
CARDSHARP

User’s Manual

Table of Contents

Introduction..8

Real Time Solutions!...8
Scope of this User Guide ..8

Getting Started...9

Prerequisite Experience and Required Tools...9
Installing the FrameWork Logic..10
Logic Directories and Files Organization..11
Logic Component Naming Conventions...13
Organization of this Manual..14
Where to Get Help...14

Logic Development Process...15

Developing Using VHDL..16
Using Vivado...17
Using the FrameWork Library...19
Simulation...20
Logic Development using MATLAB Simulink..22
Making the Logic..23
Loading Logic...25
Debugging...30

Cardsharp Top Level..35

Overview...35
Block Diagram..35
Logic Hierarchy...36
Simulation...44

Cardsharp PL Memory Map..47

Peripheral Registers (WB Device 0)...48
Packetizer Registers (WB Device 3)...54

P16 DIO Registers...56
P15 Aurora 0 Registers (WB Device 18)..57
P15 Aurora 1 Registers (WB Device 19)..58
Application logic Interface registers (WB Device 21)..61

FMC Memory Map..62

FMC status and configuration Registers (WB Device 12)..63
FMC DIO Registers...67
FMC Aurora 0 Registers (WB Device 16)..69
FMC Aurora 1 Registers (WB Device 17)..71
Revision History..73

K7 Logic Library..74

ii_4ch_fifo_drainer..75
ii_ad9516_spi..77
ii_alert_gen..78
ii_alerts_top...79
ii_alerts_axis..82
ii_bin2gray...83
ii_cdce18005_spi...84
ii_cdce72010_spi...85
ii_circ_buffer...86
ii_crm...87
ii_decimate_x2..90
ii_deframer..91
ii_destacker..93
ii_dio_top...95
ii_drainer_destacker..96
ii_ext_sync_iddr..98
ii_ext_sync_s1p4...99
ii_fifo_drainer..100
ii_flash_intf_top..102
ii_gray2bin...104
ii_offgain...105
ii_packetizer_top...107
ii_regs_master..110
ii_stacker..112
ii_timestamp..113
ii_trigger..114
ii_trigger_pri..115
ii_unsign_sat..117
ii_vita_deframer..118
ii_vita_framer..119
ii_vita_mover...121

ii_vita_router...122
ii_vita_ts..123
ii_vita_velo_pad..124
ii_vita2dma..125
ii_xdom_pulse...126

List of Tables
Table 1. Supported Logic Development Tools..9
Table 2. Project Files...11
Table 3. FrameWork Logic Directories Structure...13
Table 4. Logic Environment Pros and Cons..15
Table 5. Vivado Report Files Generated During Synthesis and Implementation................................24
Table 6. PS Configuration...38
Illustration 1: MIO Peripheral I/O pins...39
Table 7. Zynq PS Peripheral I/O Configuration..39
Table 8. Block Design interfaces & ports..40
Table 9. Multiqueue VFIFO main interfaces...42
Table 10. FMC main interfaces...43
Table 11. Simulation suite hierarchy...44
Illustration 2: Behavioral Simulation window..46
Table 12. Memory Map...47
Table 14. System Info Register..49
Table 15. System Reset Register..49
Table 16. System Sub Revision Register..49
Table 17. System Sub Revision Register..49
Table 18. System DDR3 DRAM Control and Status...50
Table 19. Outgoing PID Map..50
Table 20. System PID Define Register..50
Table 21. Alert Monitor Enables Register..50
Table 22. Alert Monitor Defined Alerts..50
Table 23. Alert Monitor Controls..51
Table 24. Software Alert..51
Table 25. Alert Monitor Controls..51
Table 26. Alert Monitor Controls..51
Table 27. QSFP port control/status register...52
Table 28. QSFP port I2C register..52
Table 29. QSFP port control/status register...53
Table 30. QSFP port I2C register..53
Table 31. SIO XO I2C register..53
Table 32. Velocia Packetizer Component Registers...54
Table 33. Velocia Packetizer Data Channel Enable Register...54
Table 34. Velocia Packetizer Auxiliary Header Register..54
Table 35. Velocia Packetizer Alert Header Register...54
Table 36. Incoming PID Map..55
Table 37. Velocia Packetizer Data Header Register...55
Table 38. Force Velocia Packet Size Per Channel Register...55
Table 39. Packetizer Timer..55
Table 40. P16 DIO register..56

Table 41. P15 Aurora Port 1 Component Registers...57
Table 42. P15 Aurora 0 Test Control Register...57
Table 43. P15 Aurora 0 Control/Status Register...58
Table 44. P15 Aurora 0 Sub-channel Write Register...58
Table 45. P15 Aurora 0 Sub-channel Read Register...58
Table 46. P15 Aurora Port 1 Component Registers...59
Table 47. P15 Aurora 1 Test Control Register...59
Table 48. P15 Aurora 1 Control/Status Register...59
Table 49. P15 Aurora 1 Sub-channel Write Register...60
Table 50. P15 Aurora 1 Sub-channel Read Register...60
Table 51. Application logic interface registers..61
Table 52. Application run Register..61
Table 53. FMC Memory Map..62
Table 54. FMC status and configuration registers...63
Table 55. FMC control register...64
Table 56. FMC I2C interface...65
Table 57. FMC ID...65
Table 58. FMC BIDIR Clock Register..65
Table 59. FMC Clock0 m2c Register..65
Table 60. FMC Clock1 m2c Register..66
Table 61. FMC Clock2 m2c Register..66
Table 62. FMC Clock3 m2c Register..66
Table 63. FMC Clock2 c2m Register..66
Table 64. FMC Clock3 c2m Register..66
Table 65. FMC LA DIO register...67
Table 66. FMC HA DIO register...68
Table 67. FMC HB DIO register...68
Table 68. FMC Aurora Port 0 Component Registers..69
Table 69. FMC Aurora 0 Test Control Register...69
Table 70. FMC Aurora 0 Control/Status Register...70
Table 71. FMC Aurora 0 Sub-channel Write Register..70
Table 72. FMC Aurora 0 Sub-channel Read Register...70
Table 73. FMC Aurora Port 1 Component Registers..71
Table 74. FMC Aurora 1 Test Control Register...71
Table 75. FMC Aurora 1 Control/Status Register...72
Table 76. FMC Aurora 1 Sub-channel Write Register..72
Table 77. FMC Aurora 1 Sub-channel Read Register...72
Table 78. Revision History..73
Table 79. ii_4ch_fifo_drainer Component Ports...76
Table 80. ii_ad9516_spi Component Ports..77
Table 81. ii_alert_gen Generic Ports...78
Table 82. ii_alert_gen Component Ports...78
Table 83. ii_alerts Packet Format...80
Table 84. ii_alerts_top Generic Ports..81
Table 85. ii_alerts_top Component Ports..81
Table 86. Alerts data structure..82
Table 87. ii_alerts_axis Component Ports...82
Table 88. ii_bin2gray Generic Ports..83
Table 89. ii_bin2gray Component Ports..83

Table 90. ii_cdce18005_spi Component Ports..84
Table 91. ii_cdce72010_spi Component Ports..85
Table 92. ii_circ_buffer Generic Ports..86
Table 93. ii_ circ_buffer Component Ports...86
Table 94. ii_clock Reset Sequencing...87
Table 95. ii_crm Generic Ports..88
Table 96. ii_crm Component Ports..89
Table 97. ii_crm Generic Ports..90
Table 98. ii_decimate_x2 Component Ports..90
Table 99. ii_deframer Component Ports..92
Table 103. ii_dio_top Component Ports..95
Table 104. ii_drainer_destacker Component Ports...97
Table 105. ii_ext_sync_iddr Component Ports..98
Table 106. ii_ext_sync_s1p4 Component Ports...99
Table 107. ii_fifo_drainer Component Ports..101
Table 108. ii_flash_intf_top Generic Ports..102
Table 109. ii_flash_intf_top Component Ports..103
Table 110. ii_bin2gray Generic Ports..104
Table 111. ii_gray2bin Component Ports..104
Table 112. ii_ offgain Generic Ports..106
Table 113. ii_offgain Component Ports...106
Table 114. ii_packetizer_top Generic Ports...109
Table 115. ii_packetizer_top Component Ports...109
Table 116. ii_regs_master Component Ports...111
Table 117. ii_stacker Generic Ports...112
Table 119. ii_timestamp Component Ports..113
Table 120. ii_trigger Generic Ports..114
Table 122. ii_trigger_pri Component Ports...116
Table 123. ii_unsign_sat Generic Ports...117
Table 125. ii_vita_deframer Component Ports..118
Table 126. ii_vita_framer Generic Ports..119
Table 127. ii_vita_framer Component Ports...120
Table 128. ii_vita_mover Generic Ports..121
Table 129. ii_vita_mover Component Ports..121
Table 130. ii_vita_router Generic Ports...122
Table 131. ii_vita_router Component Ports...122
Table 132. ii_vita_ts Generic Ports...123
Table 133. ii_vita_ts Component Ports...123
Table 134. ii_vita_velo_pad Component Ports...124
Table 135. ii_vita2dma Component Ports...125
Table 136. ii_xdom_pulse Component Ports...126

List of Figures
Figure 1. TCL Shell...10
Figure 2. Cardsharp FrameWork Logic Directory Structure...12
Figure 3. High-level Synthesis Design Flow...16
Figure 4. Logic Architecture Showing Hardware and Application Layers...17
Figure 5. Generating the vivado project..18
Figure 6. Example Vivado project...19
Figure 7. Behavioral Simulation Window Example..21
Figure 8. MATLAB Simulink Development..23
Figure 9. Vivado Design Environment..23
Figure 10. Getting Started with Hardware Manager...26
Figure 11. Hardware Manager on the welcome screen..27
Figure 12. Hardware device chain...27
Figure 13. Selecting the Configuration Image..28
Figure 14. Programming Devices using JTAG..28
Figure 15. Logic Loader Download Applet example..30
Figure 16. Typical Debug Block Diagram..31
Figure 17. Debugging with Vivado...32
Figure 18. Xilinx Parallel IV Cable for Debug and Development..33
Figure 19. Xilinx Target Debug Cable..33
Figure 20. Xilinx Parallel Cable IV Pinout on IDC 5x2 2MM Header...33
Figure 21. ii_4ch_fifo_drainer Component...75
Figure 22. ii_alert Component...80
Figure 23. ii_crm Component...88
Figure 24. ii_deframer Component ..91
Figure 25. ii_destacker Component...93
Figure 26. ii_drainer_destacker Component...96
Figure 27. Using ii_drainer_destacker..97
Figure 28. ii_fifo_drainer Component...100
Figure 29. Using ii_fifo_drainer..101
Figure 30. ii_offgain Component ...105
Figure 31. ii_packetizer Block Diagram...107
Figure 32. ii_packetizer Component...108
Figure 33. ii_timestamp Component...113
Figure 34. ii_xdom_pulse Component..126

Cardsharp Framework Logic Manual

Introduction

Real Time Solutions!

Thank you for choosing Innovative Integration, we appreciate your business! Since 1988, Innovative Integration has grown
to become one of the world's leading suppliers of DSP and data acquisition solutions.

Our products offer a wide range of solutions for demanding signal processing and data acquisition applications that integrate
high performance DSPs, FPGAs and IO. To enhance your productivity, our hardware products are supported by
comprehensive software libraries and device drivers providing optimal performance and maximum portability.

Innovative Integration's products employ the latest digital signal processor technology thereby providing you the competitive
edge so critical in today's global markets. Using our powerful data acquisition and DSP products allows you to incorporate
leading-edge technology into your system without the risk normally associated with advanced product development. Your
efforts are channeled into the area you know best ... your application.

Scope of this User Guide

The Cardsharp Framework Logic Manual provides support to logic developers for the Cardsharp family products. The Guide
provides design information to assist developers in the addition of new functionality to the logic, from the creation of the
logic through to the implementation.

The Guide shows Cardsharp product logic firmware in detail and explains how to use this logic for your development. The
Guide shows the overall structure of each design, shows the standard registers and memory map, discusses the details of how
to modify the logic, and finally presents an overview of each component in a library section. Source code for most
components is delivered with your Cardsharp product along with a Xilinx Vivado® project and a simulation testbed. Control
files such as constraints are also documented and provided in the FrameWork Logic package.

While the development tools and methods are discussed in this manual, it does not intend to substitute for the tools
documentation from Xilinx. The discussion is limited to using these tools during the logic development process as it pertains
to the Cardsharp product family. Source code examples are also shown for illustration of use, but a knowledge of RTL
(VHDL) is presumed.

Hardware information is provided in another manual, the Cardsharp Hardware Guide. Consult this manual for documentation
such as pin assignments, connector information and performance data.

Innovative Integration Inc. 8

Cardsharp Framework Logic Manual

Getting Started

This manual is written to assist in the creation, implementation and testing of custom logic for Innovative Integration
products. The scope of this manual is limited to discussion of the logic development tools, example logic designs and logic
libraries provided in the FrameWork Logic toolset.

Additional documentation on each product is provided for hardware features and software in other manuals. These are used
in conjunction with this manual for product development and use.

Thank you for using our products. Your comments and input are appreciated so that we can improve our support and help
you to be successful on your project. Email us at t ec h sp r t @inno v ati v e - d s p .c o m with your input or give us a call.

Prerequisite Experience and Required Tools

The designer is expected to have experience in VHDL and FPGA design to use the FrameWork Logic tools and code. All
components in the FrameWork Logic are VHDL source code whenever provided and supported by VHDL models and test
code. As a standard, the code is written in VHDL 1993 version which is widely used and supported.

The design tools used are listed here. We make an effort to keep the logic supported under the newest versions, but in many
cases the logic must be reworked and retested to support the newest tool version. For each product, we have listed the
required tool set that was used to create the logic.

Here is the toolset we use for supporting the FrameWork Logic use and development.

Function Tool Vendor Tool Name

Synthesis, Implementation, Simulation Xilinx Vivado

Bit Image Creation Xilinx Vivado

Logic Debug and Testing Xilinx Vivado “Set up Debug” wizard

Logic JTAG Cable Xilinx USB

Table 1. Supported Logic Development Tools

The documentation for the development tools is provided by the tool vendor. They have on-line documentation and help
that can acquaint you with their use. This manual makes no attempt to replace them, but rather supplement them with
specifics on using them with FrameWork Logic application development.

While it is not expected that you are expert in these tools, these tools are used for FrameWork Logic development and are
discussed in this manual. If you are using other tools, they should have similar capabilities.

Innovative Integration Inc. 9

Cardsharp Framework Logic Manual

Installing the FrameWork Logic

The Framework Logic is delivered as an compressed archive ZIP file (product_name.zip). A TCL script (make_vivado.tcl) is
provided to build a Vivado IDE project and set the project options. To get started, follow these steps.

