONENT POTTS.........cciiiiriiiieiieieieeteseete sttt ettt te e ae st e ssessaessesssessesssesseessanseessseennnes 138
Table 70. ii_x3 a4d4 dac COMPONENT POILS.........cciiieriiiieiiieieeteie ettt ettt ae st e ssessaesseenaessesssesseensesseessseennnes 141
Table 71. 1i_x3 dio_out COMPONENLE POIS.......cccuiiiiiiiitieiiitieiietiet ettt et ste e e steesaesteesbesteesbesseessesseesseeseesseesseesnseeesnns 144
Table 72. ii_dio_out_buffer COmMPONENTt POITS..........ccuiiiiiiieieiiieieee ettt sttt b et beeseesbeesaesseesaeessbeessneeennnas 146
Table 73. 11 X3 dio_in COMPONENE POITS......ccuiiiiiiiieitieieit ettt ettt ettt b et e st e e et e ente e s et e enteesmaeeennes 149
Table 1: 11 cmd 1e€Z MEMOTY IMAP..... .ottt ettt et h et e a et s at e bt s et e bt eaeesbeemtesbeemtenbeenneeennns 152
Table 74. 1i_cmd reg COMPONENE POTTS.......coiiiiirirtirtirtirtetetetet ettt sttt ettt ettt ettt sbe st be st b e naeenaeenaee 154
Table 75. 1i_data mover COMPONENE GEIETICS.coueruirrirrerreteteiteteiteieeit et eete st sttt sttt est et enteatebeeseebesbeeeneeaneeneenaeensee 156
Table 76. ii_data_ mover COMPONENE POTES........c.cccieriiiieiiiieieeeeieeieie ettt ste et e st esaesseesae e essesseessesssensesnsaeenssesnsseesnsees 157
Table 77. ii_sram32_intf COMPONENLE POIS........ceeviiiieriiiieriieieeeete ettt ettt st essessaesseesaessesssesseensenseessseennnes 162
Table 78. 11 packetiZer GENETIC POTTS.......ciuiiiiieieieieeet ettt ettt ettt b e sttt se et et et e e st ebe e st enee e 165
Table 79. ii_packetizer COMPONENt POTLS.........c.oecviiiiiiiiiieiiiieieeteet ettt ettt sae e e st s sa e beesbesbeessesseessesseessesseensesennes 166
Table 80. ii_deframer COMPONENT POITS.........coiuiiiiiiiieitiee ettt ettt b et e sttt e e be e es e tesaeenaeeenes 168
Table 81. 1i_alerts Packet FOIMAL........cc.ooiiiiiiiieeee ettt et et e a ettt ettt e et eenneeeenes 170
Table 82. 1i_alerts COMPONENL POTTS.....c..couirtiiiiiiiiiiiiceiteeeet ettt ettt ettt st be et be et e sttt ebeebeens 172
Table 83. 1i_mq sram Data Rates SUMIMATYc.coieiriiriiriiiiieieieteeeee ettt ettt sae sttt s s s 175
Table 84. ii_mq_sram COMPONENLE POTS........ccveciiiieriiiieieiiesteeieteetete ettt et e steeseesteesaesseessesseessesseessessaensessseeessesssseessees 177
Table 85. ii_mq_sram32 Data Rates SUMIMATY.........cccccueriieieriieieri et ete st etesee e steebessteseesaesseesaeseesseseassessnsneensseennnes 180
Table 86. ii_m32 sram COMPONCNE POITS.......cc.ciiiiiiiiiiiiiiieiieteet ettt ettt eteesteesaesreesbesteesbesaeessesssesseessaeesseesssesensens 182
Table 87. 11_trigger BIOCK DIQ@IAI.........ccuiiiiiiiiieiieeieie ettt ettt e te et te b e steesseeseesseessesseessesseessesseessesseessseensnes 183
Table 88. ii_trigger COmMPONENE POITS.......c.oiiiiiiiei ittt ettt e sttt ettt e s b e emte s bt entesbeenteeseeneeeneenseeneenns 184
Table 89. i1_link ComPONENT POTTS.coiuiiiiiiiieiiee et ettt ettt et b et e bt e e s b e et e ebe et e ebeenteesteesmeeeennes 187
Table 90. 1i_1ink2 COMPONENE POTES.......cotruiriiriiriirtitertentetet ettt ettt ettt ettt et ettt sbe et b ettt et e 190
Table 91. ii_pll_spi COMPONENE POTTS.......couiriiiiriiriiriirtiteie ettt sttt ettt ettt et be bbbttt eaeenaeenne 192
Table 92. ii_temp _sensor COMPONENE POTTS.......c.cccviriiiieiiieiiiiieieieetet ettt e steeae e esbe s e esbesteesseeseesseeseesseesseesnsessnnns 196
Table 93. ii_offgain COMPONENE POILS.......cceeciiriieiieiieiieiett ettt te e et e st et e ssaeseeseesseeseesseensesseensessenssenseesnns 198

X3-SD16 FrameWork Logic User Guide

10

Innovative Integration

List of

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10

Figure 11.

Figures

X3 FrameWork LogiC DIr€Ctory StIUCIUIE.ccviiieivieieetieieiieeteiteeteseete et eteeeaesteessesseessesseessesseeesseeesssessssesenssens 15
VHDL DeVElOPIMENT PIOCESS.c.veitiiiiitietietietiettesteete st ete st esteseessesseesseessesseessasseessesseessesssessesssessesssessseesssesssses 19
Logic Architecture Showing Hardware and Application Layers..........cccceeeerieienieniniene e 20
Example XilinX ISE PIOJECL.......coouiiuiiieitieieit ettt sttt sttt ettt e e et ea et es et e et e ebe e et e esbeeembeeeneeas 21
Compiling the SIMulation LIDIAIIEs.......c.cecuvtririiriririinienieetetet ettt ettt ettt eb et sae e s 23
Setting Simulation Library Compilation PrOperties.........c.ceeererierieieiiiieinineniecne ettt s 24
Invoking ModelSim from XilinX ISE.........c.cociioiiiiiiiiiieie ettt st be v e e ssenseessensnees 25
Example ModelSim Workspace After Loading...........ccocvevierieiieiieiecieieciese ettt s ne e e e e 26
ModelSim Wave WIndow EXAMPIC.......c.cccveriiiiiiiiiiiiieiierieieete ettt ettt ae st esaesaeessesseesseesaesseessesseessesseensesssnes 26
. MATLAB Simulink DeVEIOPIMENL.........ccverieiierieiieiestietesteetesteetesteetesteessesseessesssessesssassesseessesssessesssessessssesanes 28

ISE DeSign ENVITONMENL.eotiiiiitieiietieitt ettt ettt ettt e et e e et e et e es e e et eaeeseeemeesbeeneesaeemsesseensesseenteeseeneeenns 28

Figure 12. Getting Started With IMPACTooiiee ettt ettt ettt et et e e e e e ebeeeenbeeennees 30
Figure 13. Choosing the Operation Mode for IMPACT ..ottt 31
Figure 14. Choosing the Boundary Scan Mode for IMPACTccccooiiiiininininieictetceeeeeeeeteee s 32
Figure 15. Automatic JTAG Chain Detection using IMPACTccoooiiriiiiiiieiecieieceeee sttt 33
Figure 16. Selecting the Configuration Image UsSing IMPACTc.ccciiviiiieriieieieeieic ettt se e e e 34
Figure 17. Programming Devices using JTAG under IMPACTccoooioiiiiiiieie ettt ettt eree e esvee e 35
Figure 18. X3 Logic Loader DOWNIoad APPIEt.........cceiieriiiieiiiiieiieiesieeteste ettt st sa e e te st sbesssesveessesseessesseessesssessnseeas 36
Figure 19. Example of Logic Loading from Application SOftWare...........ccooceriiiiiiiiiiee et 37
Figure 20. Typical Debug BIOCK DIQGIAIM......ccuiitiiiiiiieiietieie ettt ettt et e it st esbe et e sbeeaeenaeenees 38
Figure 21. Debug@ing With ChIPSCOPE.....c..couiiiiiiiiiiiniinieetietere sttt ettt sttt ettt ettt et ebe b e eae 39
Figure 22. Xilinx Parallel IV Cable for Debug and Development.cccoererierierieieieiiieincnesteeesee e enreesieesieesaeens 40
Figure 23. Ribbon cable for Xilinx JTAG (2mm, 5x2 female on each end, 6 inches length).........c..cccccevieriinininicnncnnen. 40
Figure 24. Xilinx Parallel Cable IV Pinout on IDC 5X2 2MM Header...........cocerueierienieieiiiiinienencseee et 40
Figure 25. ChipScope Core DECIarations...........ccvecviivierieiieriieiestietesteesteeseesseeseessesseessesssesseessessesssessessesseessessssesessseesssesensses 41
Figure 26. ChipScope Core INStANtIAtION.cccviriieriiiieieieeteiteteetesteeeesteesseeseesteeseessesseessessaesseessesseessasseessesseessenseessesssens 42
Figure 27. ChipScope Debug EXAMPIE........cc.oiiiiiiiiiieiieee ettt ettt e sae et esbeemeesaeenees 43
Figure 28. X3-SD16 Hardware DIagIam.........cccueiuiiiiiuieiiitieiiettete ettt sttt b ettt et st e bt et e sbeeeesbeetesseesmeeeenees 46
Figure 29. X3-SD16 FrameWork LOGIC FIlES.......ccoiriiiiiiiiiiirieericeesicses ettt s s st 47
Figure 30. X3-SD16 FrameWork Logic BIock DIagram..........cccccouerieriiiiiiiiiiiiinincncsteteeect ettt 48
Figure 31. X3-SD16 LOZIC Data FIOW......ccceieciiiiieiieiieiieieie ettt sttt steste et s teesbessaesbessaesseeseessesssessesssessesssensenssessennes 49
Figure 32. X3-SD16 CLOCK DOMAINS.......cceioieriiiiieiieieiieieseetesttestesetetestessesssesseessesseessessaesseeseensesssesseessesseessessesnsesseensennses 67
Figure 33. X3-SD16 A/D INterface COMPONENL.........ccceecvietierrierietieeesieetesteesesteesesseesesseessesssasseessassesssesseessesssessesssessesesnes 67
Figure 34. ADS1278 Serial Port Timing in TDM MOGE...........cccoiiiiriirieiiieieniieteete et etteae st esteseessessaesaeessesseessesseessaeensseas 68
Figure 35. PCM1681 Serial POrt TIMIIE.......ccueiieriiiieieiiieiteete sttt ettt e te sttt se et e bt et e bt e e es e eteeseenteeneeseeeneeeenees 71
Figure 36. ii_packetizer BIOCK DIQZIAm........cc.ooiiiiiiiiiiiieieeeee ettt sttt s b e e eb et ea et et e b e e e enes 73
Figure 37. ii_deframer BIOCK DIaIAm.........ccueoieiiiiiriiiiiniietesestestet ettt ettt et sttt ettt ettt ebe st sbeenneen 75
Figure 38. X3-SD16 Multi-Queue VFIFO Component Block Diagram..........ccccoueeveruenienieieinieniinincninienenene e 76
Figure 39. X3-SD16 data link t0 PCIL CONtIOIIET..........cccveiiiiieiiieieciieieetete ettt ettt st sa e esaesseessessseesnseeennes 78
Figure 40. X3-SD16 Command CRANNEL.............c.ecuieieriieiinieieeiet ettt ete e ete e tessaesseesaenseeseesseesaesseessesseensesseensennses 78
Figure 41. X3-SD16 SRAM Controller BIOCK DIa@ram............ccecverviiieriieiinrieerieteeeeeeeesteeeesteeseesaeessesseessesssessssesesssessnnes 80
Figure 42. Adding Signal Processing Functions to X3-SD16 A/D Data FIOW........cccccceriieieniieciinieieceeie et 82
Figure 43. SIMulation RESULLS..........ooiiiiiee ettt ettt ettt et s bt e e e bt e e es e e bt eseenbeemeesbeeneesaeeans 101
Figure 44. X3-SD16 Xilinx JTAG Scan Path.........cccooiiioii ettt 103
Figure 45. ii_sdf adc Interface COMPONENL.......c..co.iiuirtiriiieiiieteteteieeteete ettt ettt ettt et ettt et ebe bt eteenaeebeenbeenbeenne 107
Figure 46. ii_servo_adc Component BIOCK DIagram.........c..ccueoueiiiririirininenintinenenteteteteeeieee ettt e b saeesaee e 110
Figure 47. ii_servo_dac Component BIOCK DIagram............ccccveieriiiiieriiiieiieieseeieeeeteeee e seeesaeeseesaesnaesseesssaesnsseessseesnns 113
X3-SD16 FrameWork Logic User Guide 1

Innovative Integration

Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.

ADS1278 Serial Port Timing in TDM MOdE........cceccviriieiiiiieiieiieieeeeie ettt eb e re s sreesseesbaeenneas 116
ii_sd16_adc Component BIOCK DIa@ram............ccceiuiiiiiiiiiiiieierieeieste ettt s eee e e s e e eeeeas 118
PCMI681 Serial POrt TIMING.c.eeieriiiiiiiieieiteete ettt ettt sttt sae et bt et e bt et es s e nbeentesbeentesaeeneeeenns 120
ii_sd16_dac Component BIOCK DIaGIam.......cc.ccuerieiririririiiniiniene ettt ettt 122
ii_10m_adc Component Block DIa@ram............ccocueeiiiruieiiiniieiieiere ettt enee e eneeeeneees 125
ii_sd adc Component BIOCK DIa@ram............cceivieriiiieriiiiesiieiesieetesteeeeeteeteeeesaeseeessesesessessaesssaesssseesssassnsseens 128
ii_x3 25m_adc_intf Component BIOCK DIagram...........ccoecuerieriiriienieiienieiieieetesieeeesie et esee e sneesneeesnneens 131
ii_x3 25m_dac_intf Component BIOCK DIagram...........ccoccuevieiiiieriiiieiiieesieeeesie et este s eeesreeeseveessveeeseneens 134
ii_x3 A4D4 adc Component BIOCK DIiagram...........ccccuievieriieiiniieiiiiieieceeie ettt sveeseeessveessveeeenas 137
ii_x3 a4d4 dac Component Block DIagrami............ccoooiiieiiiiiiiiiieieeeeee ettt 140
ii_x3 dio_out Component BIOck DIagram..........ccoeiuiiiiiiiiiiieiiee et 143
ii_dio out buffer Component BIock DIiagrami............ccccoeriirierienierieieiiininenenieeese sttt 145
il x3 dio_in Component BIOCk DIagram.......c..ccecueiririririninininenentetetetet ettt s 148
1 CMA_TEE COMPONECNL......ecuietieeiertieiertieterteetesteetesteeteeseeseesseseessesseassesseessesseessesseessesssensesssesenssenssessssessnsses 153
11 data MOVET COMPONENL.......ccuveiieeieiieiertieierttetesteetesseeteseeesesseesseessesseessesseessesssassesseensesssessesssessseessesesseens 156
11 STAM_INEE COMPONEIL.....cuviitiiiiitieitieieiteeteeteeteeteeteeteeteereesaeeseesteessesseessesseessesssessesssessesssesseessesseessesseessesnssens 158
i1_sram_INtf COMPONEINE POTES........coouiiiiiiiiieitieiestieteete ettt ettt sre e s te e s e s te e b e seesseeseesseessesseeseesseessesseennas 159
11 STAM_INEE ACCESS TIMINE. ..eteeuieitieieit ettt ettt ettt ettt s ee et s e e et e es e e beese et e esee st emeeeneeeemneesmneeeaneeens 160
11 STAM32 INtE COMPONENL....c.eiiuiiiiiitieiieitieie ettt ettt ettt et e bt et e bt ea e sb e et e eb e e bt eeee bt eaeesbeeaeesbeeneeenneeas 161
11 S1am32 intf ACCESS TIMING......coueriiriiiiiiictc ettt ettt ettt sttt e 163

ii_packetizer BIOCK DIQGIAM........cc.oeoiiiiieieiiieieciieieeee ettt ettt ettt ettt et e st e e et e et e eseeneeeneenseeennes 164
11 PACKEHIZET COMPONEGNL.....cvierirtietieiietietestestestestesteesesseessesseesseessessesssesseaseesseessesseessesseessesssesenssensenssenseensses 165
11 deframer COMPONENLc.eecveriieieeiestieierteete e ste st ete bt esbesteesseeseesseeseesseassesseassesseensesseensenseensenssensenssenseensens 168
11 ALEIES COMPONENL.....cuviitieeiiitietietieteetteteetesteeteeteessesteessesseessesssesseessasseessaseessesseessesssessesssesseenssaessseeesseesnsenns 169
11 ALEIES COMPONENL.....cuviitiiiiitietietteteeetesteetesteesteeteessesseessesssessesssesseassesseessaseessaaseessesssessesssessessssasssssesssseesnseens 171
Multi-queue SRAM Component Simplified Block Diagram............cceccovieiiiiiniiiiiiieeeeeeece e 173
11 MQ_ STAM COMPONEINL....c.tiiuiitieiietieieett ettt et et et e ste et e steeteebe e beestenbeesee bt eaeeaaeemeesaeenteeseensesneesnteesaseeeaneeenn 176
Multi-queue SRAM 32-bit Component Simplified Block Diagram..........c.cccceceveeirieriniinienininienecnicnienneen 178
1l MQ_STAM32 COMPONENL.......eitieiietieiietierteeeiertteee et etesteeteseeeseeseeteeseenteeneeseeneasseensesseensesseensesneesnseesseeesnseenn 181
111Nk BIOCK DIQEIAIMN......cviiiiiiiiiiiiieieciteieeitete ettt ettt et ste e ae st e e e s e esbesseesseesaesseesaenseessesseassesseensesseesnseeenssens 186
11 1ink2 BlOCK DIAGIAM.......ccviiiiieieiiieiesiieieetieie ettt ettt e steeaesaeesaesseessesseesseesaessesssenseesseseassesseansesseessseeenssens 189
TP SPI COMPONENL....iviitieiiitieiietietietesteetesteeeesseetesteessesaeessesssesseessasseessesseessasseessesssessesssessesssessseesssseessseens 191
1 temMP SENSOT COMPONENL......ccvieuiierierietieteeeesteetesteestesseetesseessesseessasseessesseessesseessesssessesssessesssessesssessesssseessses 195
ii_offgain Component BIOCK DIagram.........ccoeiuiiieiiiiiieieii ettt s 197

X3-SD16 FrameWork Logic User Guide

12

Innovative Integration

Introduction

This manual is written to assist in the creation, implementation and testing of custom logic for Innovative Integration
products. The scope of this manual is limited to discussion of the logic development tools, example logic designs and logic
libraries provided in the FrameWork Logic toolset.

Additional documentation on each product is provided for hardware features and software in other manuals. These are used
in conjunction with this manual for product development and use.

Thank you for using our products. Your comments and input are appreciated so that we can improve our support and help
you to be successful on your project. Email us at techsprt@innovative-dsp.com with your input or give us a call.

Prerequisite Experience and Required Tools

The designer is expected to have experience in VHDL and FPGA design to use the FrameWork Logic tools and code. All
components in the FrameWork Logic are VHDL source code whenever provided and supported by VHDL models and test
code. As a standard, the code is written in VHDL 1993 version which is widely used and supported.

The design tools used are listed here. We make an effort to keep the logic supported under the newest versions, but in
many cases the logic must be reworked and retested to support the newest tool version. For each product, we have listed the

required tool set that was used to create the logic.

Here is the tools set list we use for supporting the FrameWork Logic use and development.

Function Tool Vendor Tool Name
Synthesis, Place and Route Xilinx ISE 12.1 or above
WebPack ISE 12.1
Simulation Mentor Graphics | ModelSim 6.2¢c
Bit and PROM Image Creation Xilinx Impact 12.1
Logic Debug and Testing Xilinx ChipScope 12.1
Logic JTAG Cable Xilinx USB, Parallel Cable IV or others

Table 1. Supported Logic Development Tools

See MATLAB BSP manual for current MATLAB toolset.

The documentation for the development tools is provided by the tool vendor. All of them have on- line documentation and
help that can acquaint you with their use. This manual makes no attempt to replace them, but rather supplement them with
specifics on using them with FrameWork Logic application development.

While it is not expected that you are expert in these tools, these tools are used for FrameWork Logic development and are
discussed in this manual. If you are using other tools, they should have similar capabilities.

X3-SD16 FrameWork Logic User Guide

13

Innovative Integration

Organization of this Manual

This manual covers the main topics in using the FrameWork Logic for Innovative Integration products for HDL
development methods. The first few sections describe the HDL tools and development methods including synthesis,
placement and routing, and simulation. Finally, the generating the logic image and debugging are discussed.

Each product supported by the logic is discussed, showing the details of the example logic are shown. The hardware
interface components and application logic internals are shown.

Finally, the FrameWork Logic library components are shown.
The MATLAB tools and Board Support Packages (BSP) are covered in the X3 MATLAB Board Support Package Guide.

There is one manual for each product that discusses the specifics of that BSP and development process. This manual is
describes some of the underlying infrastructure logic that supports the MATLAB BSP.

Logic Directories and Files Organization

The logic files for all X3 products are organized by product with a library of common components that is used by each logic
design. Each product design has both RTL and MATLAB support under its product directory.

The RTL for each design provides support for simulating, creating and debugging. Design-specific source files for in the
source directory include the top-level and unique hardware interface items, while the library files contain components that
may be used in all X3 products. Constraints for the design is provided in the source directory and includes all the physical
and timing constraints required. Results of the compilation are included in the ISE and Linux directories showing the
compilation and fitting results.

The MATLAB Board Support Package (BSP) is included in the MATLAB directory. These directories are the MATLAB
BSP files and example projects that use Simulink with Xilinx System Generator. Refer the to X3 MATLAB BSP Manual for
details on using MATLAB. Do not use these files for RTL work since they have MATLAB-specific features.

The Library directory has logic components supporting the X3 family. These components are used in many of the designs
and are common to the family of products.

X3-SD16 FrameWork Logic User Guide

14

Innovative Integration

X3 FrameWork

— Library
- coregen
| simulation
L source
—Product_Name
—RTL —
— chipscope
— coregen
—ISE
—Linux—docu
—ROM
—simulation
—source
—MATLAB
—BSP
—Examples
LLogic

Figure 1. X3 FrameWork Logic Directory Structure

X3-SD16 FrameWork Logic User Guide

15

Innovative Integration

Directory

Files

./Product Name/RTL/coregen

Logic cores specific to a design.

./Product Name/RTL/chipscope

ChipScope cores and debug session files

./Product Name/RTL/ISE

Xilinx ISE directory for a specific design

./Product Name/RTL/Linux

Files for compiling in Linux environment and compile results (if
available)

./Product Name/RTL/ROM

The released logic image in EXO or BIT format

./Product Name/RTL/simulation

Logic simulation files

./Product Name/RTL/source

Logic source files for a specific design

./Product Name/MATLAB/BSP

MATLAB Board Support Package

./Product Name/MATLAB/Example

MATLAB Examples

./Product Name/MATLAB/Logic

Logic source and compilation files for MATLAB BSP

/Library/RTL/coregen

Logic cores for library components

/Library/RTL/simulation

Simulation files common to all X3 designs

./Library/RTL/coregen

Table 2. FrameWork Logic Directories and Organization

Logic Component Naming Conventions

Logic source files for library components

For all hardware interface components, the standard naming convention is

i1i <product name> <function name>

where <product name> is the Innovative product this component is used on, and <function name> is a descriptor of the

component.
For example,

ii sdf adc

is the X3-SDF A/D hardware interface component.

X3-SD16 FrameWork Logic User Guide

16

Innovative Integration

Where to Get Help

In addition to this manual, the example design for each product is provided with an HTML document that allows designers
to quickly navigate the design to understand the hierarchy, entities used, ports and source code.

For help on Innovative Integration hardware or software, there are separate help manuals and an on-line help system for the
software tools. These manuals are provided on the CDs delivered with the product or on the web at http://www.innovative-
dsp.com/support/productdocs.htm . At this site, you can download the product information, software and logic updates.

Help for other tools such as Xilinx or ModelSim is provided on-line with the tool. Xilinx also has an excellent Answers
Database on the web (http://www.xilinx.com/support/mysupport.htm) and many examples of techniques used in FPGA
design. This is the primary site for support on Xilinx- specific problems that can include tools problems and workarounds.

Technical support from Innovative Integration is available at

Web Site www.innovative-dsp.com (product manuals, software updates, firmware and discussion forums)

Email us at techsprt@innovative-dsp.com

Phone : ++1 805-578-4260 Monday through Friday, 8 AM to 5 PM Pacific Standard Time

X3-SD16 FrameWork Logic User Guide

17

mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
http://www.innovative-dsp.com/

Innovative Integration

Logic Development Process

The FrameWork Logic system supports two logic development methods: VHDL, MATLAB Simulink, or a combination.
Each system offers benefits and have strengths that in some cases complement each other.

VHDL development is very flexible, allowing the developer the full freedom of a high level language that is expressive and
extensible. The FrameWork Logic system provides VHDL components for hardware interfaces that allow the designer to
quickly integrate custom VHDL code into the application logic. Other library components are offered that provide some
common functions used in signal processing and control. Libraries from Xilinx and third parties are also used to provide
broad support for signal processing, analytical and communications applications.

Development | Pro Con

Tool

VHDL Expressive, extensible language. Gives complete Design and debug of DSP algorithms is
flexibility to the designer. more difficult and time consuming.

MATLAB Allows design of complex DSP algorithms at a high Less capable of handling low-level

Simulink level. Great visualization and analysis tools for design | details. Less visibility and control of logic
and debug. design process.

VHDL + Best of both tools gives optimum flexibility where Multiple tools must be used resulting in a

MATLAB needed and high level design for complex DSP more complex development process.
algorithms.

Table 3. Logic Environment Pros and Cons

MATLAB Simulink offers a high-level block diagram approach to logic design that allows the designer to work at a higher,
more abstract level. Signal processing algorithms can be quickly developed and simulated in MATLAB then directly ported
to the logic hardware. Inside of the FrameWork Logic tools, the designer can concentrate on the algorithms because the
system has a hardware interface layer that integrates the hardware with MATLAB cleanly and efficiently. Application
development is dramatically sped up for complex signal processing algorithms because of the powerful capabilities within
MATLAB for algorithm design, visualization and analysis.

Many applications find that a mix of VHDL and MATLAB offer the best of both worlds: high level signal processing
development and the full flexibility of a high level language. It is common that unique data handling, triggering and
interface functions may be better expressed in VHDL, but nothing beats the power of MATLAB for things like filter design,
down-conversion and mathematical analysis of data. The designer can mix VHDL components, or MATLAB-generated
components with one another in either environment and reap the benefits of each system.

X3-SD16 FrameWork Logic User Guide

18

Innovative Integration

Developing Using VHDL

Application logic development with the FrameWork Logic in VHDL follows the typical development cycle: code creation,
simulation, physical implementation and test. This flow is summarized in the following diagram showing the Xilinx ISE
tools and ModelSim as the primary development tools.

Kilinx Core
Lib

VHDL Source Code » Synopsys
-vhd #71 VHOL Gompiler

-User Files
-Innovative Integration

—

Constraint Editor

-

i

~Third Party

Interative
Optimization
Cycle

Map, Place,
Route Tools

Constraints File
-uct

-Timing Constraints
-Pin Constraints (user defined)

./ \. / Timing
{ i Analyzer
| Simulation / PROM Generator

Functional
b o Layout
VHOL File
Post layout
simulation
Mentor Graphics
Model Sim 4
L mmm B\[SF[lIeam 5 :_(ing
Test Bench File »‘f ' Strw?dm

e v v

Innovative Integration Yiling Download Cabl ChipS Debug Tool
} DSP Uilty ilinx Download Cable nipScope Debug Too
VHDL Simulator “Burn Logic'
Xilinx FPGA
Chip

jﬁ

A

Figure 2. VHDL Development Process

The application development begins with the FrameWork Logic code for the product you are using. In many cases, the
example application code provides a good starting point for your application logic. In most cases the application logic
shows a basic data flow between the 10 devices, such as A/D and D/A converters, to the logic and system. You can then
build on top of the example logic by inserting your algorithms into the data flow along with unique triggering and other
application-specific logic.

The FrameWork Logic provides a library of components for the hardware interfaces as well as others functions, an example
application showing IO interfacing and data flow, design constraints, a simulation testbench, and a Xilinx ISE project or
each example. This gives you the basic foundation to begin work. After you install the FrameWork Logic on your system,
you should be able to recreate the logic and verify its operation. Once that is complete, you are ready to begin development.

At this point, you should have a look at the example logic and determine the best place to insert your logic and how you can
best use the example in your development. If you can preserve many of the basic memory mappings, controls and system
interfaces, you will then be able to use the example application software delivered with the product. That saves time for
both you and the software developers.

In most cases, you will see that the logic is organized as a hardware interface layer composed of components that directly
interface to the hardware and an application layer that is composed of the analysis, data handling and triggering functions.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Hardware Application | _|Hardware
Interface Logic Interface

Figure 3. Logic Architecture Showing Hardware and Application Layers
The application layer is on a single clock domain so that it is easy to integrate functions into the design.

Code for your application layer design can be created in a number of ways: written in VHDL or Verilog, created in
MATLAB, or included as a black box netlist from a third party such as Xilinx or others. If you design you logic to run on a
single clock it is then easier to integrate into the application layer of the FrameWork Logic. This is usually possible because
the other clocks in the design, such as the A/D sample clocks, or hardware-specific clocks are handled in the hardware
interface layer. The use of a single clock in the application layer allows the designer to use the timing and physical
constraints associated with the hardware interface components.

Using Xilinx ISE

The Xilinx ISE toolset is recommended for most logic developers. ISE provides code editing, core generation, synthesizing
and fitting tools for the chips that is integrates all of the Xilinx tools for the project. An example project is shown here.

The existing project should be used as a starting point. This project has all the options set and file structure required to
recreate the design. The Xilinx ISE project is in the ./RTL/ISE/product_name directory for each design. When you open the
project, the summary screen is displayed showing the design statistics and current status.

X3-SD16 FrameWork Logic User Guide

20

Innovative Integration

S Xilinx - ISE - C:3X3 FrameWork\X3_SDFARTLMSE\x3, sdfix3_sdf.ise - [Design Summary]

I File Edit View Project Source Process MWindow Help

IPPHHEMA R N BE DT AR MR e viDFHS
iFEE YRR

LIiXBEX B 4

]
W

I FPGA Design Summary A %3_SDF Project Status A
5 for: | Synthesis/mpl Lati v ; ;
DUT%S 30[" InEsEmpemen N = & Des' gverwew Project File: »3 sdiize Current State: Programming File
=]wds >] Surnmary Generated
= £ xc351000-4f456 IDB Properties Module Name: | x3_zdf + Errors: Mo Errars
= ﬁnﬁRS_sdf -3 szdf_arch [C:/<3 FrameworkH3 Timing Constraints — = -
inst_temp_sensor - ii_temp_sensor - ii_temp_:— ! Finout Report B:'vgiz:a' #o3s1000-41g458 oI 318 arings
inst trig - ii_trigger - ii_trigger_arch [C:/<3_Fr: Clack Repart -
- - - - - Product I5E 9.1.02 + Updated: Mon Jun 25 15:43:04
inst_cmd - ii_cmd_reg - BEHAVIORAL [C:A2 = Errors and ‘Warnings V:;sil::r:l: ' [RES 2000n? Hn
inst_sdi_adc - i_sdf_adc - Behavioral [C:/43 Synthesis Messages
i -ii j- i : A Translation b
i fnslt_pll ||_p||_s?| Behaworal [F..-"XS_FI[im? v MransMa ion Meszages X3_SDF Partition Summary
< |] Map Messages = — - -
Place and Foute Messages Ma partition information was found.
E§ Sources i) Snapshots E Libraries Timing Messages
Bitgen Messages Device Utilization Summary
Processes for x3 sdf - 3 sdf aich ¥ All Current Messages Logic Utilization Used Available Utilization Mote[s]
2 Wiew Ussign Summary | |-E:Retailed Renort — Mumnber of Slice Flip Flops 5.549 15,360 74
@ Design Utiles Projeot Prapertiss _ Number of 4 input LUTs 3710 15,360 24%
y |Jser Constraints Enable Enhanced Design Summary -
C}&Synthesize T [Enable Message Filtsring Logic Distribution
o C)_ﬁlmplementDesign O Display Incremental Messsages Mumber of occupied Slices 4 465 780 Rax
2.1\ Translss E”h“e;hDBSinn SHm“E;"W Contents Number of Slices containing 435 4485 98%
ow Partition Data i
c)oMaD O] ohonpontt oy related logic
R Mumber of Slices containing Kl 4 465 1%
C}_Qplace & Route O Show wWarnings unielated logic
rogramming File [Show Faiing Constraints . -
€4 Analyze Design Using Chipscope ; O Shaow Clock Report Iﬁ![a:: Number of 4 input 4.452 15,360 28%
< b
E‘—f, h Murnber used as loaic 3710 b
Tocesses .
E Design Summary D Tranglation Report
pins. ~
Process "Generate Programning File®™ completed successfully
b
| >
Conzole 0 Errors L Wwiarmings @ Tel Shell |98 Find in Files
Ln 1 Col 1

Figure 4. Example Xilinx ISE project

Note: The project options have been set to use the directory structure for the FrameWork logic design. It is important to use
these options when compiling the project so that the cores and source code can be found. It is also required to preserve
hierarchy on the design to use the constraints provided. In the NGDBuild options, the -sd directive is used to point at the
core locations for the design. If you make a new project, be sure to point at the location of the coregen directories for the
project and X3 library.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Using the FrameWork Library

The components in the FrameWork Logic library are divided into generic components that may be used in any design, and
hardware-specific components.

The hardware-specific components are used in the designs for A/Ds, DACs, memories and the like that have unique
interface protocols and timings. Constraints in the specific design for IO standards and specific timing requirements are
usually required for use. The constraints for the hardware-specific components are found in the application example that
includes that component.

All hardware-specific components have unique names such as ii_sdf adc. The naming convention prevents inadvertent
naming collisions with your design if you do not use a ii prefix on your components. The hardware name is included in
the name showing which design uses this component.

In the installation, you will find that hardware-specific components in the directory for that specific design. The generic
components are in the ii_library directory. To use the components, you can copy them into the design you are creating, or
reference the library directory.

Also, you may need to include packages supporting the components in your design. For example, ii_c¢md _reg component
requires ii_x3_pkg to be included. This is done by including these statements in the component and by compiling the
package in your design.

library work;
use work.ii x3 pkg.ALL;

One problem that frequently occurs is that the simulation requires the package be compiled for use. The script that Xilinx
ISE produces seems to exclude these packages for compilation, so be sure to compile the required packages separately.

VHDL Simulation

Simulation is an important part of the logic development process. All designs that are targeted at using the large logic
devices supported by the FrameWork Logic require simulation for successful implementation. Unless the design change is
very simple, you should simulate design. If you don't, it is unlikely that you will successfully complete design in your
lifetime.

For simulation, we are currently supporting ModelSim 6.2 PE. Other versions of ModelSim can be used by creating
projects for that version.

The FrameWork Logic includes a test bench and models required for most simulations. In many cases the models are
simple representations of the device that give a data pattern that is easy to follow through the simulations. More complex
waveforms can always be substituted later for proving out the signal processing or data analysis portions of the design. In
each design, the list of files shows the applicable test bench name and available models.

The testbench contains a set of simulation steps that exercise various functions on the FrameWork logic for basic interface
testing. Behavioral procedures have been written to simulate the host timing for command channel and data link transfers
that are useful in simulating data movement. Other features such as SRAM interface, alert log and triggering are
demonstrated in the testbench.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

As delivered, the FrameWork Logic example provides a basic example in the use of the hardware interface components,
data flow through the design, and some simple triggering control. It is anticipated that you can use this example test bench
as a starting point for your application logic simulation. Your logic can be added to the simulation in many cases without
modifying the test bench since the application logic does not change the external pins on the design.

Before simulation can begin, the simulation libraries must be compiled for the chip you are targeting. If you are starting
from Xilinx ISE, this is done by selecting the device in the Sources window, then double-clicking the “Compile HDL
Simulation Libraries” process in the Processes window. This will compile the unisim, simprim and xilixcorelib files
necessary for simulation. You may have to configure this process so that it points at your current ModelSim installation;
this is done by right-clicking and setting the parameters. If you are working with ModelSim standalone, be sure to compile

the libraries unisim, simprim and xilinxcorelib and add them to the libraries in ModelSim (vlib) before attempting to
simulate.

IPPHED RN BE DG,
ERE BEAALTL:Q0

Sources X
. Sources for: | Synthesis/mplementation v
Selecting r

. \ Téj?':a_sdf %
the device = £ 5o 351000-4ig456

= Phaleftnd_oo - ¥3_sdf_arch (C:/%3_Framehwork/x3,
- W] inst_temp_sensor - i_temp_sensor - i_temp_:
inst_trig - i_trigaer - ii_trigaer_arch [C:/3_Fr:
g inst_cmd - i_cmd_reg - BEHAWIORAL [C:4
(W] ingt_sdf_adc - i_sdf_adc - Behavioral [C:/%3
inst_pll - ii_pll_spi - Behavioral [C: /<3 _Frame!
L . n e,
< >
B§ Sources | g Srapshots | [y Libraries
Proceszes X
Proceszes for: xc3s1000-4fgd56
[AddExisting Source

. M Create Mew Source F
Compiling =% Design Utiies
the Ilbrarles\) Updats Al Schematic Files
=2 Compile HOL Simulation Libraries E

@ YWiew Compilation Log
[Regenerate Al Cares
{2 HOL Converter
Pre-Agsian Package Fing

Figure 5. Compiling the Simulation Libraries

The simulation properties must be set to for ModelSim as shown here. The default timing should be 1 ps.

X3-SD16 FrameWork Logic User Guide

23

Innovative Integration

= Process Properties E|
Categary k
 Display Propeties _
Propeity Hame “Walue
Use Custom Do File (|
Custorn Do File
Usze Automatic Do File
Customn Compile File List]

Other WSIkd Command Line Options
Other VLOG Command Line Options
Other WVCOM Command Line Options

Simulation Run Tirme 10006

Simulation Fesolution | Default [1 ps] v|
WHDL Syntax |33 v|
Use Explicit Declarations Only

Use Configuration Mame (|

Configuration Mame Drefault

Property dizplay level: Drefault

1].4] [Cancel] [Apply] [Help

Figure 6. Setting Simulation Library Compilation Properties

Simulation can be started in either the Xilinx ISE environment, or by using the ModelSim tool in a standalone mode. In
Xilinx ISE, select the Behavioral Simulation Mode in the Project window. This then will show the simulations that can
be run in the Processes window using ModelSim. Usually, the functional simulation is best to use when you are creating
code because the simulation will execute quickly. Once you have the right functionality, you can then use the timing
simulation to verify performance at speed.