1. Unzip the logic archive into a folder. You will find the archive in the hardware directory of the product installation,
by default C:\Innovative\<product name>\Hardware\Framework Logic\. For example, unzip to this folder:

/Innovative/<product name>

2. If a previous version of the project file exists, it must be deleted. Delete or rename old copies of the <product
name>.xpr project file. If you had an old project file from a previous installation, it would be in

/Innovative/<product name>/logic/rev_*/vivado

3. Open Vivado IDE.

4. Close the project if one is open.

5. The tcl console is at the bottom of the welcome screen.

Figure 1. TCL Shell

6. In the text box on the TCL console, type

Innovative Integration Inc. 10

TCL Shell

Cardsharp Framework Logic Manual

cd <tcl_script_location> ie. /Innovative/<product name>/logic/rev_*/vivado

7. At the % prompt on the TCL screen, type

source make_vivado.tcl

 This generates a directory with the Vivado project ...vivado/<device>/<product name>.xpr

Wait about a minute while the Vivado project is created.

Tool File Name Directory

Vivado IDE <product_name>.xpr $project\vivado\<device>\

Table 2. Project Files

Logic Directories and Files Organization

The logic files for all Cardsharp products are organized by product with a library of components used by many designs. The
logic for each design provides support for simulating, creating and debugging. Design-specific source files in the source
directory include the top-level and other components. Constraints for the design are located in the xdc directory for the main
design, while individual components may have additional xdc files in their respective directories. The tools will combine all
xdc files to create an overall xdc that includes all the physical and timing constraints required for the product. Results of the
compilation are included in the vivado/<device> and syn directories showing the compilation and fitting results.

Innovative Integration Inc. 11

Cardsharp Framework Logic Manual

Figure 2. Cardsharp FrameWork Logic Directory Structure

Innovative Integration Inc. 12

Cardsharp Framework Logic Manual

Directory Files

./product/logic/rev_*/vivado vivado project and build directory

./product/logic/rev_*/xdc Vivado constraint files

./fmc_product/logic/rev_*/xdc

./product/logic/rev_*/rom The released logic image in BIT format

./fmc_product/logic/rev_*/rom

./product/logic/rev_*/sim Logic simulation files. Including simulation models.

./fmc_product/logic/rev_*/sim

./product/logic/rev_*/src Logic source files and constraints (UCF)

./fmc_product/logic/rev_*/src

./lib/common Source files for Cardsharp library components common to all products

./lib/ip Logic components in netlist files for Cardsharp library components common to all products

./lib/fmc Source, netlist and constraint files for fmc modules

./lib/tools Logic tools provided with this design. (This may be empty.)

Table 3. FrameWork Logic Directories Structure

Logic Component Naming Conventions

For all components provided by Innovative Integration, the standard naming convention is

ii_<function_name>

where <function_name> is a descriptor of the component.

For example,

ii_pcie_intf

is the PCI Express interface component.

Innovative Integration Inc. 13

Cardsharp Framework Logic Manual

Organization of this Manual

This manual covers the main topics in using the FrameWork Logic for Innovative Integration products for HDL
development methods. The first few sections describe the HDL tools and development methods including synthesis,
placement and routing, and simulation. Finally, the generating the logic image and debugging are discussed.

Each product supported by the logic is discussed, showing the details of the example logic are shown. The hardware
interface components and application logic internals are shown.

Finally, the FrameWork Logic library components are shown with details about functionality, ports and use.

Where to Get Help

In addition to this manual, the example design for each product is provided with an HTML document that allows designers
to quickly navigate the design to understand the hierarchy, entities used, ports and source code.

For help on Innovative Integration hardware or software, there are separate help manuals and an on-line help system for the
software tools. These manuals are provided on the CDs delivered with the product or on the web at h t t p :/ /w w w . i nno v a t i v e-
d s p .c o m /s u p p or t / p ro du c t d o cs. h t m . At this site, you can download the product information, software and logic updates.

Help for other tools such as Xilinx is provided on-line with the tool. Xilinx also has an excellent Answers Database on the
web (h t t p :/ /w w w . x il i n x . c o m /s up p o r t / m y s u pp o r t . h t m) and many examples of techniques used in FPGA design. This is the
primary site for support on Xilinx- specific problems that can include tools problems and workarounds.

Technical support from Innovative Integration is available at

Web Site www.innovative-dsp.com (product manuals, software updates, firmware and discussion forums)

Email us at t echs p r t @innovat iv e -dsp.c om

Phone : ++1 805-578-4260 Monday through Friday, 8 AM to 5 PM Pacific Standard Time

Innovative Integration Inc. 14

http://www.innovative-dsp.com/
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com

Cardsharp Framework Logic Manual

Logic Development Process

The FrameWork Logic system supports two logic development methods: VHDL, MATLAB Simulink, or a combination.
Each system offers benefits and have strengths that in some cases complement each other.

VHDL development is very flexible, allowing the developer the full freedom of a high level language that is expressive and
extensible. The FrameWork Logic system provides VHDL components for hardware interfaces that allow the designer to
quickly integrate custom VHDL code into the application logic. Other library components are offered that provide some
common functions used in signal processing and control. Libraries from Xilinx and third parties are also used to provide
broad support for signal processing, analytical and communications applications.

Development

Tool

Pro Con

VHDL Expressive, extensible language. Gives complete
flexibility to the designer.

Design and debug of DSP algorithms is
more difficult and time consuming.

MATLAB
Simulink

Allows design of complex DSP algorithms at a
high level. Great visualization and analysis tools
for design and debug.

Less capable of handling low-level details.
Less visibility and control of logic design
process.

VHDL +
MATLAB

Best of both tools gives optimum flexibility
where needed and high level design for complex
DSP algorithms.

Multiple tools must be used resulting in a
more complex development process.

Table 4. Logic Environment Pros and Cons

MATLAB Simulink offers a high-level block diagram approach to logic design that allows the designer to work at a higher,
more abstract level. Signal processing algorithms can be quickly developed and simulated in MATLAB then directly ported
to the logic hardware. Inside of the FrameWork Logic tools, the designer can concentrate on the algorithms because the
system has a hardware interface layer that integrates the hardware with MATLAB cleanly and efficiently. Application
development is dramatically sped up for complex signal processing algorithms because of the powerful capabilities within
MATLAB for algorithm design, visualization and analysis.

Many applications find that a mix of VHDL and MATLAB offer the best of both worlds: high level signal processing
development and the full flexibility of a high level language. It is common that unique data handling, triggering and
interface functions may be better expressed in VHDL, but nothing beats the power of MATLAB for things like filter design,
down-conversion and mathematical analysis of data. The designer can mix VHDL components, or MATLAB-generated
components with one another in either environment and reap the benefits of each system.

Innovative Integration Inc. 15

Cardsharp Framework Logic Manual

Developing Using VHDL

Application logic development with the FrameWork Logic in VHDL follows the typical development cycle: code creation,
simulation, physical implementation and test. This flow is summarized in the following diagram showing the Vivado tools
for design, synthesis, implementation and simulation tool.

Figure 3. High-level Synthesis Design Flow

The application development begins with the FrameWork Logic code for the product you are using. In many cases, the
example application code provides a good starting point for your application logic. In most cases the application logic
shows a basic data flow between the IO devices, such as A/D and D/A converters, to the logic and DSP or system. You can
then build on top of the example logic by inserting your algorithms into the data flow along with unique triggering and other
application-specific logic.

The FrameWork Logic provides a library of components for the hardware interfaces as well as others functions, an example
application showing IO interfacing and data flow, design constraints, a simulation testbench, and a Vivado project. This
gives you the basic foundation to begin work. After you install the FrameWork Logic on your system, you should be able to
recreate the logic and verify its operation. Once that is complete, you are ready to begin development.

At this point, you should have a look at the example logic and determine the best place to insert your logic and how you can
best use the example in your development. If you can preserve many of the basic memory mappings, controls and system

Innovative Integration Inc. 16

Cardsharp Framework Logic Manual

interfaces, you will then be able to use the example application software delivered with the product. That saves time for
both you and the software developers.

In most cases, you will see that the logic is organized as a hardware interface layer composed of components that directly
interface to the hardware and an application layer that is composed of the analysis, data handling and triggering functions.
The application layer is on a single clock domain so that it is easy to integrate functions into the design.

Figure 4. Logic Architecture Showing Hardware and Application Layers

Code for your application layer design can be created in a number of ways: written in VHDL or Verilog, created in
MATLAB, or included as a black box netlist from a third party such as Xilinx or others. If you design your logic to run on a
single clock it is then easier to integrate into the application layer of the FrameWork Logic. The other clocks in the design,
such as the A/D sample clocks, or hardware-specific clocks are handled in the hardware interface layer. The use of a single
clock in the application layer allows designers to use timing and physical constraints associated with the hardware interface
components.

Using Vivado

Xilinx Vivado IDE is recommended for the logic development. Vivado provides code editing, core generation, synthesizing
and fitting tools integrating all of the tools for the project. An example project is shown here.

The existing project should be used as a starting point. This project has all the options set and file structure required to
recreate the design. The Vivado project is created by running a tcl script located in the ./logic/rev_*/vivado directory. When
you open Vivado, in the tcl command window, use the command source to run the make_vivado.tcl file as shown in the
image below. Before running the script, make sure that the DEV, SPEED and LANES properties are set correctly. The DEV
and SPEED properties should match the FPGA on the baseboard. The LANES property is for the number of lanes of pcie you
want integrated in your design. You have a choice of “x4” or “x8” for a 4 lane or 8 lane pcie core respectively. If you need to
use the aurora interface, set the ADD_AURORA_FMC, ADD_AURORA_0 or ADD_AURORA_1 to “TRUE”

Note: if the value of a property you're modifying is in quotations or has a '-', do maintain the same format when you change
the value to avoid errors when generating the project.

Innovative Integration Inc. 17

Cardsharp Framework Logic Manual

Figure 5. Generating the vivado project

The generated project is saved under a folder that is named after the device and pcie lanes. For example, if you're creating a
vivado project for a 045 part of speed grade 2 with 8 lane pcie core, the vivado project is saved under a folder with the name
045-2_x8. Click on Open Project and navigate to the *.xpr file in the created folder.

Innovative Integration Inc. 18

Cardsharp Framework Logic Manual

Figure 6. Example Vivado project

Note: The project options have been set to use the directory structure for the FrameWork logic design. It is important to use
these options when compiling the project so that the cores and source code can be found. It is also required to preserve
hierarchy on the design to use the constraints provided.

Using the FrameWork Library

The components in the FrameWork Logic library are divided into common components used in many designs and more
complex IP cores that are usually hardware-specific. All common components provide source code while IP cores are
provided in netlist form.

Innovative Integration Inc. 19

Cardsharp Framework Logic Manual

The hardware-specific components are used in the designs for A/Ds, DACs, memories and the like that have unique
interface protocols and timings. Constraints in the specific design for IO standards and specific timing requirements are
usually required for use. The constraints for the hardware-specific components are found in the application example that
includes that component.

All components have unique names such as ii_sdf_adc. The naming convention prevents inadvertent naming collisions with
your design if you do not use a ii_ prefix on your components. The hardware name is included in the name showing which
design uses this component.

In the installation, you will find that hardware-specific components in the directory for that specific design. The common
components are in the lib directory. To use the components, you can point at the library Vivado when they are used.

Also, you may need to include packages supporting the components in your design. For example, ii_pcie_intf component
requires k7_pkg to be included. This is done by including these statements in the component and by compiling the package
in your design.

library work;

use work.ii_k7_pkg.ALL;

Directory structure for FMC modules

This section will describe the file structure for fmc modules. The firmware directory of an fmc module has 3 sub-directories. The
lib, baseboard and the fmc module. As a user, you will be working in the third sub-directory if you are adding custom logic. The
lib and baseboard source files should not be modified. The lib/fmc folder has the source and constraint files of each of the fmc
modules in their respective folder. The baseboard source and constraint files are in the Cardsharp folder.

When working in the fmc module directory, the rev of the baseboard and the fmc hardware will decide which rev folder you will
be working in. rev_a directory is to be used when both the baseboard and fmc are revision 'a', both hardwares being revision 'b'
means you will be working in the rev_b directory. In case of the rev_ab and rev_ba, the first letter of the rev is for the baseboard
and the second is for the fmc. The vivado directory inside the appropriate rev folder can be used to generate the bit file.

Simulation

Simulation is an important part of the logic development process. Unless the design change is very simple, you should
simulate the design. In the end, you will save time and frustration especially when larger devices are used.

The FrameWork Logic includes a test bench and models required for most simulations. These models are functionally
equivalent to the component. In many cases the models are simple representations of the device that give a data pattern
that is easy to follow through the simulations. More complex waveforms can always be substituted later for proving out the
signal processing or data analysis portions of the design. In each design, the list of files shows the applicable test bench
name and available models.

Innovative Integration Inc. 20

Cardsharp Framework Logic Manual

The testbench contains a set of simulation steps that exercise various functions on the FrameWork logic for basic interface
testing. Behavioral procedures have been written to simulate the host timing for the Processing System (PS) and PCI
Express that are useful in simulating data movement. Other features such as DDR interface, alert log and triggering are
demonstrated in the testbench.

As delivered, the FrameWork Logic example provides a basic example in the use of the hardware interface components,
data flow through the design, and some simple triggering control. It is anticipated that you can use this example test bench
as a starting point for your application logic simulation. Your logic can be added to the simulation in many cases without
modifying the test bench since the application logic does not change the external pins on the design.

Simulation can be started from within the Vivado environment, from the menu option Flow → Run Simulation → Run
Behavioral Simulation.

Figure 7. Behavioral Simulation Window Example

Once you are inside the Simulation environment, you should be able to use the tools to run simulations of the design. The
wave window is many times the main focus since it gives a logic analyzer view of the design.

You can quickly view the design because you can probe the logic down to the lowest level. This visibility is often lost after
synthesis and fitting because logic is minimized by the tools and may be trimmed out if unused, even if by accident. When
you select an design unit within Simulation Scopes & Objects windows, the processes, signals and variable for that design
unit are shown. You can add them to the window by selecting them and right-clicking to add to the wave window.

Innovative Integration Inc. 21

Cardsharp Framework Logic Manual

Logic Development using MATLAB Simulink

These tools are described in the Cardsharp MATLAB BSP manual for each product. Refer to that manual for details on logic
development using MATLAB Simulink and Xilinx System Generator. The following description is just to orient you to what
that tools are and how they may be useful in developing applications.

MATLAB Simulink provides a powerful method of developing logic using a high level design tool that integrates hardware
into the MATLAB Simulink environment. Complex signal processing designs can be developed rapidly using the Simulink
block diagrams interacting with the actual hardware in real time. Gateways between MATLAB Simulink and the hardware
allow data to flow between the actual hardware and MATLAB, bringing the power of MATLAB to the logic development
process.

Simulink blocks diagrams are directly translated into logic using the Xilinx System Generator tool. For each supported
product, a hardware interface layer of Simulink components is provided that allows the hardware to be used in the the
Simulink design. Simulink components from the various libraries provided by Mathworks, Xilinx and Innovative interface
with this hardware interface layer for building the application logic on the product. The Xilinx place and route tools are
used for the logic build as in any HDL project.

Innovative Integration Inc. 22

Cardsharp Framework Logic Manual

Figure 8. MATLAB Simulink Development

Here is a typical Simulink block diagram design. Notice the Xilinx icon in the upper left; this is the Xilinx System
Generator control block. This block provides the link to the Xilinx synthesis and implementation tools. The other blocks
are mixture of data interface components to the A/D and D/A converters, SRAM and wishbone interface if desired.

Making the Logic

The Xilinx tools are used for the physical logic creation. For HDL designs, these tools are accessed through the Vivado
environment in the processes window as shown here. The main steps are synthesis, implementation and bitstream
generation.

Figure 9. Vivado Design Environment

Innovative Integration Inc. 23

Cardsharp Framework Logic Manual

There are many options for the implementation step which are set in the individual project files for each FrameWork Logic
example.

Since most of the parts on the products are very large, we have chosen to preserve the hierarchy of the design during the
implementation so that area constraints and incremental design approach may be used. Area constraints allow the designer
to control the placement of logic on the FPGA part for best timing control. With area constraints, the logic will be
constrained to where you put it and in many cases helps the tool do a better job overall.

Synthesis and Implementation Reports
The reports generated during the synthesis and implementation steps are saved in synth_1 and impl_1 directories respectively
in the <project_name>.runs folder. In the synth_1 folder, the *.vds file is the synthesis report and the
<project_name>_utilization_synth.rpt details the resource utilization in the fpga.

File extension Contents What to Look For

.VDS Vivado synthesis report
generated after the
synthesis step is
completed.

There should be no errors. This program issues numerous
warnings but there should be no errors. Synthesis errors point to
issues in the RTL code

.VDI Vivado implementation
report generated after the
implementation step

There should be no errors, but warnings are usually OK.
Common problems range from incompatible logic mappings,
impossible area constraints, and clock connections.

<project_name>_top
_timing_summary_ro
uted.rpt

The output of the Place
and Route
implementation process.
Shows timing results and
fit results.

Timing constraints should be met. Review the summary at the end
of this report to see if timing is OK since it will complete no
matter how bad it is. Also look for any incomplete routing.

Table 5. Vivado Report Files Generated During Synthesis and Implementation

In many designs, you will have to resolve timing problems that are shown in the place and route process. Xilinx has several
tools to help find the problems; Timing Analyzer is usually the place to start. This tool helps you to understand the reason
the logic did not meet timing – too many connections, bad routing, etc. The tool suggests how to fix it. This is usually
helpful but may mean you are back to functional simulation again to add pipelining or change the logic and must re-
implement the design.

Once you achieve one good result, you may want to switch to incremental mode in the tool. This allows you to use the last
good result for most of the design that is unchanged when minor fixes are made. For big changes however, you will need to
reroute the whole chip.

Expect that the implementation process will be in the range of ½ to 2 hours depending on your computer, how easy it is to
meet constraints and how big the part is. A tightly packed, fast big part will take a while.

The final output of the implementation process is a .BIT file that represents the logic image. This file is loaded into the
FLASH using the EEPROM applet or the JTAG cable. When the JTAG cable is used, the Xilinx IMPACT program
uses .bit files.

Innovative Integration Inc. 24

Cardsharp Framework Logic Manual

Loading Logic

The Cardsharp module logic can be loaded from either FLASH ROM or through the FPGA JTAG port. The Logic Loader
applet is used to burn logic images into the FLASH ROM. JTAG is usually used during the development process because it
is quick, easy to to use and loading can be done from the ChipScope debug environment.

Cardsharp FLASH Images

Logic is loaded each power-up or from the FLASH ROM. As delivered, the Cardsharp module has two logic images in
FLASH: the application logic and the “golden image”. The application logic is where your logic is deployed. The golden
image is the backup that is used in case a bad image is burnt into the FLASH. If a bad image is put into FLASH by mistake
that makes the card malfunction, you can set a jumper on the card to force the logic to boot using the golden image (see
hardware manual). This allows you to boot the card and reburn the FLASH with a good image. The Logic Loader also allows
golden image to be rewritten.

Loading Logic Through JTAG

The FPGA can be loaded through its JTAG port using a Xilinx JTAG cable. This provides a convenient method of quickly
loading the logic during the development process but is not usually used in deployed applications.

Caveats
The logic loaded over the JTAG interface is volatile. If the card is powered down it must be reloaded.

The system must be restarted (not power-cycled) for Cardsharp logic to work after a JTAG download. Since the logic has the
PCI Express interface, it must go through the system enumeration process for the bus to work.

Innovative Integration Inc. 25

Cardsharp Framework Logic Manual

Figure 10. Getting Started with Hardware Manager

The Hardware Manager is used to load the logic into the application FPGA. The tool may be invoked from within the
Vivado project or from the welcome screen when you launch vivado as shown below.

Innovative Integration Inc. 26

Cardsharp Framework Logic Manual

Figure 11. Hardware Manager on the welcome screen

When you enter the tool, if no target is open, you will be given an option to either open a recent target or open a new one. If
you open a new target, the open new hardware target window appears as shown in earlier figure. Click next and select local
server if the target is connected to the machine you are working on. On how to use remote server option, please refer to xilinx
documentation.

When you click next, you are shown the devices on the chain as shown in the figure below.

Figure 12. Hardware device chain

If it does not work, check the cable connection to the board. The cable should be detected by Vivado; if not, check that the
port it is connected to on the PC is working and in the proper mode. If the chip is not detected, be sure you have the right
scan path, that the board is powered up normally, and that Vivado was able to connect to the scan path. Power everything
off and try again if it fails and you don't see any obvious problems. You can also check your setup and software on a good
card if you have one.

The next step is to assign a logic file to each device to be programmed. The FPGA image is a .BIT file, the CPLD is
a .JED file. Right click the device you need to progrm and use the option “Program Device” to assign the BIT file for
programming the FPGAdevice. Double-check that you are using the correct logic file – you could damage the chip if
it gets the wrong logic or render the card inoperable.

Innovative Integration Inc. 27

Cardsharp Framework Logic Manual

Figure 13. Selecting the Configuration Image

Click on Program to begin the logic load process. This will only program the device you are selecting at that time. If it
succeeds, the status of the device in the hardware window will say “Programmed”.

Figure 14. Programming Devices using JTAG

Note: For FPGAs that are on PCI or PCI Express interfaces, the system must be restarted to force the new logic to load. The
system enumeration process must assign address mappings and resources before the logic will operate. Whenever the PCI

Innovative Integration Inc. 28

Cardsharp Framework Logic Manual

information such as revision number changes, it is common for the system to recognize the new device and will want the
device driver reloaded. This is normal.

Logic Update Utility (Logic Loader.exe)

The Logic Loader applet is used for field-upgrades of the logic firmware on the Cardsharp module. The applet updates the
FLASH ROM, which stores the "personality" of the board. The Logic Loader uses BIT format files that are created by the
logic tools (BITGEN).

This applet should only be used after firmware development and debugging has been completed. During the development
cycle, it is much more efficient to download and debug firmware using the Xilinx JTAG cable.

To use the applet, select the instance of the Cardsharp module to be updated. This will be target zero in single-card
installations. For multi-card systems, the target number can be found by using the FINDER program that will flash the LED
on a selected target number. It is important to get this target ID correct since burning the wrong image into a card could
cause it to stop working.

Then browse to select the logic bit file image containing the updated firmware image. Typically, this is located in the
Innovative\<product name>\Hardware\Images folder on your default drive.

Finally, click the Write button to program the firmware into the on-board FLASH ROM. Programming typically takes
about five minutes. After power-cycling the PC, the new firmware will take effect.

Innovative Integration Inc. 29

Cardsharp Framework Logic Manual

Figure 15. Logic Loader Download Applet example

The Logic Loader applet also shows the logic revisions, hardware revisions and other information. The logic revision
is reported from the logic itself, while the hardware revision and hardware variant are set by the hardware PCB and
PCIe interface FPGA.

What To Do If FLASH Programming Fails
The Event Log window reports any failures during the programming. If anything goes wrong, DO NOT TURN
OFF THE COMPUTER. Parsing failures usually mean that the file was not EXO format. A load failure is more
serious in that the hardware failed somehow. Try to rerun the Logic Loader applet. If this doesn't work, then
turn off the computer and set the jumper to use the Golden Image. Restart the system and attempt to burn the
logic again. If this fails, then the card is faulty and must be repaired.

Debugging

It is inevitable that the logic will require some debugging and it is best to have a strategy for debug before you actually use
the hardware. Debugging on actual hardware is difficult because you have poor visibility into the FPGA internals.

Innovative Integration Inc. 30

Cardsharp Framework Logic Manual

For HDL designs, the best and easiest debug method is simulation for functional and timing problems. This gives the best
visibility and interactivity to debug problems before the real hardware is tested. A good set of test cases that stress the
design should be run prior to working on the real hardware. You will save time in the overall design process by doing a
thorough job in simulation.

There are several techniques that have worked for us on projects: Xilinx ChipScope, built-in test modes, and judicious use
of test points. Between these techniques and the capabilities of each method, it is usually possible to find and fix bugs that
are either functional design errors or timing problems.

MATLAB Simulink developers can use the “hardware in the loop” features of system to debug the design at a high level.
Simulink can be used to generate test data or for viewing and analyzing real hardware data. This is invaluable in debugging
complex signal processing designs.

Here we will discuss a few of these techniques.

Built-in Test Modes

Another good way to debug your design is to have built-in test modes in the logic. If you plan ahead for test, then you can
more quickly validate your design later and spot problems. When you finish the design, if the test generators and checkers
can be left in the design, they are there later as production debug or test.

In many designs, test pattern or data generators are invaluable since they provide known data into the FPGA so that the
output is known. If the data source is analog in the real design, substituting perfect data is nice because it helps spot
problems that may be hidden in the noise. The test pattern may be an easily recognized stream, like incrementing numbers,
that are easy to check in the logic or on the test equipment. Also, its easier to test the extreme cases of the design that may
be difficult to reproduce with real signals.

Figure 16. Typical Debug Block Diagram

Another built-in test method is to use data checkers in the logic sprinkled through the data chain help to spot the source of
problems. If you have a missing timing constraint or a clock domain issue, these can be hard to catch since they may be
rare. A data checker gives you a way to look for bad data and then trigger ChipScope or the logic analyzer. In many cases,
rare errors are impossible to catch without this sort of data checker. This technique has saved time because the trigger at the
bad data point allows you to inspect all the suspect signals and find the culprit.

Innovative Integration Inc. 31

Cardsharp Framework Logic Manual

ILA debug cores

Xilinx allows for logic debugging by inserting ILA debug cores generated using the “set up debug” wizard. This tool works
over the FPGA JTAG port using any of the standard Xilinx JTAG cables. Vivado connects to ILA core that you embed in
your logic. Refer to Xilinx documentation on how to insert the ILA debug cores.

Figure 17. Debugging with Vivado

The ILA core alows you to monitor internal FPGA signals using triggers and a sample clock. It is as though you can embed
a logic analyzer in the logic itself, hence the ILA core name (integrated logic analyzer). Other core supported is theVirtual
IO (VIO) core, which allows you to monitor and control some internal signals, and cores for working with the PowerPC
cores in some logic devices.

The ILA core is very configurable and it allows you to set the number of signals you can monitor, the trigger methods and
the signals used for triggers is set up when you generate the core. The core size is determined by the number of signals
monitored and the number of samples stored. If the core gets too big, it will affect your design and tends to muddle the
debug process. Sometimes it is better to have a small core that has a small footprint and does not interfere with the other
logic for this reason.

The clock is used as the sample clock for the logic so it should be synchronous to the inputs signals or sufficiently fast to
sample them accurately. If you sample signals on other clock domains, be aware that the clock used by the ILA core is used
for the sampling of the signals so the signals will not precisely represent the real signal running on another clock domain.

You will interact with the Vivado software over a JTAG cable to the target device. This link is limited to about 1-20 Mb/s
depending on the target device JTAG chain, so it is not really real-time, but rather just a means to get the data from the
FPGA to Vivado. The signals are captured in the FPGA block RAMs so the record length is somewhat short being limited
in most cases to 256 to 1K points. In some experiments though we have made larger captures of up to 16K points in large
devices, useful for capturing a signal.

Because of these limitations in JTAG speed and capture size, it is important to devise triggering methods that allow you to
catch the error condition. It is common to devise a piece of error detection logic that serves as a trigger to ILA to best use
the capture RAM. It is possible to pre-trigger or post-trigger in the software which makes trigger design easier. You can also
selectively store data so that the memory is preserved just for useful data by using an option on the trigger panel in Vivado.

Innovative Integration Inc. 32

Cardsharp Framework Logic Manual

Here is one of the common cables used for debug, just for reference.

Figure 18. Xilinx Parallel IV Cable for Debug and Development

Figure 19. Xilinx Target Debug Cable

Figure 20. Xilinx Parallel Cable IV Pinout on IDC 5x2 2MM Header

CAUTION:

Innovative Integration Inc. 33

Cardsharp Framework Logic Manual

The user MUST make sure that Xilinx JTAG cable connector is plugged in the proper polarity to the Innovative
target connector. If by mistake, the user connects the Xilinx cable incorrectly, this may damage the target card and
Xilinx POD. See the hardware manual for each product to locate the connector and its pinout.

Innovative Integration Inc. 34

Cardsharp Framework Logic Manual

Cardsharp Top Level

Overview

Cardsharp is based on Xilinx Zynq-7000 System-on-a-Chip (SoC) architecture. It integrates a feature-rich dual-core ARM®
CortexTM -A9 based processing system (PS) and 28 nm Xilinx programmable logic (PL) in a single device. This chapter will
detail the PL section structure and functionality.

Block Diagram

The following block diagram shows the two main sections on Cardsharp within the Zynq part. It includes the Processing
System (PS) and the Programmable Logic (PL), using the Block Design to interface them. The PS runs the embedded
software stack including I/O peripherals under software control, including Ethernet, USB, eMMC (flash storage), PS DDR3,
UART, etc. The PL holds the interfaces to FMC, PCI Express, PL DDR3 and PPS timing controls.