When you enter the ModelSim tool from Xilinx ISE, it will execute a default macro that compiles the files and begins the
simulation. If you enter in standalone mode, you will need to compile the files within the ModelSim.

X3-SD16 FrameWork Logic User Guide

24

Innovative Integration

Select test
bench file here

Select
ModelSim

here \

A

E F ek v

Sources for, | Behavioral Simulation

4

5] w3_sef

=) £33 #e3s1000-4fg456

/' w3 sdf_th - behavior (C: /%3 _Frame\wWork2<3_SDF/R

s

ES Saurces

Figure 7. Invoking ModelSim from Xilinx ISE

In many cases a macro file is provided that compiles the files within ModelSim according to the macro file order. If you
use this file, just add your files to the list in order of ascending hierarchy. These macro files have a .do extension; usually
project_name.do for the project loading, and wave.do for the wave window format. You can reference this macro inside

Xilinx ISE by changing the properties of the simulator window as shown here.

The advantage of using the custom DO file is that the additional packages, models and wave window setup can be easily

automated when the simulator is invoked.

Design unit

(] Snapshots

Processes for: x3_sdf_th - behavior
[AddExisting Source
[Cieate New Source

NS

ModelSim Simulator

e ot
il adel

ol adet

il dacd

ol dact

il peifito
j- =ht0
B

G bt

B BE

- line__g00
- line_#10
- line__#11
- emi_a_chk
@ emit_b_ck
|- sample_clk_gen
@ line__445
- line__458
L lne_467

W iputils_misc

W iputils_cony

W dali_pack_v7_0

<

Quisote_intquixate_i.
model_adel_fifolmed...
model_ade1_fifofmed

model_dac_fifo[mode:
model_dac_fifolmode:
th_fifalth_Fifo_arch)
cy7el 372Abehavioral]
cu7el 372behavioral]
cu7e1 372behavicral)
cu7e1 372behavicral)
th_quisote(th_quisot..
th_quirote(th_quixot..
th_quirote(th_quixot..
th_quirotelth_quixot..
th_quiote(th_quisot
th_quiote(th_quisot
th_quisote(th_quisot
th_quisate(th_quisot
th_quisate(th_quisot
ipUtils_ise:
iputils_cary
dafir_pack_v7_0

Architecture
Architecture
Auchitecture
Architecture
Auchitecture
Auchitecture
Auchitecture
Auchitecture
Auchitecture
Auchitecture
Frocess
Frocess
Frocess
Frocess
Process
Pracess
Pracess
Pracess
Pracess
Package
Package
Package

£t o+ o4+
a o

oF ot

O S S S S
FI I T T T I T R B B I

P
P T

[

n

I

4 Project l N Library l & sim l £ Files l BE Memories

2

|E Libraries

X3-SD16 FrameWork Logic User Guide

25

Innovative Integration

Figure 8. Example ModelSim Workspace After Loading

Once the design is loaded, the design hierarchy is shown in the Workspace window with the test bench at the top of the
hierarchy. Here is an example.

re it : 51X

Fle Edb View Add Format Tools Windom

NEEE & @0 Ak

% eeRB|[R Walimw slaana][aney] «

TN :
[L T I JRT] |

[187825093 ps to 368344107 ps | Now: 500 us Delta: 5 A

Figure 9. ModelSim Wave Window Example

Once you are inside the ModelSim environment, you should be able to use the tools to run simulations of the design. The
wave window is many times the main focus since it gives a logic analyzer view of the design.

You can quickly view debug the design within ModelSim because you can probe the logic down to the lowest level. This
visibility is often lost after synthesis and fitting because logic is minimized by the tools and may be trimmed out if unused,
even if by accident. When you select an design unit within ModelSim Work Space window, the processes, signals and
variable for that design unit are shown. You can add them to the window by selecting them and right-clicking to add to the
wave window.
Some common simulation problems are

+ libraries are wrong version — be sure to compile them from within Xilinx ISE before use

» wrong simulator resolution — be sure to use 1 ps resolution for all designs

» design won't load — be sure all models and packages were compiled

* naming conflicts — all instances must have a unique name

« source code won't compile — check that you compile with the correct version for 1993 to 2000 version of HDL

X3-SD16 FrameWork Logic User Guide

26

Innovative Integration

Logic Development using MATLAB Simulink

These tools are described in the X3 MATLAB Board Support Package Manual. Refer to that manual for details on logic
development using MATLAB Simulink and Xilinx System Generator. The following description is just to orient you to what
that tools are and how they may be useful in developing applications.

MATLAB Simulink provides a powerful method of developing logic using a high level design tool that integrates hardware
into the MATLAB Simulink environment. Complex signal processing designs can be developed rapidly using the Simulink
block diagrams interacting with the actual hardware in real time. Gateways between MATLAB Simulink and the hardware
allow data to flow between the actual hardware and MATLAB, bringing the power of MATLAB to the logic development
process.

Simulink blocks diagrams are directly translated into logic using the Xilinx System Generator tool. For each supported
product, a hardware interface layer of Simulink components is provided that allows the hardware to be used in the the
Simulink design. Simulink components from the various libraries provided by Mathworks, Xilinx and Innovative interface
with this hardware interface layer for building the application logic on the product. The Xilinx place and route tools are
used for the logic build as in any HDL project.

Here is a typical Simulink block diagram design. Notice the Xilinx icon in the upper right; this is the Xilinx System
Generator control block. This block provides the link to the Xilinx place and route tools used to implement the logic. The
other blocks are mixture of hardware interface components, such as the Quixote A/D converters, SRAM and DACs. The
remaining blocks are Simulink functions for control, display and data formating.

Hardware Xilinx System
Generator
Interface Block
Blocks
Downsample
AdAESS o am address System
m‘ Default Quixote Generator
[

1 lfifo_ae Delay

Sfart_addr

Source Counter Staft addr

il Fre ing
204 In
) hi

dhalid conmtans_ end addiess

ol ek sﬁwriteidata—| | ui_addr

L]
Y ¥

-
1 3
-
>
W luite_data o ui_uite_data
epmyfami) ui_read_data
Lp

trigger . fifa_ae

o

= read_data

dout ——fm]
]+ :
irca ade trigger 31% trigger Coneat e sram dout oam_daut
P Data formater -
E—EP _ontl read_data |—|wldin dout
pul

el dvalid |— Constant 0 ——
read_data_vld
tast_mode
tast mode
Source fast mod reset s_addr
rollaver

o mwoentl

¥

my_enable
urce adotest ddstest DL O - Data

SBSRAMD
din
st

comdama rollover il -
dactigger fifo at fifa_at

Sourg rigger
test

dactest

Source dac test DAC O

X3-SD16 FrameWork Logic User Guide 27

Innovative Integration

Figure 10. MATLAB Simulink Development

Making the Logic

The Xilinx ISE tools are used for the physical logic creation. For HDL designs, these tools are accessed through the ISE

environment in the processes window as shown here. The main steps are translate (link), map and place & route.

EE Xilinx - ISE - C:\X3_FrameWorkiX3_SDF\RTLVSEY3,_sdfix3_sdf.ise - [Design Summary]

i File Edit View Project Source Process ‘indow Help =]
ELLHHEM RN B IR e[vaid YiDAEA LidRBX e B:Q
EEE UKL OO
L FPEA Design Summary e %3_SDF Project Status e
5 for:| Synthesis/Ampl tati v i
nui:%s 3nr a esmpEmenaton = & Daswgverwew Project File: #3_sdlise Cunent State: Programming File
[REESS 4] Summary Generated
= Edwesl 0004455 14108 Properties Module Name: | #3_sdf + Emors: Na Erors
= [t nd_sdf - w3_sdf_arch (C:/X3_Frame\w/ork /X3, iming Constrairts — ; T o e
- o -
[inst_temp_sensor - i_temp_serisor - i_temp_ inout Report D:rgiie RO 5 amings: Alhings
t_trig - ii_t -t h [C:A43_F
(Kt i_tiger - . tgger ach /X3 Fi [Clock Foport Produst ISE 31021 + Updated: | WonJun 25 154304
\nslﬁcmd-uﬁcmdﬁleg-BEHAVIDHAL (oA [=)-Enors and Wanings o 2007
ingt_sdf_adc - i_sdf_adc - Behavioral [C:/X3 Synthesis Messages
T . . . | Jation M
\nsl_pl\ \I_p"_s?l Behavioral [C:£23_Frame’ 2 ranglation Messages %3_SDF Partition Summary
¢ e n 3 Map Messages
Place and Route Masssgss Mo partition information was found.
1§ Sources {5 Snapshots |E Libraries Timing Messages
ilgen Messagss Device Utilization Summary
FieEsREn (T EELas Lo] A\I Current Messages Logic Utilization Used Available | Utilization | Mote(s)
o view Uesign summay = Detaied Repatts Humber of Slice Flip Flops 5543 15,360 36%
& Design Utities Preject Propertiss _ Humber of 4 input LUTs 370 16360 2%
ﬁ’ User Constraints Enable Enhanced Design Summary Lot T
{)L\‘Synthas\ze-XST [0 Enable Message Filtering ogic Dishiibution
o C)i\‘lmplemenlDeslgn [1 Display Incremental Messsages Mumber of occupied Slices 4,465 7.680 BB%
é}ﬂTraﬂslale Enhace:hDesEn SumnE)ary Contents Number of Slices containing 4,335 4465 98%
= aws Partition Data i
T2OMap O Shaw Erors oriyielled ogi
O Show Wanings MNumber of Slices containing 70 4,465 1%
unrelated logic
O Shaw Falling Constraints ; . -
@+ Analyze Design Using Chipscope v O Shaw Clock Report IE‘T‘Z' Number of 4 input 4452 15,360 28%
< >
E—r. A Humber used a5 logic kil A
TOCesses
i Design Summary [Translation Report
pins. -
Frocess "Generate Programming File" completed successfully
. v
< »
[E] Console @Enos | g Wamnings | & TelShell | [pg Findin Files
LniColl

Figure 11. ISE Design Environment

There a many options for each of the implementation steps which are set in the individual project files for each FrameWork

Logic example.

Since most of the chips on the products are very large, we have chosen to preserve the hierarchy of the design during the
implementation so that area constraints and incremental design approach may be used. Area constraints allow the designer

X3-SD16 FrameWork Logic User Guide

Innovative Integration

to control the placement of logic on the FPGA chip for best timing control. With area constraints, the logic will be
constrained to where you put it and in many cases helps the tool do a better job overall.

Place and Route Reports
The place and route implementation by the Xilinx tools results in several files you may want to review in case of problems.
In ISE 9.1, a summary page is provided that gives a hyperlink to each report.

File Contents What to Look For

extension

.BLD The output from the NGDBuild There should be no errors. This program issues numerous
process that link all the logic warnings but there should be no
together errors. Most link errors occur because of missing netlist files —

Coregen put the files somewhere

else, or a missing netlist from a black box.

.MAP The output from the MAP process | There should be no errors, but warnings are usually OK.
that does the logic mapping to the Common problems range from incompatible logic mappings,
physical device. Removes impossible area constraints, and clock connections.

unused logic and.

.PAR The output of the Place and Route | Timing constraints should be met. Review the summary at the end
implementation process. Shows of this report to see if timing is OK since it will complete no
timing results and fit results. matter how bad it is. Also look for any incomplete routing.

.BGN The output of the Bitgen tool. Normally, this is not a problem. Occasionally though the design

will route but not complete Bitgen will report this error.
Table 4. Xilinx Report Files Generated During Implementation

In many designs, you will have to resolve timing problems that are shown in the place and route process. Xilinx has several
tools to help find the problems; Timing Analyzer is usually the place to start. This tool helps you to understand the reason
the logic did not meet timing — too many connections, bad routing, etc. The tool suggests how to fix it. This is usually
helpful but may mean you are back to functional simulation again to add pipelining or change the logic and must re-
implement the design.

Once you achieve one good result, you may want to switch to incremental mode in the tool. This allows you to use the last
good result for most of the design that is unchanged when minor fixes are made. For big changes however, you will need to
reroute the whole chip.

Expect that the implementation process will be in the range of 10 to 30 minutes depending on your computer, how easy it
is to meet constraints and how big the chip is. A tightly packed, fast big chip will take a while. A Spartan3 that is 85%
full, running at 67 MHz takes about 25 minutes to route on a Core2 Duo with 1 GB of RAM. We have found that 64-bit
Linux OS on 2.4 GHz Opteron processor is about 2x faster, although multiple processor are not currently supported by the
Xilinx tools.

The final output of the implementation process is a .BIT file that represents the logic image. This file is loaded into the
logic using the LogicLoader applet or the JTAG cable.

X3-SD16 FrameWork Logic User Guide

29

Innovative Integration

Loading Logic

There are usually two methods of loading logic into the target FPGA : JTAG and via the PCI Express interface using the
logic loading applet or loader that is embedded in application software. JTAG is normally used during the development
process because it is quick and easy to to use and loading can be done from the ChipScope debug environment. Logic loading
using the PCI Express interface is used in final deployment or when debug tools are not needed.

JTAG

Logic images may be loaded using the JTAG interface to the FPGA using a Xilinx JTAG cable such as USB or Parallel
Cable IV. This provides a convenient method of quickly loading the logic during the development process but is not
usually used in deployed applications.

= - [E]x]|

D= B |22 8| 25 85 | {3 | B w2
Boundary-Scan l Slave Serial l Selec‘lMAPl Desktop Configuration l

iMPACT Project

T wank ko

i+ load most recent project toro_r2.ipf - Browse...

[Load most recent project file when iMPACT starts

" create a new project {.ipfy | default.ipf
< %x® BATCH CHD : =etPre

= -
S %% BATCH CHMD : setFPreference —-pref ConcurrentMods:FALSE

<o % BATCH CHMD : setPreference —-pref UssHighz :FALSE

s %%k BATCH CHD : setPreference —pref ConfiginFailure:STOP

s %%k BATCH CHD : setPreference —pref StartupCLlocl:AUTO CORREECTIOHN
s %xx BATCH CHD : setPreference —pref AutoSignature:FALSE

s %%k BATCH CHD : setPreference —pref KespSVE: FALSE

<~ x%xx BATCH CHD : setPreference —pref svilUseTime:FALSE

<~ x%xx BATCH CHD : setPreference —pref Userlewel HOVICE

<~ x%xx BATCH CHD : setPreference —pref Hessagelewel :DETAILED

<~ x%x% BATCH CHD @ setPreference —pref ConcurrentHode:FALSE

<~ x%x BATCH CHD : setPreference —pref UsseHighz:FALSE

<~ x%x% BATCH CHD @ setPreference —pref ConfiginFailure:STOP

<~ x%xx BATCH CHD : setPreference —pref StartupCLlock:AUTO CORREECTIOHN
<~ x%x%x BATCH CHD : setPreference —pref AutoSignature:FALSE

<~ x%x% BATCH CHD @ setPreference —pref KespSVFE:FALSE

<~ xxx BATCH CHD : =setPreference —pref svilUseTime:FALSE b

| For Help, press F1 Configur ation Mode Boundary-Scan Mo Connection

Figure 12. Getting Started with IMPACT

The Xilinx IMPACT application is used to load the logic into the application FPGA. The IMPACT tool may be invoked
from the Xilinx ISE tool or as a standalone application. When you enter the tool, you will be prompted for either a stored

X3-SD16 FrameWork Logic User Guide 30

Innovative Integration

project or to create a new one. The first time you use this, you should create a new project. Later, you can save the project
and it remembers the scan chain and files for the project.

After you select create a new project, the IMPACT wizard will direct you through the process of identifying the JTAG scan
chain, assigning files and programming the devices. The first step is to select Operation Mode. For JTAG, pick configure
devices.

De = I - = | 2 w2
Boundary-Scan]SIave Serial | SelectMAP | Desktop Configuration
Operation Mode Selection El

“What do pou want to do first?

" Configure Devices

™ Prepare Configuration Files

~ %®%% BATCH CHMD : set -~
~~ ®%% BATCH CHMD : set]
#« ®%% BATCH CHMD : set
< ®%% BATCH CHMD : =et
<~ *x%% BATCH CHD : =et
< *x%% BATCH CHD : =et
x%% BATCH CHD : set
~- w#%x BATCH CHMD ==t
~o w#%x BATCH CHD : =et
< wxx BATCH CHD : =et | Mext > | Cancel Help
~o w#%x BATCH CHD : =et
x%x%x BATCH CHD : setPTererehice —Drer D==Hlgne FALSE

< =%x% BATCH CHD : setPreference —pref ConfigOnFailurs:STOF

< xxx BATCH CHD : setPreference —pref StartupCLoclk:AUTO CORRECTIOH
< x%xx BATCH CHD : setPreference —pref AutoSignature:FALSE

<~ %%x% BATCH CHD : setPreference —pref KeepSVF:FALSE

<~ %®%% BATCH CHD : setPreference —pref svilszeTime:FALSE i

Far Help, press F1 ConFiguration Mode

Figure 13. Choosing the Operation Mode for IMPACT

The next screen will prompt for what type of configuration to perform. Choose the Boundary Scan Mode as shown.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

D= -
Boundary-Scan lSIave Serial] SelectMAP | Desktop Configuration

=
8| =

s
s
s
s
s
s
s
s
s
s
s
s
ro
i
s
ro
i

XXH
XXR
XXR
Er
x%%
XXR
%3
®%3%
XXR
%3
®%3%
XXR
XXR
E
XXR
XXR
s

BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH
BATCH

Far Help, press F1

CHD
CHMD
CHD
CHD

CHMD
CHD
CHD

CHD
CHD
CHMD

CHD
CHMD
CHD
CHD

set
=et.
=et
set
T oset
zet
=et
=et
o =et
=et
=et
=etF

% ww oo
ww oo

M

Configure Devices

EIELA

| want to configure device via:

&+ Boundany-Scan Mode

" Slave Serial Mode

O SelectaP Mode

" Desktop Configuration Mode

. setPreference

setPreference
=etPreference
setPreference
setPreference

< Back | MNext > | Cancel

Help

—pref
—pref
—pref
—pref
—pref

TON= TALoL
ConfigOnFailure:STOP
StartupCLock: AUTO_CORRECTION
AutoSignature:FALSE
KeepSVFE :FALSE
s=vil=eTine : FALSE

Configuration Made |Boundary-Scan

|

£

Figure 14. Choosing the Boundary Scan Mode for IMPACT

Next, IMPACT will prompt for the JTAG chain identification. Choose the automatic identify mode.

X3-SD16 FrameWork Logic User Guide

32

Innovative Integration

=g - [B]X]]
0 H AR A= =

Boundany-Scan lSIave Serial] SelectMAP | Desktop Configuration
Boundary-Scan Mode Selection g|

* Automatically connect to cable and identify
Boundary-Scan chain

" Enter a Boundary-Scan Chain

<« #%% BATCH CHMD © =set ~
®x%x%x BATCH CHMD @ s=set
< %%% BATCH CHMD : =set
%%%x BATCH CHMD : set
<« #%% BATCH CHMD © =set
%x%x%x BATCH CHMD @ =set
%%% BATCH CHMD @ =set
%%%x BATCH CHMD : set
< %%%x BATCH CHD : =set
< %®%¥x% BATCH CHD : =et < Back | Finish | Cancel Help
%%% BATCH CHMD : set
#« #%% BATCH CHMD : sctPTeTorehice —Drel TSoHIgne FALSE

s wxx BATCH CHD : =setPreference —-pref ConfigOnFailure:STOP

~ wx%x BATCH CMD =etPreference —pref StartupCLock:AUTO _CORRECTION
—t # %%% BATCH CMD : setPreference —pref AutoSignature:FALSE

S« *%% BATCH CHD : =etPreference —-pref KeepSVE FALSE

< w%xx BATCH CHD : setPreference —pref svilseTime: FALSE b

For Help, press Fi Configuration Made |Boundary-Scan

Figure 15. Automatic JTAG Chain Detection using IMPACT

If all goes well, IMPACT will find all the devices in the JTAG chain and display them as shown in this example. If not,
check the cable connection to the board. The cable should be detected by IMPACT; if not, check that the port it is
connected to on the PC is working and in the proper mode. If the chip is not detected, be sure you have the right scan path,
that the board is powered up normally, and that IMPACT was able to connect to the scan path. Power everything off and
try again if it fails and you don't see any obvious problems. You can also check your setup and software on a good card if
you have one. If you don't, curse some then call tech support.

The next step is to assign a bit file to each device to be programmed. Right click each device and use the dialog to assign
the BIT file for programming each device. Double-check that you are using the correct BIT file — you could damage
the chip if it gets the wrong logic.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

‘;_ hevwriul_scfutul_scipl [Configuration Mode] - GAPACT

U el B o2E
Boundary-Scan | Slave Serial | sel

En

MAP | Deskiop Condl

| 25

mn]

Resign New Canfiguration File

Loak i [wht_sc -| = = &=
’;_J' 12 _proyer
L 2 _ngo
Racart 5 s
W fjaast
@ ﬁﬂnpwabch] s
Daskon E—
by Documents
=
Hy Coaauter
Fﬁo&“ nag%ﬁ‘cr S Tdentity . E
RESS = Starting etl o |
D riying chain comrenta P 0] MMk e [ramrmn -
LHFO: iMPACT: 1777 Flac=s -.
Reading T K. Ss/R'lecf/datmcw Filez of tppe: |1 resign Fikee - Cancal |
LHFO. iHPACT 501 D
Cercmlal Byoss |
s Henufschursr 's [0 =Xiliox
Im!u 1!1PM_T 1'.!?7 -
#RIF-spertani<deterx=3s200 hed.
INFO 1HPACT 501 - '1': Ad Dewice wxci=?il sucossstully.
dome
Velidating chein. ..
Boundary-scsn chain walidated successfully.
PROGRESS_ En‘n - End Cperaticn
Elapae-d |8 —
Tievice o1 salected e
Fior Help, pras FL Cﬂ'ﬁﬂ_u‘é‘.mm Aoundary<Scan Dar‘ia jlng It 00 kHz

Figure 16. Selecting the Configuration Image Using IMPACT

The last step is to program the device. This is done by right clicking the device and selecting PROGRAM. This will only
program the device you are selecting at that time. If it succeeds, then you will be notified by IMPACT as shown in the

example screen.

NOTE: We have found problems using the VERIFY function. It seems as though IMPACT has some problems doing this
and will usually fail. It is our experience however that if the programming succeeds, then you will be OK. Xilinx employs a
rigorous checksum routine that is very good and seems to guarantee that programming succeeded when it reports as such.

X3-SD16 FrameWork Logic User Guide

34

Innovative Integration

I hivwtut_schrtut_sc.ipf [Configuration Mods] - iMPACT

Fle Edic Vs Mode Operstions Qutput Cebug Helb

[= LEE|ZGEOEH|SES i | B W2
Bound ary-Scan |SIM Serial | SclectMAP | Deskiop Cunligumﬁonl

w3200 AvlDEs
slopwalch bl slopwatchl.mcs

Programming Succeeded

=tatus =i GHIGH

ralus or HODE pin HO
value or HODE pin W1
ralus or HODE pin HE
rslue of CFG_EDY (INIT_H)
DOWEIN imput from DONE pin
1D_ERFROR

RESERVED
IHFO:iMPACT : 2219 — Status ragister wal
IH'FD AMFACT - 0011 0111 0ooi 1000 IIDDD DDDD oooo oooo

Coomkeooo e

'].' B \'erl.ly‘;\.nl! dewice. . IHFO. iMPACT: 2324 - Resdback Size iz L044736.

‘ ‘-'erltlcaucm c:cleet,sd succe==iully
I'N'FD iHMPACT : 579 Completed dnw‘nlclad'lng hir file to dewice

IH‘FD mm.r:r san - 1 Checking dome pin " done
zucce=ziully.
PRO'GRESS_END - End ODBr\at.lon
Elap=ed tine = ~
For Help, press F1 ‘onhgurabon Mods |Bourdary-Scan Poarallel LI lpkL 200 KH:

Figure 17. Programming Devices using JTAG under IMPACT

Loading the Logic Using BIT Images

Making the Device Image

The Xilinx ISE tools make a BIT file when the logic compile and fit is successful. The BIT file is the native Xilinx format
for logic image. This BIT file is made when the Generate step is completed in the Xilinx ISE tool flow.

Logic Download
The X3 XMC family of products use a simple Windows application to download logic images to the card. This
application can be used instead of the logic download cable used during development.

Note: The application logic must be loaded after each power-up since there is no on-card logic ROM.

The logic is loaded over the SelectMAP interface to the FPGA via the PCI bus. The logic may be loaded and reloaded at
any time during operation.

X3-SD16 FrameWork Logic User Guide 35

Innovative Integration

The Velocia Download applet requires a logic image in BIT or EXO format. BIT format is normally used since it is
created automatically by the Xilinx tools.

To load the logic image, select either EXO or BIT format in drop-down box. Then select the file for loading. You can
navigate to this file using the standard techniques. Then press the Load button. Status indicators will first show the
logic file being parsed, then the loading. Loading takes about 5 seconds for a 1M device. If anything goes wrong, the
Event Log window reports a failure. Parsing failures usually mean that the file was not EXO format. A load failure is more
serious in that the hardware failure somehow.

< X3 Pmc Logic Loader,

Target

] -

E=o File

|"-."-.T usfarmhprojectsy=3_Frameworkb<3 SDFWRTLALinux<3 SDF_routed_w

Lot £ oo
Parzing logic file
Parze completed ok
Load completed ol
Logic Rew: 0001 Hiws Mariank: O HW Rew: 0 Type: 01

Figure 18. X3 Logic Loader Download Applet

The X3 LogicLoader applet shows the logic revisions, hardware revisions and other information on the lower line.
The logic revision is the current version in the PCI interface FPGA. The hardware revision and hardware variant are
set by the hardware PCB and PCle interface FPGA.

Multiple cards in a single system are supported via the target number box. You can identify which card is which target by
blinking its LED with the Finder applet.

Software tools for loading the logic from application software are provided for loading the logic also. These are detailed in
the software manual. As an example, the SNAP application for the X3-SDF module provides a logic downloader that is
embedded in the program.

X3-SD16 FrameWork Logic User Guide

36

Innovative Integration

% X3 Snap Example
Canfigure lSetup] Stream] thHam] EEF'mm] Debug]

Driver
Target #
Close
Exa Logic File
|'\\T usfarmprojectst<3_Frametforki<3_SOF\RTLA\Linuss=<3_SDF_routed_vE3.ex0 J Configure

Version: 1, Yariant: 0, Revision: 0, Type: 1
ARARNN RN AR N NN NN RN NN RN RN RN RN NN NN NN AN NN NN NN NN NN NN NN NN NN RN AR NN NRRNNRRNRRRRRREE

Evernf fog

Prezz F1 to zee onling help for thiz example
Application verzion: 1.0.0.0

Bus width: 32 bits. Pei Cle: B6.6 MHz
Application verzion: 1.0.0.0

Bus width: 32 bits. Pei Cle: B6.6 MHz

Parzing Module logic file
Parze completed ok
Parze completed ok
Load completed ok
Application version: 1.0.0.0
Bus width: 32 bits. Pci Clk: B6.6 MHz

Stream Connected. ..

Figure 19. Example of Logic Loading from Application Software

Debugging

It is inevitable that the logic will require some debugging and it is best to have a strategy for debug before you actually use
the hardware. Debugging on actual hardware is difficult because you have poor visibility into the FPGA internals.

For HDL designs, the best and easiest debug method is simulation for functional and timing problems. This gives the best
visibility and interactivity to debug problems before the real hardware is tested. A good set of test cases that stress the
design should be run prior to working on the real hardware. You will save time in the overall design process by doing a
thorough job in simulation. Sermon over.

There are several techniques that have worked for us on projects: Xilinx ChipScope, built-in test modes, and judicious use
of test points. Between these techniques and the capabilities of each method, it is usually possible to find and fix bugs that
are either functional design errors or timing problems.

X3-SD16 FrameWork Logic User Guide

37

Innovative Integration

MATLAB Simulink developers can use the “hardware in the loop” features of system to debug the design at a high level.
Simulink can be used to generate test data or for viewing and analyzing real hardware data. This is invaluable in debugging
complex signal processing designs.

Here we will discuss a few of these techniques.

Built-in Test Modes

Another good way to debug your design is to have built-in test modes in the logic. If you plan ahead for test, then you can
more quickly validate your design later and spot problems. When you finish the design, if the test generators and checkers
can be left in the design, they are there later as production debug or test.

In many designs, test pattern or data generators are invaluable since they provide known data into the FPGA so that the
output is known. If the data source is analog in the real design, substituting perfect data is nice because it helps spot
problems that may be hidden in the noise. The test pattern may be an easily recognized stream, like incrementing numbers,
that are easy to check in the logic or on the test equipment. Also, its easier to test the extreme cases of the design that may
be difficult to reproduce with real signals.

Clutput
Interface

AD Interface —m —W F(2)

Trigger

Test Generator Data Checker ﬁ

ChipScope ILA

Figure 20. Typical Debug Block Diagram

Another built-in test method is to use data checkers in the logic sprinkled through the data chain help to spot the source of
problems. If you have a missing timing constraint or a clock domain issue, these can be hard to catch since they may be
rare. A data checker gives you a way to look for bad data and then trigger ChipScope or the logic analyzer. In many cases,
rare errors are impossible to catch without this sort of data checker. This technique has saved time because the trigger at the
bad data point allows you to inspect all the suspect signals and find the culprit.

X3-SD16 FrameWork Logic User Guide

38

Innovative Integration

Xilinx ChipScope

Xilinx offers an excellent tool for debugging FPGA designs call ChipScope. This tool works over the FPGA JTAG port
using any of the standard Xilinx JTAG cables. Software on the PC connects to a ChipScope logic core that you embed in
your logic. This is an optional tool from Xilinx and is not included in the standard ISE software. For its cost of under $1500,
we have found it well worth the money.

Tarcusl Dowvics Urcksr Tasi

User
Function

Hasi Com puter with
ChipSeona Pro Soiwer

Board- Linder- Test

Figure 21. Debugging with ChipScope

The ChipScope core allows you to monitor internal FPGA signals using triggers and a sample clock. It is as though you can
embed a logic analyzer in the logic itself, hence the ILA core name (integrated logic analyzer). Other ChipScope cores
support Virtual IO (VIO) core, which allows you to monitor and control some internal signals, and cores for working with
the PowerPC cores in some logic devices.

The ILA core is very configurable and it allows you to set the number of signals you can monitor, the trigger methods and
the signals used for triggers is set up when you generate the ChipScope core. The core size is determined by the number of
signals monitored and the number of samples stored. If the core gets too big, it will affect your design and tends to muddle
the debug process. Sometimes it is better to have a small core that has a small footprint and does not interfere with the other
logic for this reason.

The clock is used as the sample clock for the logic so it should be synchronous to the inputs signals or sufficiently fast to
sample them accurately. If you sample signals on other clock domains, be aware that the clock used by the ILA core is
used for the sampling of the signals so the signals will not precisely represent the real signal running on another clock
domain.

You will interact with the ChipScope software over a JTAG cable to the target device. This link is limited to about 1-20
Mb/s depending on the target device JTAG chain, so it is not really real-time, but rather just a means to get the data from
the FPGA to the ChipScope software. The signals are captured in the FPGA block RAMs so the record length is somewhat
short being limited in most cases to 256 to 1K points. In some experiments though we have made larger captures of up to
16K points in large devices, useful for capturing a signal.

X3-SD16 FrameWork Logic User Guide 39

Innovative Integration

Because of these limitations in JTAG speed and capture size, it is important to devise triggering methods that allow you to
catch the error condition. It is common to devise a piece of error detection logic that serves as a trigger to ChipScope to
best use the capture RAM. It is possible to pre-trigger or post-trigger in the software which makes trigger design easier.
You can also selectively store data so that the memory is preserved just for useful data by using an option on the trigger
panel in ChipScope.

Here is one of the common cables used for debug, just for reference.

Top View Paralle Cable p—
e Model DLCT L
Powet 5Y =202 =
Sedl JG- 12345 "
wenust (€ i

Figure 22. Xilinx Parallel IV Cable for Debug and Development

Figure 23. Ribbon cable for Xilinx JTAG (2mm, 5x2 female on each end, 6 inches length)

Slave Serial JTAG

INIT NC 14||© ©|[13 GND
NC NC 12|/|= =[[11 GND
DIN TDI 10|[|= = | |8 GND
DONE TDO 8||c = |7 GND
CCLK TCK 6||o o[]|5 GND
PROG TMS 4 3 GND
Vref Vref 2 - 1‘”2%“

Figure 24. Xilinx Parallel Cable IV Pinout on IDC 5x2 2MM Header

CAUTION:

The user MUST make sure that Xilinx JTAG cable connector is plugged in the proper polarity to the Innovative
target connector. If by mistake, the user connects the Xilinx cable incorrectly, this may damage the target card and
Xilinx POD. See the hardware manual for each product to locate the connector and its pinout.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Declaration Of ChipScope Core in VHDL

The ChipScope core is simple to use. Just connect up the signal for observation to the data ports, the trigger signals to
trigger and the clock. The number of ports and triggers is defined when you create the debug core in the ChipScope tool.
The clock is used as the sample clock for the logic analyzer, so you must use a clock that is higher frequency than the

signals you wish to observe.

Here are Chipscope cores we used in debug shown below.

component icon

port

(
controlO : out std logic vector (35 downto 0);
controll : out std logic vector (35 downto 0);
control?2 : out std logic vector (35 downto 0)

)
end component;

component ila

port

(
control : in std logic vector (35 downto 0);
clk : in std logic;
trig0 : in std logic vector (31 downto 0)

)i
end component;

component vio

port

(
control : in std logic vector (35 downto 0);
clk : in std logic;
async_in : in std logic vector (15 downto 0);
async_out : out std logic vector (15 downto 0);
sync_in : in std logic vector (39 downto 0);
sync_out : out std logic vector (127 downto 0)

)i

end component;

Figure 25. ChipScope Core Declarations

Here is its instantiation during a debug session.

-- chipscope for debug/testing

inst: icon
port map
(

X3-SD16 FrameWork Logic User Guide

4

Innovative Integration

control0 => ila controlO,
controll => ila controll,
control?2 => ila control2

)i

inst_ila0 : ila

port map

(
control => ila controlO,
clk => sys_clk, -- fs_clk

trig0 => ila0
)

—————— debug A/D interface

ila0(0) <= reset;

ila0(1) <= fs_clk;

ila0(2) <= adc_trigger;

ila0(3) <= ctl reg(l) (10); --sw trigger
ila0(4) <= adc_trigger_en;

ila0(5) <= trigger tp(28);

ila0(6) <= trigger tp(27); --trigger vld
ila0(9 downto 7) <= trigger tp(31 downto 29);
ila0(10) <= trigger_ tp(24);

ila0(11) <= adc_cs n s(0);

ila0(12) <= adc_rd n s(0);

ila0(13) <= trig en;

ila0(14) <= trigger tp(25); --trigger_edge
ila0(15) <= trigger tp(26); --trigger src

Figure 26. ChipScope Core Instantiation

In this case, the designer was using the system clock as the ChipScope core clock and had many of the A/D triggering
signals connected to observe using ChipScope.

Once the core is in the design, you can then trigger on different conditions just as you would use a logic analyzer. If connect

up all the signals in the problem area, only one compilation is needed to get the core into the design for debug. Once you get

it all working, you have a logic analyzer inside the FPGA. Here’s sample view.

X3-SD16 FrameWork Logic User Guide

42

Innovative Integration

ChipScope Pro Analyzer, [x3_sdf_v6B]

File %iew JTAG Chain Device Trigger Setup Waveform Window Help
®|» =m 1! \
Project: x3_sdf_v68 4 = =
ITAG Chain o1 8 Trigger Setup - DEV:2 MyDevice2 (¥C351000) UNIT:0 MyILAD (ILA)
DEV:0 MyDevicel (CF025) = Match Unit Function Value Radix Counte
o DEV1 MyDevice! (C3G250E) 2| & moTriggerPoro == OO _000{ 00 000 _I000(_G0H 00U 00 Bin disable

¢ UNIT:O Wbl LAD (LA = .
Tiager Selup e _— —
Waveform El Add | Active | Trigger Condition Marme \ Trigger Condition Equation
Listing 2| e | - | TriggerCanditiond ‘ T M0 == M
Bus Plot -

o DEV2 MyDevice2 (4C351000) 2| Tyne Windors: 1 Denth: 256 [v| Fostion: 10

9 LINIT:0 WhLAD {IL& E
@| Storage Qualification Al Data
Wiaweform
Listing
Bus Plot {E} waveform - DEV:2 MyDevice2 (XC351000) UNIT:0 MyILAD (LA}

§ UNITT MylLAT (LA I — x| o100 90 B0 70 .60 50 40 30 20 -10 0 20 30 40 50 60 70 80 90 100 110 120 130
Trigger Setup g | | | | | | | | | | | | | |] |]]]] |
\C"a:emrm reset (1] ")

isting
Bus Plaot £5_clock al o |
Signals: DEV: 2 UNIT: 0 ade_trigger oo
¢ Data Part W trigger 1] 1
& counti 5 downta 0y
o= sw_trig_n adec_trigger_en| 0O 0
CH: Oreset sw_trig_z 1| 1
CH: 1 fs_clack
CH: 2 ade_trigger ; trigger_wld oo
CH 3SWUIg.gEI’ Ml = trig q 2 9 7
CH: 4 ade_trigger_en : = =
CH: A sw_trig_z trigger_src 1] 1
g:: ?tTrlgger_vld frame done 1] 1
CH.88 L trigger_edoge 1l 1 |
CH: 9 DataPon(9]
CH: 10 trigaer_sre coE es sy | 4 & LITL
CH: 11 ade_cs_n_s(0) adc_rd n_s(0) 1l 1
CH: 12 ade_rd_n_s{M
CH: 13 trig_en LY G oo
CH: 14 trigger_edge & count (15 downt{000/000 0001
CH: 16 ftame_done
CH: 16 DataPort[1 6]
CH: 17 DataPart[17] o
P
INFO - Device 2 Unit 0; Waiting for core to be armed
Upload

Figure 27. ChipScope Debug Example

As you can see, the screen is like a logic analyzer and the internal logic signals are being observed real-time. This visibility
into the internal operation of the logic is invaluable in finding design problems and saves time.