Innovative Integration Inc. 35

`

PCIe
DMA

Endpoint
FMC

Interface

ARM® CPU x2

DDR
Controller

I/O
Peripherals

MultiQueue
Virtual FIFO

Playback

Interconnect

Velocia

IPI - Block Design
PL

PS

Cardsharp Framework Logic Manual

Logic Hierarchy

The PL logic is organized hierarchically as shown in the following diagram. The top level instantiates the main functional
blocks, namely the FMC interface, Multiqueue Virtual FIFO, PCIe DMA, Block Design with Zynq subsystem, Register Files,
Alerts module, clock generators, Velocia Packetizer/Deframer modules, and miscellaneous interfacing modules. Also shown
is the main datapath structure moving data from/to the FMC interface to the Zynq for processing.

Block Design

The Block Design is a Xilinx IP Integrator instance and contains the Zynq PS sybsystem, two custom DMA engines, the AXI
to Wishbone bridge for register access and the necessary AXI Interconnects. Its main function is to adapt and interface the
streams from/to the FMC and PCI Express interfaces into a format appropriate for the PS to process. The DMA engines help
move streaming data from/to the Zynq PS memory.

Innovative Integration Inc. 36

PS DDR
Controller

PL to Memory
Interconnect

High Performance
AXI Slave Ports

I/O
Peripherals

Central
Interconnect

Cortex-A9
CPU

Cortex-A9
CPU

General Purpose
AXI Master Ports

Block
Design

AXI-Lite
Interconnect

AXI
Interconnect

PCIe
DMA

Endpoint

AXI to
Wishbone

bridge

FMC
Interface

FMC
Multichannel DMA

To FMC
Connector

MultiQueue
Virtual FIFO

Playback

AXI MM

AXI Stream

AXI Lite

Wishbone
DDR3

x4

PCIe
DMA

HP0 HP2GP0

Periph
Registers

App
x8

CRM
150/75

CRM
100/200

/256

AXISAXISRegs
Master

clk75
sys_clk

Aurora

Aurora

LA
DIO

HA
DIO

HB
DIO

clk200

PCIe VITA
to AXIS

VITA
Nx1

Raw

VITA

Data
Control0
Control1

Register controlVelocia

PacketizerDeframer

SHIMs

AXISAlerts

Clock Gen.

AXI
Interconnect

FCLK_CLK0
FCLK_RESET0

Top Level PL

Zynq PS

Cardsharp Framework Logic Manual

The Zynq PS is customized for Cardsharp applications to maximize processing power and memory bandwidth, clocking the
CPU PLL at 800MHz and the DDR PLL at 533MHz. The IO PLL serves to clock several PS peripherals such as Ethernet,
QSPI, eMMC and the PL clock. This clock (FCLK_CLK0) is programmed to run at 150MHz and clocks all the high
performance master AXI interfaces to/from the PS. The Zynq PS is customized by double-clicking on its instance within the
block design. The following images show its various configuration options, including the main overview of its internal
architecture, clock configuration, PS-PL interface, peripherals I/O pins, MIO configuration, etc.

Innovative Integration Inc. 37

Cardsharp Framework Logic Manual

Innovative Integration Inc. 38

Cardsharp Framework Logic Manual

Table 6. PS Configuration

The Zynq PS is configured with a number of peripherals connected over the MIO pins. The following image shows the Zynq
Peripheral I/O Pins configuration screen showing the enabled peripheral units and their respective pin assignments, shadowed
in green color.

Innovative Integration Inc. 39

Illustration 1: MIO Peripheral I/O pins

Cardsharp Framework Logic Manual

MIO Pins Peripheral Direction Description

MIO 0 Ethernet Reset Out Ethernet PHY reset.

MIO 1-6 Quad SPI Flash Inout Quad SPI Flash control signals.

MIO 7 USB Reset Out USB PHY reset.

MIO 8 GPIO Out GPS Reset (active low)

MIO 9 GPIO In GPS Lock-out Okay

MIO 10-11 UART0 In/Out GPS UART0 Tx/Rx.

MIO 12-13 UART1 In/Out GPS UART1 Rx

MIO 14-15 GPIO Inout

MIO 16-27 Ethernet In/Out Ethernet data & control to PHY.

MIO 28-39 USB In/Out USB PHY signals.

MIO 40-45 SD0 In/Out SD signals (eMMC memory).

MIO 48-49 GPIO In/Out

MIO 50-51 Watchdog In/Out Watchdog timer external clock in & reset out.

MIO 52-53 Ethernet In/Out Ethernet serial control to PHY.

Table 7. Zynq PS Peripheral I/O Configuration

The DMA engines are controlled by embedded software running on the CPU's. The FMC DMA is a custom multichannel
DMA that takes AXI-Stream data (s_axis_fmc) from the PL and routes it to one of 8 busmaster memory regions allocated
within PS memory. In turn, data from 8 busmaster memory regions is routed to one of 8 Master AXI-Streams (m?_axis_fmc).
The PCIe DMA is a similar DMA with only one channel enabled, that exchanges data coming and going from a host over the
PCI Express link.

Innovative Integration Inc. 40

Cardsharp Framework Logic Manual

Port name Direction Format Description

DDR Out DDR Interface Dedicated PS DDR3 I/O pins.

FIXED_IO In/Out FIXED_IO Interface Dedicated PS I/O Peripherals (MIO).

USBIND_0 In/Out USBIND Interface Dedicated PS I/O USB pins.

pl_rst Out [0] Main PL reset.

s_axis_clk In [0] Slave AXI-Stream clock.

clk150 Out [0] AXI clock.

clk75 Out [0] Wishbone Clock.

ctrl_reg In/Out ctrl_reg Interface Control bus to Wishbone Master.

pps_int In [0] PPS Interrupt to PS.

int_ext In [3:0] External Interrupt Inputs.

s_axis_pcie In AXIS Interface Slave AXI Stream from PCI Express link in PL to PCIe DMA.

m_axis_pcie Out AXIS Interface Master AXI Stream from PCIe DMA to PL en-route to PCI
Express link.

s_axis_fmc In AXIS Interface Slave AXI Stream from PL to FMC DMA.

m*_axis_fmc Out AXIS Interface Master AXI Streams from FMC Multichannel DMA out to the PL.

s_axis_alrt In AXIS Interface Slave AXI Stream carrying Alerts from PL.

Table 8. Block Design interfaces & ports

The PS has two high performance slave AXI ports enabled, namely S_AXI_HP0, S_AXI_HP2, used by two custom DMA
engines used to move streaming data from the PL to the PS memory. The s_axis_pcie & s_axis_fmc AXI-Stream interfaces
take data from the PL into their respective DMA engines. In turn, the m_axis_pcie & m*_axis_fmc deliver data from the PS
memory to the PL also in AXI-Stream format.

The AXI to Control Register component acts as a bridge between the AXI-Lite signaling from the PS to the Wishbone bus
used in the PL register files. It takes register reads & writes from the PS as AXI-Lite transactions and transforms them into a
format appropriate for the Wishbone Master to accept to and respond.

The Clock and Register Module (crm) within the Block Design has a PLL that generates clocks & resets that interface with
the PS. A 75MHz clock is used for AXI-Lite transactions from the PS General Purpose Master AXI port (M_AXI_GP0) to
the DMA's and the AXI to Control Register Bridge (axi_to_ctrl) component. A 150MHz clock is used to interface to the PS
through High Performance Slave AXI ports (S_AXI_HP0/2).

The block design is scripted in Tcl and run when the project is being built by executing the ps_sys.tcl script that resides in the
project directory under the bd/ subdirectory. If any modifications are done to the block design, it is suggested to write the
changes by exporting it by using the menu option File/Export/Block Design. The block design has a wrapper that instantiates
it, and it's managed by Vivado, so in case of modifications it will be updated automatically. The wrapper allows the block
design to be synthesized in out-of-context mode if desired. This may help reduce synthesis time after the component has been
synthesized once.

Innovative Integration Inc. 41

Cardsharp Framework Logic Manual

Multiqueue VFIFO

This component uses a bank of SDRAM memory as a buffer to implement either a “virtual FIFO” or an arbitrary pattern
generator in two independent queues. The operating mode is selected during initialization. These operating modes support
either a flow-through data architecture or an arbitrary waveform generator architecture for the design. The buffer depth is the
size of the memory bank. Each of the external SDRAM devices is a bank of 512MB, arranged as 256Mx16, for a combined
total of 256M x64 memory locations, or 2 GB capacity.

Each of the two queues operates with independent data input/output interfaces used in both operating modes, and independent
Playback command interfaces used in the arbitrary waveform generator mode.

The flow-through mode or Virtual FIFO mode receives incoming data on the vfifo?_i_* interface, buffers the data in
SDRAM and moves it to the vfifo?_o_* interface, waiting to be read.

Innovative Integration Inc. 42

DDR3

FIFO

FIFO

FIFO

FIFO

VFIFO Controller

VFIFO Controller

pbcmd0

vfifo1_i

vfifo0_i

pbcmd1

vfifo1_o

vfifo0_o

Playback alerts

vfifo1 Status/Counts

Self Test

vfifo0 Status/Counts

Cardsharp Framework Logic Manual

Port name Direction Description

run In Enable data flow.

playback_en In Enable Playback mode.

test_en In Enable self-test mode.

test_error Out Self-test error results. Each bit corresponds to a SDRAM device.

pbcmd?_fifo_* In Playback Command FIFO Interface. Receives Command instructions for Arbitrary Waveform
Generation mode.

vfifo?_i_* In Data Stream Interface. Receives streaming data to be buffered in VFIFO or data to be played
back in Arbitrary Waveform Generation mode.

vfifo?_o_* Out Data Stream Interface. Sends buffered data out in VFIFO mode or playback data in Arbitrary
Waveform Generation mode.

ddr3_* In/Out Interface to SDRAM DDR3 memory devices.

Table 9. Multiqueue VFIFO main interfaces

FMC Interface

The FMC Interface contains basic functionality to be able to test all the pins on the FMC connector. This functionality is
bound to be modified and adapted to the FMC daughter card to be plugged in. In this configuration, there's register controlled
Digital I/O's on each of the FMC data buses, namely LA, HA & HB ports. Additionally, the high speed serial I/O lines are
controlled by two Aurora instances with their own data streams exposed to the top level.

Innovative Integration Inc. 43

34
FMC LA

LA DIOLA DIO

24
FMC HA

LA DIOHA DIO

22
FMC HB

LA DIOHB DIO

FMC
Registers

Aurora0

Aurora1

4
FMC RIO

4
FMC RIO

Wishbone bus

FMC RIO0 Data

FMC RIO1 Data

F
M

C
 C

o
nn

ec
to

r

FMC Interface

Control/Status

Cardsharp Framework Logic Manual

Port name Direction Description

wb_* In/Out Wishbone bus.

fmc_rio0_src* In Data stream input en-route to Aurora0 links.

fmc_rio0_dest Out Data stream output coming from Aurora0 links.

fmc_rio1_src* In Data stream input en-route to Aurora1 links.

fmc_rio1_dest Out Data stream output coming from Aurora1 links.

fmc_la_* In/Out FMA LA bus.

fmc_ha_* In/Out FMC HA bus.

fmc_hb_* In/Out FMC HB bus.

fmc_clk?_* In/Out FMC module-to-carrier clocks.

fmc_rio_* In/Out FMC High speed serial links (Aurora data)

fmc_gbtclk? In FMC GBT clocks (Aurora reference clocks).

Table 10. FMC main interfaces

Wishbone Master

This component is a bridge between two register control interfaces and the Wishbone Bus that reaches all registers in the PL.
It can receive commands from the PS under embedded software control, or alternatively from the PCI Express bus if the
system is plugged onto a host over the XMC connector. This would allow a system to control all PL registers from either
control software, namely Zynq PS or a PC host in a transparent way. More information about Wishbone Master can be found
in the K7 Logic Library guide.

Innovative Integration Inc. 44

PCIe Control I/F

PS Control I/F

Wishbone Bus
Buffer

Buffer

Arb

WB Master

Cardsharp Framework Logic Manual

Simulation

Simulating the Cardsharp logic is possible within Vivado, using its built-in simulation capabilities. In order to make the
simulation faster, a number of Bus Functional Models (BFM) have been created to replace components that are too complex
or simply unavailable for simulation; for example, the Zynq PS, the PCIe DMA and the Multiqueue components have been
replaced by their BFM counterparts. The AXI BFM simulation model license is required to run the top level simulation. The
license is non-free and should be acquired through Xilinx vendors.

The simulation suite has a hierarchy that makes it flexible for modifications and customization, counting with a top level
“Test” that instantiates the actual testbench, and it includes accesses simulating software accesses from its various interfaces.
Various components in the suite are written in Verilog HDL, making possible to access points deep through the hierarchy.
VHDL doesn't allow for this.

Test (test.v): Through hierarchical function calls, it accesses tasks
in the BFMs to perform a number of functions, such as resets,
register accesses, data streaming, etc.

Testbench (cardsharp_tb.v): It instantiates the Unit Under Test
and contains clock generators and other devices interfacing with
the design, such as memories and analog parts like ADCs and/or
DACs within a FMC model.

UUT (cardsharp_top.vhd): Design top level. Instantiates all
components or its correspondent BFMs.

Block Design (ps_sys_i): This is a custom BFM that emulates the
Zynq PS design, with all its streaming interfaces.

PCIe (ii_pcie_wrapper.v): Custom BFM that emulates the PCI
Express interface to the host PC.

Multiqueue (ii_mq_pb.v): Custom BFM that emulates the Virtual
FIFO multiqueue in flow-through mode. Pattern mode is not
supported in the BFM.

Testbench Hierarchy

Table 11. Simulation suite hierarchy

Testbench hierarchy

The following block diagram shows the testbench hierarchy and its main components. At the top, there's the Test which calls
tasks within the Testbench. These tasks make use of particular components within the BFM's to provide simulation stimulus
to the design.

Innovative Integration Inc. 45

Cardsharp Framework Logic Manual

Here's a brief description of the function calls to tasks within the different BFMs.

• tb.porb: Direct signal assignment to the PS BFM PORB port; active low.

• tb.ps7_rst(value): Sets Block Design pl_rst output to argument value.

• tb.pex_app_wr(address, data): PCIe slave write access to address, data on Wishbone Bus.

• tb.pex_app_rd(address, rdata): PCIe slave read access to address on Wishbone Bus, storing read value on rdata
variable.

• tb.pex_app_rd_poll(address, bit_pos, expected): PCIe slave read access to address on Wishbone Bus, polling the
selected bit position until its value matches the expected argument.

• tb.ps7_app_wr(address, data): Zynq PS slave write access to address, data on Wishbone Bus.

• tb.ps7_app_rd(address, rdata): Zynq PS slave read access to address on Wishbone Bus, storing read value on rdata
variable.

Innovative Integration Inc. 46

Block
Design
BFM

PCIe
DMA
BFM

Control
Register
Interface

FMC
Interface

FMC
AXIS
FIFO

MultiQueue
Virtual FIFO

BFM

Periph
Registers

App

CRM
100/200

/256

AXISAXISRegs
Master

clk75
sys_clk

Aurora

Aurora

LA
DIO

HA
DIO

HB
DIO

clk200

PCIe VITA
to AXIS

VITA
Nx1

Data
Control0
Control1

PacketizerDeframer

SHIMs

AXISAlerts

Top Level PL

PEX
AXIS
FIFO

FMC
S_AXIS

BFM
FMC

M_AXIS
BFM

FMC
M_AXIS

BFM

FMC
M_AXIS

BFM

FMC
M_AXIS

BFM

PEX
S_AXIS

BFM

PEX
M_AXIS

BFM

put_packet()

axi4_bfm_send()

get_packet()

Testbench

pex_app_wr()
pex_app_rd()

pex_app_rd_poll()

ps7_app_wr()
ps7_app_rd()

ps7_app_rd_poll()

F
M

C
M

o
de

l

Clock
Gen

PORB
reset

Clock
Gen

Test

tb.porb = 1'b1;

tb.ps7_app_wr();

tb.pex_app_rd();

tb.put_packet();

tb.get_packet();

Cardsharp Framework Logic Manual

• tb.ps7_app_rd_poll(address, bit_pos, expected): Zynq PS slave read access to address on Wishbone Bus, polling the
selected bit position until its value matches the expected argument.

• tb.axi4_bfm_send(channel, axis_data, tlast): Sends a single AXI-Stream point to the corresponding AXI-Stream
FMC DMA channel. Intended to be used by the testbench itself through the put_packet task.

• tb.put_packet(dma, channel, seed, length): Generates a ramp on the AXI-Stream Master interface selected by “dma”
parameter (“FMC”, “PEX”). The seed is the initial value for the ramp; length selects the stream length in points.

• tb.put_vita_packet(dma, channel, packet count, frame size, stream Id, initial value): Generates a VITA packet on the
selected AXI-Stream Master interface. Packet count is the VITA packet Id. Frame size is the VITA packet size.
Stream Id is the VITA Stream Id field. Initial Value is the ramp initial value.

• tb.get_packet(dma): Reads the selected Slave AXI-Stream interface, either from “FMC” or “PEX” DMAs.

Innovative Integration Inc. 47

Illustration 2: Behavioral Simulation window

 Cardsharp PL Memory Map

Cardsharp PL Memory Map

The memory map is shown for the components on the Wishbone Bus. The AXI to Control bus on Cardsharp is on base
address 0x43C00000. Each component is mapped to a BASE address, with its registers offset from that BASE. The
simulation define is the BASE address for that device used in the simulations. Individual registers with bit assignments are
shown for each component on the Wishbone Bus.

Note: All addresses are word-aligned.

WB Base
Address

WB
Component

Simulation Define Description Module

0x000 Peripheral MR_PRF Peripheral registers : logic and hardware versions,
resets, top level controls and status

Cardsharp

0x100-
0x200

Reserved

0x300 Packetizer MR_PKT Data packetizing controls Cardsharp

0x400-
0x500

Reserved

0x600 Digital I/O MR_DIO Digital I/O for testing Cardsharp

0x700 Matlab MR_BSP Matlab BSP General purpose registers Cardsharp

0x800 -
0xb00

Reserved

0xc00-

0x1100

FMC MR_FMC* See FMC section Cardsharp

0x1200-
0x1300

P15 Aurora MR_AU0/1 Aurora High Speed Serial Interfaces Cardsharp

0x1400 -

0x1900

Reserved

0x1A00 Application MR_APP Application logic Interface registers Cardsharp

0x2000-
0x3F00

IP Cores Cardsharp

Table 12. Memory Map

Cardsharp Framework Logic Manual 48

 Cardsharp PL Memory Map

Peripheral Registers (WB Device 0)

These are the top level registers used for system functions.

WB Base WB
Address

Register Simulation Define R/W Description Modules

0x000

0x00 Information MR_PRF_INFO R Hardware and logic version
information.

0x01 Reset MR_PRF_RST R/W Reset control

0x03 Sub revision MR_PRF_SUB_REV R Sub revision

0x04 Bypass VITA
padder

MR_PRF_BYPASSV R/W Bypass VITA padding in
Velocia packets. Test feature.

0x07 PL DDR3 MR_PRF_DDR DRAM power down controls

0x08-
0x0A

Define PID MR_PRF_DEF_PID Peripheral ID assignment for
stream 0

0x0B alert_enable MR_ALR_ENAB R/W Alert enables.

0x0C control MR_ALR_CTRL R/W Alert monitor controls.

0x0D sw_alert MR_ALR_SW R/W Software Alert

0x0E alert_clr MR_ALR_CLR R/W Clear alert FIFO

0x0F alert_cnt MR_ALR_CNT R/W Number of Alerts to process

0x10 QSFP0 control MR_PRF_QSFP0_CTRL R/W QSFP0 control & status

0x11 QSFP0 I2C MR_PRF_QSFP0_I2C R/W QSFP0 I2C clock control

0x12 QSFP1 control MR_PRF_QSFP1_CTRL R/W QSFP1 control & status

0x13 QSFP1 I2C MR_PRF_QSFP1_I2C R/W QSFP1 I2C clock control

0x14 QSFP XO I2C MR_PRF_QSFP_XO_I2C R/W QSFP I2C clock generator

Table 13. System Peripherals Registers

Information (MR_PRF_INFO, Base+0x00)
This register provides hardware and logic revision information.

Bits Field R/W Description

15:0 revision R Logic revision code. Split in two byte words: major:minor. (ie. 0x0102=v1.2).

19:16 cfg R Hardware configuration code (variant code; ie. AC coupled)

23:20 hw_rev R Hardware revision (Rev. A, B, etc.)

27:24 hw_type R Hardware type code (Module Id, ie. SBC=2, etc.)

29:28 fpga_type R FPGA type.

0x01 = 045

0x10 = 100

Cardsharp Framework Logic Manual 49

 Cardsharp PL Memory Map

31:30 unused

Table 14. System Info Register

Reset (MR_PRF_RST, Base+0x01)
This register provides hardware reset for the FPGA (soft reset)

Bits Field R/W Description Modules

0 app_rst R/W Application reset. Default=1. Cardsharp

1 Green LED R/W LED controls. '1' = on (default) Cardsharp

2 Front panel LED R/W LED controls. '1' = on (default) Cardsharp

3 Unused RO

4 run R/W Enable backend data flow. '0'=off (default). Cardsharp

31:5 -

Table 15. System Reset Register

Sub Revision (MR_PRF_SUB_REV, Base+0x03)
This register provides the sub revision code which is used to track logic builds.

Bits Field R/W Description Modules

23:0 -

31:24 sub_rev R Sub revision Cardsharp

Table 16. System Sub Revision Register

Bypass VITA padding in Velocia packets (MR_PRF_BYPASSV, Base+0x4)
VITA padding packets within Velocia packets allows an integer number of VITA packets to fit in a Velocia packet. For test
reasons, this feature may be bypassed.

Bits Field R/W Description Modules

0 Bypass_vita_pad R/W Bypass VITA padder (default = 0)

1 VITA header error R Error on VITA header

2 VITA trailer error R Error on VITA trailer

31:3 - - -

Table 17. System Sub Revision Register

DDR3 Control and Status (MR_PRF_DDR Base+0x07)
This register provides the DDR2 bank power control, VFIFO mode control, and PHY initialization status.

Bits Field R/W Description Modules

5:4 Ddr3_init_done R DRAM PHY initialization status. '1' = PHY init completed
successfully.

13:12 mem_test_en R/W Enable memory test mode

17:16 mem_test_error R Memory test status. '1' = error.

31:20 -

Cardsharp Framework Logic Manual 50

 Cardsharp PL Memory Map

Table 18. System DDR3 DRAM Control and Status

Outgoing PID Defines (MR_PRF_DEF_PIDx Base+0x08... +0x0B)
This register defines the PID for Velocia packet streams. Multiple streams may be assigned beginning with register 0x8 up to
register 0xB.

Offset Description Modules

0x8 Test LoopBack PID

0x9 DAC data and playback command PID

Table 19. Outgoing PID Map

Bits Field R/W Description Modules

23:0 -

31:24 def_pid_addr R/W PID address. (default = 0x0)

Table 20. System PID Define Register

Alert Enables (MR_PRF_AL_EN, Base+0xB)
This register enables each alert.

Bits Field R/W Default Description

31 : 0 alert_enables R/W 0 = off Alert enables. One bit per alert source.

others -

Table 21. Alert Monitor Enables Register

Alert Defines

Bits Alert Alert Data Word Description Modules

0 timestamp_rollover (x"1303000" & "000" &
timestamp_rollover)

Alert timestamp rollover. All

1 alert_sw_stb alert_sw Software Alert. All

2 Tag_* tag_rep_value(15 downto 8)
& tag_load_value(15
downto 8) &
tag_rep_value(7 downto 0)
& tag_load_value(7 downto
0

VFIFO Arbitrary Waveform Generator tags
events.

Cardsharp

3 mem_alert_dout (x"1303000" &
mem_alert_dout)

VFIFO status alerts from ii_alert_gen

31 : 4 -

Table 22. Alert Monitor Defined Alerts

Cardsharp Framework Logic Manual 51

 Cardsharp PL Memory Map

Alert Controls (MR_PRF_AL_CTRL, Base+0xC)
This register provides reset and timestamp enable functions for the Alert monitor.

Bits Field R/W Default Description

0 timestamp_run R/W 0 Enable Alert monitor timestamp.

1 alert_fifo_rst R/W 0 Alert monitor reset. Clears all pending alerts and the FIFO.

others -

Table 23. Alert Monitor Controls

Software Alert (MR_PRF_AL_SW, Base+0xD)
This register fires a software alert whenever written to.

Bits Field R/W Default Description

31:0 sw_data R/W 0 Software alert

Table 24. Software Alert

Clear Alerts (MR_PRF_AL_CLR, Base+0xE)

Bits Field R/W Default Description

31:0 alert_clr R/W 0 Clear alerts.

Table 25. Alert Monitor Controls

Alerts count (MR_PRF_AL_CNT, Base+0xF)
This register sets the number of alerts inputs that will be processed

Bits Field R/W Default Description

31:0 alert_cnt R/W 0 Number of alert inputs to be processed, ignoring the others.

Table 26. Alert Monitor Controls

QSFP0 port control/status register (MR_PRF_DEF_PIDx Base+0x10)
This is the QSFP0 port control status register.

Bits Field R/W Default Description Modules

0 qsfp_modesel_n R/W When “low”, the module responds to 2-wire serial
communication. When “high”, the module shall not respond
or acknowledge any 2-wire communication

3:1 - Unused

4 qsfp_reset_n R/W A low level on this pin resets the qsfp module

11:3 - Unused

12 qsfp_lpmode R/W Setting this bit high sets the qsfp module in low power mode.
When low, the qsfp module is in high power mode

15:13 - Unused

16 qsfp_int_n R When low, indicates possible module fault

Cardsharp Framework Logic Manual 52

 Cardsharp PL Memory Map

19:17 - Unused

20 qsfp_modpres_n R A high on this bit indicates module absent

23:21 - Unused

31:24 - Unused

Table 27. QSFP port control/status register

QSFP0 port I2C register (MR_PRF_DEF_PIDx Base+0x11)
This is the QSFP0 port I2C register.

Bits Field R/W Default Description Modules

3:0 qsfp_sda_o R/W I2C data out

7:4 qsfp_scl R/W I2C clock

11:8 qsfp_sda_i R I2C data in

15:12 qsfp_scl_i R I2C clock (readback)

31:16 - Unused

Table 28. QSFP port I2C register

QSFP1 port control/status register (MR_PRF_DEF_PIDx Base+0x12)
This is the QSFP1 port control status register.

Bits Field R/W Default Description Modules

0 qsfp_modesel_n R/W When “low”, the module responds to 2-wire serial
communication. When “high”, the module shall not respond
or acknowledge any 2-wire communication

3:1 - Unused

4 qsfp_reset_n R/W A low level on this pin resets the qsfp module

11:3 - Unused

12 qsfp_lpmode R/W Setting this bit high sets the qsfp module in low power mode.
When low, the qsfp module is in high power mode

15:13 - Unused

16 qsfp_int_n R When low, indicates possible module fault

19:17 - Unused

20 qsfp_modpres_n R A high on this bit indicates module absent

23:21 - Unused

31:24 - Unused

Cardsharp Framework Logic Manual 53

 Cardsharp PL Memory Map

Table 29. QSFP port control/status register

QSFP1 port I2C register (MR_PRF_DEF_PIDx, Base+0x13)
This is the QSFP1 port I2C register.

Bits Field R/W Default Description Modules

3:0 qsfp_sda_o R/W I2C data out

7:4 qsfp_scl R/W I2C clock

11:8 qsfp_sda_i R I2C data in

15:12 qsfp_scl_i R I2C clock (readback)

31:16 - Unused

Table 30. QSFP port I2C register

QSFP SIO XO I2C register (MR_PRF_QSFP_XO_I2C, Base+0x14)
This is the QSFP SIO XO I2C register that controls the QSFP reference clock generator.

Bits Field R/W Default Description Modules

0 qsfp_sio_sdo R/W XO I2C data out

1 qsfp_sio_sck R/W XO I2C clock

2 qsfp_sio_sdi R XO I2C data in

3 qsfp_sclk_i R XO I2C clock (readback)

4 qsfp_sio_intr XO Interrupt

31:5 - Unused

Table 31. SIO XO I2C register

PPS Trigger Arm register (MR_PRF_PPS, Base+0x15)
Arm PPS trigger waits until a PPS event to assert the PPS trigger. When disarmed it waits for the next PPS event to deassert
the trigger.

Bits Field R/W Description Modules

0 arm_pps_trig R/W Arm PPS trigger (Default=0, not armed)

31:1 - R/W

Cardsharp Framework Logic Manual 54

 Cardsharp PL Memory Map

Packetizer Registers (WB Device 3)

These are the Velocia packetizer control registers. These are NOT associated with the VITA packetizers.

WB
Base

WB
Address

Register Simulation Define R/W Description

0x300

0x00 pkt_data_ch_en MR_PKT_DATA_CH_EN R/W Velocia packetizer data channel enables

0x01 aux_hdr2 MR_PKT_AUX_HDR R/W Second header word for Velocia packets

0x02 alert_pkt_hdr MR_PKT_ALRT_HDR R/W Alert Velocia packet PID and size

0x03 data_pkt_hdr MR_PKT_DATA_HDR R/W Data Velocia packet PID and size

others

0x22 force_pkt_size MR_PKT_FRC_CH_SIZE R/W Force packet size

0x23 Timer MR_PKT_TIMER R/W Timeout timer

Table 32. Velocia Packetizer Component Registers

Packetizer Data Channel Enables (MR_PKT_DATA_CH_EN, Base+0x0)
This register enables each Velocia packetizer data channel.