X3-SD16 FrameWork Logic User Guide

43

Innovative Integration

X3-8SD16 FrameWork Logic

Overview

This chapter of the manual discusses the FrameWork Logic for the X3-SD16, provides information on modifying the logic
and details on hardware interfaces to the FPGA for the logic designer. This chapter is intended to support logic developers
who intend to modify the X3-SD16 FrameWork Logic to add custom features.

The X3-SD16, a member of the X3 XMC module family, has 16 channels of 24-bit, 144 kSPS A/D, 16 channels of 24-bit,
192 kHz DAC, and a Xilinx Spartan3A DSP 1.8M FPGA for signal processing. As is common with the other X3 XMCs, the
application FPGA has dual SRAM memory buffers, precision clock sources, a packet-protocol PCI Express interface and
digital IO using P16.

The FrameWork logic for the X3-SD16 provides the hardware interface components and system controls for basic data
acquisition and playback. The logic is structured so that signal processing can be added to the application logic in the
application logic with minimum low-level device interfacing. The FrameWork logic supports VHDL and MATLAB
development for the X3-SD16.

The X3-SD16 has two FPGAs: a Xilinx Spartan3A DSP 1.8M for application logic and a Spartan3E 250K dedicated to PCI

interface and module control. The Spartan3A DSP 1.8M device provides a flexible logic core for signal processing, data
analysis and module control. The Spartan 3E device is not normally modified and is not discussed in this manual.

Target Devices

The standard X3-SD16 is available with the following FPGA device:

X3-SD16 Variant Logic Density Device Used
X3-SD16 (80179-0) 1.8M gates Xilinx XC3SD1800A-4FGG676C
Table 5. X3-SD16 FPGA Device Part Number

Notes: Higher speed grades may be special ordered. The logic density of 1.8M is an approximation of the gate counts. See
the Xilinx data sheet for complete details.

Full data sheets and User Guides are available on the Xilinx web site at this address:

1209726&sGlobalNavP1ck &sSecondaryNavPick=

X3-SD16 FrameWork Logic User Guide

44

http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?iLanguageID=1&category=-1209726&sGlobalNavPick=&sSecondaryNavPick
http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?iLanguageID=1&category=-1209726&sGlobalNavPick=&sSecondaryNavPick

Innovative Integration

Development Tools

The currently supported tool set is shown here. The Xilinx WebPack tools can also be used, which are available on the
Xilinx website free of charge.

Function Tool Vendor Tool Name
Synthesis, Place and Route Xilinx ISE 12.3
Simulation Mentor Graphics ModelSim 6.2¢
Bit and PROM Image Creation Xilinx Impact 12.3
Logic Debug and Testing Xilinx ChipScope 12.3
Logic JTAG Cable Xilinx Xilinx USB

Table 6. Logic Development Tools for X3-SD16

FrameWork Logic

The block diagram of the X3-SD16 hardware shows how the application FPGA is the main processing and control element of
the XMC. In the application FPGA, the FrameWork logic for the X3-SD16 provides the hardware interfaces in the logic, data
flow and controls. Each of the hardware devices, such as the A/D converters and memories, has a component in the logic
that controls the device and provides the logic with a simplified data interface.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

X3-SD16 Block Diagram Ext Clk/Ref
J1B Ext Clk y
=] YO
J16 Ext Ref i et iy
5812RK§(?2 AD9510
e PEX-PCI ﬂ Reference
E)(PCI < > Bridge A 100 hHz
i TI XIO200A
Y ,7
A A - ;
16x A/D -
- TIADS1278
 J 24-bit)
144 KSPS |
.l App FPGA T
FPGA - Xilinx * . .
Spartan 3A DSP 16x DAC | =
1800K gate TIPCM1681 > 38
e &
192 KSPS [0=
— o
Front Panel DIO[5:0] >
XMC : ‘
P16 | i Sync >
User | Trigger
(@]
Temperature
Sensor SRAM

512KX32

Figure 28. X3-SD16 Hardware Diagram

In the FrameWork logic, the data flow for acquisition is from the A/Ds, through the error correction and into the SRAM data
buffer, then on to the packetizer and out to the the PCle interface. The data flow for playback is similar in reverse: data flows
in from the PCle interface, to the packet deframer, into the data buffer, then out to the DAC interface. This logic flow
provides basic data acquisition and playback functionality using many of the X3-SD16 features. The command channel is
used for control and status reporting features such as the control of PLL, resets and data flow configuration.

Some of the other features, such as the computational SRAM, are connected in the logic solely for test and example use.
While these are simple connections in the logic, they can be modified to provide higher performance, specialized functions.

X3-SD16 FrameWork Logic User Guide 46

Innovative Integration

X3-5D16 Interface Logic

¥3_SD16vhd
AD
User App Int AD HW Interface
£ pdsl 278 modelvhd
MQ SRAM Muli Queue FIFO u_app_inputyhd ii_gd16_adcyhd

cy7c1371k_model vhd (4 » ii_ma_sramaz.vhd
Triggering
v ii_triger.vhd
Packetizer L, Alerts Log
ii_packetizervhd [~ ii_alertsyhd
DAC
¢ Di'?gdqgwd“;:f:dce pcm16581_mode v hd
Pata Link to PCI Controller = = 2 total
d ii_link.vhd
¢ Triggering
D eframer User App Out ii_trigger.whd
ii_deframeryhd u_app_output.vhd

Temp Sensor

| Temperature Sensor i 7, el

ii_temp_sensorvhd

h
h 4

h 4

Testhench
Command Bus N PLL Control »
18 _siatiy jlo ol ii_crnd_reg.vhd ii_pll_spivhd » ToPLL

SRAM
cy7c1371k_model.vhd

SRAM Controller
Ii_sram32_intf.vhd

h 4

Fy
h 4

Clock DCM Constraints VHDL Packages
dcm.xco #3_sd16.ucf ii_x3_pkg.vhd

Clock

Figure 29. X3-SD16 FrameWork Logic Files

h 4

In the block diagram, several major components are shown: the A/D interface, DAC interface, the multi-queue VFIFO
data buffer, packetizer, deframer, memory interface for SRAM, the data link to the PCle controller, command bus and
the alert log. The command bus interface controls and monitors the triggering, PLL and SRAM, as well as providing reset
and status functions for the module to the PCI host. Simulation is driven by the testbench and uses simulation models for the
memories, data link and command channel. Other models for the A/D and temperature sensor provide simple models to
verify communications, but do not emulate all the features of the device.

X3-SD16 FrameWork Logic User Guide 47

Innovative Integration

X3-5D16 Interface Logic

myram_clk
fs_clk_p/n E— et
—- v _ mqram_adv_ld
B mgram_r_wn
trigger[1:0] ——— | gl Tri AD megram_oe_n
fggering mygram_sa[18:0]
adc_sclk[1:0] Alerts myram_dg[31:0]
adc_sync_n Y
adc_format[2:0]
aggjmodde[;.:uﬂ] \ sys_clk -d—DCM |l-—— sys_clk_in
zdc_Eﬁ‘dlﬁ’[B >)IMEI‘? -U_App_Inr- !
addl_test n = =
:gg_zgi[g[:?glﬂ] Packetizer reset_n
adcl test Mult :@nt_]g‘[am]
adel _en[7:0 uiti-guels i ink_frame_n

—en(70] DAC 9 Link ——p link_rw

- i Data Buffer Intf link_dp_n
dac_spi_ms_n [10] Looe e link rd nt
;I:E_zgg_mz * Link_wr_int
dac_If[1°0] —™[DAC U_App
ﬂaﬁﬁmﬁ“[?é] 1t [Y ou [Deframer
adl_sdo[3!
a1) oot
acl_sdof3! -

- zht r_wn
dacl_zi{10] SRAM zht_adv_ldn
addd_gain[15:0] Intf - » zht_sclk
adc!_gain[180] zht bwen[3:0]

A bt ad13:0]
pll_cs n zht_in[31:0]
plil_sdio <+— » PLL |-

E::_Etcal:us A Y Sl
— cmd_fsx
pll_sync B
Command | —— 700
pll_clka_sel - cmd_clkr
pll_ref_sel Channel crnd_fst
vcxo_uel - A cmd_dr
¥CHO_SC
voxo_sda Y

. ternp_scl

fp_dio[5:0] FP_DIO|= Temp temp_sda
-

) Sensor |nff termp_alert

din[38:0] 4_,_@4 temp_pwr_down_n

dio_clkp/in

The most important thing to notice about the logic design is that it is organized as a hardware interface layer composed of
hardware interface components and an application core. The data flow is readily modified to add functions to the logic that
analyze and process the data streams flowing between the hardware interfaces. In a typical application, signal processing

can then be added by inserting new application logic into the data stream. This new application logic can be done with either
VHDL or by using the MATLAB Simulink with Xilinx System Generator tool.

Figure 30. X3-SD16 FrameWork Logic Block Diagram

X3-SD16 FrameWork Logic User Guide

48

Innovative Integration

. Host
Triggering SRAM Alerts Data Link |—® Card
2 devices J E
16 channels
AD User _
ﬂ > i AD ™ |nterface [™| ’Bﬁ"p - - Packetizer
Multi-Queue PCle PCle
i Data Buffer Intf —
2 devices
16 channels
< < .| DAC M

AN DAC Interface [| %?R il .4— Deframer

ﬁ

Triggering

Figure 31. X3-SD16 Logic Data Flow

X3-8SD16 FrameWork Logic Ports

i

Command
Channel

The ports for the top level show the external connections of the logic and their functions. Signal directions are relative to

the X3-SD16 application logic.

Port Name Direction Clock Domain Function

hw_rev[3:0] In - Hardware revision code from the PCB. Used to identify to the logic and
system what the PCB revision is.

led Out sys_clk Application LED output from the logic. A logic '0' turns the LED on.

rs tn in - Master reset into the FPGA controlled by the PCI interface FPGA. Active
low.

Clocks and Trigger

sys_clk _in in sys_clk System clock input, 67 MHz.

fs_clkp/n In fs_clk Sample clock, differential input (LVPECL).

X3-SD16 FrameWork Logic User Guide

49

Innovative Integration

Port Name Direction Clock Domain Function

pll_ref sel Out sys_clk Selects the clock to the PLL reference input.
'0' = 100 MHz oscillator (default), '1' = PXIE 100M from P16.

pll_clka_sel Out sys_clk Selects the input to PLL clk A from the external clock mux.
'0' = front panel ext_clkp/n (default), '1' = PXIE_DSTARA from P16.

ext trigger[1:0] In external External trigger inputs

Front Panel Digital IO

fp_dio[5:0] Inout sys_clk Front Panel Digital 10

DAC Interface Controls

dac_spi_ ms_n[1:0] Out sys_clk DAC SPI chip select, active low

dac_spi_mc Out sys_clk DAC SPI clock

dac_spi_md Out sys_clk DAC SPI data

dac_Ir[1:0] Out fs_clk DAC left/right data frame

dac_bck[1:0] Out fs_clk DAC bit clocks

dacO_sdo[3:0] Out fs_clk DAC 0 serial data

dacO_zr[1:0] In fs_clk DAC 0 zero crossing detect

dacl_sdo[3:0] Out fs_clk DAC 1 serial data

dacl_zr[1:0] In fs_clk DAC 1 zero crossing detect

ADC Interface and Controls

adc_sclk[1:0] Out fs_clk 5 A/D serial data clock

adc_fsync[1:0] Out fs_clk A/D data frame syncs

adc_sync_n[1:0] Out fs_clk A/D sync control

adc_format[2:0] Out sys_clk A/D format

adc_mode[1:0] Out sys_clk A/D mode

adc0_sdio[7:0] In fs_clk A/D 0 serial data bus

adc_clkdiv Out fs_clk A/D clock divisor control

adcO_test Out sys_clk A/D 0 test (=1)

adc0_en Out fs_clk A/D 0 enable

adcl_sdio[7:0] In fs_clk A/D 1 serial data bus

adcl_test Out fs_clk A/D 1 test (=1)

adcl_en Out fs_clk A/D 1 enable

X3-SD16 FrameWork Logic User Guide

50

Innovative Integration

Port Name Direction Clock Domain Function

adc0_gain[15:0] Out sys_clk A/D 0 channel gain controls
adcl_gain[15:0] Out sys_clk A/D 1 channel gain controls
PLL Interface

pll cs n Out sys_clk PLL chi select, active low.
pll_sclk Out sys_clk PLL serial clock.

pll_sdio Inout sys_clk PLL serial data.

pll_status In undefined PLL status pin input.
pll_sync Out sys_clk PLL synchronization control pin.
VCX0_0e Out sys_clk VCXO output enable
vexo_scl Inout sys_clk VCXO 12C bus clock

vexo sda Inout sys_clk VCXO 12C data

Multi-queue SRAM Interface

mqram_ce Out sys_clk Multi-Queue SRAM chip enable.
mqgram_oen Out sys_clk Multi-Queue SRAM output enable, active low.
mqram_r_wn Out sys_clk Multi-QueueSRAM read/write.
mqram_sclk Out sys_clk Multi-Queue SRAM clock.
mgqram_sa[20:0] Out sys_clk Multi-Queue SRAM address bus.
mqram_dq[31:0] Inout sys_clk Multi-Queue SRAM data bus
ZBT SRAM

zbt ce Out sys_clk SRAM chip enable.

zbt_oen Out sys_clk SRAM output enable, active low.
zbt r wn Out sys_clk SRAM read/write.

zbt_adv_ldn Out sys_clk SRAM address advance/load.
zbt_sclk Out sys_clk SRAM clock.

zbt_bwn[3:0] Out sys_clk SRAM byte writes, active low.
zbt_adr[20:0] Out sys_clk SRAM address bus.

zbt i0[31:0] Inout sys_clk SRAM data bus

Link Interface

link d[31:0] Inout sys_clk Link data bus.

X3-SD16 FrameWork Logic User Guide

51

Innovative Integration

Port Name Direction Clock Domain Function

link frame n In sys_clk Link data frame, active low.

link rw In sys_clk Link read/write(low) input.

link dp n In sys_clk Link data phase, active low.

link rd intn Out sys_clk Link read interrupt (data is ready for the PCle controller), active low.
link wr_intn Out sys_clk Link read interrupt (application is ready to receive data from the PCle

controller), active low.

Command Channel

cmd_dx In cmd_clkx Command channel input serial data.
cmd_clkx In cmd_clkx Command channel input clock.

cmd_fsx In cmd_clkx Command channel input frame sync.

cmd dr Out cmd_clkx Command channel output serial data.
cmd_fsr Out cmd_clkx Command channel output clock.

cmd_clkr Out cmd_clkx Command channel output frame sync.
Digital IO

dig_io[43:0] Inout sys_clk Digital IO bits. Many are differential pairs.
dig io_clkp/n In sys_clk Digital 10 clock differential pair input.

Temperature Sensor and Power Supply Enables

temp_sclk Out sys_clk 12C bus clock to temperature sensor.
temp_sda Inout sys_clk 12C data to/from the temperature sensor.
temp_alert In undefined Temperature sensor alert input.
ps_enable Out sys_clk Power supply enable.

ps_enable n Out sys_clk Power supply enable, active low.

Table 7. X3-SD16 Logic Ports

Application Logic Help Files

An hyper linked help file system is available for X3-SD16 logic developers in the ./RTL/Linux/docu directory. This help
system shows hierarchy, logic entities, important processes and variables for the application design as hyper-linked HTML
documentation. This documentation is generated from the source code itself and shows all of the code used in the design.

To use the HTML documentation, open the index.htm file under the docu directory. A standard browser program such as
Windows Internet Explorer or Mozilla Firefox can be used to view the design structure.

X3-SD16 FrameWork Logic User Guide 52

Innovative Integration

Memory Map

The X3-SD16 memory map for PCI Express bus accesses uses two regions in the host memory. Each region has its origin at
the Base Address Register (BAR) assigned by the host as part of the plug-n-play process. The BARO region is used for
module controls, PCI Express interface functions and application FPGA loading. The BARI region is used for
command/status in the application FPGA. Both memory regions are accessed by the host computer as memory accesses to
BAR + Offset.

The command channel is mapped to X3-SD16 PCI base address register 1 (BAR1) of the PCI bus. Each address show is
relative to the BAR1 enumerated address as the Offset. All registers are 32-bit.

Offset R/W Function Module

0x00 R User FPGA code version All

0x01 R/W Control Reg 0 All

0x02 R/W Test All

0x03 R Temperature All

0x04 R/W Temperature Warning (W) / Clear (R) All

0x05 R/W Temperature Fail (W) / Clear (R) All

0x06 R/W A/D trigger delay All

0x07 R/W Front Panel DIO Control Register 25M, Servo, A4D4, 2M, SD16

0x08 R/W PLL Clock Control All

0x09 R/W Sample Clock Divider and Distribution A4D4, Servo

0x0A R/W PLL interface All

0x0B R/W A/D channel enables (DIO In) All

0x0C R/W DAC channel enables (DIO Out) A4D4, 25M, Servo, DIO (byte
enables), SD16

0x0D R/W DAC trigger delay A4D4, 25M, Servo, DIO (byte
enables), SD16

0x0E R/W ZBT SRAM address All

0x0F R/W ZBT SRAM data All

0x10 R/W A/D Amplifier Enables SD

0x11 R/W DAC Controls (DIO Output) A4D4, Servo, DIO, 25M, SD16

0x12 R/'W ADC Controls SD, SDF, 2M, SD16

0x13 R/W P16 DIO 31..0 Register All

0x14 R/W P16 DIO Control Register All

0x15 R/W Front Panel DIO (Does not apply to the DIO module) 25M, Servo, A4D4, 2M, SD16

0x16 R/W P16 DIO 43..32 Register All

0x17 R/W Trigger Control A/D (DIO In) All

0x18 R/W Trigger Control DAC (DIO Out) A4D4, DIO, 25M, Servo, SD16

0x19 R/W A/D Decimation (DIO In) All

0x1A R/W DAC Decimation (DIO Out) A4D4, DIO, 25M, Servo, SD16

0x1B R/'W Packet Header DAC Servo, A4D4, 25M, DIO, SD16

X3-SD16 FrameWork Logic User Guide

53

Innovative Integration

0x1C R/W Packet Header A/D All

0x1D R/W Software Alert All

O0x1E R/W Alert Control Register All

0x1F R/W Alert enables All

0x20-2F w A/D Gain Error Coefficients SD (16 channels),
A4D4 (4 channels),

25M (2 channels) Servo(12
channels)

10M (8 channels),
2M (12 channels)
SD16 (16 channels)

0x30-3F w

A/D Offset Error Coefficients

SD (16 channels),
A4D4 (4 channels),
25M (2 channels),
Servo(12 channels),
10M (8 channels),
2M (12 channels)
SD16 (16 channels)

0x40-4F w DAC Gain Error Coefficients A4D4 (4 channels),
25M (2 channels),
Servo(12 ch)
SD16 (16 channels)
0x50-5F w DAC Offset Error Coefficients A4D4 (4 channels),

25M (2 channels), Servo(12 ch)
SD16 (16 channels)

0x60 w A/D Device 0 Control Register SDF
DACO SPI Register (write only) SD16
0x61 W A/D Device 1 Control Register SDF
DACI1 SPI Register (write only) SD16
0x62 w A/D Device 2 Control Register SDF
0x63 w A/D Device 3 Control Register SDF
0x70 W A/D Gain 0 A4D4, 25M, Servo, 10M, SD16
0x71 W A/D Gain 1 A4D4, 25M, Servo, 10M, SD16
0x72 W A/D Gain 2 A4D4, Servo, 10M, SD16
0x73 W A/D Gain 3 A4DA4, Servo, 10M, SD16
0x74 W A/D Gain 4 Servo, 10M, SD16
0x75 w A/D Gain 5 Servo, 10M, SD16
0x76 W A/D Gain 6 Servo, 10M, SD16
0x77 W A/D Gain 7 Servo, 10M, SD16
0x78 W A/D Gain 8 Servo, SD16
0x79 w A/D Gain 9 Servo, SD16
0x7A AW A/D Gain 10 Servo, SD16
0x7B W A/D Gain 11 Servo, SD16

X3-SD16 FrameWork Logic User Guide

54

Innovative Integration

0x7C R/W A/D Gain 12 SD16
0x7D R/W A/D Gain 13 SD16
0x7E R/W A/D Gain 14 SD16
0x7F R/W A/D Gain 15 SD16

Table 8. X3 FrameWork Logic Memory Map

Registers in the X3-SD16 FrameWork Logic

USER FPGA Logic Version — 0x00 (read)

This register returns the version number for the USER FPGA. This register allows verification that the proper logic is
actually loaded into the FPGA. The values are hard coded in the logic to designate: which XMC board type, which hardware
revision, and which hardware variant is appropriate for this logic.

Bits Function

31..24 X3 module type (see type table in this document)
23..20 X3 hardware revision

19..16 X3 hardware variant

15..0 USER logic version

Table 9. ii_rev_code Register

Control Register 0 — 0x01 (write)
This register provides several controls for reseting the FPGA, allowing the logic to run, enabling test modes and software
triggering.

Bits Function Module Notes

0 Software reset of User FPGA. ‘1’ = reset

1 ADC Run. Allows data capture. ‘1’ = run (0= off- default)

3.2 -

4 Link Loopback; '0' = normal operation, '1' = loopback to PCI

5 A/D test counter, ‘1’ = enabled (DIO In)

6 DIO Out, ‘1’ = enabled DIO only

7 -

8 ADC MQ reset, '1' = reset

9 DAC MQ reset, '1' = reset

11..10 SW triggers 1..0 0 for A/D (DIO In)
1 for DAC (DIO Out)

15..12 -

16 DAC Run, Allows data capture. ‘1’ = run (0= off- default) (DIO Out) N/A for SD, SDF

X3-SD16 FrameWork Logic User Guide

Innovative Integration

17 DAC test mode (DIO Out) DIO
(Others) Not used
Table 10. X3 Control Register 0

Test Register — 0x02
This register is reserved for test functions. Customers will not normally use this register.

Bits Function

0 -

1 Force temp failure. '0' = normal (default).
31.2 Not used

Table 11. X3 Control Register 0

Temperature - 0x3 R
This register gives the current temperature when read. Scaling from the temperature sensor is a 2’s complement number that

is sign extended to 16-bits from the 12-bit value given in this table. Note that 0 degrees is 0 output and scale factor is 0.0625
C/bit.

Temperature(C) = reading * 0.0625

TEMPERATURE | DIGITAL OUTPUT HEX
(-C) (BINARY)
128 0111 1111 1111 TFF
127.9375 0111 1111 1111 7FF
100 0110 0100 0000 640
80 01010000 0000 500
75 0100 1011 0000 480
50 0011 0010 0000 320
25 0001 1001 0000 190
0.25 0000 0000 0100 004
0 0000 0000 0000 000
025 1111 1111 1100 FFC
-25 1110 0111 0000 E70
-55 1100 1001 0000 C90

Table 5. Temperature Data Format

X3-SD16 FrameWork Logic User Guide

56

Innovative Integration

Bits Function
15..0 Temperature (read only)
(Others) Not used

Table 12. X3 Temperature Sensor Reading

Temperature Warning — 0x4 R/'W
This register sets the temperature warning level for writes and clears temperature warning when read.

The warning level should be provided as a temperature reading set point (see table above).

Bits Function
15..0 Temperature Warning Level (W), Clear on read (Default = X”0460” =70 C)
(Others) Not used

Table 13. X3 Temperature Warning Register

Temperature Failure — 0x5 R/W
This register sets the temperature failure level for writes and clears temperature failure when read.

The failure level should be provided as a temperature reading set point (see table above).

Bits Function
15..0 Temperature Failure Level (W), Clear on read (Default = X0460” = 70 C)
(Others) Not used

Table 14. X3 Temperature Failure Register

PLL Clock Controls — 0x8 R/W
This register sets PLL CLKA input and REF clock inputs. An external clock mux is used to switch these clocks into the
PLL.

Bits Function

0 PLL CLKA select
0= EXT CLK on front panel (default)
1=PXIE DSTARA on P16

1 PLL REF CLK select
0= oscillator (default) SD,SDF = 24.576MHz
1=PXIE_CLKI100 on P16

2 SDA serial data bit (Write only)

3 SCK bit for serial clock (Write only)

4 Readback for [12C data pin (Read only)

5 Readback for I12C clock pin(Read only)

6 VCXO Output Enable (1 = enabled, '0' = default)
(Others) Not used

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Table 15. X3 PLL Clock Controls

PLL Clock Divider and Distribution Control Interface — 0x9 R/'W (A4D4, Servo only)

This register is the interface to an AD9510 used for sample clock division and distribution. The control registers are identical
to the PLL used for sample clock generation at OxA. This device however does NOT use the PLL functionality, only the
clock division and output controls. The main purpose of this device is to divide the PLL output down so that the clock rate is
useful for slower speed devices.

To configure this device, set the AD9510 to PLL off, CLK1 input, CLK2 disabled. Output 0 should be LVPECL. The other
outputs are defined LVCMOS for X3-SD16. Outputs 1,2,3 are not used.

PLL Interface — 0x0A R/W
This register is the data interface to the AD9510 PLL used for sample clock generation.

Wirites: write to this address A11..0 with a 24 bit word as is shown. Bit 23 is set to '0' for writes.

Reads: Write to the address A11..0 that is to be read. Set bit 23 to 'l' indicating a read cycle. Then read from this address.
A byte of data from the address A11..0 is returned

Bits Function

7..0 Data byte (don't care when bit 15 ="1")
19..8 Address

22..20 -

23 Read/write access ('0' = write)

30..24 -

31 PLL status output (read only)

Table 16. X3 PLL SPI Port Interface

A/D channel enables — 0x0B
This register enables the channels for data flow. The X3-SD16 has 16 A/D channels, each has an enable bit that tells the
logic whether that channel is active. Inactive channels are powered down. Active channels are part of the data stream.

Bits Function
15..0 Enable channel A/D
31..16 unused

Table 17. X3-SD16 A/D channel Enables

DAC channel enables — 0x0C
This register enables the channels for data flow. For the DIO module this specifies the output unstack mode.

X3-SD16 FrameWork Logic User Guide

58

Innovative Integration

Bits Function
15..0 Enable channel DAC
31..16 unused

Table 18. X3 DAC Channel Enables

Front Panel DIO output enables — 0x0D (25M, Servo, A4D4, SD16)
This register enables the Front Panel DIO outputs. One enable per byte.

Bits Function
0 Byte 0 output enable (bits 7..0)
31..1 unused

Table 19. X3 Front Panel DIO Enables

ZBT SRAM Test Interface

The ZBT SRAM interface component is connected to the command channel for test purposes. The underlying logic
component supports high speed SRAM use, but the command channel does not. Therefore these registers are used only for
test.

To test the ZBT SRAM, write an address to the address register then read or write to that address in the ZBT SRAM.

ZBT SRAM Address — 0x0E

Bits Function
19..0 Zbt address
31..20 unused

Table 20. X3 ZBT SRAM Address Register

ZBT SRAM Data — 0x0F
Bits Function
31..0 Data
Table 21. X3 ZBT SRAM Data Register

DAC Control Register — 0x11 (Servo, 25M, A4D4 only)
This register controls the DAC FIFO reset and underflow reset.

Bits Function
2.0 DAC Mode SD16 only
“000” = 256 clocks per LR (default)
others = 128 clocks per LR

X3-SD16 FrameWork Logic User Guide

Innovative Integration

3 -

4 DAC FIFO reset, 1 =reset (0 = default)

5 DAC FIFO underflow reset, 1= reset (0 = default)

6 DAC outputs are loopback of A/D values Servo only
(Others) Not used

Table 22. X3 DAC Control Register

ADC Control Register — 0x12
This register controls various module-specific controls.

Bits Function Module
2.0 ADC Mode — selects the sample mode of the A/D. SD, SD16
SD: See PCM4204 data sheet.
SD16: Mode ClkDiv => fs_clk/LR
High Speed 00 X 256
High Res 01 X 512
Low Pwr 10 0 256
Low Pwr 10 1 512
Low Pwr 11 0 512
Low Pwr 11 1 2560

These bits are ADC_MODE <= clkdiv & mode(1 downto);

3 -

4 ADC FIFO reset, 1 =reset (0 = default). Also does hardware reset.

5 ADC overflow reset, 1 =reset (0 = default)

7..6 -

11..8 Amplifier high pass disables (1 = disabled, 0 = default) SD

12 ADC Mode : filtered or unfiltered. Modifies the behavior of the data interface to SDF
accept unfiltered data. (0= filtered, default).

13 A/D Sync : provides software synchronization to all A/D devices so that they sample SDF
simultaneously. (1= sync , 0= default)

14 -

15 ADC HW Test (0= off, default) SD16

31..14 Unused

Table 23. X3 A/D Control Register

P16 DIO Data Low Register — 0x13
This register is the digital IO 31..0 on P16. Writing to this register updates the output bits, as enabled in the DIO control
register. A read from this register gives the current state of all DIO bits.

Bits Function
31..0 DIO bits 31..0

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Table 24. X3 Digital I0 Data Register

P16 DIO Control —0x14
This register is the output enable control and sample enable control for the digital IO on P16. Writing to this register enables
bytes as inputs or outputs. Bit 4 controls the sample enable selection.

Bits Function

0 DIO bits 7..0 output enable. '0' = input, default

1 DIO bits 15..8 output enable. '0' = input, default

2 DIO bits 23..16 output enable. '0' = input, default

3 DIO bits 31..24 output enable. '0' = input, default

4 Sample DIO inputs when DIO_EXT CLK is true, otherwise
always sample
(O=sample always, default)

Others -

Table 25. X3 DIO bits 31..0 Control Register

P16 DIO Data High Register — 0x16
This register is the digital IO 43..32 on P16. Writing to this register updates the output bits, as enabled in the DIO control
register. A read from this register gives the current state of all DIO bits.

Bits Function
11..0 DIO bits 43..32
Others -

Table 26. X3 DIO bits 43..32 Control Register

Front Panel DIO Data Register — 0x15 (25M, Servo, A4D4, SD16)
This register is the digital IO on the front panel. Writing to this register updates the output bits and sets the direction of the
port. A read from this register gives the current state of all Front Panel DIO bits.

Bits Function Module
Front panel DIO bits Servo 11..0
25M 15..0
A4D4 11..0
2M 11..0
SD16 5..0
31 Output enable, 0=
input(default)

Table 27. X3 Front panel DIO Control Register

X3-SD16 FrameWork Logic User Guide

Innovative Integration

DAC Packet Headers — 0x1B (25M, Servo, A4D4)
This sets the PDN for the DAC packets.

Bits Function
23.0 -
31..24 Peripheral ID number

Table 28. X3 DAC Packet Header

A/D Packet Headers — 0x1C
This sets the packet size for the A/D packets. For the DIO module this is the input stream.

Bits Function
23..0 Number of dwords in packet, including 2 dword header
31..24 Peripheral ID number

Table 29. X3 A/D Packet Header

Gain and Offset Error Coefficient Registers

These registers store the correction coefficients that are used by the FPGA to correct gain and offset in real time. There is a
gain coefficient and offset coefficient for each ADC. When the board is calibrated, these values are stored in the non-volatile
Calibration ROM (serial Flash) which is controlled by the PCI FPGA. Each time the board is powered up, the PCI host reads
the values from the calibration ROM and writes them into these registers in the USER FPGA.

Module A/D Channels DAC Channels
SD 16 -
SDF 4 _
A4D4 4 4
DIO - -
25M 2 2
Servo 12 12
10M 8 -
2M 12 -
SD16 16 16
A/D Gain Error Correction — 0x20 + channel number
Bits Function
17..0 Gain correction: 0x10000 = 1
Others unused

Table 30. X3 A/D Gain Correction Registers

A/D Offset Error Correction — 0x30 + channel number
Bits Function
15..0 Offset correction: 0 =0

X3-SD16 FrameWork Logic User Guide

62

Innovative Integration

Others |

unused

Table 31.

X3 A/D Offset Correction Registers

DAC Gain Error Correction — 0x40 + channel number

Bits Function
17..0 Gain correction: 0x10000 = 1
Others unused
Table 32. X3 DAC Gain Correction Registers

DAC Offset Error Correction — 0x50 + channel number

Bits Function
15..0 Offset correction: 0 =0
Others unused
Table 33. X3 DAC Offset Correction Registers

A/D Analog Gain Control — 0x70..0x7B (Servo, 10M, A4D4)

A4D4, Servo,

This sets gain for and analog inputs. This is the analog gain, not the gain error correction! Writes to this register change the

analog gain.

25M, 10M , SD16: (A/D channel 0 = 0x70, ...)

Bits Function

1..0 Analog gain
“00” = 1x gain
“01” = 2x gain
“10” = 5x gain
“11” = 10x gain

31.2 -

Table 34. X3 Analog Gain Controls

Trigger Controls

Two trigger modes are supported for A/D data acquisition : unframed and framed. In unframed mode, the trigger output is
true whenever the selected trigger source is true. In framed mode, the trigger output is true after a rising edge on the selected
trigger source until the frame count number of sample clocks are counted. The frame will re-trigger only on another rising

edge on the trigger source.

A point is counted on each rising edge of the sample clock input when sample enable is true. The trigger mode is selected to
be either framed or unframed, software or external trigger. The trigger sources are external or software. The external trigger
must be enabled to use it, however the software trigger is OR’d with the external trigger to allow it to be used anytime.

The samples can also be decimated by ratios up to 1/4095.

X3-SD16 FrameWork Logic User Guide

63

Innovative Integration

A/D Trigger Controls — 0x17; DAC Trigger Controls - 0x18
These registers set the trigger mode and enable the external trigger input. The external trigger functions are

Trigger 0 = A/D trigger

Trigger 1 = DAC trigger

Bits Function
23..0 Frame count
26..24 Not used
27 External trigger select
('0'=JP1 fornt panel (default), '1' = P16 on DIO 34,) J4 on 80172 adapter)
28 DAC trigger uses A/D trigger (trigger0) (SD16)
29 -
30 Trigger mode: 0 = unframed, 1 = framed
31 External trigger enable '0' = disabled (default)

Table 35. X3 Trigger Controls

A/D Decimation — 0x19; DAC Decimation - 0x1A
This register sets the decimation rate. The minimum allowable value for this parameter is 1.

Bits Function

11..0 Decimation factor. Sets of the A/D data for the enabled channels are kept for
1:N as set by this number.

31..12 -
Table 36. X3 DAC Decimation

Alerts

Up to 32 alerts may be monitored that indicate when important events happened in the data collection process. Each alert is
individually enabled by setting its corresponding bit in the alert enable register. When an enabled alert occurs, a data packet
is generated with the following format. A timestamp for the alert packet is created using the sample clock so that there is a
one-to-one correspondence between the samples and alerts. The alert FIFO can be cleared by setting the FIFO reset to '1".

Alert Control Register — 0x1E
This register provides controls associated with the alert mechanism.

Bits Function

0 Timestamp run; '0' = disabled (default)

1 Alert FIFO reset; '1' = reset, '0' = normal (default)
23.2 -

31..24 Alert PDN (default = X”FF”)

X3-SD16 FrameWork Logic User Guide 64

Innovative Integration

Table 37. X3 Alert Controls

Alert Log Enables — 0x1F
This register enables the alerts 31..0. A ‘1’ in the corresponding bit enables the alert.

Alert Description Module Specific

0 Timestamp rollover

1 Software Alert

2 Over Temperature Alarm/ Sensor Failure

3 Temperature Warning

4 PLL Lost

7..5 -

8 ADC Queue Overflow

9 ADC Trigger

15..10

16 ADC Overrange Alert word gives the channel numbers having
overranges

23.17 -

24 DAC Underflow

25 DAC Trigger

31..26

Table 38. X3 Alert Enables

Logic Clocks

In the X3-SD16 design, there are clocks for analog data sampling, a system clock and a command channel clock for

communications. The FrameWork Logic is designed so that all hardware interface components and devices that use
other clocks transition to the system clock domain. This makes the design process simpler since the majority of the
logic is on the system clock domain and is synchronous. This makes the design more reliable and easier to modify.

There are several clocks available to the designer in the logic that are intended for different functions as shown in the
following table.

The system clock (sys_clk in) is a 67 MHz clock provided by the PCI Express bridge. This clock is a fixed rate and is
present whenever the PCI Express interface is working.

The sample clock (fs_clk p/n) is a phase-aligned copy of the A/D master clock. This is a LVPECL differential clock input
that can range from 0 to 140 MHz. The sample clock is either an external clock or is generated in the PLL on the card.

Sample clock is limited to 144 kHz when the A/D are used or 192 kHz when the DACs are only used.

The command channel clock is used for the command channel only. The serial data and frame signals used by the command
channel are synchronous to this clock. The clock is 16 MHz.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Clock into Function Frequency Source

FPGA

sys_clk in System clock 66.7 MHz PCI Express
bridge

fs_clk Sample clock 0-140 MHz External input
or PLL

cmd_clkx Command bus clock received from 16 MHz max, depends on host PCI PCI Express

PCI controller FPGA bus interface FPGA

Table 39. X3 Logic Clocks

It is possible to use the DCMs in the FPGA to generate many other clocks from the sources provided by programming them
for their multiplier and divisor factors. The advantage of using the DCM over a logic-based division is that phase

relationships are preserved so that the logic may still be synchronous. This tends to simplify the logic design by reducing the
number of random phase clock domain transitions that must be managed.