Bits Field R/W Default Description Modules

num_dat
a_pkt_ch
-1 : 0

pkt_data_ch_en R/W Packetizer data channel enables.

others -

Table 33. Velocia Packetizer Data Channel Enable Register

Auxiliary header word (MR_PKT_AUX_HDR, Base+0x1)
This register defines the second word in the Velocia packets header.

Bits Field R/W Default Description

31 : 0 aux_hdr2 R/W 0 Auxiliary second header word for Velocia packets.

Table 34. Velocia Packetizer Auxiliary Header Register

Alert Velocia Packet Header (MR_PKT_ALRT_HDR, Base+0x2)
This register defines the alert Velocia packet header.

Bits Field R/W Default Description

23 : 0 alert_pkt_size R/W 0x28 Alert packet size

31 : 24 alert_pd_addr R/W 0xff Alert packet Peripheral ID

others -

Table 35. Velocia Packetizer Alert Header Register

Cardsharp Framework Logic Manual 55

 Cardsharp PL Memory Map

Data Velocia Packet Header (MR_PKT_DATA_HDR, Base+0x3 ..x”2+num_data_pkt_ch”)
These registers, one for each data packet channel, define the Velocia header.

Offset Description Modules

00x03 ADC data

00x04 Test LoopBack PID

Table 36. Incoming PID Map

Bits Field R/W Default Description

23 : 0 ch_pkt_size(i) R/W Maximum packet size for ith data Velocia channel.

31 : 24 pd_addr(i) R/W Peripheral ID for ith data Velocia channel .

others -

Table 37. Velocia Packetizer Data Header Register

Force Velocia Packet Size (MR_PKT_FRC_CH_SIZE, Base+0x22)
This register forces the maximum size for each Velocia packetizer data channel.

Bits Field R/W Default Description Modules

num_dat
a_pkt_ch
-1 : 0

force_pkt_size R/W Force maximum packet size for each data
channel when set. Otherwise, if the data
available is less than the max size, a smaller
packet is constructed.

others -

Table 38. Force Velocia Packet Size Per Channel Register

Timer (MR_PKT_TIMER, Base+0x23)
This register sets a timer inside packetizer to avoid sending too many small packets and potentially slowing down the host
processing. By default the timer is set to 1ms, but may be programmed by software.

Bits Field R/W Default Description Modules

21:0 timer R/W 250000 clock cycles (at
250MHz default = 1ms).

Packetizer timer.

others -

Table 39. Packetizer Timer

Cardsharp Framework Logic Manual 56

 Cardsharp PL Memory Map

P16 DIO Registers

The single ended Digital I/O registers are concatenated as follows: positive on even bits, negative on odd bits, ie.
p16_dio_p[6:0] are on even bits, p16_dio_n[6:0] on odd bits.

For example:

Bits[31:6] Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

… p16_dio_n[2] p16_dio_p[2] p16_dio_n[1] p16_dio_p[1] p16_dio_n[0] p16_dio_p[0]

P16 DIO register (WB Device 6)

These are the registers for P16 DIO bus.

WB Base WB
Address

Register Simulation Define R/W Description

0x600

0x00 MR_DIO_DOUT R/W Lower 32 bit word of the P16 DIO bus. The entire
DIO bus is updated when writing to this register.

0x01 Reserved

0x02 MR_DIO_OE R/W Output enable of the lower 32 bit word of the P16
DIO bus

Table 40. P16 DIO register

Cardsharp Framework Logic Manual 57

 Cardsharp PL Memory Map

P15 Aurora 0 Registers (WB Device 18)

These are the registers for Aurora port 0.

Base WB
Address

Register Simulation Define R/W Description

0x1100

0x00 MR_AU1_TEST_CTRL R/W

0x01 MR_AU1_CTRL_STAT R/W

0x02 MR_AU1_CMD_WR R/W

0x03 MR_AU1_CMD_RD R/W

others

Table 41. P15 Aurora Port 1 Component Registers

P15 Aurora Port 1 Test Control (MR_AU1_TEST_CTRL, Base+0x00)
These are controls and status for P15 Aurora port 0.

Bits Field R/W Default Description Modules

0 tx_test_gen_en R/W 0 = off Enable test generator for transmission.

1 rx_test_chk_en R/W 0 = off Enable test generator for receive.

15:2

31:16 test_errors R Test error count

Table 42. P15 Aurora 0 Test Control Register

P15 Aurora Port 1 Control/Status (MR_AU1_CTRL_STAT, Base+0x01)
These are controls and status for P15 Aurora port 0.

Bits Field R/W Default Description Modules

0 Gtxreset_n R/W 0 = reset MGT reset, active low.

1 power_down R/W 1 = on MGT power down. (Turned off by default)

2 run R/W 0 = off Aurora interface run.

5:3 loopback R/W 000 000 = Disable loopback

001 = Parallel

010 = Serial

6 error_clr R/W 0 = off Clear port error.

7 tx_channel_en R/W 0 = off Enable transmit channel.

8 rx_channel_en R/W 0 = off Enable receive channel.

22:9 -

23 hard_error R Hard error. Link lost due to serious disruption.

24 soft_error R Soft error such as bit error.

Cardsharp Framework Logic Manual 58

 Cardsharp PL Memory Map

25 frame_error R Frame error from Aurora.

29:26 lane_up R Number of lane the Aurora port is using.

30 channel_up R The Aurora channel is active.

31 pll_locked R PLL for MGT is locked.

Table 43. P15 Aurora 0 Control/Status Register

P15 Aurora Port 1 Sub-channel Write Port (MR_AU1_CMD_WR, Base+0x02)
This is the sub-channel write port for P15 Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_wr_data R/W 0 Command write data.

29:24 usr_cmd_wr_addr R/W 0 Command write address.

30 usr_cmd_wr_rdn R/W 0=write Command read/write control.

0= write, 1 = read.

31 cmd_ch_rdy R Command sub-channel is ready.

Table 44. P15 Aurora 0 Sub-channel Write Register

P15 Aurora Port 1 Sub-channel Read Port (MR_AU1_CMD_RD, Base+0x03)
This is the sub-channel read port for P15 Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_rd_data R Command read data.

29:24 usr_cmd_rd_addr R Command read address.

30 -

31 usr_cmd_rd_vld R Command sub-channel is read data is valid.

Table 45. P15 Aurora 0 Sub-channel Read Register

P15 Aurora 1 Registers (WB Device 19)

These are the registers for Aurora port 1.

Base WB
Address

Register Simulation Define R/W Description

0x1100

0x00 MR_AU1_TEST_CTRL R/W

0x01 MR_AU1_CTRL_STAT R/W

0x02 MR_AU1_CMD_WR R/W

0x03 MR_AU1_CMD_RD R/W

others

Table 46. P15 Aurora Port 1 Component Registers

P15 Aurora Port 1 Test Control (MR_AU1_TEST_CTRL, Base+0x00)
These are controls and status for P15 Aurora port 1.

Cardsharp Framework Logic Manual 59

 Cardsharp PL Memory Map

Bits Field R/W Default Description Modules

0 tx_test_gen_en R/W 0 = off Enable test generator for transmission.

1 rx_test_chk_en R/W 0 = off Enable test generator for receive.

15:2

31:16 test_errors R Test error count

Table 47. P15 Aurora 1 Test Control Register

P15 Aurora Port 1 Control/Status (MR_AU1_CTRL_STAT, Base+0x01)
These are controls and status for P15 Aurora port 1.

Bits Field R/W Default Description Modules

0 Gtxreset_n R/W 0 = reset MGT reset, active low.

1 power_down R/W 1 = on MGT power down. (Turned off by default)

2 run R/W 0 = off Aurora interface run.

5:3 loopback R/W 000 000 = Disable loopback

001 = Parallel

010 = Serial

6 error_clr R/W 0 = off Clear port error.

7 tx_channel_en R/W 0 = off Enable transmit channel.

8 rx_channel_en R/W 0 = off Enable receive channel.

22:9 -

23 hard_error R Hard error. Link lost due to serious disruption.

24 soft_error R Soft error such as bit error.

25 frame_error R Frame error from Aurora.

29:26 lane_up R Number of lane the Aurora port is using.

30 channel_up R The Aurora channel is active.

31 pll_locked R PLL for MGT is locked.

Table 48. P15 Aurora 1 Control/Status Register

P15 Aurora Port 1 Sub-channel Write Port (MR_AU1_CMD_WR, Base+0x02)
This is the sub-channel write port for P15 Aurora 1.

Bits Field R/W Default Description Modules

23:0 usr_cmd_wr_data R/W 0 Command write data.

29:24 usr_cmd_wr_addr R/W 0 Command write address.

30 usr_cmd_wr_rdn R/W 0=write Command read/write control.

0= write, 1 = read.

31 cmd_ch_rdy R Command sub-channel is ready.

Cardsharp Framework Logic Manual 60

 Cardsharp PL Memory Map

Table 49. P15 Aurora 1 Sub-channel Write Register

P15 Aurora Port 1 Sub-channel Read Port (MR_AU1_CMD_RD, Base+0x03)
This is the sub-channel read port for P15 Aurora 1.

Bits Field R/W Default Description Modules

23:0 usr_cmd_rd_data R Command read data.

29:24 usr_cmd_rd_addr R Command read address.

30 -

31 usr_cmd_rd_vld R Command sub-channel is read data is valid.

Table 50. P15 Aurora 1 Sub-channel Read Register

Cardsharp Framework Logic Manual 61

 Cardsharp PL Memory Map

Application logic Interface registers (WB Device 21)

This is the registers for Application logic Interface.

WB Base WB
Address

Register Simulation Define R/W Description

0x1500 0x00 MR_APP_RUN R/W

Table 51. Application logic interface registers

Application run register (MR_APP_RUN, Base+0x00)
Application run register.

Bits Field R/W Default Description Modules

0 run R/W - Run

31:1 - - -

Table 52. Application run Register

Cardsharp Framework Logic Manual 62

 Cardsharp PL Memory Map

FMC Memory Map

FMC Registers

The memory map for the FMC components on the Wishbone Bus is shown below. Some components are common to all the
FMC modules, whereas others are card specific.

WB Base
Address

WB
Component

Simulation Define Description Module

0xc00 FMC MR_FMC_IF FMC interface registers Cardsharp

0xd00 FMC MR_FMC_LA_DIO FMC LA DIO register Cardsharp

0xe00 FMC MR_FMC_HA_DIO FMC HA DIO register Cardsharp

0xf00 FMC MR_FMC_HB_DIO FMC HB DIO register Cardsharp

0x1000 FMC MR_FMC_RIO0 Aurora core 0 within FMC interface Cardsharp

0x1100 FMC MR_FMC_RIO1 Aurora core 1 within FMC interface Cardsharp

0x1200 FMC MR_FMC_RIO2 Aurora core 2 within FMC interface Cardsharp

Table 53. FMC Memory Map

Cardsharp Framework Logic Manual 63

 Cardsharp PL Memory Map

FMC status and configuration Registers (WB Device 12)

These are the registers for FMC interface.

WB Base WB Address Register Simulation Define R/W Description

0xc00

0x00 MR_FMC_CTRL R/W FMC control and status

0x01 MR_FMC_I2C_IF R/W FMC I2C interface

0x02 MR_FMC_ID R FMC ID

0x03 MR_FMC_CLK_CFG R/W FMC BIDIR clock control and status

0x04 MR_FMC_CLK0_M2C_STS R FMC clock 0 m2c status

0x05 MR_FMC_CLK1_M2C_STS R FMC clock 1 m2c status

0x06 MR_FMC_CLK2_M2C_STS R FMC clock 2 m2c status

0x07 MR_FMC_CLK3_M2C_STS R FMC clock 3 m2c status

0x08 MR_FMC_CLK2_C2M_STS R FMC clock 2 c2m status

0x09 MR_FMC_CLK3_C2M_STS R FMC clock 3 c2m status

Table 54. FMC status and configuration registers

FMC control register (MR_FMC_CTRL, Base+0x00)
These are FMC control and status bits.

Bits Field R/W Default Description Modules

0 fmc_present_n R - FMC present (active low) Cardsharp

1 fmc_vadj_en_n_o W 1 Enable FMC VADJ (active low) Cardsharp

1 fmc_vadj_en_n_i R 1 Actual status of FMC VADJ Enable pin (active low) Cardsharp

2 fmc_vadj_forced R FMC VADJ is forced by the hardware Cardsharp

3 fmc_vadj_pwr_gd R FMC VADJ power good status Cardsharp

6:4 fmc_vadj_lvl R Selected VADJ level

000 => 1.2V

001 => 1.35V

010 => 1.5V

011 => 1.8V

100 => 2.5V

111 - 101 => N/A (spare)

Cardsharp

15:7 -

16 fmc_pg_m2c_n R - FMC power good M2C (active low) Cardsharp

17 fmc_pg_c2m_n R/W 1 FMC power good C2M (active low) Cardsharp

31:18 -

Table 55. FMC control register

Cardsharp Framework Logic Manual 64

 Cardsharp PL Memory Map

FMC I2C interface (MR_FMC_I2C_IF, Base+0x01)
This is the I2C interface to the FMC.

Bits Field R/W Default Description Modules

0 fmc_sdo R/W - FMC I2C data out Cardsharp

1 fmc_scl R/W - FMC I2C clock Cardsharp

2 fmc_sdi R - FMC I2C data in Cardsharp

3 - R FMC I2C clock readback Cardsharp

31:4 -

Table 56. FMC I2C interface

FMC ID (MR_FMC_ID, Base+0x2)
This register has the FMC ID.

Bits Field R/W Default Description Modules

31:0 fmc_id R FMC ID Cardsharp

Table 57. FMC ID

FMC BIDIR Clock control and status (MR_FMC_CLK_CFG, Base+0x3)
This register has the FMC BIDIR clock control and status bits.

Bits Field R/W Default Description Modules

0 fmc_clk_dir R FMC BIDIR clock direction (0=M2C, 1=C2M) Cardsharp

1 fmc_clk_2_3_en R/W 0 FMC clock 2 & 3 driver enable Cardsharp

2 fmc_clk2_sel R/W 0 FMC clock 2 source select 0=DIFF, 1=SE Cardsharp

3 fmc_clk3_sel R/W 0 FMC clock 3 source select 0=DIFF, 1=SE Cardsharp

31:4 -

Table 58. FMC BIDIR Clock Register

FMC Clock0 m2c status (MR_FMC_CLK0_M2C_STS, Base+0x4)

Bits Field R/W Default Description Modules

9:0 fmc_clk0_m2c_freq R FMC clock0 M2C frequency in MHz Cardsharp

31:10 -

Table 59. FMC Clock0 m2c Register

FMC Clock1 m2c status (MR_FMC_CLK1_M2C_STS, Base+0x5)

Bits Field R/W Default Description Modules

9:0 fmc_clk1_m2c_freq R FMC clock1 M2C frequency in MHz Cardsharp

31:10 -

Cardsharp Framework Logic Manual 65

 Cardsharp PL Memory Map

Table 60. FMC Clock1 m2c Register

FMC Clock2 m2c status (MR_FMC_CLK2_M2C_STS, Base+0x6)

Bits Field R/W Default Description Modules

9:0 fmc_clk2_m2c_freq R FMC clock2 M2C frequency in MHz Cardsharp

31:10 -

Table 61. FMC Clock2 m2c Register

FMC Clock3 m2c status (MR_FMC_CLK3_M2C_STS, Base+0x7)

Bits Field R/W Default Description Modules

9:0 fmc_clk3_m2c_freq R FMC clock3 M2C frequency in MHz Cardsharp

31:10 -

Table 62. FMC Clock3 m2c Register

FMC Clock2 c2m status (MR_FMC_CLK2_C2M_STS, Base+0x8)

Bits Field R/W Default Description Modules

9:0 fmc_clk2_c2m_freq R FMC clock2 C2M frequency in MHz Cardsharp

31:10 -

Table 63. FMC Clock2 c2m Register

FMC Clock3 c2m status (MR_FMC_CLK3_C2M_STS, Base+0x9)

Bits Field R/W Default Description Modules

9:0 fmc_clk3_c2m_freq R FMC clock3 C2M frequency in MHz Cardsharp

31:10 -

Table 64. FMC Clock3 c2m Register

Cardsharp Framework Logic Manual 66

 Cardsharp PL Memory Map

FMC DIO Registers

The single ended Digital I/O registers are concatenated as follows: positive on even bits, negative on odd bits, ie.
fmc_la_p[33:0] are on even bits, fmc_la_n[33:0] on odd bits.

For example:

Bits[31:6] Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

… fmc_la_n[2] fmc_la_p[2] fmc_la_n[1] fmc_la_p[1] fmc_la_n[0] fmc_la_p[0]

FMC LA DIO register (WB Device 13)

These are the registers for FMC LA DIO bus.

WB Base WB
Address

Register Simulation Define R/W Description

0xd00

0x00 MR_FMC_LA_DOUT_L R/W Lower 32 bit word of the FMC LA DIO bus. The
entire DIO bus is updated when writing to this
register.

0x01 MR_FMC_LA_DOUT_H R/W Middle 32 bit word of the FMC LA DIO bus

0x02 MR_FMC_LA_DOUT_V R/W Upper 2 bit word of the FMC LA DIO bus

0x04 MR_FMC_LA_OE_L R/W Output enable of the lower 32 bit word of the FMC
LA DIO bus

0x05 MR_FMC_LA_OE_H R/W Output enable of the middle 32 bit word of the
FMC LA DIO bus

0x06 MR_FMC_LA_OE_V R/W Output enable of the upper 2 bit word of the FMC
LA DIO bus

Table 65. FMC LA DIO register

FMC HA DIO register (WB Device 14)

These are the registers for FMC HA DIO bus.

WB Base WB
Address

Register Simulation Define R/W Description

0xe00

0x00 MR_FMC_HA_DOUT_L R/W Low 32 bit word FMC HA DIO bus. The entire
DIO bus is updated when writing to this register.

0x01 MR_FMC_HA_DOUT_H R/W High 32 bit word FMC HA DIO bus

0x02 MR_FMC_HA_OE_L R/W Output enable of the low 32-bit word FMC HA
DIO bus

0x03 MR_FMC_HA_OE_H R/W Output enable of the high 16-bit word FMC HA
DIO bus

Cardsharp Framework Logic Manual 67

 Cardsharp PL Memory Map

Table 66. FMC HA DIO register

FMC HB DIO register (WB Device 15)

These are the registers for FMC HB DIO bus.

WB Base WB
Address

Register Simulation Define R/W Description

0xf00

0x00 MR_FMC_HB_DOUT_L R/W Low 32 bit word FMC HB DIO bus. The entire
DIO bus is updated when writing to this register.

0x01 MR_FMC_HB_DOUT_H R/W High 32 bit word FMC HB DIO bus

0x02 MR_FMC_HB_OE_L R/W Output enable of the low 32-bit word FMC HB
DIO bus

0x03 MR_FMC_HB_OE_H R/W Output enable of the high 12-bit word FMC HB
DIO bus

Table 67. FMC HB DIO register

Cardsharp Framework Logic Manual 68

 Cardsharp PL Memory Map

FMC Aurora 0 Registers (WB Device 16)

These are the registers for Aurora port 0.

WB Base WB
Address

Register Simulation Define R/W Description

0x1000

0x00 MR_FMC_RIO0_TEST_CTRL R/W

0x01 MR_FMC_RIO0_CTRL_STAT R/W

0x02 MR_FMC_RIO0_CMD_WR R/W

0x03 MR_FMC_RIO0_CMD_RD R/W

others -

Table 68. FMC Aurora Port 0 Component Registers

FMC Aurora Port 0 Test Control (MR_FMC_RIO0_TEST_CTRL, Base+0x00)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 tx_test_gen_en R/W 0 = off Enable test generator for transmission.

1 rx_test_chk_en R/W 0 = off Enable test generator for receive.

15:2 -

31:16 test_errors R Test error count

Table 69. FMC Aurora 0 Test Control Register

FMC Aurora Port 0 Control/Status (MR_FMC_RIO0_CTRL_STAT, Base+0x01)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 Gtxreset_n R/W 0 = reset MGT reset, active low.

1 power_down R/W 1 = on MGT power down. (Turned off by default)

2 run R/W 0 = off Aurora interface run.

5:3 loopback R/W 000 000 = Disable loopback

001 = Parallel

010 = Serial

6 error_clr R/W 0 = off Clear port error.

7 tx_channel_en R/W 0 = off Enable transmit channel.

8 rx_channel_en R/W 0 = off Enable receive channel.

22:9 -

23 hard_error R Hard error. Link lost due to serious disruption.

24 soft_error R Soft error such as bit error.

Cardsharp Framework Logic Manual 69

 Cardsharp PL Memory Map

25 frame_error R Frame error from Aurora.

29:26 lane_up R Number of lane the Aurora port is using.

30 channel_up R The Aurora channel is active.

31 pll_locked R PLL for MGT is locked.

Table 70. FMC Aurora 0 Control/Status Register

FMC Aurora Port 0 Sub-channel Write Port (MR_FMC_RIO0_CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_wr_data R/W 0 Command write data.

29:24 usr_cmd_wr_addr R/W 0 Command write address.

30 usr_cmd_wr_rdn R/W 0=write Command read/write control.

0= write, 1 = read.

31 cmd_ch_rdy R Command sub-channel is ready.

Table 71. FMC Aurora 0 Sub-channel Write Register

FMC Aurora Port 0 Sub-channel Read Port (MR_FMC_RIO0_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_rd_data R Command read data.

29:24 usr_cmd_rd_addr R Command read address.

30 -

31 usr_cmd_rd_vld R Command sub-channel is read data is valid.

Table 72. FMC Aurora 0 Sub-channel Read Register

Cardsharp Framework Logic Manual 70

 Cardsharp PL Memory Map

FMC Aurora 1 Registers (WB Device 17)

These are the registers for Aurora port 1.

B Base WB
Address

Register Simulation Define R/W Description

0x1100

0x00 MR_FMC_RIO1_TEST_CTRL R/W

0x01 MR_FMC_RIO1_CTRL_STAT R/W

0x02 MR_FMC_RIO1_CMD_WR R/W

0x03 MR_FMC_RIO1_CMD_RD R/W

others -

Table 73. FMC Aurora Port 1 Component Registers

FMC Aurora Port 1 Test Control (MR_FMC_RIO1_TEST_CTRL, Base+0x00)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 tx_test_gen_en R/W 0 = off Enable test generator for transmission.

1 rx_test_chk_en R/W 0 = off Enable test generator for receive.

15:2 -

31:16 test_errors R Test error count

Table 74. FMC Aurora 1 Test Control Register

FMC Aurora Port 1 Control/Status (MR_FMC_RIO1_CTRL_STAT, Base+0x01)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 Gtxreset_n R/W 0 = reset MGT reset, active low.

1 power_down R/W 1 = on MGT power down. (Turned off by default)

2 run R/W 0 = off Aurora interface run.

5:3 loopback R/W 000 000 = Disable loopback

001 = Parallel

010 = Serial

6 error_clr R/W 0 = off Clear port error.

7 tx_channel_en R/W 0 = off Enable transmit channel.

8 rx_channel_en R/W 0 = off Enable receive channel.

22:9 -

23 hard_error R Hard error. Link lost due to serious disruption.

24 soft_error R Soft error such as bit error.

Cardsharp Framework Logic Manual 71

 Cardsharp PL Memory Map

25 frame_error R Frame error from Aurora.

29:26 lane_up R Number of lane the Aurora port is using.

30 channel_up R The Aurora channel is active.

31 pll_locked R PLL for MGT is locked.

Table 75. FMC Aurora 1 Control/Status Register

FMC Aurora Port 1 Sub-channel Write Port (MR_FMC_RIO1_CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_wr_data R/W 0 Command write data.

29:24 usr_cmd_wr_addr R/W 0 Command write address.

30 usr_cmd_wr_rdn R/W 0=write Command read/write control.

0= write, 1 = read.

31 cmd_ch_rdy R Command sub-channel is ready.

Table 76. FMC Aurora 1 Sub-channel Write Register

FMC Aurora Port 1 Sub-channel Read Port (MR_FMC_RIO1_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_rd_data R Command read data.

29:24 usr_cmd_rd_addr R Command read address.

30 -

31 usr_cmd_rd_vld R Command sub-channel is read data is valid.

Table 77. FMC Aurora 1 Sub-channel Read Register

Cardsharp Framework Logic Manual 72

 Cardsharp PL Memory Map

Revision History

The following table shows the revision history for this document.

Date Version Revision

03/30/16 1.1 Added Alerts registers to Peripheral Registers.

Table 78. Revision History

Cardsharp Framework Logic Manual 73

 Cardsharp PL Memory Map

FMC Memory Map

FMC Registers

The memory map for the FMC components on the Wishbone Bus is shown below. Some components are common to all the
FMC modules, whereas others are card specific.

WB Base
Address

WB
Component

Simulation Define Description Module

0xc00 FMC MR_FMC_IF FMC interface registers VPX, PEX, SBC

0xd00 FMC MR_FMC_LA_DIO FMC LA DIO register VPX, PEX, DIO, SBC

FMC MR_FMC_AFE_CMN
/MR_FMC_CMN

FMC AFE common registers ADC20, FMC500,
FMC1000, FMCServo

0xe00 FMC MR_FMC_HA_DIO FMC HA DIO register VPX, PEX, DIO, SBC

FMC MR_FMC_ADC FMC ADC registers ADC20, FMC500,
FMC1000, FMCServo

0xf00 FMC MR_FMC_HB_DIO FMC HB DIO register VPX, PEX, DIO, SBC

FMC MR_FMC_DAC FMC DAC registers DAC40, FMC500,
FMC1000, FMCServo

0x1000 FMC MR_FMC_RIO0 Aurora core 0 within FMC interface VPX, PEX, SBC,
FMC_SFP, FMC_QSFP

0x1100 FMC MR_FMC_RIO1 Aurora core 1 within FMC interface VPX, PEX, SBC,
FMC_QSFP

0x1200 FMC MR_FMC_RIO2 Aurora core 2 within FMC interface PEX, SBC

0x1300 FMC2 MR_FMC2_IF FMC2 interface registers SBC

0x1400 FMC2 MR_FMC2_LA_DIO FMC2 LA DIO register SBC

FMC2 MR_FMC2_CMN FMC2 AFE common registers FMC310, FMC500

0x1500 FMC2 MR_FMC2_ADC FMC ADC registers FMC310, FMC500

Table 79. FMC Memory Map

Cardsharp Framework Logic Manual 74

 Cardsharp PL Memory Map

FMC status and configuration Registers (WB Device 12)

These are the registers for FMC interface.

WB Base WB Address Register Simulation Define R/W Description

0xc00

0x00 MR_FMC_CTRL R/W FMC control and status

0x01 MR_FMC_I2C_IF R/W FMC I2C interface

0x02 MR_FMC_ID R FMC ID

0x03 MR_FMC_CLK_CFG R/W FMC BIDIR clock control and status

0x04 MR_FMC_CLK0_M2C_STS R FMC clock 0 m2c status

0x05 MR_FMC_CLK1_M2C_STS R FMC clock 1 m2c status

0x06 MR_FMC_CLK2_M2C_STS R FMC clock 2 m2c status

0x07 MR_FMC_CLK3_M2C_STS R FMC clock 3 m2c status

0x08 MR_FMC_CLK2_C2M_STS R FMC clock 2 c2m status

0x09 MR_FMC_CLK3_C2M_STS R FMC clock 3 c2m status

Table 80. FMC status and configuration registers

FMC control register (MR_FMC_CTRL, Base+0x00)
These are FMC control and status bits.

Bits Field R/W Default Description Modules

0 fmc_present_n R - FMC present (active low) VPX, PEX, SBC

1 fmc_vadj_en_n_o W 1 Enable FMC VADJ (active low) VPX, PEX, SBC

1 fmc_vadj_en_n_i R 1 Actual status of FMC VADJ Enable pin (active low) VPX, PEX, SBC

2 fmc_vadj_forced R FMC VADJ is forced by the hardware PEX, SBC

3 fmc_vadj_pwr_gd R FMC VADJ power good status PEX, SBC

6:4 fmc_vadj_lvl R Selected VADJ level

000 => 1.2V

001 => 1.35V

010 => 1.5V

011 => 1.8V

100 => 2.5V

111 - 101 => N/A (spare)

PEX, SBC

15:7 -

16 fmc_pg_m2c_n R - FMC power good M2C (active low) VPX, PEX, SBC

17 fmc_pg_c2m_n R/W 1 FMC power good C2M (active low) VPX, PEX, SBC

31:18 -

Table 81. FMC control register

Cardsharp Framework Logic Manual 75

 Cardsharp PL Memory Map

FMC VADJ setting procedure for PEX-COP boards:

1- Read fmc_present_n register. If set (= 0), skip to line 4.

2- Read fmc_vadj_lvl and compare it with the required VADJ value read from the FMC module. If the two values match, skip
to line 4.

3- Set fmc_vadj_en_n_o to '1' and report a mismatch between the carrier VADJ and the required FMC VADJ value and exit.

4- Set fmc_vadj_en_n_o to '0' to turn on the VADJ power supply, wait for 100ms for the actual power supply enable pin to
assert, and read the fmc_vadj_en_n_i to make sure its not forced off by external devices. If forced off, report it, set
fmc_vadj_en_n_o to '1', and exit.

5- Poll fmc_vadj_pwr_gd register till it sets and report a VADJ power good status message. Timeout if it doesn't set within 2
seconds, set fmc_vadj_en_n_o to '1', and report a faulty VADJ power supply.