The following diagram shows the clock domains in the X3-SD16 FrameWork Logic. The majority of the device runs on the
system clock, which is a 67 MHz. Application logic programming built on top of the FrameWork logic is usually done in the
system clock domain, allowing a simpler design process.

x3_SD16vhd

X3-SD16 Interface Logic

User App Int

MQ SRAM
cy7c1371k_model.vhd

A

ii_mg_sram32 vhd

h 4

o Multi-Queue FIFO
Lal

u_app_inputyhd

Packetizer "

ii_packetizervhd [°

Alerts Log
ii_alerts.vhd

v

.;Data Link to PCI Controller|

v

ii_link.vhd

]

Deframer

h 4

ii_deframer.vhd

User App Out
u_app_output.vhd

Testhench
¥3_servo_th.whd

Command Bus
ii_cmd_req.vhd

.| ClockDCM
¥ dem.xco

Clock
Daomain

sys_clk

AD HW Interface
ii_sd16_adcyhd

Triggering
ii_trigger.vhd

Triggering
ii_trigger.vhd

DAC HW Interface
ii_sd16_dacxhd

AD
ads1278_modelyhd
2 total

DAC
pcrm1681_modelvhd
2 total

Temperature Sensor

Temp Sensor

h 4

ii_temp_sensarvhd

A
h 4

tmp175_model.vhd

N PLL Control

» ToPLL

i_pll_spiwvhd

o« SRAM Controller

h 4

SRAM

ii_sram32_intfahd [T

cyfc1371k_model.vhd

Constraints
x3_sd16.ucf

VHDL Packages
ii_x3_pkg.vhd

Innovative Integration

The following diagram shows the clock domains what logic resides on each domain.

Figure 32. X3-SD16 Clock Domains

A/D Interface Component

The hardware interface component providing the A/D interface function is ii_sd16_adc. This component provides the
interface to the A/D devices, two Texas Instruments ADS1278, each of which has 8 channels of 24-bit 144 KSPS A/D
channels. There are two devices to provide 16 simultaneous channels. The data interface to each device is a serial data port,
plus several control signals for configuration and status.

The interface component also performs error correction and over-range detection. A FIFO interface to the system logic
transitions from fs_clk domain to system clock domain and provides 1K sample buffering.

sdc)fsync ii_sd16_adc U_App_Input
adc_sclk - -
v ’:lT'm'"g rden Multi-queue
-t
\DS 12785 - Error dou31o] N -
31— wishit Reasf— Correction | FIFO — > > buffer
adc0_sdi 32-hit wide dvalid -
A adc1_sdi >
A
fock Theii_sd16_adc component has a serial port
I trigger interface to A/Ds. [t provides timing signals
PLL/ = and receives the serial data from each device.
Timebase, The data is error corrected then enabled

channels (channel_en) are put into a FIFO.
The FIFO is read as 32-bit words, each word is
an A/D sample.

The FIFO read enable (rden) is enabled when
the FIFO read count (fifo_rd_cnt) is >0 to move
the data into the system logic.

Figure 33. X3-SD16 A/D Interface Component

ADS1278 Device Interface

The A/D device requires a master clock that is a multiple of the sample rate. The multiple is a function of the sampling mode
of the device and the desired sample rate.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Mode Max feclk Mode adc_clkdiv SCLK Max Sample Rate
(MHz)

High Speed 37 “00” 1 256 144531

High Resolution 27 “01” 1 512 52734

Low Power 13.5 “10” 0 256 52734

Low Power 27 “10” 1 512 52734

Low Speed 5.4 “117 0 512 10547

Low Speed 27 “117 1 2560 10547

Table 40. A/D Clock and Sample Rates for Sample Modes

The ii_sd16_adc generates the serial clock (adc_sclk) and frame (adc_fsync) signals based on the mode and adc_clkdiv
settings. These signals are synchronized to the to either an internal sync or to an external sync when multiple cards are used.
The sync ensures that the A/D devices sample in synchronization by controlling the frame sync signal.

The ii_sd16_adc component uses the frame-sync TDM serial interface to the ADS1278. The FPGA-generated serial clock
and frame are used to receive the data on the serial data inputs (adcO_sdi, adc1_sdi) as shown the following diagram.

SCLK 4 48

|2| 23 2 71 |72| |73| |95| |9;| |Q;| | |167| 168] |169) 191 19; 193] [194] |195

|1 25 9
(AD':;%% _/(CHA X oz X cia X cHa X DIN||
|
A
1|

(ADS1278)

DOUTH CcHA X o2 X cv3 X ot Xoms \\\ cHr X cHs X DN
)

DRDY

(SPI) |
FSYNC | ?
(Frame-Sync) §

Figure 34. ADS1278 Serial Port Timing in TDM Mode

The data is received into the FPGA and captured in shift registers. A data word is taken from each shift register every 24
bits.

Error Correction

The A/D channels are corrected in the logic for bias and gain errors due to analog electronics. This is used for calibrating the
A/D channels. Calibration coefficients are loaded into the system FLASH ROM during factory test and are then used for
error correction. Each A/D channel has an offset and gain register mapped to system memory. The software is expected to
read the coefficients from the ROM and write them to these registers as part of system initialization.

The error correction is a first-order error correction implemented in the logic as

y =m(x + b), where m = gain correction, b = offset correction and x = input A/D sample

X3-SD16 FrameWork Logic User Guide

Innovative Integration

The offset coefficient is a 16-bit number, which is left shifted (multiplied by 32) before it is added to the sample. The gain
coefficient is 16-bit.

Gain Coef = 0xC000 + Gain/2; when Gain = 0x8000, gain is 1.
Offset Coef = Offset * 32
The gain error compensation is ~ +/50% of the input range. All calculations use saturating math.
FIFO Data Buffer
The output from the component is a FIFO that buffers the A/D samples. The number of enabled channels determines the data
format. If all channels are enabled, the samples are sequentially stored to the FIFO ADO0..AD15. For a single channel, data is

ADO(t), ADO(t+1). If a channel is turned off, such as channel 1, the ordering is ADO, AD2, AD3, AD4..AD15, ADO(t+1).

Data from the A/D FIFO is output as a 2's complement, 32bit. Negative numbers are sign-extended from the 24-bit sample
data. Full scale is 0x007FFFFF, negative full scale is 0xFF80000.

Bits
Data Port Clock Domain 31..0
FIFO sys_clk A/D sample channel n

Table 41. X3-SD16 A/D Component Output Data Format

Where to Grab the A/D Data

The User Application Input component, u_app_input, is a good place to get at the A/D data stream. A/D data flows through
this component after it is read from the system side of the FIFO. The FIFO performs the clock domain transition for the data
from the sample clock to the system clock in this case. You can pace the data from the FIFO by controlling RDEN based on
the number of points in the FIFO given by FIFO RD CNT. Remember that the FIFO count is for 32-bit words, not 16-bit
samples. The RDEN does not allow data to flow when it is false, so the local FIFO buffers the data. Be careful not to
overflow the FIFO when using FIFO RD CNT or points will be lost.

You should place your algorithm in the u_app_input component. It is nothing more than a register as delivered, so you can
just modify it to add new signal processing to the data stream. Be sure to consider data pacing from the A/D FIFO and to the
MQ data buffer.

DAC Interface Component

The hardware interface component for the DAC interface is ii_sd16_dac. This component provides the interface to the A/D
devices, two Texas Instruments PCM1681, each of which has 8 simultaneous 24-bit, 192 KSPS DAC outputs. The data
interface is a serial port to each of the two DAC devices.

The interface component also performs error correction underflow detection. A FIFO interface to the system logic transitions
from system clock domain to fs_clk domain and provides 1K sample buffering.

X3-SD16 FrameWork Logic User Guide

69

Innovative Integration

(channel_en) to each DAC. The FIFO is
written as 32-bit words, each a DAC sample,
using write enable (dac_wr) when the FIFO
write count (dac_fifo_cnt) is < almost full.

dac_spi_ms_n ||_Sd1 G_dac
dac_spi_mc U_App_
dac_spi_md SP! Port channel_en[15.0] Output
gg_gclk _ dac_wr .
Timing -« Multi-queue
Joui310] | ii_data_mover data
- FIFO | CEEL ¥ buffer
,_1 Shift | Error o o dvalid
PCM16814 Ren MCaizas b G T —
daco_sdo dac_f'rfo_cqt
A dac1_sdo
A
fs_clk The ii_sd16_dac component receives data
L L i trigger from the u_app_output, error compensates the
PLLY = data, then writes the enabled channels
Timebase

Table 42. X3-SD16 DAC Interface Component

PCM1681 Device Interface

The D/A devices require a master clock that is a multiple of the sample rate. The multiple is a function of the sampling mode

of the device and the desired sample rate. The two supported clock rates are 128fs and 256fs modes.

Mode Max fclk (MHz) Mode Clock Multiple Max Sample

Rate(ksps)
256fs 40 “00” 256 156.25
128fs 24.576 “01” 128 192

Table 43. D/A Clock and Sample Rates for Sample Modes

The ii_sd16 dac generates the serial bit clock (dac_bclk) and left-right frame (dac_Ir) signals based on the mode setting.
These signals are synchronized to the to either an internal sync or to an external sync when multiple cards are used. The sync
ensures that the D/A devices sample in synchronization by controlling the frame sync signal.

The ii_sd16_dac component uses the left-justified audio format serial interface to the PCM1681. The FPGA-generated serial
bit clock and left-right frame are used to transmit data on the serial data outputs (dacO_sdo, dacl _sdo) as shown the following
diagram.

Left-Justified Data Format; L-Channel = HIGH, R-Channel = LOW (default)
= g »

L-Channel

RRLILTITIS 4_‘FLfoLfLﬂ:———foLfLFF ARAAARL fLﬂfer

(= 3215, 48 s, or 64 fg)

LRCK R-Channel

DATA

'\ |2 |3 I—————|u-2|N1

MSB LSB

E

|;,J____ TE——

|| |fJ____
LSB

Innovative Integration

Figure 35. PCM1681 Serial Port Timing

Error Correction

The DAC channels are corrected in the logic for bias and gain errors due to analog electronics. This is used for calibrating
the DAC channels. Calibration coefficients are loaded into the system FLASH ROM during factory test and are then used for
error correction. Each D/A channel has an offset and gain register mapped to system memory. The software is expected to
read the coefficients from the ROM and write them to these registers as part of system initialization.

The error correction is a first-order error correction implemented in the logic as
y =mx + b, where m = gain correction, b = offset correction and x = output D/A sample

The offset coefficient is a 16-bit number, which is left shifted (multiplied by 32) before it is added to the sample. The gain
coefficient is 16-bit.

Gain Coef = 0xC000 + Gain/2; when Gain = 0x8000, gain is 1.
Offset Coef = Offset * 32
The gain error compensation is ~ +/50% of the input range. All calculations use saturating math.
FIFO Data Buffer
The output from the component is a FIFO that buffers the D/A samples. The number of enabled channels determines the data
format. If all channels are enabled, the samples are sequentially stored to the FIFO DAO0..DA15. For a single channel, data is

DAO(t), DAO(t+1). If a channel is turned off, such as channel 1, the ordering is DAO, DA2, DA3, .DAI1S5, DAO(t+1).

Data to the D/A FIFO must be 2's complement, 32bit. Negative numbers are sign-extended from the 24-bit sample data. Full
scale is 0xO07FFFFF, negative full scale is 0xFF80000.

Bits
Data Port Clock Domain 31..0
FIFO sys_clk DAC channel n

Table 44. X3-SD16 DAC Component Input Data

Where to Access the DAC Data Stream

The User Application Output component, u_app_output, is a good place to get at the DAC data stream. DAC data flows
through this component after it is read from the multi-queue data buffer. You can pace the data flow from the multi-queue to
the DAC interface input FIFO by controlling wren based on the number of points in the FIFO given by DAC FIFO CNT.
Be careful not to overflow the FIFO or points will be lost.

X3-SD16 FrameWork Logic User Guide

7

Innovative Integration

You should place your algorithm in the u_app_output component. It is nothing more than a register as delivered, so you can
just modify it to add new signal processing to the data stream. Be sure to consider data pacing from the multi-queue and to
the DAC FIFO.

Triggering Component

The ii_trigger component controls the trigger inputs to the A/D and DAC components. There are two independent trigger
components in the design — one for A/D and one for DAC. When the trigger is true, this tells the logic that a data point is
acquired for A/D, or played out for the DACs. This allows the logic to control the A/D and DAC data flow for application-
specific triggering requirements.

The ii_trigger component provides two methods for triggering: framed and unframed. In the framed mode, a programmable
number of points are captured for each trigger rising edge. In unframed mode, data is captured as long as trigger is true. The
framed mode allows the X3-SD16 to capture a snapshot of data for analysis or playback a waveform of fixed length.

The frame count is loaded as the number of points to be captured up to 224 points. A frame is captured or played out on
each rising edge of the trigger input. If a frame capture is in progress, the trigger is ignored.

The trigger is either the external sync signal or the internal software controlled run signal, as selected by the trigger control
register for each channel. The external trigger may be disabled to prevent false triggering. The software trigger is may always
trigger the system even when the hardware trigger is true to allow the application to force a trigger condition.

External Trigger Use Notes
0 A/D This external trigger may be used for DACs if ctl_reg(24)(28) ='1"
1 DAC

Table 45. X3-SD16 External Triggers

For both the A/D and DAC:Ss, the trigger event is always for the full set of enabled channels. Once a trigger is started, all
enabled channels will be acquired and played out. No partial sets are allowed.

Adding a Unique Trigger Method

To add a new trigger method to the design, you can either replace the trigger component ii_trigger, or modify it. The trigger
signal to the A/D interface ii_sd16_adc must be true whenever a sample is to be collected. For the dac triggering, the trigger
signal to ii_sd16_dac allows a point to played to the DACs. The trigger signal is synchronous to fs_clk, so the new signal you
make must also be synchronous to fs_clk. This means that your new trigger logic must be on the fs_clk domain.

If you modify ii_trigger, just watch out for the clock domains. It is important to remember that the fs_clk can be quite slow
compared to the system clock, so transitions should take this in to account. Signals coming from the system clock must
usually be held until the sample clock has seen them. A one clock pulse from the system logic will not be seen since it is 67
MHz and the sample clock is no greater than 20 MHz.

X3-SD16 FrameWork Logic User Guide 72

Innovative Integration

The clocks are also asynchronous to one another, so no phase relationship can be used in your design. The sample clock,
particularly from external sources, must be periodic and 50% duty cycle, but is not phase-aligned to the system clock.

Packetizing Component

The packetizing component forms data streams into packets by attaching a header to a bundle of data. The primary use of
these packets is to transfer data to the host using the Velocia PCle controller. Each data packet has a two word header, 32-bits
each, preceding the data. The packets are programmable in size and for their other routing information.

The packetizer polls a defined number of data sources and creates packets when the source and destination of the packet are
ready for the transaction. Setup information for the number of channels, size of the packets, sources enabled and headers is
provided as part of the initialization of the packetizer. Sources and destinations for the packetizer are usually FIFOs in the
logic, as in the FrameWork Logic. A read enable, synchronous to the input clock, is provided for each data source and a write
enable for each destination. The packetizer pipelines the data and aligns it to the data stream flowing through during the
packet assembly process.

clk ———» Setup Info
number of channels
packet sizes
destinations

source_reacly l dest_ready s
Data Source Data Destination
Packetizing e

@ ™| Siata Machine [Data Destination

- :
|

¢ |

Data |

Data in Pipeline - L—m Data out :

| / \ i

Figure 36. ii_packetizer Block Diagram

During operation, the packetizer scans the number of input channels and in a round robin and creates packets for the channels
that are ready. Each channel has its packets built with the header information for that channel and the data payload attached
to the header. The packet is transmitted as it is built to the destination, there is no data storage in the packetizing component.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

In the FrameWork logic for the X3-SD16, the destination of all packets is the link to the PCI controller. The multi-queue data

buffer is used to enqueue the data for the PCI controller for the A/D data stream.

Adding a New Packet Sources to the X3-SD16 FrameWork

To add a data stream to the X3-SD16 Framework, you will need to modify the generics in ii_x3_pkg to for the number of
packet sources (num_channels) and the mux_addr_width. This tells the component how many data channels there are to

packetize. The FrameWork logic for X3-SD16 has two channels : a/d data and the alerts. It is best just to add more after that

so you can use the existing software with minimum changes.

Constant num channels : positive := 2; -- the number channels to packetize (a/d , alerts)
constant data width : positive := 32; -- width of data path through packetizer mux in
ii packetizer constant mux _addr width : positive := 1; -- the number of mux address bits needed

for 1i packetizer

The mux address width is log2(num_channels) rounded up to the next integer. Do not change the data_width.

For the new channels, you must also specify the following in the top level source code. These signals connect the packetizer
to your data source, provide pacing and packetizing information. Here are the changes to the top level to add a new channel:

(Don’t Change These)
pack _en <= (others => ‘'1’); --ctl reg(ll) (num pd-1 downto 0); pack dest <= (others =>‘0"); --all go to PCI

(Add a 32-bit data source)

packet din(0) <= mg_dout(0); -- ADC data
packet din(l) <= alert dout;

packet din(2) <= new data;

(Assign a PDN to this channel for the packet header)

pd_addr (0) <= ctl reg(28) (31 downto 24); -- A/D channels
pd_addr (1) <= ctl reg(30) (31 downto 24); -- alerts
pd_addr (2) <= ctl reg(x) (31 downto 24); -- new channel

(Provide the new channel count for packetizing control)
channel cnt (0) <= mg queue_cnt (0);

channel cnt (1) <= X”00” & “00” & alert fifo rdcnt;
channel cnt(2) <= new channel cnt;

(Provide the new channel local count for data pacing, i.e. The local FIFO count for the new
channel) channel rdcnt(0)<= ‘0’ & mgq fifo rdecnt(0);

channel rdcnt (1)<= alert_ fifo_ rdcnt;

channel rdcnt (2)<= new_channel fifo rdcnt;

-- the packet sizes for each channel

(Assign how many points will be in each packet for the packet header)

channel packet size(0) <= ctl reg(28) (23 downto 0); -- A/D

channel packet size(l) <= X”000024”; -- Alerts (32 alerts plus status and timestamp)
channel packet size(2) <= new packet size;

The packetizer will now draw data from the new packet source paced on data availability, packet size, and local FIFO count.
Software will receive packets with a header that has the new PDN, allowing the data stream to be parsed for the new source

X3-SD16 FrameWork Logic User Guide

74

Innovative Integration

Deframer Component

The deframer component receives packets from the PCle Link component and routes them to the peripheral device number
(PDN) embedded in the header. For the X3-SD16, the primary destination is the multi-queue data buffer, although additional
peripherals can be added for applications. Data is pulled from the link FIFO, is stripped of its header, and written to the
destination device. Each destination has a specific packet format that is required that must be followed.

The header for each packet gives the PDN and packet size for the deframer to use in data movement. The deframer has state
machine that reads the packet header and then transfer the data payload to its destination. The state machine is idle until a
minimum packet size is received (at least 4 words), then pulls off the two header words. The packet size, taken from the first
header word, is used to move the data points, as available from the link FIFO to the destinations. This data moves are done
by computing the maximum move that can be performed which is the minimum of the number of points in the link FIFO,
how much space is available in the multi-queue input FIFO, and the number of points remaining in the packet. This process
is repeated until the points are all moved for the packet.

The PDN is defined in the device mapping found in the X3 package (ii_x3 pkg.vhd). The four destinations defined for the
X3-SD16 are the data buffers and data buffer control ports. The deframer can be remapped or expanded by adding additional
PDNs to its mapping and providing data.

cdk ——— ™ Setup Info
number of periph devs
rdentiwrent widths

dest_wrent e
Ciata Destination
source rdent
- - Deframer e
State Machine o B Ciata Destination
|
|
|

Data in Data
Data Source Pipelne | L— Data out :
|
\ i

Figure 37. ii_deframer Block Diagram

X3-SD16 FrameWork Logic User Guide

Innovative Integration

In the FrameWork logic for the X3-SD16, the source is always the link to the PCI controller. The destinations are the data
buffers and data buffer controls FIFOs.

Multi-Queue VFIFO Component

The X3-SD16 FrameWork Logic that implements two data buffers that are each 256Kx32 virtual FIFOs as described in
the library components chapter. On the X3-SD16, the A/D data flows into a queue that is stored in the external SRAM
buffer memory. This is managed just as a large circular buffer by the logic, providing local data storage for the
module. The DAC also has a similar queue.

Multi-queue VFIFO
FIFO Controller
1K
> 32in/32 out P - FIFO
1K

DaNaRRN

‘ 32in/320ut | P

SRAM
1Mx16

Figure 38. X3-SD16 Multi-Queue VFIFO Component Block Diagram

The multi-queue VFIFO on the X3 modules has one 512Kx32 SRAM device for its buffer memory, running at 83.3 MHz.
This gives a raw bandwidth of 333 MB/s to the buffer memory. The rate at which data may be stored to memory is burdened
by overhead for queue management and SRAM control, yielding an overall storage rate over 315 MB/s. This allows the X3-
SD16 to acquire A/D directly to buffer memory and simultaneously playback to the DACs without data loss for the entire
memory.

X3-SD16 FrameWork Logic User Guide 76

Innovative Integration

The queue for the X3-SD16 are sized as shown here.

Queue Number Data Queue Boundary Address Size (32-bit words) Samples
(19..16)

0 A/Ds X00” 256K 512K

1 DACs X80~ 256K 512K

Table 46. X3-SD16 Data Buffer Queue Sizes

Adding More Data Queues

The X3-SD16 has two queues implemented, but the component supports multiple independently managed queues. The
component can be modified to support more additional queues by modifying the ii_mq_sram32 component.

See the library chapter describing the changes that must be made to change the number of queues and priority control.

Data Link to PCle Controller

The FrameWork links the application logic to the PCle controller via a 32-bit parallel data bus running at 67 MHz. The data
link provides transfer rates of up to 264MB/s to the PCle controller FPGA. Data flow is bidirectional, half duplex. This link
is the primary data path for the data to flow to the host over the PCI bus. Pacing across the link is managed by the link.

The ii_link component has FIFOs for data interface to the application logic. Internal to the component is a FIFO in each
direction and the link control logic. Data is simply inserted in the link FIFO as space permits. On the X3-SD16 logic, the
packetizer performs this data move from the data buffer to the link. Data from the link goes to the deframer component for
the DAC output stream.

The data sent to the PCI controller MUST be in the packet format as generated by the packetizer (ii_packetizer.vhd). The PCI
controller parses the headers and interacts with the host system hardware and software to provide the automated PCI transfer
mechanism used with the X3 XMC cards. Data received is also in the packet format, and is parsed by the deframer for
routing to the peripheral device indicated by the packet PDN.

From
data — ™ packetizer L
buffer
PCle
ii_link - = Controller
FPGA
Toperiph o | deframer |-
devices
Data Link L4

bidirectional 32-hit,
67 MHz

Innovative Integration

Figure 39. X3-SD16 data link to PCI Controller

Command Channel Component

The Command channel interface is a control interface allowing the host system to access the X3-SD16 application logic
registers and status as memory-mapped devices. This control path is separate from the high speed data path implemented
over the data link so that various controls and status needed to operate the module are simple to access and control.

The command channel is a simple serial bus interface from the PCI controller device that provides a 32-bit address and 32-bit
data word path. A separate PCI BAR is used for the command channel that is presented to the application logic so that the
PCI memory space for BAR1 is in the application logic. This means that the host computer, or any PCI device in the system,
can access the application logic over the command channel.

The command channel component decodes the addresses sent from the PCle controller and presents an array of decoded
registers for use, and reads back from an address for status. This structure forms the basis of the control and status
architecture for the X3-SD16. The memory map presented earlier in this document show the FrameWork logic assignments
for the decoded registers and status words.

Registers —— g registers

T Address

data
From Ry Serial Cantrols and road
PCI e Port ———m= Address ——— o
controller Cecoding read
strobes
wirite
strobes
To PCI Tx Serial
controller ~a— }{Poerf['a 4—|
L—— status

Figure 40. X3-SD16 Command Channel

The FrameWork logic for the X3-SD16 decodes 128 registers and status locations. Many of these are unused, allowing for
custom implementations to simply connect to the array without modification. Additional registers or status words can be
implemented by using the 128 read and write decode strobes, or by using the address and read/write strobes with external
decoding.

X3-SD16 FrameWork Logic User Guide 78

Innovative Integration

PLL Control Component

The PLL control component allows the application logic to configure the external PLL/ clock distribution device used for
analog sample rate clocking. The external device, Analog Devices AD9510, is configured over a three wire serial port
interface. In the FrameWork logic, this is connected to the command channel interface so that the host computer can
configure the PLL for the data acquisition process.

The X3-SD16 software application allows the host PC to configure the PLL reference clock and frequency as part of the
module setup. The AD9510 has a large register set that the software configures as part of initialization. Its usually less work
to just configure the PLL as part of the module initialization and not from the logic. The X3-SD16 must have this clock
running to collect data, and cannot be changed during acquisition.

Custom implementations can control the PLL using the PLL control component from their logic design. Care should be taken
to observe the physical limitations on the PLL frequency and lock time when directly controlling the PLL.

The generic logic chapter describes using the PLL interface component in more detail.

XMC P16 Interface

The X3-SD16 P16 interface in the FrameWork Logic implements a 32 bits of digital IO mapped to the command channel.
These digital 1O bits can be used for control and readback when a host card provides P16 access. The PCI Express carrier
card from Innovative provides P16 access using an MDR68 cable for such applications.

More advanced applications can reprogram the digital IO bits for many other purposes since they directly connect to the
application logic. The digital IO bits can be used for higher speed applications as LVDS differential pairs. The hardware
manual gives the pairing information. The IO standard is LVTTL for single ended signaling, or LVDS for differential
signaling.

SRAM Component

For computational memory, the X3-SD16 has one 512Kx32 ZBT SBSRAM (synchronous burst, Zero Bus Turn-around
SRAM) memory comprised of one Cypress Technology CY7C1371D-133AXC (or equivalent) chip. This SRAM has a
flow-through architecture and is two clocks latent for data. The SBSRAM operates at 83.3 MHz, supporting 333MB/s data
rates. This SRAM is not used by the standard logic and is left available for application use. The interface to this
SRAM is very basic, providing direct address control, allowing the application to use it in many ways.

X3-SD16 FrameWork Logic User Guide 79

Innovative Integration

we,1d — P

addresses[19:0]— P

data_in[15:0]—pm SRAM

Interface <@ SRAM

dataiou‘[[15:0]4>ii sram intf 512Kx32
dvalid <@ = =

Figure 41. X3-SD16 SRAM Controller Block Diagram

For simulation purposes, a model of the SRAM is provided, cy7cl371k.vhd. The model has accurate timings and interface
signaling that can be used for development of higher performance SRAM applications.

Adding Functionality to the X3-SD16 FrameWork Logic

The most common modifications to the logic are the addition of signal processing and data analysis to the data stream and
the addition of registers/status to the design. These modifications can be done either in the VHDL or MATLAB tools built
on top of the FrameWork logic.

Adding registers and status readback to the command channel

The command channel provides a method for the host to access the application logic via the PCI interface for control and
status functions. In the FrameWork Logic, the memory map for the X3-SD16 shows the command channel decoded
addresses. The command channel is NOT intended for high performance data streams, rather it is for low speed, out of band,
asynchronous setup, initialization and status reporting. The data stream over PCle link should be used for higher performance
requirements above 2 MB/s.

Many of the registers and status words are either partially used, or not used at all. If you need a few registers or status words,
this is the easiest approach. For instance, register location X2” is not used in the design so this could be assigned to a new

register by adding an assignment in the code

new_reg (31 downto 0) <= ctl reg(2) (31 downto 0);

which makes a new 32-bit register, accessible by the host at address (PCI BARI1 +2).

X3-SD16 FrameWork Logic User Guide 80

Innovative Integration

Several of the status registers are also unused in the FrameWork Logic. These can be simply reassigned
cmd_status(2) <= new_status;

which makes a new 32-bit status, accessible by the host at address (PCI BAR1 + X”C2”).

If more registers are needed, or special decoding is required, the command channel interface component provides signals for
extending the address space up to 64K registers. Adding a new decoded register may use one of the decoded strobes, 64 total
in the logic, or decode the addresses from the command channel. Adding a register is straightforward :

process (reset, cmd clkx, cmd wt)
begin
if (reset = ‘1’) then
new reg <= (others => '0’); -- default value
elsif (rising edge(cmd clkx)) then
if (cmd wt = ‘1’ and cmd aout (15 downto 0) = X”FFFF”) then
new_reg <= cmd_dout (31 downto 0);
end 1if;
end 1if;
end process;

makes a 32-bit register at address X”FFFF”.

Software Scripts for Interacting with Command Channel During Development

The command channel can be accessed by the host using the development software application provided by Innovative. This
software provides a scripting feature that allows the developer to access command channel with out complex software using a
text script during development. The script may be played from the application software and used to write to command
channel mapped registers or status. This is convenient when the logic is being developed and no software is available to
control the custom design. In fact, the scripts look similar to the testbench command channel accesses and can serve as a
model for the script.

This scripting feature and the software is described fully in the software documentation. The script command set allows
store, fetch and wait. The address a is the register number followed by the data and command. A wait command is used for
delays.

Command Syntax Example

Store anl! 0x1 OxFF 1!
Store X”FF” to register 1

Fetch al@ 0x5 1@

Fetch from register 5. Displays in console window on
example application software.

Wait nms 10 ms
Wait for 10 ms.

Table 47. X3 Script Commands

X3-SD16 FrameWork Logic User Guide

81

Innovative Integration

In the software examples provided with the X3-SD16, a script can be run before or after the data stream is started, referred to
as “Before Stream Start” (BSS) and “After Stream Start” (ASS) scripts. The use of these scripts allows the logic developer to
initialize and control the custom logic without having to write custom software for the device control. In many cases, these
scripts can then be used in the final application software as well.

Adding Signal Processing to the Data Stream

Here is an example of changing the data flow in the Framework Logic to incorporate an signal processing function into the
data stream. The data from the A/D interface component flows into the signal processing block, F(z), in the diagram which is
in the u_app_input component. Performing an FFT, down-conversion or filter on the data would be an example of this sort
of data flow. The output of F(z) then flows directly into the multi-queue data buffer, where it can continue to the PCI Express
controller.

: Host
Triggering SRAM Alerts Data Link ——» Card
2 devices l R]
16 channels ez
{ | | AD App o :
AS 4 Interface ™1 In ™ | Packetizer
F(z)
Multi-Queue PIOth PCle
i Data Buffer n -
2 devices
16 channels e J
DAC App
_/—\ “@4— i | out - 4| Deframer
G(z) i
? Y
j i Command
i Channel

Figure 42. Adding Signal Processing Functions to X3-SD16 A/D Data Flow

If this implementation can be followed, then most of the existing software and logic can be re-used. If the data rate is
changed by the signal processing, such as in a down conversion function, then the data packet size is usually reprogrammed
to match that rate so that system response is acceptable. Usually, additional control functions are also added but with
judicious use of the memory map those are routine.

The data source does not have to be a continuous stream; a single packet may be transmitted over the PCI to the host. The
packet may be mixed with other data packets, from multiple sources, and the PCI controller will send the packet to the host,
where the host software receive the packet in its data buffers. The host software should set the packet size and Peripheral ID
number so that it can extract the data from the other packets in the PCI data buffer.

X3-SD16 FrameWork Logic User Guide 82

Innovative Integration

Design Considerations

Some of the common choices designers must make when using the X3-SD16 FrameWork logic are how to best integrate their
signal processing functions, what method should be used for data buffering and to connect to their system. Let's take a look
at some of the design problems that typically confront us:

Where to add signal processing functions?

Usually the best place to access the A/D data stream is after the A/D interface component (ii_sd16_adc) in the
u_app_input component. The A/D interface component has both a FIFO interface that delivers a stream of A/D to
the user application. The FIFO output is on the sys_clk domain, so it is easier to use but does require that the stream
be split to access individual channel data. The data points in the FIFO output stream have a data valid and channel
number, so splitting the stream into channels is straightforward. Since most Xilinx signal processing functions have
a ND (new data) enable at their input, the data, data_out() is connected to the data input and the dvalid() signal
qualified for a channel number, is connected to ND. Connect the Xilinx RFD output to the A/D RFD input to pace
the data if it is not always ready for data.

The best to add the DAC signal processing is conversely in the u_app_output component. Samples for the DAC
flow through the component enroute to the DAC interface from the data buffer. Data pacing is provided using the
ii_sd16_dac FIFO write count and multi-queue data buffer output FIFO count.

How should I buffer the data?

The FPGA blockRAMs are the most convenient to use for most applications. They can provide local data buffering
for signal processing that is fast and flexible. Xilinx has many components for FIFOs, dual-port RAMs and look-up
tables that use blockRAMs or distributed memory and are easy to use. The Spartan3A DSP 1.8M has 84
blockRAMs that are 1Kx16 each. Distributed RAM can be used for small buffers, just be aware that this consumes
logic.

For large data sets larger than 4K should consider using the SRAM or multi-queue. Otherwise you will use a large
number of FPGA blockRAM:s that may be needed for your signal processing and timing will become more difficult
to meet.. The multi-queue provides data buffering like a large FIFO, so it is easy to use but not adaptable to other
buffering requirements. Its primary use in the design is data buffering to the host PCle. The SRAM is not used in
the FrameWork Logic and is completely available. Its interface is simple and can be adapted to use the SRAM for
any buffering scheme that is required with address control logic.

Where can I get signal processing functions for logic?

The Xilinx libraries are very good and offer most of the commonly used functions such as filters and FFTs. These
are optimized for implementation in FPGAs and are well documented.

For more complex signal processing designs, the X3 family has a board support package MATLAB. This BSP
allows you to develop directly in MATLAB Simulink and implement the logic on the X3 module. This is a powerful
development environment that integrates MATLAB with the Xilinx System Generator tools for the X3 modules.
Once the algorithm is tested and working, it can be compiled into the FrameWork Logic and integrated with all the
hardware features.

X3-SD16 FrameWork Logic User Guide

83

Innovative Integration

Adding New Components

New components can be developed in VHDL, from Xilinx Coregen blocks, or generated in MATLAB and included in the
VHDL design. Each of these techniques involves including the signal processing block into the data flow to the packetizer
and integration of the function into the VHDL code. 1

The MATLAB technique has the distinct advantage that the MATLAB Simulink environment can be used to generate and
observe signals. This allows the DSP engineer to work in a higher level above the bits and bytes of the VHDL and is a
powerful way to develop DSP in the logic. Hardware-in -the-loop capabilities in the MATLAN environment can be used to
fully test the signal processing design before it is added to the FrameWork Logic VHDL.

Xilinx offers a very good selection of cores that may be used in the X3-SD16 logic including filters, FFTs, correlations,
signal generators and basic mathematical functions. These are relatively easy to design with in the VHDL environment and

integrated in with the FrameWork logic by making them compatible with system logic. This means that the blocks are

® Components — all functions should be components and integrated into the FrameWork as such. This allows
simulation at the component level and physical floorplanning.

® Synchronous — all functions should be on the system clock. This reduces the problems with clock domain
transitions and simplifies timing analysis.

® FIFO IO - all data should flow through the component and have a FIFO at the inputs and outputs. This helps to
decouple the component from the data flow of other devices.

® Providing data flow controls — an input ready and output ready are useful at the system level for moving the data
around the system.

® 2's complement — for compatibility with other components

If these basis guidelines can be followed, the integration effort is reduced since it will match our design philosophy in the
Framework Logic.

Terminating Unused 10 Signals

When you delete unused components from the FrameWork logic, external devices must have their signals terminated
properly. This prevents the external device from driving the FPGA and potentially causing a problem and consuming extra
power. Here are some typical device signal terminations.

Device/Signal Function Termination
led LED ' (off)
SBSRAM

zbt_ce Chip enable '0'

X3-SD16 FrameWork Logic User Guide

84

Innovative Integration

Device/Signal Function Termination
zbt_oen Data bus output enable T

zbt 1 wn Read/write T
zbt_adv_ldn Address advance/load T
zbt_sclk clock '0'
zbt_bwn[3:0] Byte writes “11”
zbt_adr[19:0] Addresses All'0
zbt_i0[31:0] Data bus All'Z'
Multi-queue SRAM

mqram_ce Chip enable '0'
mqram_oen Data bus output enable T
mqram_r_wn Read/write T
mgqgram_sclk clock '0'
mqram_sa[18:0] Addresses A0’
mqram_dq[31:0] Data bus All'Z'
PLL and Timing Control

pll cs n PLL chip selects T
pll_sclk PLL serial clock '0'
pll_sdio PLL serial data '0'
pll_sync PLL sync control ‘0’
pll_ref sel PLL reference selection '0' (100 MHz)

pll_clka sel

PLL clk A select

'0' (external clock)

DAC Interface Controls

dac_spi_ ms n[1:0] DAC SPI chip select, active low T
dac_spi_mc DAC SPI clock ‘0’
dac_spi_md DAC SPI data ‘0’
dac_1r[1:0] DAC left/right data frame T
dac_bck[1:0] DAC bit clocks ‘0’
dac0_sdo[3:0] DAC 0 serial data ‘0’
dacl _sdo[3:0] DAC 1 serial data ‘0’
ADC Interface and Controls

adc_sclk[1:0] A/D serial data clock “00”
adc_fsync[1:0] A/D data frame syncs “00”
adc_sync n[1:0] A/D sync control “00”
adc_format[2:0] A/D format “000”
adc_mode[1:0] A/D mode “00”

X3-SD16 FrameWork Logic User Guide

85

Innovative Integration

Device/Signal Function Termination
adc_clkdiv A/D clock divisor control ‘0’
adcO_test A/D 0 test (=1) ‘0’
adcO_en A/D 0 enable ‘0’
adcl_test A/D 1 test (=1) ‘0’
adcl _en A/D 1 enable '0'
adc0_gain[15:0] A/D 0 channel gain controls ‘0’
adcl_gain[15:0] A/D 1 channel gain controls ‘0’
Command Channel

cmd dr Cmd channel data '0'
cmd_fsr Cmd Channel frame '0'
cmd_clkr Cmd channel clock '0'
Data Link

link d[31:0] data to PCle Controller VA
link rd intn Link read interrupt T
link wr_intn Link write interrupt T
P16 Digital 10

dig_io[43:0] P16 digital 10 VA
Temperature Sensor and Power Supply Enables

temp_sclk Temp sensor serial clock ‘0’
temp_sda Temp sensor serial data ‘0’
ps_enable Power supply enable T
ps_enable n Power supply enable, active low ‘0’

Table 48. X3-SD16 Unused Signal Terminations

1/0 Signals From the FPGA

There are several connectors that connect directly to the FPGA that can be used for application interface system interface
functions.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Connector Type Use

Reference

P16 XMC connector P16 I/O and host card interfacing

JP1 Front panel connector Primarily used for the analog inputs but does have 2 pins to the
FPGA for trigger inputs.

Table 49. X3-SD16 Connectors Connected to the FPGA

The specific logic signal names associated with each connector and its pins are shown in the following tables.

P16, XMC 10 Connector

On the X3 modules, P16 is used for digital IO and timing signals. These are direct connections to the application FPGA and
can be used for many purposes providing the IO standards and timing restrictions are met.

The UCF file has constraints for the following signals. Preserve the pin designation and rename the signal as required for the
modified functionality.

The connectors pinout in the X3 Hardware Manual gives the pinout, including power/ground connections.
Most of the signals can be used as differential pairs, LVDS 25 1O standard. Pairs are dig_i0<0>/dig_io<1>, 2/3 and so forth,
with the + on even numbers, - is odd numbers. The exception is dig_i0<18> and dig_i0<19> which may only be used single-

ended.

Some of the signals are also routed as timing signals as noted.

Logic Signal Name IO Standard Connector Pin FPGA Pin Use

dig_io<0> LVTTL C1 P22 Digital IO
dig_io<1> LVTTL C2 N21 Digital 10
dig_io<2> LVTTL C3 L24 Digital IO
dig_io<3> LVTTL C4 M23 Digital IO
dig_io<4> LVTTL Cs N18 Digital 10
dig_io<5> LVTTL C6 N17 Digital 10
dig_io<6> LVTTL C7 126 Digital IO
dig_io<7> LVTTL C8 125 Digital 10
dig_io<8> LVTTL Cc9 N20 Digital IO
dig_io<9> LVTTL C10 M20 Digital IO

X3-SD16 FrameWork Logic User Guide

Innovative Integration

Logic Signal Name IO Standard Connector Pin FPGA Pin Use

dig_io<10> LVTTL Cl11 P18 Digital IO
dig_io<11> LVTTL C12 N19 Digital IO
dig_io<12> LVTTL C13 123 Digital IO
dig_io<13> LVTTL Cl4 J22 Digital IO
dig_io<14> LVTTL C15 M21 Digital IO
dig_io<15> LVTTL Cl16 M22 Digital IO
dig_io<16> LVTTL C17 L18 Digital IO
dig_io<17> LVTTL C18 L17 Digital 10
dig_io<18> LVTTL C19 MI19 Digital IO
dig_io<19> LVTTL F1 MI18 Digital IO
dig_i0<20> LVTTL F2 K25 Digital 10
dig_io<21> LVTTL F3 K26 Digital IO
dig_io<22> LVTTL F4 L22 Digital IO
dig io<23> LVTTL F5 K21 Digital 10
dig_io<24> LVTTL F6 G23 Digital IO
dig_io<25> LVTTL F7 G24 Digital IO
dig_io<26> LVTTL F8 L20 Digital 10
dig_i0<27> LVTTL F9 K20 Digital IO
dig_i0<28> LVTTL F10 F25 Digital IO
dig_i0<29> LVTTL F11 F24 Digital 10
dig_i0<30> LVTTL F12 K23 Digital IO
dig_io<31> LVTTL F13 K22 Digital IO
dig_i0<32> LVTTL Fl14 E24 Digital 10
dig_i0<33> LVTTL F15 F23 Digital IO
dig_io<34> LVTTL F16 K19 Digital IO
dig_io<35> LVTTL F17 K18 Digital IO
dig_i0<36> LVTTL F18 F22 Digital IO
dig_i0<37> LVTTL F19 G22 Digital IO

X3-SD16 FrameWork Logic User Guide

88

Innovative Integration

Logic Signal Name IO Standard Connector Pin FPGA Pin Use
dig_i0<38> LVTTL A9 P26 Digital IO; routed to
(PXIE_DSTARA_P) clock mux and may
h - be used as conversion
clock.
dig_i0<39> LVTTL B9 P25 Digital 10; routed
(PXIE_DSTARA N) to clock mux and

may be used as
conversion clock.

dig_io<40> LVTTL D9 P21 Digital 10; routed to
(PXIE_CLK100 P) clock mux and may
- - be used as a PLL
reference clock.
dig_io<41> LVTTL E9 P20 Digital 10; routed to
(PXIE_CLK100 N) clock mux and may
- - be used as a PLL
reference clock.
dig_io<42> LVTTL Al19 P23 Digital IO
dig_io<43 LVTTL B19 N24 Digital IO
dio_clkp/n LVDS 25 D19/E19 B13/C13 Digital I0 Clock

Table 50. X3-SD16 P16 Connections

Notes:
1. PXIE DSTARA_P/N must be terminated with 100 ohms (R285) to use as differential input clock.

2. PXIE _CLKI100 P/N must be terminated with 100 ohms (R287) to use as differential input clock.

JP1, Front Panel 10 Connector

There are a total of 8 signals on the X3-SD16 from JP1 that connect directly to the FPGA. These are used as digital IO and
as trigger signals in the standard FrameWork Logic.

The fp_dio signals are routed as differential pairs.

The external trigger signals are routed as single-ended with 100 ohm series resistors.

X3-SD16 FrameWork Logic User Guide 89

Innovative Integration

Logic Signal Name 10 Standard Connector Pin FPGA Pin Use
ext_trigger<0> LVTTL 68 F13 External trigger
input 0. (A/D)
ext_trigger<l> LVTTL 34 G13 External trigger
input 1. (DAC)
fp_dio<0>/fp_dio<1> LVTTL/LVDS 63/29 MS5/M6 Digital IO
fp_dio<2>/fp dio<3> LVTTL/LVDS 64/30 M8/M7 Digital IO
fp_dio<4>/fp_dio<5> LVTTL/LVDS 65/31 N5/N4 Digital IO

Table 51. X3-SD16 JP1 Connections to the FPGA

Synthesis and Fitting

A project file for the X3-SD16 is provided for Xilinx ISE tool that has all the project hierarchy, included files and options
required.

ISE Project File

x3_sdl6.xise

Table 52. X3-SD16 Xilinx ISE Project Filename

If you are using Xilinx ISE, you should load this project as a starting point and recompile the logic to verify that the project
is ready to use. You should be able to successfully generate the BIT file for the logic and run the examples on the card.

If you are using another synthesis tool, you will need to reconstruct the logic hierarchy as shown in the HTML
documentation in your toolset. The packages and libraries that support Xilinx parts must be used since there are Xilinx-
specific logic elements used in the design. These libraries are provided by Xilinx for your simulation tool.

Constraints

There are several important classes of constraints used by the FrameWork Logic : timing, pin placement and IO standards.
These constraints are shown in the .ucf (user constraint file) that is used during the fitting process. The constraints file is in
the ./source directory.

The constraint file for the X3-SD16 is provided for the standard Spartan3A DSP 1.8M device. If you are using a higher
speed grade, or different device then the file must be modified for the device you are using.

X3-SD16 FrameWork Logic User Guide

90

Innovative Integration

X3-SD16 FPGA Device Used Constraint File
Xilinx XC3SD1800A-4FGG676C x3 sd16.ucf
Table 53. X3-SD16 Constraint File

Adding constraints to the logic is done by editing new constraints into the UCF file, which is simple text, or by using one of
the Xilinx tools to help create constraints. The Constraint Manager is useful for most timing related constraints, while
Floorplanner or Pace are useful for logic physical constraints.

Warning! We have noticed some strange occurrences in Pace and Floorplanner that seem to delete constraints for GCLK
inputs where the location (LOC) constraint is mysteriously removed. It’s a good idea to keep a copy of the original file.
Some designers like to put the Pace or Floorplanner constraints in an entirely new file, then append them by hand. Whatever
your method, just be aware that this is a known bad behavior of the current tools. When your clock location constraints get
deleted, nothing works unless the tools happen to put them back where they belong. A dice roll at best..

There are several important classes of constraints used by the FrameWork Logic: timing, pin placement and 1O standards.
These constraints are shown in the .ucf (user constraint file) that is used during the fitting process.

Timing Constraints

The timing constraints defined cover the clocks used in the design and the external device signal timing. Clock period
period constraints are used to cover most of the logic since they define the clock rate for all flip-flops connected to that
clock. These period constraints then cover most of the logic paths used in a synchronous design.

Here are the clock period constraints used by the FrameWork Logic:

NET "fs clk p" TNM NET = "fs clk p";

TIMESPEC TS fs clk p = PERIOD "fs clk p" 38 MHz HIGH 50 %;

NET "sys_clk _in" TNM NET = "sys_clk in";

TIMESPEC TS sys_clk in = PERIOD "sys clk in" 68 MHz HIGH 50 %;
NET "cmd clkx" TNM _NET = "cmd_clkx"

These period constraints cover most of the design and should not be modified. The system clock rate, sys_clk in, is generated
by the PCle interface. The actual clock rate is 66.67 MHz; 68 MHz gives a little margin.

External devices require an additional constraint to be sure that we get the signal on-chip and to its destination in time.
Since the external chip, such as the multi-queue SRAM, may have a delay from the clock edge to when we get the signal, an
additional constraint is defines the amount of time after the clock that the signal is given to the logic. This type of constraint
is used on the multi-queue SRAM signals to guarantee that setup timings are met. A TIMESPEC is defined from the
flip-flops (FFS) to the pin group as shown, then pin groups are associated with the this constraint.

MQ SRAM constraints
NET “mgram dg<*>" TNM = “mg_data io”;

TIMESPEC “TS_mg data_ in”
TIMESPEC “TS mg data out”

FROM “mqg data io” to “FFS” 8 ns; # inputs
FROM “FFS” to “mg_data io” 8 ns; # outputs

NET “mgram sa (*)” TNM = “mg ctrl”;
NET “mgram adv_1d” TNM = “mg_ctrl”;
NET “mgram oe n” TNM = “mg_ctrl”;
NET “mgram r wn” TNM = “mqg ctrl”;

X3-SD16 FrameWork Logic User Guide 91

Innovative Integration

NET “mgram ce” TNM = “mg ctrl”;

These constraints require the multi-queue SRAM signals to get on and off-chip in 8 nS or less.

I0OB Constraints

Warning! DO NOT CHANGE these assignments as damage may occur to the X3-SD16! They must be used on all
compiles.

The only signal IO STANDARD that may be changed on X3-SD16 is on the P16 interface. In the example logic they
signals are 2.5V LVCMOS with a constraint like this

“dig_io<28>” LOC = “G18” | IOSTANDARD = LVTTL ;

In the Xilinx documentation, the compatible 1O standards are listed. These include LVDS and others. You must use one of
the standards compatible with pin in the UCF since the FPGA has this bank of pins configured for this voltage and may not
be changed.

Logic Utilization

The results of the mapping process, as taken from the X3 SD16.mrp report, are as shown. Notice the memory consumed
during the compile is 466 MB for this design!

The number of occupied slices is 35%, though the tools do not pack unrelated logic in slice if it is not necessary or allowed.
This does not mean however that the design 35% full, since it is OK in many cases to pack the logic tighter, especially for
logic that is not high performance. The tools tend to spread the logic sparsely when space is available, so the actual number
of flip-flops and LUTs is more important which are 22% and 17% respectively. This design also has debug cores in
the logic that consume about 10% of the logic.

Release 12.2 Map M.63c (nt)
Xilinx Mapping Report File for Design 'x3 sdlé6'

Design Information

Command Line : map -intstyle ise -p xc3sd1800a-fg676-4 -cm area -ir all -pr
off -c 100 -o x3 sdl6 map.ncd x3 sdl6.ngd x3 sdl6.pcf

Target Device : xc3sdl1800a

Target Package : fg676

Target Speed HE

Mapper Version : spartan3adsp -- $Revision: 1.52 §$

Mapped Date : Sun Jul 24 11:49:48 2011

Design Summary
Number of errors: 0
Number of warnings: 47

X3-SD16 FrameWork Logic User Guide

92

Innovative Integration

Logic Utilization:

Number of Slice Flip Flops: 8,602 out of 33,280 25%
Number of 4 input LUTs: 6,608 out of 33,280 20%
Logic Distribution:
Number of occupied Slices: 6,689 out of 16,640 40%
Number of Slices containing only related logic: 6,689 out of 6,689 100%
Number of Slices containing unrelated logic: 0 out of 6,689 0%
*See NOTES below for an explanation of the effects of unrelated logic.
Total Number of 4 input LUTs: 7,109 out of 33,280 21%
Number used as logic: 6,662
Number used as a route-thru: 441
Number used as Shift registers: 6

The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.

Number of bonded IOBs: 339 out of 519 65%

IOB Flip Flops: 127

IOB Master Pads: 2

IOB Slave Pads: 2
Number of ODDR2s used: 4

Number of DDR ALIGNMENT = NONE 4

Number of DDR_ALIGNMENT = co 0

Number of DDR _ALIGNMENT = C1 0
Number of BUFGMUXs: 4 out of 24 16%
Number of DCMs: 1 out of 8 12%
Number of DSP48As: 8 out of 84 9%
Number of RAMBI16BWERS: 18 out of 84 21%

Average Fanout of Non-Clock Nets: 3.56

Peak Memory Usage: 276 MB
Total REAL time to MAP completion: 55 secs
Total CPU time to MAP completion: 46 secs

Place and Route

The Place and Route Step results are taken from the X3 SD16.par report. Timing analysis is shown for the design. It is
important to review this report to find timing errors. The PAR report shows how the design performed against each defined
timing constraint. For further analysis, the timing analyzer tool can be used to pinpoint the source of each problem.

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design is: 0

The AVERAGE CONNECTION DELAY for this design is: 1.685

The MAXIMUM PIN DELAY IS: 14.530

The AVERAGE CONNECTION DELAY on the 10 WORST NETS is: 10.297

Listing Pin Delays by value: (nsec)

d < 3.00 <d<6.00 <d<9.00 <d<12.00 <d < 15.00 d >= 15.00
Timing Score: 0
Number of Timing Constraints that were not applied: 4

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

Constraint | Check | Worst Case | Best Case | Timing | Timing
| | Slack | Achievable | Errors | Score

X3-SD16 FrameWork Logic User Guide 93

Innovative Integration

TS fp data out = MAXDELAY FROM TIMEGRP "F | MAXDELAY | 0.008ns| 6.992ns | 0] 0
FS" TO TIMEGRP "fp data bus" 7 ns | | I | I

TS clk fx = PERIOD TIMEGRP "clk fx" TS sy | SETUP | 0.063ns| 10.966ns | 0l 0
s_clk in * 1.33333333 HIGH 50% | HOLD [0.573ns| | 0l 0
COMP "pll2_cs_n" OFFSET = OUT 10 ns AFTER | MAXDELAY| 0.083ns/| 9.917ns| 0] 0

COMP "sys_clk in" | | | | |
COMP "plll cs _n" OFFSET = OUT 10 ns AFTER | MAXDELAY| 0.092ns| 9.908ns| 0] 0
COMP "sys_clk_in" I I \ I [
TS_link _data_out = MAXDELAY FROM TIMEGRP | MAXDELAY | 0.112ns| 7.888ns| 0] 0
"FFS" TO TIMEGRP "link data_in" 8 ns | | | | I
TS_mg_ctrl out = MAXDELAY FROM TIMEGRP "F | MAXDELAY | 0.312ns| 6.688ns| 0] 0
FS" TO TIMEGRP "mq ctrl" 7 ns | | I | I

TS dac_data bus = MAXDELAY FROM TIMEGRP " | MAXDELAY | 0.354ns]| 7.146ns| 0] 0
FFS" TO TIMEGRP "dac data bus" 7.5 | | | I I

ns | | I | I
COMP "pll sdio" OFFSET = OUT 10 ns AFTER | MAXDELAY| 0.399ns | 9.601ns]| 0] 0

COMP "sys_clk in" | | | | |

TS dcm_clk0 = PERIOD TIMEGRP "dcm clkO" T | SETUP | 0.535ns| 12.564ns| 0] 0
S _sys _clk in HIGH 50% | HOLD | 0.458ns| | 0] 0
TS_cmd_clkx = PERIOD TIMEGRP "cmd_clkx" 6 | SETUP | 0.546ns| 6.807ns| 0] 0
8 MHz HIGH 50% | HOLD | 0.651ns| | 0l 0
TS_zbt_ctrl_out = MAXDELAY FROM TIMEGRP " | MAXDELAY | 0.71l6ns| 6.284ns| 0] 0

FFS" TO TIMEGRP "zbt ctrl" 7 ns I I [I \

TS mg data out = MAXDELAY FROM TIMEGRP "F | MAXDELAY | 0.798ns| 7.202ns| 0] 0
FS" TO TIMEGRP "mg data io" 8 ns | | I | I

TS_zbt_data_out = MAXDELAY FROM TIMEGRP " | MAXDELAY | 1.762ns| 7.238ns| 0] 0
FFS" TO TIMEGRP "zbt data io" 9 ns | | | |

COMP "mgram clk" OFFSET = OUT 15 ns AFTER | MAXDELAY| 1.812ns]| 13.188ns/| 0] 0
COMP "sys_clk_in" | | | |
COMP "pll sclk" OFFSET = OUT 10 ns AFTER | MAXDELAY| 2.243ns| 7.757ns | 0] 0
COMP "sys_clk in" | | | | |
COMP "cmd_fsr" OFFSET = OUT 10 ns AFTER C | MAXDELAY| 2.363ns/| 7.637ns]| 0] 0
OMP "cmd_clkx" | | | | |
TS_zbt sclk out = MAXDELAY FROM TIMEGRP " | MAXDELAY | 2.723ns| 4.277ns| 0] 0
FFS" TO TIMEGRP "zbt clk" 7 ns | | I | I
COMP "cmd_dr" OFFSET = OUT 10 ns AFTER CO | MAXDELAY| 2.747ns| 7.253ns| 0] 0
MP "cmd_clkx" | | I | |
TS _link ctrl out = MAXDELAY FROM TIMEGRP | MAXDELAY | 3.643ns/| 4.357ns| 0] 0
"FFS" TO TIMEGRP "link ctrl" 8 ns | I \ I \

TSimqidataiin = MAXDELAY FROM TIMEGRP "mqg | SETUP | 3.841ns| 4.159ns| 0] 0
_data io" TO TIMEGRP "FFS" 8 ns | HOLD | 2.460ns| | 0] 0
TS_zbt_data_in = MAXDELAY FROM TIMEGRP "z | SETUP | 4.412ns/| 4.588ns| 0] 0
bt _data_io" TO TIMEGRP "FFS" 9 ns | HOLD | 2.435ns| | 0] 0
TS link ctrl in = MAXDELAY FROM TIMEGRP " | SETUP | 5.579ns| 2.421ns/| 0] 0

link ctrl" TO TIMEGRP "FFS" 8 ns I I I I [
TS_link data_in = MAXDELAY FROM TIMEGRP " | SETUP | 5.659ns| 2.341ns| 0] 0
link_data_in" TO TIMEGRP "FFS" 8 ns | | | | |
TS_U TO J = MAXDELAY FROM TIMEGRP "U CLK" | SETUP | 10.202ns| 4.798ns | o 0
TO TIMEGRP "J_CLK" 15 ns | HOLD I 1.532ns]| I 0l 0

X3-SD16 FrameWork Logic User Guide

Innovative Integration

COMP "cmd_fsx" OFFSET = IN 10 ns BEFORE C | SETUP | 13.281ns]| -3.281ns| 0] 0
OMP "cmd clkx" | | | | I

TS U TO U = MAXDELAY FROM TIMEGRP "U CLK" | SETUP | 13.571ns| 1.429ns| 0] 0
TO TIMEGRP "U_CLK" 15 ns | HOLD | 1.032ns]| | 0] 0
TS_J_TO_J = MAXDELAY FROM TIMEGRP "J CLK" | SETUP | 17.397ns| 12.603ns| 0] 0
TO TIMEGRP "J_CLK" 30 ns | HOLD | 0.699ns | | 0] 0
COMP "cmd dx" OFFSET = IN 10 ns BEFORE CO | SETUP | 17.514ns| -7.514ns]| 0] 0

MP "cmd clkx" | | | | I

TS fs clk p = PERIOD TIMEGRP "fs clk p" 2 | SETUP | 30.502ns]| 7.959ns| 0] 0
6 MHz HIGH 50% | HOLD | 0.815ns| | 0] 0
" PATH "TS_J 10D patm” TIG | setoe | WAl 6.44lns| WA 0
" PATH "TS_D_TO_J path" TIG | seop | WAl 6.278msl N/AL 0
" COMP "omd_clkr" OFFSET = OUT 10 ns AFTER | N/A | wal WAl wal N/A

COMP "cmd_clkx" I I \ I [

TS_sys_clk _in = PERIOD TIMEGRP "sys_clk i | N/A | N/A| N/A| N/A| N/A
n" 68 MHz HIGH 50% | | | | I

TS_fp_data_in = MAXDELAY FROM TIMEGRP "fp | N/A | N/A| N/A| N/A| N/A
_data_bus" TO TIMEGRP "FFS" 7 ns | | | | I

All constraints were met.

INFO:Timing:2761 - N/A entries in the Constraints list may indicate that the
constraint does not cover any paths or that it has no requested value.

Generating Pad Report.

All signals are completely routed.

WARNING:Par:283 - There are 1 loadless signals in this design. This design will cause Bitgen to issue DRC
warnings.

Total REAL time to PAR completion: 6 mins 42 secs
Total CPU time to PAR completion: 6 mins 31 secs

Peak Memory Usage: 466 MB

Placement: Completed - No errors found.
Routing: Completed - No errors found.
Timing: Completed - No errors found.
Number of error messages: 0

Number of warning messages: 15

Number of info messages: 0

Writing design to file x3 sdl6.ncd

PAR done!

This is not the complete PAR report, but it shows the sort of result that is reported. Each timing constraint is analyzed to
see if it was met. If not, the report tags the result so that further investigation can be done.

X3-SD16 FrameWork Logic User Guide

Innovative Integration

MATLAB Simulink Board Support Package

A MATLAB board support package for X3-SD16 is available. This BSP allows logic to be developed in MATLAB Simulink
using Xilinx System Generator for the X3-SD16. See the X3 MATLAB Board Support Guide.

Simulation

The test files are used in the simulation and testing of the FrameWork code. The testbench file is x3_sd16_tb.vhd and it
uses several components for testing that are defined by the other model files for the external memory chips. The test bench
files are in the ./simulation directory.

The testbench contains a set of simulation steps that exercise various functions on the FrameWork logic for basic interface
testing. Behavioral procedures have been written to simulate the command channel interface that are useful in simulating
accesses by the PCle host to the X3-SD16. An end-to-end simulation of the data flow from the A/D out to the PCle
controller through the data link is provided. Simulation of the DAC outputs shows data packets from the PCle link through
to the DAC interface.

Setting Up the Simulation

The files unzipped from the FrameWork Logic archive contain all the source and macro files needed. You will normally
need to make a ModelSim project reflecting your exact directory structure, although a ModelSim project (.mpf) file is
provided. You will also need to compile the Xilinx unisim, simprim and Xilinx core libs and point to them in ModelSim.
These libraries may be compiled from within Xilinx ISE by selecting the device on the Sources Window then selecting the
Compile HDL Simulation Libraries on the Processes window. Set the project default to VHDL ‘93 if you intend to compile
in ModelSim using the project manager.

Simulation Models for X3-SD16

The memory components for X3-SD16 have simulation models provided by the device vendor. These include accurate
timing models so that real timings can be simulated. If a timing violation occurs during their use, it is real and should be
considered.

Model Filename Functional Behavior

SRAM CY7C1371k.vhd SRAM model provided by Cypress Semiconductor.

A/D ads1278 model.vhd Simple A/D model behavioral model for TI ADS1278 that
provides simple ramp data.

DAC pcm1681 model.vhd Simple DAC model behavioral model for TI PCM1681.

Table 54. X3-SD16 Simulation Models

Loading the Testbench

X3-SD16 FrameWork Logic User Guide

96

Innovative Integration

The simulator used from within ISE is Mentor Graphics ModelSim and support files for using the testbench from within
environment are included. Selecting the testbench file in the Sources window then allows you to select the simulation in the
Process Window. This should start ModelSim if your tools are set up correctly.

If you run ModelSim as a standalone tool outside the ModelSim environment, the DO files in the ./simulation directory can
be used to set ups and run the simulation.

Testbench do files Function
tb x3 sdl16.do Compiles all files and loads design.
Wave.do Loads a wave display format.

Table 55. X3-SD16 Simulation Macro Files

The DO files compile and load the design for simulation. Modify the do file to include new source files for your design to
point at the files.

Running the Simulations

When you enter ModelSim from the ISE tool, a macro file is auto generated by the tools to compile up the design. You will
also have to compile the memory files the first time in ModelSim to get them to run, since the auto generated macro does
not do this.

If you use ModelSim in the standalone mode, just run the simulation from the ModelSim window after the project loads.

The simulation demonstrates the data flow and can be used as a starting point for modifying the design. In the wave window,
the configuration accesses are followed data acquisition as shown here.

X3-SD16 FrameWork Logic User Guide

97

Innovative Integration

X3-SD16 FrameWork Logic User Guide

98

Innovative Integration

X3-SD16 FrameWork Logic User Guide

99

Innovative Integration

X3-SD16 FrameWork Logic User Guide 100

Innovative Integration

wave - default k
File Edit View Add Format Tools Window

DSB& & R0 ¢
4 G (EF swws ELEIEL®

A = N _f
— R T R CX
i e 000 240000000
Curzor 3 {100 ps I

< [3 KA] I ~
| 187825093 ps to 368344107 ps [Mow: 500 us Delta: 5 P

Figure 43. Simulation Results

Modifying the Simulations

The testbench file provides sample code to begin your simulations. Command channel accesses for initializing the X3-
SD16 logic for data acquisition are shown in the testbed. Data flows from the A/D inputs, through the logic to the PCle
interface controller data link. The complete data flow can be observed in the simulation including operation of the
multi-queue VFIFO.

In many cases, the testbed data flow can be modified by adding command channel reads and writes to configure the logic,
then observe the data for the modified design. The command channel reads/writes are performed in the simulations using the
procedure as in this example:

X3-SD16 FrameWork Logic User Guide 101

Innovative Integration

cmd wr (X”000F”, X”ABCDEF01”); -- write to ZBT data register

In this example, the command channel performed a write to address X”F” of X”ABCDEFO01”.

Some Things to Watch Out For in Simulation

Be sure to use a time resolution of ps for all simulations. The DCM simulation component will not work
reliably unless ps resolution is used.

Many of the files use VHDL 93 and will issue errors if not compiled as ‘93 code. As a rule, always use ‘93 standard when
compiling the FrameWork Logic.

Compile the packages with the project. These are frequently overlooked.

Making the logic images for downloading

The X3-SD16 logic image may be downloaded either over the PCle bus or by using the Xilinx JTAG port. The image must
be downloaded each time the board is powered up; there is no on-board ROM for the application logic.

Loading over PCle
To download the logic using the PCle bus, the Download.exe application is used, or one of the software methods discussed
in the software manuals. The image must be either a BIT or EXO type (Motorola EXORMacs type).

BIT files are the most convenient since they are the native Xilinx format.

This EXO file is created using the Xilinx IMPACT tool from the BIT file that the tools generated after place and route was
completed. See section entitled “Making the Device Image”.

Loading over JTAG
The application logic may also be downloaded over the JTAG port to the device at any time. Connect the Xilinx cable to
JP3 (see hardware manual for location and pin out).

Xilinx IMPACT software is used to load the image. When you open the IMPACT tool, you can select the download to
device in the wizard and this will lead you through the process. The JTAG chain will identify only the application logic
device and you will assign the BIT file created by the ISE tool to load the image.

There are three devices in the Xilinx scan path of the X3-SD16: the Xilinx configuration FLASH for the PCI FPGA
(XCFO02S) and two FPGAs (the XC3S250E and XC3SD1800A). The configuration FLASH and XC3S250E should be put
into bypass mode during downloading.

X3-SD16 FrameWork Logic User Guide 102

Innovative Integration

Device 0 Device 1 Device 2
Config PCI Controller Application
—» FLASH |p FPGA | p FPGA
XCF02S XC3S250E XC3SD1800A
JP3
<

Figure 44. X3-SD16 Xilinx JTAG Scan Path

The image may also be loaded inside of ChipScope by right-clicking the target device and specifying the bit file.

X3-SD16 FrameWork Logic User Guide

103

Innovative Integration

Module-Specific Logic Components

The module-specific components are primarily hardware interface logic for each module. Each component is described,

ports defined and a block diagram presented. In many cases the component has constraints defined in the particular module
logic design that must be used during implementation.

X3-SD16 FrameWork Logic User Guide 104

Innovative Integration

X3-SDF Logic Components

These components are only used in X3-SDF module logic.

Component: ii_sdf adc

Supported Platforms: X3-SDF

Source File: ii_sdf adc.vhd

Description:

This component is the interface to the A/D converters on the X3-SDF XMC module. The A/D device, Analog Devices
AD7760, is a 24-bit device with programmable decimation and filters. The component provides a configuration and control
interface to the A/D devices and a data interface.

This A/D has two data modes that have different data timings: normal and modulator data. Data rate in the normal mode is
up to 5 MSPS, 24-bits from each channel. Data rate in modulator data mode is 20 MSPS, 16-bits from each channel.
Modulator data mode is only supported for logic development and is not used in the FrameWork Logic implementation.

Data to the system logic is output on individual channel outputs for both data modes synchronous to the sample clock fs_clk.
The normal data mode can also use a FIFO to the system logic, providing a transition to the system clock domain and data
buffering. Flow control to the FIFO allows the system to pace the data output to match processing requirements.

Overflow error bits indicate to the system when an A/D channel saw an out of range analog input.

Data Modes

In the normal mode, the logic fetches the data from the A/D devices after each DRDY as two 16-bit words, assembles the
words into 32-bits and latches the incoming data. The data is output to the individual channel outputs and is also stored into a
FIFO. Data from the FIFO are 24-bit A/D values, sign extended to 32-bits, delivered with a data valid for each enabled
channel and a channel number. Data always appears in the ascending channel order (0, 1, 2, 3). The dvalid signal indicates
when data is valid on the dout bus. The channel out port indicates the channel number for the dout.

In the modulator data mode, the logic latches data every sample clock edge when DRDY is true. The data is 16-bits from
each channel and is output on logic ports for the system. The output data in this mode is only available on the individual
channel outputs and is synchronous to the sample clock (fs_clk).

The mode bit controls which data mode is used. This bit must not change while run is true and CANNOT be dynamically
changed. The A/D devices must be reconfigured to change the data mode.

Triggering

The trigger input controls when samples are saved to the FIFO. This allows the other logic to control the data acquisition
process by only keeping the data of interest. The trigger is forced to align with the data period so that no partial data sets are
collected.

X3-SD16 FrameWork Logic User Guide 105

Innovative Integration

The trigger input is required to be synchronous with the sample clock (fs_clk). When run is true, the component stores data to
the FIFO each time a data set is collected and trigger is true. When trigger is false, data is simply discarded.

The channel data outputs are active only when trigger is true.

A/D Overflow Indicators

The A/D embeds an overflow flag in the status byte for each data sample when in normal mode. A overflow condition in the
A/D indicates that the input was over-voltage. Data is corrupted and inaccurate when an overflow occurs. On X3-SDF, the
overflow bits are connected to an alert. When enabled, the module will generate an alert message to the system indicating
that an overflow occurred.

In modulator data mode, these bits are not active.

Flow Control
The data from the FIFO has is enabled to flow when RFD is true. The downstream logic should use this input to the control
the flow of data from the FIFO. If RFD is false and the FIFO is full, data is lost.

A/D Configuration and Status

The A/D must be configured prior to use for its operating mode. The A/D interface allows the logic to access A/D registers as
a memory mapped device using a chip select, address and data bus. For specific information on the AD7760 register set,
refer to its data sheet.

Access to the A/D registers are done after reset but before run is asserted. The component performs accesses to the A/D using
the control inputs to read and write the registers. The sample clock must be running to access the A/D. Accesses are a
function of the sample clock and are self-timed by the logic component. The ctl_rdy signal indicates when the access is
completed by returning to '1" at the end of the access.

Test Mode

For test, a ramp generator may be substituted for the data. This is used to verify data flow instead of real A/D data. The data
ramps from 0 to 223 by 1 each data period. The A/D DRDY must be active for the ramp generator to run, so the A/D's and
sample clock must be configured to operate.

X3-SD16 FrameWork Logic User Guide 106

Innovative Integration

reset

clk adc_reset_n
adc_cs_n

cs adc_rd_n[3:0]
:[“1_01 AD adc_drdy[3:0]

:0] : g ——B adc_d0[150]
ctl_din[15.0] ~———#= access adc_d1[1510]
ctl_dout[15:0] controller adc_d2[151]
ctl_rdy adc_d3[150]
run adc_sync_n

adec_chO_dout [23:0]
adc_chl_dout [23:0]
g adc_chZ_dout [23:0]
adc_ch3_dout [23:0]
adc_dout_vld

rfd
adc_dO
adc_dl . .
adc_d2

3 128
adc_d3 Reg

Pl

R —w FIFO

T

32 out —3:"-2P dout[31:0]

*

Test - Ik
e - lg—— Sys_cC

i—h dv alid

Channel
counter

fs_clk ; ad_channel_en

——m channel_out[1:0]

test
Trigger

Figure 45. ii_sdf adc Interface Component

X3-SD16 FrameWork Logic User Guide 107

Innovative Integration

Table 56. ii_sdf adc Component Ports

Port Direction | Function

reset In reset

clk In system clock (67 MHz)

fs_clk In sample clock (20 MHz or less)

run In Enable the component to operate.

trigger In Acquire data when true.

adc_reset_in In Reset to the A/D devices from the system logic.
sync In Sync control to the A/D devices from the system logic.
mode In Normal or Modulator data mode control, '0' = normal.
channel en[3:0] In Channel enables for A/Ds.

cs In Chip select for configuration accesses

™w In Read/write(low) for configuration accesses
a[1:0] In Control address for which A/D is being accessed
ctl_din[15:0] In Data bus in for control accesses

ctl_dout[15:0] Out Data bus out for control accesses

trig_en In The trigger is enabled when true (sync to fs_clk)
adc_reset n Out Reset output to the A/D devices

adc_cs_n[3:0] Out A/D chip select outputs, active low.

adc_rd n[3:0] Out A/D chip read enable outputs, active low.
adc_drdy[3:0] In A/D data ready inputs.

adc_doO[15:0] Inout A/D 0 data bus

adc_d1[15:0] Inout A/D 1 data bus

adc_d2[15:0] Inout A/D 2 data bus

adc_d3[15:0] Inout A/D 3 data bus

adc_sync n Out A/D sync output, active low

rfd In Allows data to flow from the FIFO

dvalid Out Data is valid when true

dout[31:0] Out Data output from the FIFO

channel out[1:0] Out Channel number for dout

overrange[3:0] Out A/D overrange indicator

adc_chO_dout[23:0] Out A/D 0 data out (sync to fs_clk)

adc_chl dout[23:0] Out A/D 1 data out (sync to fs_clk)
adc_ch2_dout[23:0] Out A/D 2 data out (sync to fs_clk)
adc_ch3_dout[23:0] Out A/D 3 data out (sync to fs_clk)

adc_dout_vld Out A/D data outputs are valid

test In Enable test mode (0= disabled)

X3-SD16 FrameWork Logic User Guide

108

Innovative Integration

X3-Servo Logic Components

These components are only used in X3-Servo module logic.

Component: ii_servo_adc

Supported Platforms: X3-Servo

Source File: ii_servo adc.vhd

Description:

This component is the interface to the A/D converters on the X3-Servo XMC module. The A/D devices, Texas Instruments
ADS8365, are 16-bit devices with six channels per device. The component provides an interface to the A/D devices for
reading data, error compensation, channel selection and data buffering. All channels are assumed to be synchronous (using
the same sample clock), although a periodic clock is not required.

A/D Interface

The A/D interface collects data from two device each of which has 6 channels. A common data bus between the two devices
is used. Data is read from all channels, whether enabled or not, each sample period. When the A/D device gives and End-
Of-Conversion signal, the logic performs twelve successive reads for the channels in ascending order from 0 to 11. Unused
channels are discarded in the component according to the channel enable input vector. The component also assumes that the
A/D is used in incrementing mode for sequential channel reads which is set by the ade_a bits.

Error Compensation

The A/D component provides first order error compensation for each A/D channel using the ii_offgain component (see
generic library description). This compensates for offset and first-order gain errors. Individual gain and offset error
coefficients are provided via the gain_array and offset_array input arrays.

Data Stacking and Buffering
Data to the system logic is output as a stream of 32-bit numbers, composed of two 16-bit samples. The data is stacked in
ascending channel order, for the channels that are enabled in the channel_en input vector.

A 16-bit input, 32-bit output FIFO that is 1Kx32 in size is used for data buffering. The data if read when RDEN is true.
Flow control to the FIFO should be implemented in the system logic using the fifo_rd_cnt output allows the system to pace
the data output to match processing requirements and avoid overflow.

Error Reporting

Overrange error bits indicate to the system when an A/D channel saw an out of range analog input. An overrange is
reported whenever the error corrected sample is at full scale, X”’8000” or X”7FFF”. These bits are reset when run is
false ('0").

X3-SD16 FrameWork Logic User Guide 109

Innovative Integration

Test Features
The test input substitutes a ramp in place of the A/D data. This is used for data path testing during logic design. It can

be used to verify that no data loss occurs due to flow control problems by checking the output for the monotonically
increasing ramp data. Real A/D data can be much more difficult to check since a missing point is not easily detected.

adc_eoc
Y
adc_cs_n[1:0] AID reset
adc_rd_n clk
adc_wr_n - aCtCtiSS - un
ade_a[2:0] sl e trigger
maching adc_channel_en[11:0]
offset_array[11:0]15:0]
gain_array[11:0]18:10]
16 16 — e Overrange[l 1:0]
Reg Error
—- Correction
ii_offgain
adc_d[150] #
f rden
Cwerrange
Detection Y
e
Cntr
fs_clk ——pomr 16 FIFO
K 16 in
(g dout[31:0
32 out 57 el
— e fifo_rd_cnt[8:0]
test T
—— sys_clk
L—— I dvalid

Figure 46. ii_servo_adc Component Block Diagram

X3-SD16 FrameWork Logic User Guide 110

Innovative Integration

Port Direction | Function

reset In reset

clk In system clock (67 MHz)

fs_clk In sample clock (250 kHz or less)

run In Enable the component to operate.

trigger In Acquire data when true (synchronous to fs_clk).

channel en[11:0] In Channel enables for A/Ds.

offset_array In Array of offsets for error correction, defined inii_x3 pkg.vhd.

gain_array In Array of gains for error correction, defined inii_x3 pkg.vhd.

adc_cs n[1:0] Out A/D chip selects, active low. One per device.

adc rd n Out A/D read enable, active low.

adc_wr n Out A/D write enable, active low.

adc_a[2:0] Out A/D address inputs, used to control channel selection. Set to “110” in the
component for incrementing mode.

adc_eoc In A/D end-of-convert signal. A falling edge on this signal indicates
conversion is completed and data is ready to read.

adc_d[15:0] Inout A/D data bus. Shared between two devices.

rden In Allows data to flow from the FIFO

dvalid Out Data is valid when true

dout[31:0] Out Data output from the FIFO

overrange[11:0] Out A/D overrange indicators

test In Enable test mode (0= disabled)

Table 57. ii_servo_adc Component Ports

X3-SD16 FrameWork Logic User Guide

111

Innovative Integration

Component: ii_servo_dac

Supported Platforms: X3-Servo

Source File: ii_servo dac.vhd

Description:

This component is the interface to the D/A converters on the X3-Servo XMC module. The DAC devices, Texas Instruments
DACS8822, are six 16-bit devices with two channels per device supporting 12 channels total. The component provides an
interface to the DAC devices for writing data, error compensation, channel selection and data buffering. All channels are
assumed to be synchronous (using the same sample clock), although a periodic clock is not required.

Data Unstacking and Buffering
Data from the system logic is provided as a stream of 32-bit numbers, composed of two 16-bit samples. The data is
unstacked in ascending channel order, for the channels that are enabled in the channel en input vector.

A 32-bit input, 16-bit output FIFO that is 1Kx32 in size is used for data buffering. The data is written when dac_wr is true.
Flow control to the FIFO should be implemented in the system logic using the dac_fifo_cnt output allows the system to pace
the data output to match processing requirements and avoid underflow or overflow conditions.

DAC Interface

The DAC interface writes data to each of the two device each of which has 6 channels. A common data bus between the two
devices is used. Data is written to all channels, whether enabled or not, each sample period. When the A/D device gives and
End-Of-Conversion signal, the logic performs twelve successive reads for the channels in ascending order from 0 to 11.
Unused channels are discarded in the component according to the channel enable input vector. The component also assumes
that the A/D is used in incrementing mode for sequential channel reads which is set by the adc_a bits.

Error Compensation

The DAC component provides first order error compensation for each DAC channel using the ii_offgain component (see
generic library description). This compensates for offset and first-order gain errors. Individual gain and offset error
coefficients are provided via the gain and offset input arrays.

Error Reporting
Underflow error bit indicates to the system that the DAC FIFO was empty when a point was needed. Data was not
provided in time. This bit is reset when run is false ('0").

X3-SD16 FrameWork Logic User Guide 112

Innovative Integration

dac_dao[15:0]

dac_cs_n[5:0]
dac_addr[1:0]

dac_reset n

reset

- |

DAC
ACCess

state
machine

run
fs

la— channel_en[11:0]

|

Reg

A

16,
|

Error
Correction
ii_offgain

trigger

16

A

Urgﬁeetrefgw e underflow
A
——m dac_fifo_cnt[2:0]
FIFO
16 in i
i dac_din[31:0]
g
32 out %,
lal}——— sys ok
A

dac_wr

offset11:0][15:0]

gain[11:0][158:0]

bree_rev[3:0]

Figure 47. ii_servo_dac Component Block Diagram

X3-SD16 FrameWork Logic User Guide

113

Innovative Integration

Port Direction | Function

hw_rev([3:0] In Hardware revision. Used by component to correct DAC data for hardware
error on revision 0.

reset In reset

clk In system clock (67 MHz)

fs In sample clock (2 MHz or less)

run In Enable the component to operate.

dac_wr In Write enable to FIFO from system logic.

dac_din[31:0] In DAC sample pairs from the system.

channel en[11:0] In Channel enables for DACs.

offset In Array of offsets for error correction, defined in ii_x3 pkg.vhd.

gain In Array of gains for error correction, defined in ii_x3 pkg.vhd.

dac_reset n Out DAC reset, active low.

dac_cs n[5:0] Out DAC chip selects, active low. One per device.

dac_addr[1:0] Out DAC address outputs, used to control channel selection.

dac_do[15:0] Out DAC data bus. Shared to 6 devices.

dac_fifo_cnt[9:0] Out DAC FIFO count

fifo_status[15:0] Out DAC FIFO status. (not used)

underflow Out DAC FIFO underflow error. Reset on RUN false.

trigger In Acquire data when true (synchronous to fs_clk).

Table 58. ii_servo_dac Component Ports

X3-SD16 FrameWork Logic User Guide

114

Innovative Integration

X3-8SD16 Logic Components

These components are only used in X3-SD16 module logic.

Component: ii_sd16_adc

Supported Platforms: X3-SD16

Source File: ii_sd16 adc.vhd

Description:

This component is the interface to the A/D converters on the X3-SD16 XMC module. The A/D devices, Texas Instruments
ADS1278, are 24-bit devices with eight channels per device. The component provides an interface to the A/D devices for
reading data, error compensation, channel selection and data buffering.

ADS1278 Device Interface
The A/D device requires a master clock that is a multiple of the sample rate. The multiple is a function of the sampling mode
of the device and the desired sample rate.

Mode Max felk Mode adc_clkdiv SCLK Max Sample Rate
(MHz)

High Speed 37 “00” 1 256 144531

High Resolution 27 “01” 1 512 52734

Low Power 13.5 “10” 0 256 52734

Low Power 27 “10” 1 512 52734

Low Speed 5.4 “11” 0 512 10547

Low Speed 27 “117 1 2560 10547

Table 59. A/D Clock and Sample Rates for Sample Modes

The ii_sd16_adc generates the serial clock (adc_sclk) and frame (adc_fsync) signals based on the mode and adc_clkdiv
settings. These signals are synchronized to the to either an internal sync or to an external sync when multiple cards are used.
The sync ensures that the A/D devices sample in synchronization by controlling the frame sync signal.

The ii_sd16_adc component uses the frame-sync TDM serial interface to the ADS1278. The FPGA-generated serial clock
and frame are used to receive the data on the serial data inputs (adcO_sdi, adc1 sdi) as shown the following diagram.

SCLK 4 48

|E| 23 2 71 |72| |73| |95| |9;| |Q;| | |167| 168|169} 191 19 193 194] 195}

|l 25 9
(AD%?;J';T) A CHI X o2 X o3 X cHa X DN||
\
A
1

(AD%?SQ) CH1 X ciz X ci3 X cHse Xcus\lcwr X cHs X DN 15

DRDY

(SPI)

FSYNC | ’
(Frame-Sync) g

Innovative Integration

Figure 48. ADS1278 Serial Port Timing in TDM Mode

The data is received into the FPGA and captured in shift registers. A data word is taken from each shift register every 24
bits.

A/D Synchronization

The A/D has a synchronization pin, adc_sync_n, that holds the A/D until released. Multiple devices can run synchronously
by deasserting sync at the same time. The sync_in signal from the system logic controls the sync to the A/D device. If the
sync_master input is true, then the sync timing is modified to match pipeline delays with non-master cards.

All synchronization assumes that the fs_clk on all cards is synchronous, and that the sync_in is synchronous to fs_clk.

Error Correction

The A/D channels are corrected in the logic for bias and gain errors due to analog electronics. This is used for calibrating the
A/D channels. Calibration coefficients are loaded into the system FLASH ROM during factory test and are then used for
error correction. Each A/D channel has an offset and gain register mapped to system memory. The software is expected to
read the coefficients from the ROM and write them to these registers as part of system initialization.

The error correction is a first-order error correction implemented in the logic as

y =m(x + b), where m = gain correction, b = offset correction and x = input A/D sample

The offset coefficient is a 16-bit number, which is left shifted (multiplied by 32) before it is added to the sample. The gain
coefficient is 18-bit.

Gain Coef = 0x1000000 + Gain; Gain is 18-bit number
Offset Coef = Offset * 32
The gain error compensation is ~ +/- 0.78% of the input range. All calculations use saturating math.
FIFO Data Buffer
The output from the component is a FIFO that buffers the A/D samples. The number of enabled channels determines the data
format. If all channels are enabled, the samples are sequentially stored to the FIFO ADO0..AD15. For a single channel, data is

ADO(t), ADO(t+1). If a channel is turned off, such as channel 1, the ordering is ADO, AD2, AD3, AD4..AD15, ADO(t+1).

Data from the A/D FIFO is output as a 2's complement, 32bit. Negative numbers are sign-extended from the 24-bit sample
data. Full scale is 0x007FFFFF, negative full scale is 0xFF80000.

X3-SD16 FrameWork Logic User Guide 116

Innovative Integration

Bits
Data Port Clock Domain 31..0
FIFO sys_clk A/D sample channel n

Table 60. X3-SD16 A/D Component Output Data Format

Error Reporting

Overrange error bits indicate to the system when an A/D channel saw an out of range analog input. An overrange is

reported whenever the error corrected sample is at full scale, X”’800000” or X”7FFFFF”. These bits are reset when run

is false ('0").

Overflow errors are reported when the output FIFO is full when a point must be stored. When this error flag asserts,
one or more sets points in lost. A set of points is all channels for one sample period.

Test Features

The test input substitutes a ramp in place of the A/D data. This is used for data path testing during logic design. It can

be used to verify that no data loss occurs due to flow control problems by checking the output for the monotonically
increasing ramp data. Real A/D data can be much more difficult to check since a missing point is not easily detected.

X3-SD16 FrameWork Logic User Guide

117

Innovative Integration

adc_sclk[1:0]
adc_fsync[1:0]
adc_sync_n[1:0]

adcO_sdi[7:0]
adc1_sdif7:0] g

fs_clk

test

—+—m=| Shift

adc_clkdiv
adc_format [2:0]

Y

-

AID
Timing
Controls

adc_mode[1:0]
sync_master
sync_in

reset
un

Reg [15

Test
Cntr

—

trigger
channel_en[15:0]

- frig_en

offset[15:0][15:0]

Y

Error
Caorrection

v

Overrange
Detection

gain[15:0][18:0]

— e overrange[15:0]

rden

——m-overflow

FIFO

1K
q dout[31:0]
32bit 1>

— fifo_rd_cnt[9:0]

lg—— clk

L dvalid

Figure 49. ii_sd16 adc Component Block Diagram

X3-SD16 FrameWork Logic User Guide

118

Innovative Integration

Port Direction | Function

reset In reset

clk In system clock (67 MHz)

fs_clk In sample clock (250 kHz or less)

run In Enable the component to operate.

trigger In Acquire data when true (synchronous to fs_clk).
sync_master In Indicates to the logic this is the master sync card
sync_in In Sync input from system logic

channel _en[15:0] In Channel enables for A/Ds.

adc_mode In A/D operation mode

adc_clkdiv In A/D master clock divisor setting

trig_en Out A/D Trigger enabled; sync'd to fs_clk
adc_sclk[1:-0] Out A/D serial clocks

adc0_sdi[7:0] In A/D 0 serial data inputs

adcl_sdi[7:0] In A/D 1 serial data inputs

adc_fsync Out A/D frame sync (L/R)

adc_sync n Out A/D sync control, active low

adc_format Out A/D data format control

gain In Array of gains for error correction, defined inii_x3 pkg.vhd.
offset In Array of offsets for error correction, defined inii_x3 pkg.vhd.
fifo rd cnt[9:0] Out Output FIFO read count

rdy In Allows data to flow from the FIFO

dvalid Out Data is valid when true

dout[31:0] Out Data output from the FIFO

overflow Out A/D FIFO overflow error indicator
overrange[15:0] Out A/D overrange indicators

test In Enable test mode (0= disabled)

Table 61.1i_sd16_adc Component Ports

X3-SD16 FrameWork Logic User Guide

119

Innovative Integration

Component: ii_sd_dac

Supported Platforms: X3-SD16

Source File: ii_sd16 dac.vhd

Description:

This component is the interface to the D/A converters on the X3-SD16 XMC module. The DAC devices, Texas Instruments
PCM1681, are two 24-bit devices with eight channels per device supporting 16 channels total. The component provides an
interface to the DAC devices for sample data, error compensation, channel selection and data buffering. All channels are
assumed to be synchronous (using the same sample clock.

PCM1681 Device Interface
The D/A devices require a master clock that is a multiple of the sample rate. The multiple is a function of the sampling mode
of the device and the desired sample rate. The two supported clock rates are 128fs and 256fs modes.

Mode Max fclk (MHz) Mode Clock Multiple Max Sample

Rate(ksps)
256fs 40 “00” 256 156.25
128fs 24.576 “01” 128 192

Table 62. D/A Clock and Sample Rates for Sample Modes

The ii_sd16_dac generates the serial bit clock (dac_bclk) and left-right frame (dac_Ir) signals based on the mode setting.
These signals are synchronized to the to either an internal sync or to an external sync when multiple cards are used. The sync
ensures that the D/A devices sample in synchronization by controlling the frame sync signal.

The ii_sd16_dac component uses the left-justified audio format serial interface to the PCM1681. The FPGA-generated serial
bit clock and left-right frame are used to transmit data on the serial data outputs (dacO_sdo, dacl _sdo) as shown the following
diagram.

Left-Justified Data Format; L-Channel = HIGH, R-Channel = LOW (default)

LRCK

€

L |

1/fg

L-Channel

R-Channel

mm wﬂﬂm————ﬂﬂfm STl - foLfUln

(=32fg, 48fs or64fg)

DATA

|2 |‘% I—————lem

MSB LSB

Figure 50. PCM1681 Serial Port Timing

|§

RS naa:

LSB

I},J____

X3-SD16 FrameWork Logic User Guide

Innovative Integration

D/A Synchronization

The D/A is synchronized to the system by controlling the timing of the output data and timing signals to the DAC device.
Multiple devices can run synchronously by using the sync_in from the system logic to time the data output to the DAC
devices.

All synchronization assumes that the fs_clk on all cards is synchronous, and that the sync_in is synchronous to fs_clk.

Error Correction

The DAC channels are corrected in the logic for bias and gain errors due to analog electronics. This is used for calibrating
the DAC channels. Calibration coefficients are loaded into the system FLASH ROM during factory test and are then used for
error correction. Each D/A channel has an offset and gain register mapped to system memory. The software is expected to
read the coefficients from the ROM and write them to these registers as part of system initialization.

The error correction is a first-order error correction implemented in the logic as

y =mx + b, where m = gain correction, b = offset correction and x = output D/A sample

The offset coefficient is a 16-bit number, which is left shifted (multiplied by 32) before it is added to the sample. The gain
coefficient is 18-bit.

Gain Coef = 0x1000000 + Gain; Gain is 18-bit number
Offset Coef = Offset * 32
The gain error compensation is ~ +/- 0.78% of the input range. All calculations use saturating math.
FIFO Data Buffer
The output from the component is a FIFO that buffers the D/A samples. The number of enabled channels determines the data
format. If all channels are enabled, the samples are sequentially stored to the FIFO DAO..DA15. For a single channel, data is

DAO(t), DAO(t+1). If a channel is turned off, such as channel 1, the ordering is DAO, DA2, DA3, .DA1S5, DAO(t+1).

Data to the D/A FIFO must be 2's complement, 32bit. Negative numbers are sign-extended from the 24-bit sample data. Full
scale is 0xO07FFFFF, negative full scale is 0xFF80000.

Bits
Data Port Clock Domain 31..0
FIFO sys_clk DAC channel n

Table 63. X3-SD16 DAC Component Input Data

Error Reporting
Underflow error bit indicates to the system that the DAC FIFO was empty when a point was needed. Data was not
provided in time. This bit is reset when run is false ('0").

X3-SD16 FrameWork Logic User Guide 121

Innovative Integration

dacl_sdo[3:0]
dacl_sdo[3:0]

dac_bck[1:0]
dac_Ir[1:0]

-

dac_spi_mc
dac_spi_md
dac_spi_ms_n[1:0]

Shift
Regs

dac0_spi_wr
dacl_spi_wr
* dac_spi_din[15:0]
-4+— SPl Pof —® dac_spi_rdy
reset
run
+ fs_clk
Data Move
- State lag— channel_en[15:0]
Machine
+ trigger
l trig_en
Un[?;reﬂgw ——— = underflow
A
——® fifo_wr_cnt[3:0]
Test
Counter
FIFO
Error 32 L 16in
Correction dac_din[31:0]
24 32 out %
A
=lag—— clk
L dac_wr
offset15:0][15:0]
gain[15:0][18:0]
test
Timing | o dac_clk_mode[(2:0]
Controls - ’
? sync_in

Figure 51. ii_sd16 dac Component Block Diagram

X3-SD16 FrameWork Logic User Guide

122

Innovative Integration

Port Direction | Function

reset In reset

clk In system clock (67 MHz)

fs_clk In sample clock (a multiple of the sample rate)

run In Enable the component to operate.

dac_clk_mode[2:0] In DAC sampling mode controls 2..0

dacO_spi_wr In DAC 0 SPI port write

dacl spi_wr In DAC 1 SPI port write

dac_spi din[15:0] In DAC SPI data 15..0

dac_spi_rdy Out DAC SPI port is ready to use

sync_in In Sync from system logic for multicard synchronization
dac_wr In Write enable to FIFO from system logic.
dac_din[31:0] In DAC sample pairs from the system.

channel en[15:0] In Channel enables for DACs.

offset In Array of offsets for error correction, defined in ii_x3 pkg.vhd.
gain In Array of gains for error correction, defined inii_x3 pkg.vhd.
dac_bck Out DAC bit clocks

dac0_sdo[3:0] Out DACO output bit streams, 1 per L/R pair

dacl sdo[3:0] Out DACI output bit streams, 1 per L/R pair

dac_Ir[1:0] Out DAC L/R data frame controls

dac_spi_mc Out DAC SPI clock

dac_spi md Out DAC SPI data

dac_spi_ ms n[1:0] Out DAC SPI enables, active low

fifo wr_cnt[9:0] Out DAC FIFO count

underflow Out DAC FIFO underflow error. Reset on RUN false.
trigger In Acquire data when true (synchronous to fs_clk).
trig_en Out Trigger is enabled on this clock (sync'd to fs_clk)

test In Test mode enable; inserts ramp for data when true.

Table 64. ii_sd16_dac Component Ports

X3-SD16 FrameWork Logic User Guide

123

Innovative Integration

X3-10M Logic Components

These components are only used in X3-10M module logic.

Component: ii_ 10m_adc

Supported Platforms: X3-10M

Source File: ii_10m_adc.vhd

Description:

This component is the interface to the A/D converters on the X3-10M XMC module. The A/D devices, Linear Technology
LTC2203, are 16-bit devices capable of 25 MSPS. The component provides an interface to the A/D devices for reading data,
error compensation, channel selection and data buffering. All channels are assumed to be synchronous (using the same
sample clock). A periodic clock is required.

A/D Interface

The A/D interface collects data from eight A/D devices, all running synchronously. Each pair of A/D devices shares a 16-bit
data bus into the logic. In the logic, the adc_cs_n[] chip select enables the devices on the bus so that data is captured from
one device on the falling edge of sample clock (fs_clk) and the other on the rising edge. In the logic, an IDDR (input dual
data rate flip-flop) is used to capture the data.

Data is read from all channels, whether enabled or not, each sample period. The A/D uses a bit scrambling technique to
reduce electrical noise so the logic unscrambles the data samples by XOR bit 0 with the other bits to recover the data word.
All 8 samples are assembled into a 64-bit word that stored into the FIFO.

Error Compensation

As words are read from the FIFO, the A/D component provides first order error compensation. The 32-bit words from the
FIFO, containing two data samples, are run through two ii_offgain components (see generic library description). This
compensates for offset and first-order gain errors. Individual gain and offset error coefficients are provided via the gain and
offset input arrays.

Data Stacking and Buffering
A 128-bit input, 32-bit output FIFO that is 1Kx32 in size is used for data buffering. The data if read when RFD is true. Flow
control to the FIFO should be implemented in the system logic using this signal.

As the data is read from the FIFO it then flows into the error correction component. The dvalid signal from the FIFO is used
to enable the error correction and then the logic provides a dvalid for each data pair of enabled channels as they emerge from
the error correction. The other channels that are not enabled to give a dvalid signal and are discarded.

Data to the system logic is output as a stream of 32-bit numbers, composed of two 16-bit samples. The data is stacked in
ascending channel pair order, for the channel pairs that are enabled in the channel_en input vector.

X3-SD16 FrameWork Logic User Guide 124

Innovative Integration

Error Reporting

Overrange error bits indicate to the system when an A/D channel saw an out of range analog input. An overrange is
reported by the A/D whenever the analog signal is out of range. The A/D provides these signals each sample, which
are read by the logic using a DDR flip-flop when the A/D samples are read. These bits are reset when run is false ('0").

Test Features

The test input substitutes a ramp in place of the A/D data. This is used for data path testing during logic design. It can
be used to verify that no data loss occurs due to flow control problems by checking the output for the monotonically
increasing ramp data. Real A/D data can be much more difficult to check since a missing point is not easily detected.

AD reset
ade_cs n[1:0] --—————— 8CCESS -l run
process
A
sys_clk
tfd
trigger
: J offset]7:0][15:0]
*7 gain[7:0][18:0]
-
Error
- Correction
5 63 = 2
ade_din[53:0] __I._-.‘RDGDR !l Descramble FIFO ii_offgain
J 128in dout[31:0]
— 32 out Error
1K | Correction
ii_offgain
4
Channel
Test w-lonables and | dvalid
Cntr timing ctl
fg_clk ry
adc_channel_en[11:0]
test
g fifo_overflow
IDDR
g overrange(l1:0
adcot(30] - OE\)’;E?QC?[? ge[11:0]

Figure 52.ii_10m_adc Component Block Diagram

X3-SD16 FrameWork Logic User Guide 125

Innovative Integration

Port Direction | Function

reset In reset

clk In system clock (67 MHz)

fs_clk In sample clock (25 MHz or less)

run In Enable the component to operate.

trigger In Acquire data when true (synchronous to fs_clk).

rfd In System logic input indicating that it is ready to receive data. A true on this
signal causes the FIFO to be read.

channel en[7:0] In Channel enables for A/Ds.

offset In Array of offsets for error correction, defined inii_x3 pkg.vhd.

gain In Array of gains for error correction, defined in ii_x3 pkg.vhd.

adc_cs n[1:0] Out A/D chip selects, active low. One for devices read on fs_clk rising edges,
the other for all falling edge devices.

adc_otr[3:0] In A/D overrange inputs. Each input is shared between two devices.

adc_din[63:0] In A/D data bus. Shared between two devices.

dvalid Out Data is valid when true

dout[31:0] Out Data output from the FIFO

overflow Out A/D FIFO overflow.

test In Enable test mode (0= disabled)

Table 65.ii_10m_adc Component Ports

X3-SD16 FrameWork Logic User Guide 126

Innovative Integration

X3-SD Logic Components

These components are only used in X3-SD module logic.

Component: ii_sd_adc

Supported Platforms: X3-SD

Source File: ii_sd adc.vhd

Description:

This component is the interface to the A/D converters on the X3-SD XMC module. The A/D devices, Texas Instruments
PCM4204, are 4 channels of 24-bit, 216 ksps. The component provides an interface to the four A/D devices (16 channels
total) for reading data, error compensation, channel selection and data buffering. All channels are assumed to be
synchronous (using the same sample clock). A periodic clock is required.

A/D Interface

The A/D interface collects data from four A/D devices, all running synchronously. The A/D are configured on the module to
run in slave mode so that the logic is the source of the data timing signals belk and Ir. The A/D provides data on the sdo
input to the logic that is collected in an input shift register to assemble the data words from the serial bit stream. There are 24
bits per sample, 32 clocks per Ir phase. The left channel data is collected when Ir is '1'.

Data is read from all channels, whether enabled or not, each sample period. After each Ir phase, the 8 channels of data are
error corrected in the logic and the enabled channels are stored into the FIFO.

Error Compensation

At the end of each Ir phase, the 8 channels are error corrected for first-order gain and offset errors. Individual gain and offset
error coefficients are provided via the gain and offset input arrays. The offset is first corrected using a 24-bit adder, then the
gain is corrected using a 24-bit multiplier. The logic has saturation checking for the calculation.

Data Buffering

A 24-bit input, 32 deep FIFO is used for data buffering. The input to this FIFO is on fs_clk domain, and output is on system
clock. This clock domain transition is the sole purpose of this FIFO. As data is written to the FIFO, it immediately flows out
to the system with a data valid (dvalid) indicating when the data is valid on the output data bus.

Error Reporting

Overrange error bits indicate when an A/D channel saw an out of range analog input. The A/D provides these signals
each sample. They are not used on the component.

X3-SD16 FrameWork Logic User Guide 127

Innovative Integration

Test Features

The test input substitutes a ramp in place of the A/D data. This is used for data path testing during logic design. It can
be used to verify that no data loss occurs due to flow control problems by checking the output for the monotonically
increasing ramp data. Real A/D data can be much more difficult to check since a missing point is not easily detected.

" reset
run
ade_bek(3:0] o
adc_\r[S'U]' “— access -4 = fo_mode
- timing control
i offset array
adc0_clip[3:0] gain array
adct_clip[3:0]
adcZ_clip[3:0] ——— tfd
adc3_clip[3:0]
Y
Y .
I dvalid
8x 8 Y Y
ShiftReg | Adder Multiplier : FIFO ;
adc_sda[7:0] ——m= MucT ™= i ™ 24x18 e SaEtUration — - 2416 — dout[31:0]
- A A A
F Jt— clk
i
Test
Cntr
Channel :
fs_clk e ™ control [THigger
A
test
= ad_channel_en

Figure 53. ii_sd _adc Component Block Diagram

X3-SD16 FrameWork Logic User Guide 128

Innovative Integration

Port Direction | Function

reset In reset

clk In system clock (67 MHz)

fs_clk In sample clock (25 MHz or less)

run In Enable the component to operate.

trigger In Acquire data when true (synchronous to fs_clk).

fs_mode[2:0] In A/D sample mode control bits. Specifies the A/D operating mode for
rate and filter shaping. See PCM4204 data sheet for details.

channel en[15:0] In Channel enables for A/Ds.

offset In Array of offsets for error correction, defined inii_x3 pkg.vhd.

gain In Array of gains for error correction, defined in ii_x3 pkg.vhd.

adc_bck[3:0] Out A/D bit clock. This is a division of fs_clk that is set by fs_mode.

adc_sdo[7:0] In A/D data output. Serial data from the A/D, two channels per device.

adc_Ir[3:0] Out A/D left/right control. Frames data for left/right channel from the A/D.,

adc0_clip[3:0] In A/D overrange bits. One per channel on device 0.

adcl_clip[3:0] In A/D overrange bits. One per channel on device 1.

adc2_clip[3:0] In A/D overrange bits. One per channel on device 2.

adc3_clip[3:0] In A/D overrange bits. One per channel on device 3.

dvalid Out Data is valid when true

dout[31:0] Out Data output from the FIFO

test In Enable test mode (0= disabled)

Table 66. ii_sd adc Component Ports

X3-SD16 FrameWork Logic User Guide

129

Innovative Integration

X3-25M Logic Components

These components are only used in X3-25M module logic.

Component: ii_x3_25m_adc_intf

Supported Platforms: X3-25M

Source File: ii x3 25m_adc intf, fifo 1kx32 async vld.vhd, ii_offgain.vhd

Description:

This component is the interface to the A/D converters on the X3-25M XMC module. The A/D devices, Linear Technology
LTC2207, are 16-bit, 105 MSPS devices. The component provides an interface to the two A/D devices for receiving data,
error compensation, channel selection and data buffering. All channels are assumed to be synchronous (using the same
sample clock). A periodic clock is required.

A/D Interface

The A/D interface collects data from two A/D devices, both running synchronously, using two 16-bit data buses to the FPGA.
The data bits are time-delayed using an IBUF _DLY ADJ element per bit to match the data timing to the sample clock
(fs_clk) then are captured in an input register. The IBUF DLY ADJ is set to 3 ns in the standard logic. Data is read from
both channels, whether enabled or not, each sample period.

The A/D uses a bit scrambling technique to reduce electrical noise. The logic unscrambles the data samples by XORing bit 0
with the other bits to recover the data word. Data is then stacked into 32-bit words, formatted according to the enabled
channels.

Enabled channels Bits 31..16 Bits 15..0

1 and 0 ADI1[15..0] ADO[15..0]

0 only ADO[15..0](t-1) ADO[15..0](t)
1 only ADI1[15..0](t-1) ADI1[15..0](t)

Data Buffering

A 32-bit input, 1K deep FIFO is used for data buffering. The input to this FIFO is on fs_clk domain, and output is on system
clock. Data can be read by the system logic using RDEN, with FIFO RD_ CNT. Data is valid for the system when DVALID
is true, synchronous to sys_clk.

X3-SD16 FrameWork Logic User Guide 130

Innovative Integration

Error Compensation

As each point is read from the FIFO it is error corrected for first-order gain and offset errors. Individual gain and offset error
coefficients are provided via the gain0, gain1, offset0, and offsetl input vectors. The ii_offgain component is used for the
error correction, as detailed in the generic library chapter.

Test Features

The test input substitutes a ramp in place of the A/D data. This is used for data path testing during logic design. It can
be used to verify that no data loss occurs due to flow control problems by checking the output for the monotonically
increasing ramp data. Real A/D data can be much more difficult to check since a missing point is not easily detected.

reszet
-l rn
sys clk
dy
Sample d
trigger »- Comprol
offset0[15.0]
gain0[1810]
fest hJ offset![150]
gain1[1840]
- [ant—
k J Error
IBUF = Correction
ade_dO[15:0] —3,-'2—D~DELAY e Descramble i FIFO - _offgain
. i ADJUST | L= Stacking dout[31:0]
ade_d1[15:0] > 32.bit
—bl‘>— A Fy 1K Error
e Correction
_offgain
- walid A L» dvalid
Test| |
Cntr
fs_clk
adc_channel_en[1:0]
g fifo_rd_cni[2:0]
Cwarrange
do_ofr[10] ————————] : - ;
ade_otr[1:0] Disicsiion e Overrange[1:0]

Figure 54.1i_x3 25m_adc_intf Component Block Diagram

X3-SD16 FrameWork Logic User Guide 131

Innovative Integration

Port Direction | Function

reset In reset

clk In system clock (107 MHz)

fs_clk In sample clock (105 MHz or less)

run In Enable the component to operate.

trigger In Acquire data when true (synchronous to fs_clk).
channel en[1:0] In Channel enables for A/Ds.

rdy In System is ready to receive data, essentially FIFO read enable
offset0[15:0] In A/D 0 offset for error correction

gain0[17:0] In A/D 0 gain for error correction

offset1[15:0] In A/D 1 offset for error correction

gainl[17:0] In A/D 1 gain for error correction

adc_d0[15:0] In A/D 0 data bus (synchronous to fs_clk).
adc_dl1[15:0] In A/D 1 data bus (synchronous to fs_clk).

dvalid Out Data is valid when true

dout[31:0] Out Data output from the FIFO

fifo rd cnt[9:0] Out FIFO read count, synchronous to clk

test In Enable test mode (0= disabled)

Table 67. 11 x3 25m_adc_intf Component Ports

X3-SD16 FrameWork Logic User Guide

132

Innovative Integration

Component: ii_x3_25m_dac_intf

Supported Platforms: X3-25M

Source File: ii x3 25m_dac intf, fifo 1kx32 async vld.vhd, ii_offgain.vhd

Description:

This component is the interface to the two D/A converters on the X3-25M XMC module. The DAC devices, Linear
Technology LTC1668, are 16-bit, 50 MSPS devices. The component provides an interface to the two DAC devices for data
buffering, error compensation, channel selection and providing output data. All channels are assumed to be synchronous
(using the same sample clock). A periodic clock is not required.

Data Buffering
A 32-bit input, 1K deep FIFO is used for data buffering from the system logic. Data can be written by the system logic using
DAC_WR, with DAC_FIFO_CNT used to pace the data according to the available space in the FIFO.

DAC Interface
As data is received from the system logic into the input FIFO, the 32-bit words are unstacked into 16-bit samples. The data is
expected to be formatted according to the enabled channels.

Enabled channels Bits 31..16 Bits 15..0
1and0 DACI1[15..0] DACO[15..0]

0 only DACO[15..0](t-1) DACO[15..0](t)
1 only DACI[15..0](t-1) DACI[15..0](t)

The data samples are then moved into the error correction logic.

Error Compensation

As each point is error corrected for first-order gain and offset errors. Individual gain and offset error coefficients are provided
via the gain0, gainl, offset0, and offsetl input vectors. The ii_offgain component is used for the error correction, as detailed
in the generic library chapter.

DAC Outputs
There is a 1Kx16 FIFO for each of the two DAC devices that hold the outbound samples. The output FIFO is read when
trigger is true on each rising edge of sample clock.

The DAC data has an output register on the FPGA pins to improve timing. This register is reset to mid-scale (0x8000) so that
the DAC output is zero on reset.

X3-SD16 FrameWork Logic User Guide 133

Innovative Integration

reset
run
dac_fifo_cnt[9:0]
—— = fifo_status[15:0]
underflow
offsetl
offget!
gaind
gaini
channel_en[1:0] Y
Y Error FIFO T
i Carractif 1K w18 ; el dac_d0[150]
¢ FIFO Error ; FIFO 2 K dac_d1[150]
dacdnro) ™ iap| = UNStEEK —-{ogn e e | e
A F | A
clk
fifo_rst
underflow_rst
Figure 55.1i_x3 25m_dac_intf Component Block Diagram
Port Direction | Function
reset In reset
clk In system clock (107 MHz)
fs_clk In sample clock (50 MHz or less)
run In Enable the component to operate.
underflow_rst In Reset underflow error indicator bit.
fifo rst In Reset fifo.
dac_wr In Write enable to DAC FIFO.
dac_din[31:0] In DAC data bus input from system logic.
channel _en[1:0] In Channel enables for A/Ds.
offset0[15:0] In DAC 0 offset for error correction
gain0[17:0] In DAC 0 gain for error correction
offset1[15:0] In DAC 1 offset for error correction
gainl[17:0] In DAC 1 gain for error correction
dac_d0[15:0] Out DAC 0 data bus (synchronous to fs_clk).
dac_dl1[15:0] Out DAC 1 data bus (synchronous to fs_clk).
dac_fifo cnt[9:0] Out FIFO write count, synchronous to clk
fifo_status[15:0] Out FIFO status (not used)
underflow Out DAC FIFO underflow. (1 = error).
trigger In Acquire data when true (synchronous to fs_clk).

Table 68.ii_x3 25m_dac_intf Component Ports

X3-SD16 FrameWork Logic User Guide 134

Innovative Integration

X3-A4D4 Logic Components

These components are only used in X3-A4D4 module logic.

These components are only used in X3-25M module logic.

Component: ii_x3_a4d4_adc
Supported Platforms: X3-A4D4

Source File: ii_x3 a4d4 adc, fifo 1k 161 320.vhd, ii_offgain.vhd

Description:

This component is the interface to the A/D converters on the X3-A4D4 XMC module. The A/D devices, Texas Instruments
ADS8422, are 16-bit, 4 MSPS devices. The component provides an interface to the four A/D devices for receiving data, error
compensation, channel selection and data buffering. All channels are assumed to be synchronous (using the same sample
clock). A periodic clock is NOT required.

The entire component runs on the system clock domain. For the standard logic, the system clock is 107 MHz.

The RUN signal is used as a reset. When RUN is false, the component is reset. This allows the logic to reset the A/D
without a complete system reset.

A/D Interface

The A/D devices convert every falling edge of the sample clock. The A/D BUSY signal goes true during the conversion
then goes false when the data is ready. The logic monitors the BUSY input from A/D 0 and looks for the falling edge to
initiate the data reading process. Each A/D device has a data latch the holds the data when BUSY is true and updates when
BUSY is false. The A/D is strapped to always drive its data to the latch (CS_N="0", RD N ="'0".

Once the falling edge of BUSY is detected, a state machine reads the four A/D data latches. The latches are read in sequence
0 to 3, for all devices whether or not the A/D is enabled. The latches are enabled on the share data bus using the
ADC_OE NJ3..0] signals. Data reads are 3 cycles per device.

Error Compensation

After the data is read, samples are corrected for first-order gain and offset errors. Individual gain and offset error coefficients
are provided via the gain0.. gain3, offset0..offset3 input vectors. The ii_offgain component is used for the error correction, as
detailed in the generic library chapter. The channel enable vector is used to mask the writes for the enabled channel samples
into the ii_offgain component.

Data Buffering
The FIFO takes in the 16-bit error corrected samples and outputs stacked 32-bit sample pairs. The FIFO is 1K samples deep
for data buffering. Data can be read by the system logic using the RDY input. FIFO level is monitored using

X3-SD16 FrameWork Logic User Guide 135

Innovative Integration

FIFO_RD_CNT to provide flow control information. Data is valid for the system when DVALID is true, synchronous to

sys_clk.

Data is stacked in the output data word with two 16-bit samples per 32-bit word. If a single channel is used, the lower 16 bits
is the older sample. The samples are always stacked from the lowest channel number enabled to the highest when more than

one channel is enabled.

Test Features

Number of Enabled Bits 31..16 Bits 15..0

channels

1 (e.g. channel 0) ADCO[15..0](t) ADCO[15..0](t-1)

2 (e.g. channel s 1, 0) ADCI1[15..0](t) ADCO[15..0](t)

3 (e.g. channel 2,1,0) ADCI[15..0](t) ADCO[15..0](t)
ADCO[15..0](t+1) ADC3[15..0](t)

3 (e.g. channels 3,2,1,0) ADCI1[15..0](t) ADCO[15..0](t)
ADC3[15..0](t) ADC2[15..0](t)

The test input substitutes a ramp in place of the A/D data. This is used for data path testing during logic design. It can

be used to verify that no data loss occurs due to flow control problems by checking the output for the monotonically
increasing ramp data. Real A/D data can be much more difficult to check since a missing point is not easily detected.

X3-SD16 FrameWork Logic User Guide

136

Innovative Integration

adc_busy[3:0]
Y
A reset
adc_oe_n[3:0] clk
adc_reset_n[3:0] -e————H actc‘igs i} fun
st e trigger
maching adc_channel_en[3:0]
offset0[15:0]
offset![15:0]
offget2[15:0]
offset3[15:0]
gain0[17 0]
_ P ¥
adc_d[15:0] pA — pme overrange(30]
Reg Error
— Correction
i_offgain
A ‘ rdy
Cwerrange
Detection h
Test
Cnitr
o FIFO
16 in
e GOUTET0
32 out [Rl
— fifo_rd_cnt[3:0]
test
—— =ys_clk
L—— B dvalid

Figure 56. ii_x3_A4D4 adc Component Block Diagram

X3-SD16 FrameWork Logic User Guide

137

Innovative Integration

Port Direction | Function

reset In reset

clk In system clock (107 MHz)

fs_clk In sample clock (4 MHz or less)

run In Enable the component to operate.

trigger In Acquire data when true (synchronous to fs_clk).
channel en[3:0] In Channel enables for A/Ds.

rdy In System is ready to receive data (FIFO read enable)
offset0[15:0] In A/D 0 offset for error correction

gain0[17:0] In A/D 0 gain for error correction

offset1[15:0] In A/D 1 offset for error correction

gainl[17:0] In A/D 1 gain for error correction

offset2[15:0] In A/D 2 offset for error correction

gain2[17:0] In A/D 2 gain for error correction

offset3[15:0] In A/D 3 offset for error correction

gain3[17:0] In A/D 3 gain for error correction

adc_reset n[3:0] Out A/D resets, active low

adc_oe_n[3:0] Out Output enables for data latches, active low
adc_busy[3:0] In A/D busy. Conversion is in process when 'l";
adc_d[15:0] In A/D data bus

dvalid Out Data is valid when true

dout[31:0] Out Data output from the FIFO

fifo_rd cnt[8:0] Out FIFO read count, synchronous to clk

test In Enable test mode (0= disabled)

Table 69. ii_x3 a4d4 adc Component Ports

X3-SD16 FrameWork Logic User Guide

138

Innovative Integration

Component: ii_x3 a4d4 dac

Supported Platforms: X3-A4D4

Source File: ii_x3 a4d4 dac, fifo 1kx32 vld.vhd, ii_offgain.vhd

Description:

This component is the interface to the four D/A converters on the X3-A4D4 XMC module. The DAC devices, Linear
Technology LTC1668, are 16-bit, 50 MSPS devices. The component provides an interface to the four DAC devices for data
buffering, error compensation, channel selection and providing output data. All channels are assumed to be synchronous
(using the same sample clock). A periodic clock is not required.

The RUN signal is used as a reset to the component.

Data Buffering
A 32-bit input, 1K deep FIFO is used for data buffering from the system logic. Data can be written by the system logic using
DAC_WR, with DAC_FIFO_CNT used to pace the data according to the available space in the FIFO.

DAC Interface
As data is received from the system logic into the input FIFO, the 32-bit words are unstacked into 16-bit samples. The data is
expected to be formatted according to the enabled channels.

Number of Enabled Bits 31..16 Bits 15..0

channels

1 (e.g. channel 0) DACO[15..0](t) DACO[15..0](t-1)

2 (e.g. channel s 1, 0) DACI1[15..0](t) DACO[15..0](t)

3 (e.g. channel 2,1,0) DACI[15..0](t) DACO[15..0](t)
DACO[15..0](t+1) DAC2[15..0](t)

3 (e.g. channels 3,2,1,0) DACI1[15..0](t) DACO[15..0](t)
DAC3[15..0](t) DAC2[15..0](t)

The data is unstacked and routed to error correction for that channel as space permits in the output FIFO.

Error Compensation

As each point is error corrected for first-order gain and offset errors. Individual gain and offset error coefficients are provided
via the gain0..gain3, offset0..offset3 input vectors. The ii_offgain component is used for the error correction, as detailed in
the generic library chapter.

X3-SD16 FrameWork Logic User Guide 139

Innovative Integration

DAC Outputs
There is a 1Kx16 FIFO for each of the four DAC devices that hold the outbound samples. The output FIFO is read when
trigger is true on each rising edge of sample clock.

This FIFO is reset to mid-scale (0x8000) so that the DAC output is zero on reset.

reset

run —
dac_fifo_cnt[3:0]

offsetd[15:0] ——= fifo_status[15:0]

offset1[15:0] underflow

offset2[15:0]

offset3[15:0]

gain0[17:0]
gain1[17:0]
gain2[17:0]
gain3[17:0]
channel_en[3:0] + B FIFO
omeBON o dac_d0[15:0]
dac_wr FIFO Error - FIFO ;16 dac_d1[150]
_wr , : L 5 e dac d2[15D
a1l T K@2] oK\ correction| ” T 1Kx16 | I
T T i
clk

trigger
fs

X3-SD16 FrameWork Logic User Guide

140

Innovative Integration

Port Direction | Function

reset In reset

clk In system clock (107 MHz)

fs_clk In sample clock (50 MHz or less)

run In Enable the component to operate.
dac_wr In Write enable to DAC FIFO.
dac_din[31:0] In DAC data bus input from system logic.
channel _en[3:0] In Channel enables for A/Ds.

offset0[15:0] In DAC 0 offset for error correction
gain0[17:0] In DAC 0 gain for error correction
offset1[15:0] In DAC 1 offset for error correction
gainl[17:0] In DAC 1 gain for error correction
offset2[15:0] In DAC 2 offset for error correction
gain2[17:0] In DAC 2 gain for error correction
offset3[15:0] In DAC 3 offset for error correction
gain3[17:0] In DAC 3 gain for error correction
dac_dO[15:0] Out DAC 0 data bus (synchronous to fs_clk).
dac_d1[15:0] Out DAC 1 data bus (synchronous to fs_clk).
dac_d2[15:0] Out DAC 2 data bus (synchronous to fs_clk).
dac_d3[15:0] Out DAC 3 data bus (synchronous to fs_clk).
dac_fifo cnt[9:0] Out FIFO write count, synchronous to clk
fifo_status[15:0] Out FIFO status (not used)

underflow Out DAC FIFO underflow. (1 = error).
trigger In Acquire data when true (synchronous to fs_clk).

Table 70. ii_x3 a4d4 dac Component Ports

X3-SD16 FrameWork Logic User Guide 141

Innovative Integration

X3-DIO Logic Components

These components are only used in X3-DIO module logic.

Component: ii_dio_out

Supported Platforms: X3-DIO

Source File: ii_dio_out.vhd, fifo 1kx32 async_vld.vhd, ii_dio_out buffer.vhd

Description:

This component is the output interface for the front panel DIO on the X3-DIO XMC module. There are 64-bits for the front
panel IO, organized as 8 bytes. Each byte is treated as a “channel”that may be individually enabled and configured as output.
The component takes in data from the system, unstacks the enabled channels from the data words and enqueues them into an
output FIFO for each byte. This is done so that the data is optimally packed into the incoming data words for highest data
rates.

All channels are assumed to be synchronous (using the same sample clock). A periodic clock is not required.

The RUN signal is used as a reset to the component.

Data Buffering
A 32-bit input, 1K deep FIFO is used for data buffering from the system logic. Data can be written by the system logic using
WREN, with RDY or FIFO_WR_CNT used to pace the data according to the available space in the FIFO.

DIO Out Interface

As data is received from the system logic into the input FIFO, the 32-bit words are unstacked into bytes for the enabled
channels. A state machine is used to compute the number of enabled channels, a channel list consisting of the enabled
channel numbers, and finally a channel pointer vector that shows the order of the enabled channels in the incoming words as
will occur in a stream of 32-bit words from the input. Since the incoming words are 32-bit (4 bytes per word), the channel
pointer (ch_ptr) length is the least common multiple between the number of enabled channels (ch_lem+1) and 8 bytes for
output. The channel pointer vector is then used as a byte enable list for each of the output bytes. The byte buffer preserves
the time ordering of the data.

Number of Enabled Data Bits 31..24 Bits 23..16 Bits 15..8 Bits 7..0

channels Word

1 (e.g. channel 0) 0 ChO[7..0](t+3) ChO[7..0](t+2) ChO[7..0](t+1) ChO0[7..0](t+0)
1 ChO[7..0](t+7) ChO[7..0](t+6) ChO[7..0](t+5) ChO[7..0](t+4)

2 (e.g. channels 6, 0) 0 Ch6[7..0](t+1) ChO[7..0](t+1) Ch6[7..0](t+0) ChO[7..0](t+0)
1 Ch6[7..0](t+3) ChO[7..0](t+3) Ch6[7..0](t+2) ChO[7..0](t+2)

X3-SD16 FrameWork Logic User Guide

142

Innovative Integration

3 (e.g. channels 7,5,4)

Ch4[7..0](t+1)

Ch7[7..0](t+0)

Ch5[7..0](t+0)

Ch4[7..0](t+0)

Ch5[7..0](t+2)

Ch4[7..0](t+2)

Ch7[7..0](t+1)

Ch5[7..0](t+1)

Ch7[7..0](t+3)

Ch5[7..0](t+3)

Ch4[7..0](t+3)

Ch7[7..0](t+2)

Data flow through the component is paced according to the space available in the output FIFOs in each of the ii_dio_buffer
component. Each byte buffer has a byte_rfd output that indicates when it can receive data. The state machine controlling

data flow requires that all byte buffer byte_rfd are true (all are ready) and the input FIFO must have data to initiate data flow
through the component.

DIO Out Outputs

There is a 1Kx8 FIFO for each of the eight DIO Out channels that hold the outbound samples. The output FIFO is read when
trigger is true on each rising edge of sample clock.

mun ——————-
clk i

trigger
fs
State
P Iachine g byte
Flow Cantral buffers
Y
] i_dio_out_buffer .|
i_dio_out_buffer o
————— W underflow
wren) FIFO
din[31:0] MKx32 [= n
1K I fp_dout[63:0]
-
fifo_wr_cnt[3:0] A
rdy)
State
hachine
Channel list calculations
channel_en[7:0] f

Figure 58. ii_x3 dio_out Component Block Diagram

X3-SD16 FrameWork Logic User Guide 143

Innovative Integration

Port Direction | Function

clk In System clock (107 MHz)

fs_clk In Sample clock (50 MHz or less)

run In Enable the component to operate.

trigger In Trigger enables data flow from the output when true.

channel en[7:0] In Channels for each data byte. Output is enabled for that byte when the
channel_en bit is true.

rdy Out When RDY is true, the input FIFO has space for at least 256 points.

fp_dout[63:0] Out Output bits

wren Out Write enable to input FIFO.

din[31:0] In Input data bus

fifo wr_cnt[9:0] Out Input FIFO write count

underflow Out DAC FIFO underflow. (1 = error).

test In Not used.

underflow Out Output FIFO underflow. (1 = error).

Table 71.1ii_x3 dio_out Component Ports

X3-SD16 FrameWork Logic User Guide

144

Innovative Integration

Component: ii_dio_out_buffer

Supported Platforms: X3-DIO

Source File: ii_dio out buffer.vhd, fifo 1k 32i 8o.vhd, fifo 16x8.vhd

Description:

This component receives 32-bit data words, extracts the bytes for this channel and creates a data stream. The logic parses the
input 32-bit words according to the byte enables and then packs them into a 32-bit word through successive shifting steps.
The resulting 32-bit word is a packed stream of data bytes, ordered in time, that is held in an output FIFO. The output FIFO
is 8-bit output that is read on each sample clock when trigger is true.

mn ——-
clk —

channel_en *

State
- Machine
Flow Control
Y » Unde rflow
byte_wran[3 0] 72 Data 3;|hFi?in fifo_wr_cnt[3:0]
yhe_ i : o
din310] —<—m| Stacking 7 o
1K
A
ready_for_data -
trigger
fs_clk

Figure 59. ii_dio_out buffer Component Block Diagram

X3-SD16 FrameWork Logic User Guide 145

Innovative Integration

Port Direction | Function

run In Enable the component to operate.

clk In System clock (107 MHz)

channel en In Channel enable

fs_clk In Sample clock (50 MHz or less)

run In Enable the component to operate.

byte wren[3:0] In Byte write enables. Indicates which bytes of the 32-bit input word are for
this buffer.

din[31:0] In Input data bus

dout[7:0] Out Output bits

ready for data Out Component is ready to receive data when true.

trigger In Trigger enables data flow from the output when true.

ready for data Out Component is ready to receive data when true.

fifo_ wr_cnt[8:0] Out Input FIFO write count

underflow Out Output FIFO underflow. (1 = error).

Table 72. ii_dio_out_buffer Component Ports

X3-SD16 FrameWork Logic User Guide

146

Innovative Integration

Component: ii_x3_dio_in

Supported Platforms: X3-DIO

Source File: ii_x3 _dio_in, fifo_ 1k 64i_320.vhd, fifo 16x8.vhd, fifo 1kx64 vld

Description:

This component is the interface to the front panel DIO inputs on the X3-DIO XMC module. This component acquires the 64-
bit digital input port on the front panel on each sample clock rising edge when trigger is true. All bits are sampled
simultaneously. Data is captured into a 64-bit FIFO from the input pins. The 64-bits are treated as 8 channels, each of the
bytes is considered a "channel". The channel enables (channel en) correspond to the 8 bytes of input data. A state machine
calculates the channel list and channel order according to the channel enable list. The channel list is then used to pack the
bytes into 32-bits words consisting of only the enabled byte data. These bytes are packed sequentially by channel number.
For example, if bytes 0,1,6 are enabled as inputs, then the data is packed in this order:

word0 = [B0 B6 B B0]
wordl = [B1 B0 B6 B1]

The input to the component uses the sample clock to capture the data. The remaining data processing uses system clock. For
the standard logic, the system clock is 107 MHz.

The RUN signal is used as a reset. When RUN is false, the component is reset. This allows the logic to reset the DIO In
without a complete system reset.
Data Buffering

There is a 1Kx64 FIFO on the input used to capture the data.

The component also has a 1kx32 FIFO that supplies the data to system logic. Data is enabled to the system when rdy is true.
Each data word has a dvalid for when the data is valid. The data path is reset when run is false ('0").

Data for the enabled channels is stacked in the output data word with four channels per 32-bit word. The channels are always
stacked from the lowest channel number enabled to the highest when more than one channel is enabled.

Number of Enabled Data Bits 31..24 Bits 23..16 Bits 15..8 Bits 7..0

channels Word

1 (e.g. channel 0) 0 ChO[7..0](t+3) ChO[7..0](t+2) ChO[7..0](t+1) ChO[7..0](t+0)
1 ChO[7..0](t+7) ChO[7..0](t+6) ChO[7..0](t+5) ChO[7..0](t+4)

2 (e.g. channels 6, 0) 0 Ch6[7..0](t+1) ChO[7..0](t+1) Ch6[7..0](t+0) ChO[7..0](t+0)
1 Ch6[7..0](t+3) ChO[7..0](t+3) Ch6[7..0](t+2) ChO[7..0](t+2)

3 (e.g. channels 7,5,4) 0 Ch4[7..0](t+1) Ch7[7..0](t+0) Ch5[7..0](t+0) Ch4[7..0](t+0)

X3-SD16 FrameWork Logic User Guide

147

Innovative Integration

1 Ch5[7..0](t+2)

Ch4[7..0](t+2)

Ch7[7..0](t+1)

Ch5[7..0](t+1)

2 Ch7[7..0](t+3)

Test Features

The test input substitutes a ramp in place of the input data. This is used for data path testing during logic design. It

Ch5[7..0](t+3)

Ch4[7..0](t+3)

Ch7[7..0](t+2)

can be used to verify that no data loss occurs due to flow control problems by checking the output for the

monotonically increasing ramp data.

o

I

Channel Init
wirlte enable |- ctate
logic machine
fs_clk -
ﬁ ¢ Biyte hux
and FIFOs
fp_dinG3:0] —r g (B total
64 L
FIFO | 1€ o
KB4
i s e
trigger ————————
o
A
fy L
Test Y
Cntr
Flow Contral
state
machine
test

FIFO | .
= 64 in 32
32 out

-

clk
run
adc_channel_en[7:0]

rdy

dout[31:0]

—— fifo_rd_cnt[8:0]

sys_clk

\—b dvalid

Figure 60. ii_x3 dio_in Component Block Diagram

X3-SD16 FrameWork Logic User Guide

148

Innovative Integration

Port Direction | Function

clk In system clock (107 MHz)

fs_clk In sample clock (100 MHz or less)

run In Enable the component to operate.

trigger In Acquire data when true (synchronous to fs_clk).
channel en[7:0] In Channel enables for input channels (bytes)

rdy In System is ready to receive data (FIFO read enable)
fp_dio[63:0] In Front panel DIO input bits

adv_reset n[3:0] Out A/D resets, active low

dvalid Out Data is valid when true

dout[31:0] Out Data output from the FIFO

fifo rd cnt[8:0] Out FIFO read count, synchronous to clk

overflow Out FIFO overflow error bit

test In Enable test mode (0= disabled)

Table 73. 11 x3 dio_in Component Ports

X3-SD16 FrameWork Logic User Guide

149

Innovative Integration

Generic Logic Library

These components are used in all X3 modules for basic functionality. In many cases, the component has been designed to use
Spartan3/3A DSP logic features used in the X3 family.

X3-SD16 FrameWork Logic User Guide 150

Innovative Integration

ii_ cmd reg

Source Files: ii_cmd reg.vhd, ii_command_bus.vhd

Description:

This component is the command channel interface to the PCle interface controller. The command channels provides PCle
bus accesses to the application logic over a dedicated link, outside of the higher speed primary data path. The ii_ cmd reg
component receives a access word from the PCI bus controller containing the read/write, address and data for the transaction.
The component decodes this word and provides the address, data and a read or write strobe to the application logic.

Command Channel Control Signals

The command channel provides an address, data, read and write strobes to decode an access. This is a pure reflection of the
PCI bus so that accesses from the host to BAR1+address. The rd_stb and wt_stb are the read and write enables synchronous
to the data(dout) and address (aout).

For convenience, the ii_cmd reg component also decodes 128 write addresses and 128 read addresses for expansion. These
are provided in the rd_stb_dec and wt_stb_dec output vectors.

Decoding a Command Channel Write Access
A command channel write access can be decoded using either the address and write strobe, or the pre-decoded write enables.
An example of this decoding is

process (reset, sys_clk, aout, wt_stb)
begin
if (reset ="'1") then
cmd_register <= (others =>'0");
elsif (rising_edge(sys_clk)) then
if (aout(15 downto 0) = X”1000” and wt_stb ="'1") then
cmd_register <= dout;
end if;
end if;
end process;

creates a 32-bit register at BAR1+ X1000”.

If you want to use the predecoded strobes, then here is an example

process (reset, sys_clk, wt_stb_dec)
begin
if (reset ='1") then
cmd_register <= (others =>'0");
elsif (rising_edge(sys_clk)) then
if (wt_stb_dec(33) ='1") then
cmd_register <= dout;
end if;
end if}

X3-SD16 FrameWork Logic User Guide 151

Innovative Integration

end process;

creates a 32-bit register at BAR1+X21”

Decoding a Command Channel Read Access

To read data from the command channel, it is necessary to drive the status input with the data at the command channel
address when read is true. A command channel read access can be decoded using either the address and read strobes, or the
pre-decoded read enables. An example of this decoding is

-- data mux for command channel reads
gen_cmd_rdback: for i in 0 to 127 generate
cmd_din <= cmd_status(i) WHEN (CONV_INTEGER(cmd_aout(6 downto 0)) =1) else (others =>'Z");
end generate;

read a 32-bit register at PCle address BAR1+ aout.

For devices requiring a long readback time, greater than 2 emd_clkx periods, can use the emd_rdy input to hold the
readback until the data is ready. The command channel will hold the access until the data is ready. The application logic
should not assert ready until the data is valid. The wait states should be limited to no more than 16 system clocks.

Command Channel Registers

A 128 element array of 32-bit output registers is provided with the number of registers specified by the ii_x3 pkg.vhd file.
These are decoded at BAR1+0..127 . These 32-bit registers are reset to X”’00000000” by a system reset. All output registers
are re-clocked to the sys clk domain.

The array must be defined in the ii_x3 pkg and included in the project for this component.

Summary of Command Channel Decodes

Decode PCI Address Read Decode Write Decode Output Register

0 BARI + X”0” rd_stb(0) wt_stb(0) ctl_reg(0)

1 BARI + X"4” rd_stb(1) wt_stb(1) ctl_reg(1)

2 BARI + X”8” rd_stb(2) wt_stb(2) ctl reg(2)

3..31 BARI + X7C”.. rd_stb(3).. wt_stb(3)... ctl reg(3)...
BARI + X”1F” rd_stb(31) wt_stb(31) ctl_reg(31)

32..127 BARI +X207.. rd_stb(32).. wt_stb(32)... ctl_reg(32)...
BARI + X”7F”.. rd_stb(127) wt_stb(127) ctl reg(127)

Table 1: ii_cmd_reg Memory Map

The memory decoding for the command channel is relative to BAR1 of the PCI mapping for the XMC. Since the registers are
32-bit, the decodings are spaced 4 apart in the memory map.

X3-SD16 FrameWork Logic User Guide

152

Innovative Integration

Important Implementation Note:

It is recommended that the compile tools be allowed to ignore hierarchy on this component so that unused registers are

optimized out. Most registers are sparsely populated, so this results less logic.

rstn | Registers —eg
array
A
aout[31:0]
crmd_fox By Serial Controls and Ejdougst;l.[]]
Cmg_g”‘ix — Port ——®= Address | —® .
cmd_ax 2etedling rd_stb_dec[127:0]
Y wir_sth_dec[127:0]
crnd_rdy
cmd_fsr Ty Serial
cd_clkr g | X S€ME status[31:0]
crd_dr Port

Figure 61.ii_cmd_reg Component

X3-SD16 FrameWork Logic User Guide

153

Innovative Integration

Port Direction Function

Rstn in System reset, active low

clk In System clock

cmd_clkx In command transmit clock from PCI interface controller
cmd _dx In command transmit data from PCI interface controller
cmd fsx In command transmit frame from PCI interface controller
cmd_clkr Out command receive clock to PCI interface controller
cmd _dr Out command receive data to PCI interface controller
cmd_fsr Out command receive frame to PCI interface controller
aout[31:0] Out command address

dout[31:0] Out command data

wt_stb Out command write strobe

rd_stb Out command read strobe

wt_stb_dec[127:0] Out write strobe decodes

rd_stb_dec[127:0] Out read strobe decodes

ctl reg Out array of control registers, see 'ii_x3_pkg.vhd'
status[31:0] In Read data input

cmd rd rdy In Read ready. Read completes when this is true.

Table 74. ii_cmd_reg Component Ports

X3-SD16 FrameWork Logic User Guide 154

Innovative Integration

ii_data_mover

Source files: ii_data mover.vhd

Description:

This component is used to move data in a system, usually between two FIFOs. The component calculates the amount of
data to move by comparing the amount of data in the source FIFO to the space available in the destination FIFO
(TO_FIFO_THRESH - to_fifo_count) and moves the LESSER of the two.

When the from FIFO has enough data, as indicated by the from_FIFO_count, the data flow state machine generates the
control signals to read from the from FIFO and write to the to FIFO. The data width is specified by the data width generic
and must be equal on both data paths.

FIFQ ——mlii data mover—m FIFO

Data mover moves data bebween two devices, such as FIFOs, using
How cantral

The data mover component has two clocks of overhead per transfer. For example, a move of 8 points would require 10
clocks, or is 80% efficient.

X3-SD16 FrameWork Logic User Guide 155

Innovative Integration

ok ——
reset ——— Jn

to_FIFO_count

Data Flow

PrE— .
from_FIFO _rd State Machine = 0 FIFO wr

A

Frorm_FIFO count

fram_data_in ——————m DataPipe —— = to_data_out

Generics:
data_width
from_fifo_cnt_width
ta_fifo_depth
ta_fifo_cnt_width
to_fifo_thresh

Figure 62. ii_data_mover Component

Generic

Type Function

DATA_WIDTH

Integer | Width of the data path in bits, default = 16

FROM_FIFO_CNT_WIDTH

Integer | Width of the source FIFO count, count = 10

TO_FIFO_DEPTH

Integer | Size of the destination FIFO, default = 1024

TO_FIFO_CNT_WIDTH

Integer | Width of the destination FIFO count, count = 10

TO_FIFO_THRESH

Integer | Full threshold of the destination FIFO, default = 1000

Table 75. ii_data_mover Component Generics

X3-SD16 FrameWork Logic User Guide

156

Innovative Integration

Port Direction Function

clk In Clock input

reset In reset

from_fifo count(FROM_F IFO_CNT_ WIDTH-1 downto 0) In Source FIFO data count
to_fifo count(to FIFO CNT WIDTH-1 downto 0) In Destination FIFO data count
from_fifo rd Out Source FIFO read enable
to_fifo wr Out Destination FIFO write enable
from_data in(data width In Source data input

-1 downto 0)

to_data_out(data_width-1downto 0) Out Destination data output

Table 76. ii_data_mover Component Ports

X3-SD16 FrameWork Logic User Guide

157

Innovative Integration

ii_sram_intf

Source file: ii_sram_intf.vhd

Description:

This component provides an interface from the application logic to synchronous burst SRAM memories. These memory

devices are frequently used as buffer memory for logic applications.

The SBSRAM controller interface component supports a 20-bit address bus and 32-bit data path. The user interface is
requires a clock, 20-bit address, read/write control for the device, and data if writing. The component does the transaction
with the device. Continuous accesses to the RAM are allowed. The address should be loaded each cycle with the data.

Clk

reset CIK s

addr[19: 0] — = Address Path ——————» sal190]

data_in[15:0] —I-{)utput data F’atl“/>l>*—"“ do[19:0]
ge! Ty ce
wie ——-—| Controls Timing - r_win

dvalid g ‘

ae n

data_out{15:0] «—{ Input data Path |=

These

signals — g e n[3:01]
driven

Ity iR —— adv_Id

the logic

X3-SD16 FrameWork Logic User Guide

158

Innovative Integration

Port Direction Function

reset In Asynchronous reset.

addr[19:0] In SBSRAM address

clk In Clock. All signals are synchronous to this clock. The SRAM runs at this
clock rate.

din[data_bits-1 downto 0] In Input data bus.

rd In Read enable input

we In Write enable input

dvalid Out Data is valid on the output bus when true.

dout[data_bits-1 downto 0] Out Output data bus.

sa[19:0] Out SBSRAM address bits

ce Out SBSRAM chip enable

s _clk Out clock to SBSRAM

r_wn Out SBSRAM read/write(low) control

adv_Id Out SBSRAM synchronous address advance/load(low)

bwe_n[3:0] Out SBSRAM Byte enables. Bit 0 controls byte 0 (bits 7..0) and so forth.

oe n Out SBSRAM output enable, active low.

dq[15:0] Inout SBSRAM data bus

Figure 64. ii_sram_intf Component Ports

The SRAM device is Cypress CY7C1383 (or equivalent) device simulation model is cy7c1383d.vhd. Each X3 SD or SDF
module has 2 of these SRAMs that both use this component for control. The SRAM used for data buffering uses this
component for its low-level interface to the SRAM under its ii_mq_sram multi-queue data buffer control.

The maximum clock rate is 80 MHz for X3 modules. The clock must be free-running.

The data path to the X3 SBSRAM is 16-bits. The generic data_bits is specified in the ii_x3 pkg package.

Using ii_sram_intf

Read and write accesses to the SRAM are shown below. Both reads and writes may be bursts of addresses, non-sequential in
memory. The accesses may be back-to-back since the SRAM is ZBT (Zero Bus Turnaround) capable. Data read from the
SRAM has a 4 clock latency. When the data is valid from a read, the dvalid signal is true. All signals are synchronous to the
clock.

X3-SD16 FrameWork Logic User Guide 159

Innovative Integration

rd f\

o S UYL UL U

e

sa[19:0] [addr1 Jaddr2]

}

dr3hc

drd]

ta3

ita]

data_in[15:0]

dvalid

data_out[15:0]

[da

tal |

ata? |

Figure 65. ii_sram_intf Access Timing

X3-SD16 FrameWork Logic User Guide

160

Innovative Integration

ii_ sram32 _intf

Source file: ii_sram32_intf.vhd

Description:

This component provides an interface from the application logic to synchronous burst SRAM memories. These memory
devices are frequently used as buffer memory for logic applications.

The SBSRAM controller interface component supports a 19-bit address bus and 32-bit data path. The user interface is
requires a clock, 20-bit address, read/write control for the device, and data if writing. The component does the transaction
with the device. Continuous accesses to the RAM are allowed and the address should be loaded each cycle with the data.
Reads from the SRAM are 4 cycles latent and data is returned with a valid (dvalid) for each read.

clix
- = — e 5_
reset clk sl

addr[18:0] _ » Address Path ——————— sal18:0]

data_in21:0] —wDyutput data patrJ%_.. dq[12:0]

s g ce
ws —————»Controls Timing %—p Fwn
oe_n
Avalid g ‘
data_out[31:0] «— |NpuUt data Path =
These
signals — e e n[3:0]
driven
lowy i ——p adv_Id
the logic

Figure 66. ii_sram32_intf Component

X3-SD16 FrameWork Logic User Guide

161

Innovative Integration

Port Direction Function

reset In Asynchronous reset.

addr[18:0] In SBSRAM address

clk In Clock. All signals are synchronous to this clock. The SRAM runs at this
clock rate.

din[31:0] In Input data bus.

rd In Read enable input

we In Write enable input

dvalid Out Data is valid on the output bus when true.

dout[31:0] Out Output data bus.

sa[18:0] Out SBSRAM address bits

ce Out SBSRAM chip enable

s _clk Out clock to SBSRAM

r_wn Out SBSRAM read/write(low) control

adv_Id Out SBSRAM synchronous address advance/load(low)

bwe_n[3:0] Out SBSRAM Byte enables. Bit 0 controls byte 0 (bits 7..0) and so forth.

oe n Out SBSRAM output enable, active low.

dq[31:0] Inout SBSRAM data bus

Table 77. ii_sram32_intf Component Ports

The SRAM device is Cypress CY7C1371 (or equivalent) device simulation model is cy7c1371kd.vhd. Each X3 module,
except X3-SD and X3-SDF, has 2 of these SRAMs that both use this component for control. The SRAM used for data
buffering uses this component for its low-level interface to the SRAM under its ii_mq_sram32 multi-queue data buffer
control.

The maximum clock rate is 100 MHz for X3 modules. The clock must be free-running.

The data path to the X3 SBSRAM is 32-bits. The generic data_bits is specified in the ii_x3 pkg package.

Using ii_sram32_intf

Read and write accesses to the SRAM are shown below. Both reads and writes may be bursts of addresses, non-sequential in

memory. The accesses may be back-to-back since the SRAM is ZBT (Zero Bus Turnaround) capable. Data read from the

SRAM has a 4 clock latency. When the data is valid from a read, the dvalid signal is true. All signals are synchronous to the

clock.

X3-SD16 FrameWork Logic User Guide

162

Innovative Integration

rd f\

o S UYL UL U

e

sa[15:0] [addr1 Jaddr2]

}

dr3hc

drd]

ta3

ita]

data_in[31.0]

dvalid

data_out[31:0]

[da

tal |

ata? |

Figure 67. ii_sram32_intf Access Timing

X3-SD16 FrameWork Logic User Guide

163

Innovative Integration

ii_packetizer

Source file: ii_packetizer.vhd

Description:

The packetizing component forms data streams into packets by attaching a header to a data payload. The primary use of these
packets is to transfer data to the host using the Velocia PCI controller. Each data packet has a two word header, 32-bits each,
preceding the data. The packets are programmable in size and for their other routing information.

During operation, the packetizer scans the number of input channels and in a round robin and creates packets for the channels
that are ready. Each channel has its packets built with the header information for that channel and the data payload attached
to the header. The packet is transmitted as it is built to the destination, there is no data storage in the packetizing component.

clk —————» Setup Info
number of channels
packet sizes
destinations

source_ready i cest_ready =
Data Source Diata Destination
o | Facketizing [e
™ State Machine [Data Destination

y

! Data |
Datain — ™| Pipelne [—m Data out :

| |
| \ |
Diata Destination

Figure 68. ii_packetizer Block Diagram

The component reads data from num_channels of data sources for the packet size given and gives out a packet with a
header. The data width is specified by data width; input and output are identical in size. The data sources must provide data
continuously when channel rd() is true; the data destinations must sink data continuously when the channel wr() is true. The
status of the source and destination devices is required by the sre_rdent() and dest_wrent() to allow the data movement to
occur. No movement occurs if adequate room for the packet is not available. Sources and destinations for the packetizer are
usually FIFOs in the logic, as in the FrameWork Logic.

Format of the packet is a two dword header, followed by a data payload. The header format is

X3-SD16 FrameWork Logic User Guide 164

Innovative Integration

bits[31:24] = peripheral device number
bits[23:0] = packet size including header in dwords

dword = 32 bit word

Clk, ———— ™
reset
channel_packet_size ——#= ———» channel_rd
channel_dest — o ————® channel_wr
- Packetizing head -
= : —
channel_en State Machine eadler
dest_rdy — ™ — ™ chan_sel
src_rdy — ™ ™ header_sel
. Data
Data_in — ™| Pipeline | L= Data_out

Figure 69. ii_packetizer Component

Generic Type Function

max_packet_size Integer The maximum size of a packet, default= 8

Table 78. ii_packetizer Generic Ports

X3-SD16 FrameWork Logic User Guide

165

Innovative Integration

Port Direction Function

reset In Asynchronous reset

clk In System clock

data_in In Channel data input bus; width is defined in ii_x3 pkg.vhd
data_out Out Channel data output bus; width is defined in ii_x3 pkg.vhd
channel en In Channel enables vector (num_channels-1 downto 0)

channel dest In Channel destinations vector (num_channels-1 downto 0)
channel packet_size In The array of packet sizes for each channel

src_rdy In source FIFO ready vector (num_channels-1 downto 0)
dest_rdy In destination FIFO ready vector (num_channels-1 downto 0)
channel rd Out channel source FIFO read vector(num_channels-1 downto 0)
channel wr Out channel destination FIFO write vector (num_channels-1 downto 0)
header Out packet header out (data_width-1 downto 0)

chan_sel Out channel mux selects (mux_addr_width-1 downto 0)
header_sel Out channel mux header select

Table 79. ii_packetizer Component Ports

X3-SD16 FrameWork Logic User Guide 166

Innovative Integration

ii_deframer

Source file: ii_deframer.vhd

Description:

This component is used to receive packets route them to destination in the logic. The number of devices in the system is
defined in the ii_x3_pkg package file as num_pd. Packets can be up to 2* in size, including the 2 word header.

The deframer component parses incoming packets and routes them to the peripheral device number (PDN) embedded in the
header. Data is pulled from the source FIFO, is stripped of its header, and written to a destination device. Packets must have
a two-word header followed by the data payload.

Dword # Description

0 Header 1: PDN (bits 31..24) & Packet Size N (bits 23..0)
1 Header 2: 0x00000000

2..N data

The deframer uses the PDN to route the packet data payload to the specified system device. The 8-bit PDN is specified in the
logic design to equate to a physical device by defining the mapping of the PDN to the destination devices. The pd_addr
array defines the PDN of each physical device so that for example pd_addr(0) defines the PDN used by physical device 0.

The header also gives the packet size for the deframer to use in data movement. The deframer state machine read the packet
header and then transfers the data payload to its destination as defined by the PDN mapping. The state machine is idle until a
minimum packet size is received (at least 6 words), then pulls off the two header words. The packet size, taken from the first
header word, is then used to move the data points, as available from the source to the destinations. This data moves are done
by computing the maximum move that can be performed which is the minimum of the number of points in the source, how
much space is available in the destination, and the number of points remaining in the packet. This process is repeated until
the points are all moved for the packet.

Most implementations use FIFOs for the source and destination of the data. This allows the deframer to efficiently service
multiple devices and decouple their data flow requirements.

X3-SD16 FrameWork Logic User Guide 167

Innovative Integration

cdk —————™ Setup Info
number of periph devs
rdentAwrent widths

H dest_wrcnt s
Data Destination
source rdent
- | Deframer | =
State Machine | Data Destination

Data in Data
Data Source Fipeline | — Data out :
\ ;

Figure 70. ii_deframer Component

Port Direction Function

reset In Asynchronous reset

sys_clk In System clock

pd_addr In peripheral device numbers for decoding
src_rd Out Source read enable

src_rdent In Points available at the source

data_in In Data input bus (32 bits)

dest_wr Out Destination write enable

dest_wrent In Destination write count

data_out Out Data bus output (32-bits)

new_packet Out A new packet header is being parsed (used for debug)

Table 80. ii_deframer Component Ports

X3-SD16 FrameWork Logic User Guide 168

Innovative Integration

ii_alerts

Source files: ii_alerts.vhd, fifo 1k x32 vld.vhd

Description:

The alert component is used to monitor critical system events, such as triggering events, and report the time these
occurrences to the system. This is done by monitoring error indicators (alert signals) in the logic and generating a packet to
the host for each alert. In most cases, these packets are rare and are used for data acquisition process management.

The ii_alert component monitors input alerts and looks for rising edges on the enabled alerts. An enable for each alert is
provided on the alert_enable inputs which correspond to the alerts on a bit-by-bit basis. When enabled, a rising edge indicates
an alert is signaled and the logic then generates a packet indicating which alerts were triggered, the system time it was
triggered and a status word for each alert. The status words can be anything of interest, the logic just puts these into the
packet.

The system time is from a 32-bit counter clocked by the sample rate (fs_clk) clock. This time stamp is included in each
packet indicating when an alert occurred. A time stamp rollover can generate an alert allowing software extension of the
system time counter.

Ecdge
Alerts
(3?_0) Detect

Packet
Generator [Timestamp
Alert Data ___ —= [y 32-bit

Array Machine

FIFO
1Kx32

Figure 71. ii_alerts Component

Alert Data Format
The alert data messages are timestamped using a 32-bit counter running off the sample clock, showing the time that the alert
occurred. Multiple alerts can be active for each alert packet as reported in the alerts signaled field of the packet.

X3-SD16 FrameWork Logic User Guide 169

Innovative Integration

Dword # Description

Alerts Signaled

Timestamp

0

Software Word

temp_sensor_error & temp_error & "00" & X"000" & temp_data;
temp_warning & "000" & X"000" & temp_data;
X"1303000" & "000" & pll_status_q(2); -- PLL lock status
0

0

0

10 X"1303000" & "000" & mq_overflow(0);

15..11 0

16 X"1303000" & adc_overrange

31..17 0

Table 81. ii_alerts Packet Format

[cRIEN NN RV A R S R R

e

The array of alert data is the status word that is included in the alert packet for each enabled alert. This 32-bit word can be
anything of interest and is included in the timestamped alert packet when any alert is triggered.

Adding New Alerts

To add new alert, it is recommended that one of the unused alerts be redefined. This reduces the amount of work required to
change the software support system. The new alert should have a rising edge trigger and an alert message. The alert message
should be added to the alert data array at the same index as the alert. This message is a 32-bit word of any data that is
pertinent to the alert.

Heres a little code snippet:
Alert(7) <= new_alert;
alert_data(7) <=new_alert message;
The new alert will now appear in the alert data packet at alert 7.

The alert component is usually followed by a packetizing component, such as ii_packetizer, since the alert information is sent
to the host. The PCle controller on the X3 XMCs requires a specific header format that is added by the packetizer.

X3-SD16 FrameWork Logic User Guide 170

Innovative Integration

alert_enable(num

_alerts-1 ..0) }

alerts(num_alerts - Edge
-1..0) Detect
timestamp_run
¥ ‘
Aot d A Packet
ert_d Array :
(num_alerts-1 ..0)(31..0) Geg;;ztor -t Tln;ezs’éeiltmp

Machine
Alert_busy J
timestamp_rollover

FIFO ——— Alert_fifo_rdent(9..0)

1Kx32 ‘_I— Alert_fifo_rd

Alert_fifo_rst —————

Clk, reset, = —=
ce

———————————® Alert_dout(31..0)

Figure 72. ii_alerts Component

The alert log is intended for occasional use in the system. There is an output FIFO to allow easy integration with the system
logic. If an alert signaling at a high rate however, this can overwhelm the system. Alerts are not missed in this case unless
the FIFO fills. If the FIFO fills the alert will remain pending until there is room in the FIFO for another alert packet. If the
active alerts signal again when the FIFO is full however, only the first occurrence is signaled. A busy output from the and
fifo read count are provided to monitor the status as necessary.

X3-SD16 FrameWork Logic User Guide 171

Innovative Integration

Port Direction | Function

clk In clock

ce In Clock enable

reset In reset

alert d(num_alerts -1 ..0)(31..0) In Array of status words for the alert packet. The dimension is defined in
ii_x3 pkg for num_alerts.

alert(num_alerts -1..0) In Alert signal inputs. The component monitor these signals for a rising
edge.

alert_enable((num_alerts -1 ..0) In Enable mask for the alerts. Each bit corresponds to the alert inputs.

timestamp_run In Time stamp run enable. The time stamp is reset to 0 when false.

timestamp_rollover Out The timestamp counter rolled over. Used for software extending the
counter.

alert_dout[31..0] Out Alert data output

alert_fifo rd In FIFO read enable

alert_fifo rdent[9..0] Out FIFO read count

alert_fifo rst In Reset the FIFO

alert busy Out The alert state machine is busy when true.

Table 82. ii_alerts Component Ports

X3-SD16 FrameWork Logic User Guide 172

Innovative Integration

ii_mq _sram

Source files: ii_mq_sram.vhd, ii_sram_intf.vhd

Description:

** NOTE: This component is only used on X3-SD and X3-SDF. For all other X3 modules, see ii_mq_sram32.**

This component creates multiple data queues using an SRAM buffer memory. Each queue is independently managed
to give the functional equivalent of multiple FIFOs. The number of queues, depth of each queue and
performance can be optimized for various application requirements. In case of a single queue, the data buffer
behaves like a single FIFO with depth of 1Mx16.

The ii_mq_sram component implements a multi-queue data buffer as shown in the following block diagram. Each
queue has a 1K input and output FIFO implemented in using an FPGA blockRAM that is connected to the buffer
memory controller. The input and output FIFOs provide the immediate data buffering between the

Multi-Queue Data Buffer

Controller ’7
| el I ol i e/m

ElEE) FIFO

P 1K 1K -
32b inf 32b inf
32b out 32b out

SRAN
1216

Figure 73. Multi-queue SRAM Component Simplified Block Diagram

controller and the system and are the interface to the system logic. Data flow to and from the multi-queue is paced on
the levels of the input and output FIFOs.

X3-SD16 FrameWork Logic User Guide 173

Innovative Integration

The controller is responsible for moving data from the input FIFOs to the queue in buffer memory and from the buffer
memory to the output FIFO. The data movement controller polls each input FIFO and moves data from an input FIFO to
the buffer memory, and retrieves data to the queue output FIFO as space permits. Data movement is paced by the
availability of data in the input FIFO and space in the output FIFO for each queue, as indicated by the FIFO write count for
input and read count for output.

Controls for queue priority and flow control allow the controller to manage multiple queues at high data rates with efficiency
of about 95%. An error flag to the system indicates when a queue overflows.

Memory Interface

The multi-queue data buffer uses an SBSRAM device, IMx16, for memory. This is a ZBT device and supports data rates of
up to 120 MB/s. The memory interface component is ii_sram_intf which provides the low level address, data and control
signal timing to communicate with the SBSRAM. The controller provides the read/write addresses and data to the
ii_sram_intf component, which performs the accesses to the external SRAM device.

Changes to the multi-queue buffers, such as the number or size of the queues, do not require changes to the SRAM interface
component. These changes are made in the ii_mgq_sram controller code.

Buffer Status
The number of points (32-bit words) in each queue is the sum of the number of points in the SRAM plus the output FIFO
counts. The queue counts are provided in the mq_cnt output array as 21 bit numbers.

The overflow flags indicate that a queue has potentially overflowed. The overflow flag indicates that either the input FIFO
was full when written to, or that the queue is full. If the mq_ififo_rdy[] flow control signal for each queue is used, overflow
should not occur unless the data rate exceeds the system capability. Overflow flags are also used as inputs to the alert log so
that system messages are generated when buffer overflows occur.

Data Rates and Pacing

Data pacing control signals for flow control are mq_ififo_rdy[], mq_wr_cnt[] and mq_rdent[]. The mq_ififo_rdy|(]
signal indicates that the input FIFO is less than FIFO_AF (default value is X”1E0” 32-bit words). The mq_rdent[] and
mq_wrent[] arrays from each FIFO indicate the number of points in the output FIFO available for immediate
consumption and number of points in the input FIFO.

Data rates for reads and writes to any queue are limited by several factors including the clock rate, data path width, and
priority configuration. The controller has some overhead, amounting to about 10% of the available time used for queue
management. Here is an approximate equation, followed by some actual measured rates.

storage rate = sys_clk * (data width in bytes)/point * .90 efficiency

Throughput Rate = storage rate / 2

X3-SD16 FrameWork Logic User Guide 174

Innovative Integration

Platform SRAM SRAM Max Rate on Number of Priority Direction Max
data Clock any Queue Queues in Throughput
path Rate (MB/s) FrameWork Rate (MB/s)
width (MHz) Logic

X3-SDF 16 bits 67 134 1 Store 67

(Write to SRAM)

X3-SD 16 bits 67 134 1 Store 67
(Write to SRAM)

Table 83. ii_mq_sram Data Rates Summary

The rates quoted for the various platforms are for the FrameWork logic as delivered. The clock rates may be modified in
custom applications, but cannot exceed 100 MHz because of the SRAM access speeds.

Queue Priority Control
The controller services the queues in a round-robin so that all queues have equal performance under most loading conditions.
The FIFOs for each queue are inspected and data is moved if possible.

It is desirable in many systems to give priority to one direction, either storage to the queue or fetching from the queue, to
improve real-time performance of the system. For example, data sourced from an A/D to be stored in the queue must be
stored in time or lost forever, so a write priority would be preferred for this queue. The priority _select wr0 rdl vector allows
the application to specify the priority direction for each queue. For write direction ('0'), the controller stores data from the
input FIFO to SRAM if any is available. If no data is in the input FIFO, then it can perform a fetch from SRAM if space is
available in the output FIFO. The read direction works similarly, forcing the controller to service the output FIFO first before
input.

As the input FIFOs near overflow condition, the multi-queue controller will begin to service the queues on an crisis basis to
prevent data loss if at all possible. If any FIFO exceeds its priority threshold for the priority direction, then the controller
immediately services that FIFO. If the queue space permits, then the controller will move data for that queue immediately. If
no space is available, the controller will move to the next queue. Once the crisis is averted, the controller resumes equal
priority queue servicing.

X3-SD16 FrameWork Logic User Guide 175

Innovative Integration

mg_reset *
li wt file
mo_wr(—~- rd file
mog_din(J[150] ——m= G |3
my_wrcnt([B0] - FIFDs -
i 1K Controller
mo_ififa_rdy() -
dat_in_rdy() ~et—]
F 3

teset — W
clk —

Number of Queues = num_gueues

| —i= o _rdcnt()[5:0]

Output Log— dat_out_rdi 1[31:0]

FIFOs — - g _dout(3[31..0]
1kx32

L mg_dout_valid()

h 4

External
SR AR
Memory
Device

mogram_clk

Mg ram_ce
mgram_ady_|d
PG ram_F_wn
mgram_bwe[1:0]
mgram_ae_n
mogram_sa[19:0]
g ram_dg[15:0]

Figure 74. ii_mq_sram Component

Changing the Queue Size

To change the queue size, the controller code must be modified. In the code, the queue size is defined by the arrays
queue_start and queue_size. The queue_start is where in buffer memory the each queue begins. This is the address bits
19..16, so a 1 means that the queue starts at X’10000” in SRAM. The queue size defines how big the queue is in 16-bit
words. The maximum queue_size is X“FFFFF” for the 1Mx16 SRAM on X3 SD and SDF modules.

queue_start generate : for i in 0 to num_queues generate
queue_start(i) <=x"0" when (i = 0) else
x"8" when (i=1) else
x"f";
end generate;

queue_size generate : for i in 0 to num_queues generate
queue_size(i) <= X"80000";
end generate;

The queues can be different sizes but must be at least 0x10000 (64KW).

X3-SD16 FrameWork Logic User Guide

176

Innovative Integration

Changing the Number of Queues
The number of queues is set by the num_queues generic. A maximum of 16 queues is supported. You must also change the
code to specify the queue_start and queue_size constants to describe each queue size.

Four blockrams are required for each queue that is created.

Generic Function

num_queues Sets the number of queues generated by the component. Default is 1.

Port Direction Function

reset In reset

clk In System clock.

mgq_reset(num_queues-1 downto 0) In Queue resets

mq_wr(num_queues-1 downto 0) In Queue write enables

mq_din In Data input array, 16-bit path, defined inii x3 pkg

mq_rd(num_queues-1 downto 0) In Queue read enables

mq_dout In Data output array, 16-bit path, defined in ii_x3 pkg

mq_dout valid[num_queues-1 :0] Out Output data valid for each queue

mq_wrent Out Input FIFO array counts, 8..0 defined in ii_x3 pkg

mgq_rdent Out output FIFO array counts, 9..0 defined in ii_x3 pkg

mq_cnt Out Array of number of points in each queue, defined in
il x3 pkg

mq_overflow(num_queues-1 downto Out Queue overflow indicators.

0)

mgq_ififo_rdy(num_queues-1 downto 0) | Out Indicates that the input FIFO for that queue has less than
FIFO_AF points . (default is X”’1E0”)

mqram_clk Out SRAM clock output

mqram_ce Out SRAM chip enable.

mqram_adv_1d Out SRAM address advance/load control. Set to '0' so addresses
are always loaded.

mqgram r wn Out SRAM read/write.

mqram_bwe(1 downto 0) Out SRAM byte write enables, set to “00”

mqram_oe n Out SRAM output enable, active low.

mgqram_sa(19 downto 0) Out SRAM address bus.

mqram_dq(15 downto 0) InOut SRAM data bus.

priority_select wr0_rd1(num_queues-1 | In Select read or write priority for each queue. 0 = write

downto 0) priority.

priority threshold Out Array of FIFO thresholds for priority determination. Array
defined in ii_x3 pkg

Table 84. ii_mq_sram Component Ports

X3-SD16 FrameWork Logic User Guide 177

Innovative Integration

ii_ mq sram32

Source files: ii_mq_sram32.vhd, ii_sram32_intf.vhd

Description:

** NOTE: This component is used on on all X3 modules except X3-SD and X3-SDF. For X3-SD and X3-SDF
modules, see ii_mq_sram.**

This component creates multiple data queues using an SRAM buffer memory. Each queue is independently managed
to give the functional equivalent of multiple FIFOs. The number of queues, depth of each queue and
performance can be optimized for various application requirements. In case of a single queue, the data buffer
behaves like a single FIFO with depth of 512Kx32.

The ii_mq_sram32 component implements a multi-queue data buffer as shown in the following block diagram. Each
queue has a 1K input and output FIFO implemented in using an FPGA blockRAM that is connected to the buffer
memory controller. The input and output FIFOs provide the immediate data buffering between the

Multi-Queue Data Buffer

Controller li
FIFO FIFO

— 1K -
32b inf 32b inf
22b out 22bout

'

SRANM
512Kx32

Figure 75. Multi-queue SRAM 32-bit Component Simplified Block Diagram

X3-SD16 FrameWork Logic User Guide 178

Innovative Integration

controller and the system and are the interface to the system logic. Data flow to and from the multi-queue is paced on
the levels of the input and output FIFOs.

The controller is responsible for moving data from the input FIFOs to the queue in buffer memory and from the buffer
memory to the output FIFO. The data movement controller polls each input FIFO and moves data from an input FIFO to
the buffer memory, and retrieves data to the queue output FIFO as space permits. Data movement is paced by the
availability of data in the input FIFO and space in the output FIFO for each queue, as indicated by the FIFO write count for
input and read count for output.

Controls for queue priority and flow control allow the controller to manage multiple queues at high data rates with efficiency
of about 95%. An error flag to the system indicates when a queue overflows.

Memory Interface

The multi-queue data buffer uses an SBSRAM device, 512Kx32, for memory. This is a ZBT device and supports data rates
of up to 333 MB/s. The memory interface component is ii_sram32_intf which provides the low level address, data and
control signal timing to communicate with the SBSRAM. The controller provides the read/write addresses and data to the
ii_sram32_intf component, which performs the accesses to the external SRAM device.

Changes to the multi-queue buffers, such as the number or size of the queues, do not require changes to the SRAM interface
component. These changes are made in the ii_mq_sram32 controller code.

Buffer Status
The number of points (32-bit words) in each queue is the sum of the number of points in the SRAM plus the output FIFO
counts. The queue counts are provided in the mq_ecnt output array as 20 bit numbers (size is defined in ii_x3 pkg.vhd).

The overflow flags indicate that a queue has potentially overflowed. The overflow flag indicates that either the input FIFO
was full when written to, or that the queue is full. If the mq_ififo_rdy[] flow control signal for each queue is used, overflow
should not occur unless the data rate exceeds the system capability. Overflow flags are also used as inputs to the alert log so
that system messages are generated when buffer overflows occur.

Data Rates and Pacing

Data pacing control signals for flow control are mq_ififo_rdy[], mq_wr_cnt[] and mq_rdent[]. The mq_ififo_rdy]]
signal indicates that the input FIFO is less than FIFO_AF (default value is X”1E0” 32-bit words). The mq_rdcnt[] and
mq_wrent[] arrays from each FIFO indicate the number of points in the output FIFO available for immediate
consumption and number of points in the input FIFO.

Data rates for reads and writes to any queue are limited by several factors including the clock rate, data path width, and
priority configuration. The controller has some overhead, amounting to about 10% of the available time used for queue
management. Here is an approximate equation, followed by some actual measured rates.

storage rate = sys_clk * (data width in bytes)/point * .90 efficiency

Throughput Rate = storage rate / 2

X3-SD16 FrameWork Logic User Guide 179

Innovative Integration

Platform SRAM SRAM Max Rate | Number of Queue | Priority Direction Max
data Clock on any Queues in Sizes Throughput
path Rate Queue FrameWork Rate (MB/s)
width (MHz) (MB/s) Logic

X3-Servo 32 bits 107 428 2 IMB Store 428

each (Write to SRAM for A/D data)

X3-10M 32 bits 83.33 333 1 2MB Store 167
(Write to SRAM for A/D data)

X3-A4D4 32 bits 107 428 2 IMB Store 214
each (Write to SRAM for A/D data)

X3-DIO 32 bits 107 428 2 IMB Store 214
each (Write to SRAM for A/D data)

X3-25M | 32bits | 107 428 2 IMB | Store 214
each (Write to SRAM for A/D data)

Table 85. ii_mq_sram32 Data Rates Summary

The rates quoted for the various platforms are for the FrameWork logic as delivered. The clock rates may be modified in
custom applications, but cannot exceed 133 MHz because of the SRAM access speeds.

Queue Priority Control
The controller services the queues in a round-robin so that all queues have equal performance under most loading conditions.
The FIFOs for each queue are inspected and data is moved if possible.

It is desirable in many systems to give priority to one direction, either storage to the queue or fetching from the queue, to
improve real-time performance of the system. For example, data sourced from an A/D to be stored in the queue must be
stored in time or lost forever, so a write priority would be preferred for this queue. The priority_select wr0_rd1 vector
allows the application to specify the priority direction for each queue. For write direction ('0"), the controller stores data
from the input FIFO to SRAM if any is available. If no data is in the input FIFO, then it can perform a fetch from SRAM if
space is available in the output FIFO. The read direction works similarly, forcing the controller to service the output FIFO
first before input.

As the input FIFOs near overflow condition, the multi-queue controller will begin to service the queues on an crisis basis to
prevent data loss if at all possible. If any FIFO exceeds its priority threshold for the priority direction, then the controller
immediately services that FIFO. If the queue space permits, then the controller will move data for that queue immediately. If
no space is available, the controller will move to the next queue. Once the crisis is averted, the controller resumes equal
priority queue servicing.

X3-SD16 FrameWork Logic User Guide 180

Innovative Integration

mo_reset * —

—i= o _rdcnt()[5:0]
Log— dat_out_rdi 1[31:0]

Output
FIFOs — - g _dout(3[31..0]
li wit file Tkx32
ma_wr) rd file
mog_din(J[150] ——m= G |3
my_wrcnt([B0] - FIFDs - = g _dout_valid()
1K Controller

mo_ififa_rdy() -
dat_in_rdy() -—]

External
SR AR
Memory
- Cevice

reset ™ rrgram_clk
mgrarm_ce
clk —» mgram:adv_ld
Mg rarm_t_wh
mgram_bwe[1:0]
mgrarm_oe_n
mogram_sa[19:0]
g ram_dg[15:0]

h 4

Number of Queues = num_gueues

Figure 76. ii_mq_sram32 Component

Changing the Queue Size

To change the queue size, the controller code must be modified. In the code, the queue size is defined by the arrays
queue_start and queue_size. The queue_start is where in buffer memory the each queue begins. This is the address bits
19..16, so a 1 means that the queue starts at X’10000” in SRAM. The queue size defines how big the queue is in 16-bit
words. The maximum queue_size is X“FFFFF” for the 512Kx32 SRAM on X3 modules.

queue_start generate : for i in 0 to num_queues generate
queue_start(i) <= x"0" when (i = 0) else

x"4" when (i=1) else

X"7”;
end generate;
queue_size generate : for i in 0 to num_queues generate
queue_size(i) <= "111" & X"FFFF" when (num_queues = 1) else -- all of sram

"011" & X"FFFF" when (num_queues = 2) else -- half of sram
"001" & X"FFFF" ;

end generate;

The queues can be different sizes but must be at least 0x10000 (64KW).

X3-SD16 FrameWork Logic User Guide 181

Innovative Integration

Changing the Number of Queues
The number of queues is set by the num_queues generic. A maximum of 16 queues is supported. You must also change the
code to specify the queue_start and queue_size constants to describe each queue size.

Four blockrams are required for each queue that is created.

Generic Function

num_queues Sets the number of queues generated by the component. Default is 1.

Port Direction Function

reset In Reset

mgq_reset(num_queues-1 downto 0) In Reset for individual queues

clk In System clock.

mq_wr(num_queues-1 downto 0) In Queue write enables

mq_din[31:0] In Data input array, 16-bit path, defined in ii_x3 pkg

mq_rd(num_queues-1 downto 0) In Queue read enables

mq_dout[31:0] In Data output array, 16-bit path, defined in ii_x3 pkg

mq_dout valid[num_queues-1 :0] Out Output data valid for each queue

mq_wrent Out Input FIFO array counts, 8..0 defined in ii_x3_pkg

mq_rdent Out output FIFO array counts, 9..0 defined in ii_x3 pkg

mq_cnt Out Array of number of points in each queue, defined in
ii_x3 pkg

mq_overflow(num_queues-1 downto Out Queue overflow indicators.

0)

mq_ififo_rdy(num_queues-1 downto 0) [Out Indicates that the input FIFO for that queue has less than
FIFO_AF points . (default is X”1E0”)

mq_sram_delay In Timing delay adjust for SRAM data path IOBs. Do NOT
modify.

mqram_clk Out SRAM clock output

mqram_ce Out SRAM chip enable.

mqram_adv_1d Out SRAM address advance/load control. Set to '0' so addresses
are always loaded.

mqgram r wn Out SRAM read/write.

mqram_bwe(1 downto 0) Out SRAM byte write enables, set to “00”

mqram_oe n Out SRAM output enable, active low.

mgqram_sa(18 downto 0) Out SRAM address bus.

mgqram_dq(31 downto 0) InOut SRAM data bus.

priority_select wr0_rd1(num_queues-1 | In Select read or write priority for each queue. 0 = write

downto 0) priority.

priority threshold Out Array of FIFO thresholds for priority determination. Array
defined in ii_x3 pkg

Table 86. ii_mq32_sram Component Ports

X3-SD16 FrameWork Logic User Guide 182

Innovative Integration

ii_trigger

Source file: ii_trigger.vhd

Description:

The ii_trigger component provides triggering control for data acquisition. The output of the component is a trigger signal
that is used to control data capture and storage and is usually driven into the trigger port of an A/D converter interface or
other 10 component. This allows the logic to acquire data as is needed by the specific application for processing and logging.

The ii_trigger component provides two methods for triggering: framed and unframed. In the framed mode, the trigger signal
goes false after programmable number of points, assuming that a data point is captured for each rising edge of the sample
clock. In unframed mode, the trigger output is true as controlled by the input triggers. The trigger is started by either the
sw_trig input or ext_sync input. These two signals are OR'ed together so that either one can begin a trigger. In the framed
mode, a rising edge on the trigger begins the frame. In unframed mode, the trigger is true simply whenever the OR'ed
signal is true.

The frame count is loaded as the number of points to be captured. The frame count has a maximum size of 2.

The trigger is either the external sync signal or the internal software controlled run signal, as selected by the trigger control
register for each channel. The external trigger may be disabled to prevent false triggering. The software trigger is may always
trigger the system even when the hardware trigger is true to allow the application to force a trigger condition.

This component should use the SAMPLE CLOCK for all logic so that the trigger is synchronous to the sampling. This is
required so that the number of samples in frame is counted correctly. The control signals to the component are usually NOT
on this clock domain, but rather on system clock domain. It is best to double-register all inputs crossing this domain so that
metastability is avoided.

reset——™

clk >

trig_sel[1:0]
run
ext_sync h J
sw_trig —» Edge Detect —» E;%gbelé = trigger

A

Y

frame_cnt{15:0] —* Counter

Table 87. ii_trigger Block Diagram

X3-SD16 FrameWork Logic User Guide 183

Innovative Integration

Port Direction Function
reset In reset
clk In Sample clock
sample en In Enable this trigger component for sampling. Synchronous to clk.
ext _sync In Trigger input, usually from an external signal.
sw_trig In “Software trigger” input. This signal is OR'ed with ext_sync to allow
software or logic to start/stop an acquisition.
run In Enable the trigger component to run.
trig_sel[1:0] In Trigger selections.
Bit 0 = trigger mode; '0' = unframed, '1' = framed
Bit 1 = ext trigger enable; '0' = disabled, '1' = enabled
frame_cnt[23:0] In Size of the frame to be captured.
Trigger Out Trigger output. This will fire each time a sample should be collected.
Trigger en Out The trigger is enabled. This signal is valid whenever the trigger is true.

When decimation is used, this signal is true when the decimation is
counting and when points are true.

Table 88. ii_trigger Component Ports

X3-SD16 FrameWork Logic User Guide

184

Innovative Integration

i _link

Source files: ii_link.vhd, fifo 1kx32 async vld.vhd

Description:

This component, when used with ii_link master, creates a 32-bit bidirectional data bus with flow control. On the X3
modules, this data link is used to move data from the PCI Express interface FPGA to the application logic. The link itself
does not require any data formating or specific packet structure.

The link provides an interrupt to the link master indicating that points are ready to be read or if any points can be transmitted
into the local FIFO. The link interrupt link_rd_intn indicates that data can be read by the master from the link read FIFO,
while the link_wr_intn indicates that space is available in the write FIFO to accept more data. Depending on the link_rw
direction control , the link drives the link_d data lines with the number of points that can be transferred.

After an interrupt from the link to the master, the link master then reads the number of points that can be transferred and
generates the control signals to the link allowing the points to move. The number of points transferred is the determined by
the number points the link can transfer and the number of points available in master FIFO. The link frame n indicates that at
transfer is in progress in the direction of as signaled by the link_rw.

The data phase of the transfer is indicated by the link_dp_n control signal. Data points are moved as a continuous burst by
the master. The maximum data rate of the link is about 220 MB/s for a 67 MHz clock. Since the link data path is
bidirectional, the link attempts to give equal time to each direction by balancing reads and writes.

X3-SD16 FrameWork Logic User Guide 185

Innovative Integration

~+— |ink_frame_n
[BSELE ik
L Fow | ¥ —— link.dp_n
Conig! * link_rd_intn
loopback ———» * [ink_wr_intn
Y
wren ——»
data_in — Write
. FIFO
wr_fifo_rdy ————
wr_cnt[9:0] «—— \l
14 H%, link_d[31:0]
rden ——» -
data out «—_ | Read |
- FIFO
rd_cnt[9:0]
i
fifo_rst

Figure 77. ii_link Block Diagram

X3-SD16 FrameWork Logic User Guide

186

Innovative Integration

Port Direction | Function

reset In System reset.

clk In Clock input

loopback In Loopback test for the link. Data is automatically written from the read FIFO to the write FIFO
when true.

wren In Write enable to the write FIFO. Data is stored to the FIFO on rising edges of clk when wren is
true.

data_in[31:0] In Input data bus from the logic.

wr_fifo_rdy Out Write FIFO has room for at least 16 points when true.

wr_cnt[9:0] Out Write FIFO count.

rden In Read enable to the read FIFO. Data is provided on rising edges of clk when rden is true.

data_out[31:0] Out Data from the link to the logic.

rd_cnt[9:0] Out Read FIFO count.

fifo_rst In Reset the FIFOs.

link d[31:0] Inout Link data bus. This is the data bus on the external connector.

link frame n In Link frame indicates that the master is accessing the link. Active low.

link rw In Link read(high)/write(low) direction control from the master.

link dp n In Link data phase indicator. Active low.

link rd intn Out Interrupt from the link to the master indicating the data is available for a read. Active low.

link wr_intn Out Interrupt from the link to the master indicating the data is data is needed by the link and can be

written into its FIFO. Active low.

Table 89. ii_link Component Ports

X3-SD16 FrameWork Logic User Guide

187

Innovative Integration

i _link2

Source files: ii_link2.vhd, fifo 1kx32 async vld.vhd

Description:

This component, when used with ii_link master, creates a 32-bit bidirectional data bus with flow control. On the X3
modules, this data link is used to move data from the PCI Express interface FPGA to the application logic. The link itself
does not require any data formating or specific packet structure.

The link provides an interrupt to the link master indicating that points are ready to be read or if any points can be transmitted
into the local FIFO. The link interrupt link_rd_intn indicates that data can be read by the master from the link read FIFO,
while the link_wr_intn indicates that space is available in the write FIFO to accept more data. Depending on the link_rw
direction control , the link drives the link_d data lines with the number of points that can be transferred.

After an interrupt from the link to the master, the link master then reads the number of points that can be transferred and
generates the control signals to the link allowing the points to move. The number of points transferred is the determined by
the number points the link can transfer and the number of points available in master FIFO. The link frame n indicates that at
transfer is in progress in the direction of as signaled by the link_rw.

The data phase of the transfer is indicated by the link_dp_n control signal. Data points are moved as a continuous burst by
the master. The maximum data rate of the link is about 220 MB/s for a 67 MHz clock. Since the link data path is

bidirectional, the link attempts to give equal time to each direction by balancing reads and writes.

The component provides separate clock domains for the system clock and link clock. For X3 modules, the link clock is 67
MHz, while system clock can be higher. (Clocks up to 112 MHz have been used.)

The separation of the link and system clocks is the difference between ii_link and ii_link2 components.

X3-SD16 FrameWork Logic User Guide 188

Innovative Integration

Control

loopback ———»

.
-
o
-

wren ———»

data_in ——__ . Vrite

wr_fifo_rdy «——-—— i
wr_cnt[9:0] +———

rden ———m

data_out <—_ | Read

-——— |ink_frame_n
N - —_
reset - kW
clk —=

Flow | © -~ link.dp_n

link_rd_intn
link_wr_intn

4 4.%, link_d[31:0]

FIFO |~
rd_cnt[9:0]

e

fifo_rst

Figure 78. ii_link2 Block Diagram

X3-SD16 FrameWork Logic User Guide

189

Innovative Integration

Port Direction | Clock | Function

reset In - System reset.

link clk In Clock input for link (67 MHz)

sys_clk In Clock input for system

loopback In sys_clk Loopback test for the link. Data is automatically written from the read FIFO to the write
FIFO when true.

wren In sys_clk WriteAenable to the write FIFO. Data is stored to the FIFO on rising edges of clk when
wren 1s true.

data_in[31:0] In sys_clk Input data bus from the logic.

wr_fifo rdy Out sys_clk Write FIFO has room for at least 16 points when true.

wr_cnt[9:0] Out sys_clk Write FIFO count.

rden In sys_clk Read enable to the read FIFO. Data is provided on rising edges of clk when rden is true.

data_out[31:0] | Out sys_clk Data from the link to the logic.

rd_cnt[9:0] Out sys_clk Read FIFO count.

fifo_rst In sys_clk Reset the FIFOs.

link_d[31:0] Inout link_clk Link data bus. This is the data bus on the external connector.

link frame n In link clk Link frame indicates that the master is accessing the link. Active low.

link rw In link clk Link read(high)/write(low) direction control from the master.

link dp n In link clk Link data phase indicator. Active low.

link rd intn Out link clk Interrupt from the link to the master indicating the data is available for a read. Active
low.

link wr_intn Out link clk Interrupt from the link to the master indicating the data is data is needed by the link and
can be written into its FIFO. Active low.

Table 90. ii_link2 Component Ports

X3-SD16 FrameWork Logic User Guide 190

Innovative Integration

ii_pll spi

Source files: ii_pll spi.vhd

Description:

This component is the SPI serial port interface to the AD9510 PLL and clock distribution device. This SPI port provides the
control and status information to the AD9510. All initialization for the AD9510 is performed through this port.

The PLL communicates only in bytes for this logic component. Bit 23 specifies a read or write cycle. The address field
specifies the PLL register address. The first two bytes of the SPI word are transmitted to the PLL followed by the data byte
for writes. For reads, the PLL receives a byte after the address is sent. During the transmission, the PLL ready is false. The
serial clock is slow (67 MHz/4 = 16.75 MHz), the host can outrun the transactions so the PLL ready signal can be used to

pace transactions.

status[7: 0] —e——ij Sl‘lliril’cp;teg

a23.0 ——m Sﬁil;tt%gg . spi_sdio
A T
clk, rst
Y
wt —w{Control Logic| zg:i;lnk
rdy -

Figure 79. ii_pll_spi Component

X3-SD16 FrameWork Logic User Guide 191

Innovative Integration

Port Direction Function

st In System reset.

clk In Clock input

d[23:0] In Data bus input, 23..0

wt In Write enable, synchronous to clk

rdy Out True when component is ready to use. False during transactions.
spi_sdio Inout PLL serial data bit.

spi_cs n Out Chip select to PLL, active low

spi_sclk Out SPI clock

Table 91. ii_pll_spi Component Ports

X3-SD16 FrameWork Logic User Guide

192

Innovative Integration

ii_temp sensor

Source Files: ii_temp_sensor.vhd, i2c_bus.vhd, i2c_master_top.vhd, i2c.vhd, i2c_master bit ctrl.vhd,
i2c_master byte ctrl.vhd

Description:

This component provides a thermal monitoring function and an interface to a Texas Instruments TMP175 temperature sensor.
The interface configures the temperature sensor and then polls the temperature sensor every 100 mS (approx) for its current
reading. This temperature is compared to a warning and failure temperature to generate warning and powerdown controls to
the system for a thermal failure.

The interface to the temperature sensor is an IIC serial bus. This is a two-wire serial protocol that is an industry standard for

low speed communications and control. The ii_temp sensor component implements at its low level an IIC controller core
and wraps it at a higher level with the controls to configure the thermal warning and failure conditions.

Using ii_temp_sensor
This component operates autonomously after setup and is used to monitor the system temperature for thermal protection. For

autonomous operation, the component requires a continuous clock, must be out of reset and the clear bits should be false.

The component initializes the temperature sensor and then polls the sensor for its current temperature. If the sensor cannot
communicate because of a malfunction, a sensor_error is output. A sensor error results in a powerdown output also since the
system temperature is unknown.

Temperature Reading

The current temperature is read at the temperature port. This output is updated approximately every 100 mS (for 67 MHz
system clock). The conversion is

deg C = 0.0625 C/bit * temperature

0C =0, highest temperature is X”’07FF” = 128 deg C.

where temperature is a 16-bit, 2's complement number.

X3-SD16 FrameWork Logic User Guide 193

Innovative Integration

Setting the Warning and Failure Temperatures

To change the warning and failure temperature settings from their default values, write to the logic component using the
write_warning and write_powerdown inputs. The value latched into the comparison register is

X"0” & config data & X0

Note that only temperatures > 0 can be used for comparison.

Level X3 Family Default Output
Warning 70C (0x460) temp_warning
Failure 70C (0x460) temp_powerdown

Error Flag Outputs

The ii_temp_sensor has several outputs indicating the system status. These can be used to control power supplies or as
system alerts. The outputs latch true once fired and must be cleared by the system.

Signal Fires When... Indicates Clear With...
temp_warning Temperature > C_ RESET THRESHOLD Temperature is above temp_warning_clear
ii_x3_pkg =70C (0x460) warning level
Powerdown Temperature > C_RESET THRESHOLD Temperature is above Powerdown_clear
ii_x3_pkg = 70C (0x460) powerdown level
temp_error Sensor temperature > 127C or sensor alert Bad sensor reading or rst
output fired sensor alert
Sensor_error IIC controller can not communicate with the Sensor or logic rst
temperature sensor malfunction

On the X3 modules, the powerdown output is connected to one or more of the analog power supplies. If an over-temperature
condition occurs, the analog is powered down but not the FPGA. This allows the module to continue to communicate if
possible so that it can be restarted.

X3-SD16 FrameWork Logic User Guide 194

Innovative Integration

clk »
rst
config_data[/:0] +
scl i
scl o
temperature[15:0] -———— Controller "—l—b lIC scl_oen
Sensor_errar Interface ——- sda i
sda o
sda_oen
termp_warning_clear ﬁ
wr!te_wlarning device_alert
write_alert o i " -
write_pow erd own Warning
termp_warning
temp_errar Failure |-
p owe rd own -
powerdown_clear 4
Figure 80. ii_temp_sensor Component
Generic Function
sensor_address[6:0] IIC address for the sensor
scl rate IIC clock rate. Options are normal (400 kbaud), high (1Mbaud), fast (5 Mbaud)
(this component uses normal only).
wishbone clk rate Input clock rate in Hz. Default is 66000000.

X3-SD16 FrameWork Logic User Guide 195

Innovative Integration

Port Direction | Function

st In System reset.

clk In Clock input

write_warning In Write the warning level.

write_alert In Write the alert level.
write_powerdown In Write the powerdown level.
powerdown_clear In Clears the powerdown output.
temp_warning_clear In Clears the temperature warning output.
config_data[7:0] In Data bus input

Temperature[15:0] Out Current temperature reading.
powerdown Out powerdown from overtemp or sensor failure
temp_warning Out temperature exceeded warning level
temp_error Out temperature exceeded failure level
SENsor_error Out the sensor would not communicate
device alert In TMP175 alert input.

scl i In IIC clock input.

scl o Out IIC clock output.

scl _oen Out IIC clock output enable, active low.
sda_i In IIC data input.

sda_o Out IIC data output.

sda_oen Out IIC data output enable, active low.

Table 92. ii_temp_sensor Component Ports

X3-SD16 FrameWork Logic User Guide

196

Innovative Integration

ii_offgain

Source file: ii_offgain.vhd

Description:
This component is performs error correction for data. Data is multiplied by a gain and has an offset added to it to compensate
for analog errors. The gain factor is a 2's complement, 16-bit number ranging from +2 to -2 that allows for precise gain
correction to the input data. The offset value is a 15-bit, 2's complement number that compensates for bias errors.
The error compensated output is

y=Gx+0

where x = input data, G = gain, O = offset

A gain of 1 represented by 0x10000 and offset of 0 equal to 0.

The component uses a hardware multiplier in the FPGA followed by an adder for the offset correction. The data is inspected
after error correction to perform saturation and prevent numeric overflow.

Sys_ ce —
sys_clk —™

Flow
enable Gl L » data_rdy
Saturation
din[15:0] R Multiplier —{ Adder » and [—» dout[15:0]
Overflow

A

gain[17.0]
offset[15:0]

Figure 81. ii_offgain Component Block Diagram

X3-SD16 FrameWork Logic User Guide 197

Innovative Integration

Port Direction | Function

reset In System reset.

sys_clk In Clock input

Sys _ce In Enable

din[15:0] In Input data

dout[15:0] Out Output data

gain[17:0] In Gain factor, X”10000” = 1

offset[15:0] Out Offset factor, 0 is offset of 0

correction[3:0] Out The saturation logic mode: 0 = no saturation, 1 = positive saturation, 2 = negative
saturation

dvalid Out Data is valid when true

tp[31:0] Out Test points for debug

Table 93. ii_offgain Component Ports

X3-SD16 FrameWork Logic User Guide

198

Innovative Integration

End of Manual

X3-SD16 FrameWork Logic User Guide 199