FMC I2C interface (MR_FMC_I2C_IF, Base+0x01)
This is the I2C interface to the FMC.

Bits Field R/W Default Description Modules

0 fmc_sdo R/W - FMC I2C data out VPX, PEX, SBC

1 fmc_scl R/W - FMC I2C clock VPX, PEX, SBC

2 fmc_sdi R - FMC I2C data in VPX, PEX, SBC

3 - R FMC I2C clock readback VPX, PEX, SBC

31:4 -

Table 82. FMC I2C interface

FMC ID (MR_FMC_ID, Base+0x2)
This register has the FMC ID.

Bits Field R/W Default Description Modules

31:0 fmc_id R FMC ID VPX, PEX, SBC

Table 83. FMC ID

Cardsharp Framework Logic Manual 76

 Cardsharp PL Memory Map

FMC BIDIR Clock control and status (MR_FMC_CLK_CFG, Base+0x3)
This register has the FMC BIDIR clock control and status bits.

Bits Field R/W Default Description Modules

0 fmc_clk_dir R FMC BIDIR clock direction (0=M2C, 1=C2M) PEX, SBC

1 fmc_clk_2_3_en R/W 0 FMC clock 2 & 3 driver enable PEX

2 fmc_clk2_sel R/W 0 FMC clock 2 source select 0=DIFF, 1=SE PEX

3 fmc_clk3_sel R/W 0 FMC clock 3 source select 0=DIFF, 1=SE PEX

31:4 -

Table 84. FMC BIDIR Clock Register

FMC Clock0 m2c status (MR_FMC_CLK0_M2C_STS, Base+0x4)

Bits Field R/W Default Description Modules

9:0 fmc_clk0_m2c_freq R FMC clock0 M2C frequency in MHz PEX, SBC

31:10 -

Table 85. FMC Clock0 m2c Register

FMC Clock1 m2c status (MR_FMC_CLK1_M2C_STS, Base+0x5)

Bits Field R/W Default Description Modules

9:0 fmc_clk1_m2c_freq R FMC clock1 M2C frequency in MHz PEX, SBC

31:10 -

Table 86. FMC Clock1 m2c Register

FMC Clock2 m2c status (MR_FMC_CLK2_M2C_STS, Base+0x6)

Bits Field R/W Default Description Modules

9:0 fmc_clk2_m2c_freq R FMC clock2 M2C frequency in MHz PEX, SBC

31:10 -

Table 87. FMC Clock2 m2c Register

FMC Clock3 m2c status (MR_FMC_CLK3_M2C_STS, Base+0x7)

Bits Field R/W Default Description Modules

9:0 fmc_clk3_m2c_freq R FMC clock3 M2C frequency in MHz PEX, SBC

31:10 -

Table 88. FMC Clock3 m2c Register

FMC Clock2 c2m status (MR_FMC_CLK2_C2M_STS, Base+0x8)

Bits Field R/W Default Description Modules

9:0 fmc_clk2_c2m_freq R FMC clock2 C2M frequency in MHz PEX

31:10 -

Cardsharp Framework Logic Manual 77

 Cardsharp PL Memory Map

Table 89. FMC Clock2 c2m Register

FMC Clock3 c2m status (MR_FMC_CLK3_C2M_STS, Base+0x9)

Bits Field R/W Default Description Modules

9:0 fmc_clk3_c2m_freq R FMC clock3 C2M frequency in MHz PEX

31:10 -

Table 90. FMC Clock3 c2m Register

Cardsharp Framework Logic Manual 78

 Cardsharp PL Memory Map

FMC DIO Registers

The single ended Digital I/O registers are concatenated as follows: positive on even bits, negative on odd bits, ie.
fmc_la_p[33:0] are on even bits, fmc_la_n[33:0] on odd bits.

For example:

Bits[31:6] Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

… fmc_la_n[2] fmc_la_p[2] fmc_la_n[1] fmc_la_p[1] fmc_la_n[0] fmc_la_p[0]

FMC LA DIO register (WB Device 13)

These are the registers for FMC LA DIO bus.

WB Base WB
Address

Register Simulation Define R/W Description

0xd00

0x00 MR_FMC_LA_DOUT_L R/W Lower 32 bit word of the FMC LA DIO bus. The
entire DIO bus is updated when writing to this
register.

0x01 MR_FMC_LA_DOUT_H R/W Middle 32 bit word of the FMC LA DIO bus

0x02 MR_FMC_LA_DOUT_V R/W Upper 2 bit word of the FMC LA DIO bus

0x04 MR_FMC_LA_OE_L R/W Output enable of the lower 32 bit word of the FMC
LA DIO bus

0x05 MR_FMC_LA_OE_H R/W Output enable of the middle 32 bit word of the
FMC LA DIO bus

0x06 MR_FMC_LA_OE_V R/W Output enable of the upper 2 bit word of the FMC
LA DIO bus

Table 91. FMC LA DIO register

FMC HA DIO register (WB Device 14)

These are the registers for FMC HA DIO bus.

WB Base WB
Address

Register Simulation Define R/W Description

0xe00

0x00 MR_FMC_HA_DOUT_L R/W Low 32 bit word FMC HA DIO bus. The entire
DIO bus is updated when writing to this register.

0x01 MR_FMC_HA_DOUT_H R/W High 32 bit word FMC HA DIO bus

0x02 MR_FMC_HA_OE_L R/W Output enable of the low 32-bit word FMC HA
DIO bus

0x03 MR_FMC_HA_OE_H R/W Output enable of the high 16-bit word FMC HA
DIO bus

Cardsharp Framework Logic Manual 79

 Cardsharp PL Memory Map

Table 92. FMC HA DIO register

FMC HB DIO register (WB Device 15)

These are the registers for FMC HB DIO bus.

WB Base WB
Address

Register Simulation Define R/W Description

0xf00

0x00 MR_FMC_HB_DOUT_L R/W Low 32 bit word FMC HB DIO bus. The entire
DIO bus is updated when writing to this register.

0x01 MR_FMC_HB_DOUT_H R/W High 32 bit word FMC HB DIO bus

0x02 MR_FMC_HB_OE_L R/W Output enable of the low 32-bit word FMC HB
DIO bus

0x03 MR_FMC_HB_OE_H R/W Output enable of the high 12-bit word FMC HB
DIO bus

Table 93. FMC HB DIO register

Cardsharp Framework Logic Manual 80

 Cardsharp PL Memory Map

FMC AFE

FMC AFE Common Registers (WB Device 13)
These are the FMC common Analog Front End control and configuration registers.

WB Base WB
Address

Register Simulation Define R/W Description Modules

Clock Registers

0xD00 0x0 MR_FMC_PLL_CTRL R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000

0x1 MR_FMC_PLL_SPI R/W ADC20, FMC110, FMC310,
FMC500, FMC1000

MR_FMC_PLL_UW FMC250

0x2 MR_FMC_VCXO R/W FMC500

0x3 MR_FMC_CLK_CTRL R/W

0x4 -
0x5

AFE Common Registers

0x6 MR_FMC_TEST_CTRL R/W ADC20, FMC250, FMC310,
FMC500, FMC1000

0x7 MR_FMC_SW_TRIG R/W ADC20, FMC250, FMC310,
FMC500, FMC1000, FMCServo

0x8 MR_FMC_EXT_SYNC_CFG R/W ADC20, FMC250, FMC310,
FMC500, FMCServoMR_FMC_EXT_TRIG_SEL

0x9 MR_FMC_EXT_CLK_CFG R/W FMC1000

0xA MR_FMC_EXT_SYNC_CFG R/W FMC1000

0xB-
0xF

Table 94. FMC AFE Common Registers

PLL Control (MR_FMC_PLL_CTRL, Base+0x0)
This register has the PLL controls and status.

Bits Field R/W Defau
lt

Description Modules

0 pll_pwr_down_n R/W 0 PLL power down. PLL is from 0.5 to
2W when operating. Allow 5 min warm-
up time when device is powered up for
best performance. 0 = power off, 1 =
power on

ADC20

1 pll_reset R/W 0 PLL reset FMC310, FMC500, FMC1000

2 pll_mode R/W 0 PLL configuration mode.

'0' = SPI configuration

'1' = load from default registers

3 fpga_pll_clkin_stoppe R FPGA PLL input clock stopped FMC110

Cardsharp Framework Logic Manual 81

 Cardsharp PL Memory Map

d

4 pll_lock R PLL lock indicator, '1' = locked. ADC20

4 fpga_pll_lock R FPGA PLL locked FMC110

5 fpga_pll_rst R/W 0 FPGA PLL reset (active high) FMC110

5 pll_clk_sel(0) R/W '0' 0 = PRI, 1 = SEC

pll_ref_sel R/W '0' 0 = output of pll_clk_sel mux

1 = 10 MHz oscillator

FMCServo

6 pll_clk_sel(1) R/W

pll_clk_sel R/W '0' 0 = clk2_bidir

1 = ext_clk

FMCServo

7 pll_sync R/W 0 pll_sync ADC20, FMC250, FMC500

7 pll_sync1 R/W pll_sync FMCServo

8 pll_status_ho R PLL programmable status pin FMC250

8 pll_sync2 R/W pll_sync FMCServo

9 pll_status_ld R PLL programmable status pin FMC250

10 pll_status_clkin0 R PLL programmable status pin FMC250

11 pll_status_clkin1 R PLL programmable status pin FMC250

12 pll_gpo R PLL general purpose output FMC310, FMC500, FMC1000

13 pll_status_ld1 R PLL programmable status pin FMC310, FMC500, FMC1000

13 pll_status R/W PLL status pin FMCServo

14 pll_status_ld2 R PLL programmable status pin FMC310, FMC500, FMC1000

15 pll_clkin_sel0_o W PLL clkin selector (bit 0) FMC310, FMC1000

15 pll_clkin_sel0_i R PLL programmable status pin FMC310

15 pll_clkin_sel0 R/W PLL programmable status pin FMC500

16 pll_clkin_sel1_o W PLL clkin selector (bit 1) FMC310, FMC1000

16 pll_clkin_sel1_i R PLL programmable status pin FMC310

16 pll_clkin_sel1 R/W PLL programmable status pin FMC500

17 pll_clkin_sel0_dir R/W PLL clkin_sel0 direction (1=out, 0=in) FMC310, FMC1000

18 pll_clkin_sel1_dir R/W PLL clkin_sel1 direction (1=out, 0=in) FMC310, FMC1000

29:19 - unused

30 pll_uw/spi_rdy R PLL uw/spi ready ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

31 pll_uw/spi_rdata_vali
d

R PLL uw/spi data valid ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

Cardsharp Framework Logic Manual 82

 Cardsharp PL Memory Map

Table 95. FMC PLL Control Register

Cardsharp Framework Logic Manual 83

 Cardsharp PL Memory Map

PLL SPI Data (MR_FMC_PLL_SPI, Base+0x1)
This is the interface to the PLL SPI port.

Bits Field R/W Default Description Modules

3:0 pll_spi_addr R/W 0x0 PLL SPI address. ADC20

31:4 pll_spi_wdata(W)

pll_spi_rdata(R)

R/W 0x000
0000

PLL SPI data. The pll_spi_rdy bit must be checked before
writing to this register. Reads from this register return the SPI
read data from a read request.

ADC20

Table 96. FMC PLL SPI Data Register

PLL uWire Data (MR_FMC_PLL_UW, Base+0x1)
This is the interface to the PLL SPI port for FMC SPI.

Bits Field R/W Default Description Modules

4:0 pll_uw_addr R/W 0x0 PLL uWire address FMC250

31:5 pll_uw_wdata(W)

pll_uw_rdata(R)

R/W 0x000
0000

PLL SPI data. The pll_spi_rdy bit must be checked before
writing to this register. Reads from this register return the SPI
read data from a read request.

FMC250

Table 97. FMC PLL SPI Data Register

PLL SPI Data (MR_FMC_PLL_SPI, Base+0x1)
This is the interface to the PLL SPI port.

Bits Field R/W Default Description Modules

9:0 pll_spi_addr R/W 0x0 PLL SPI address. FMC110, FMCServo

10 pll_sel R/W PLL select FMCServo

11 unused

12 pll_spi_rd_wrn R/W SPI read/write select 1=read/0=write FMC110, FMCServo

15:13 unused

23:16 pll_spi_wdata R/W SPI write data FMC110, FMCServo

31:24 pll_spi_rdata R SPI read data FMC110, FMCServo

Table 98. FMC PLL uWire/SPI Data Register

PLL SPI Data (MR_FMC_PLL_SPI, Base+0x1)
This is the interface to the PLL SPI port.

Bits Field R/W Default Description Modules

12:0 pll_spi_addr R/W 0x0 PLL SPI address. FMC310, FMC500,
FMC1000

14:13 unused

15 pll_spi_rd_wrn R/W SPI read/write select 1=read/0=write FMC310, FMC500,
FMC1000

23:16 pll_spi_wdata R/W SPI write data FMC310, FMC500,

Cardsharp Framework Logic Manual 84

 Cardsharp PL Memory Map

FMC1000

31:24 pll_spi_rdata R SPI read data FMC310, FMC500,
FMC1000

Table 99. FMC PLL SPI Data Register

VCXO Control (MR_FMC_VCXO, Base+0x2)
This is the interface to the VCXO controls.

Bits Field R/W Default Description Modules

3:0

4 vcxo_pwr_en R/W VCXO power enable FMC250, FMC500

7:5

8 vcxo_pwr_gd R VCXO power good FMC500

31:9

Table 100. FMC VCXO control Register

CPLD Status (MR_FMC_CPLD_STAT, Base+0x4)
This register has the CPLD SPI status.

Bits Field R/W Default Description Modules

29:0 - unused

30 cpld_spi_rdy R CPLD spi ready FMC110

31 cpld_spi_rdata_valid R CPLD spi data valid FMC110

Table 101. FMC CPLD Status Register

CPLD SPI Data (MR_FMC_CPLD_SPI, Base+0x5)
This is the interface to the CPLD SPI port.

Bits Field R/W Default Description Modules

1:0 cpld_spi_addr R/W 0x0 CPLD SPI address. FMC110

11:2 unused

12 cpld_spi_rd_wrn R/W CPLD SPI read/write select 1=read/0=write FMC110

15:13 unused

23:16 cpld_spi_wdata R/W CPLD SPI write data FMC110

31:24 cpld_spi_rdata R 0x000
0000

CPLD SPI read data FMC110

Table 102. FMC CPLD SPI Data Register

FMC Test Controls (MR_FMC_TEST_CTRL, Base+0x6)
This register sets the test mode for different components in the FMC.

Bits Field R/W Default Description Modules

0 adc_test_en R/W 0 Enable ADC test generator. 0 = off, 1 = on ADC20, FMC250,

Cardsharp Framework Logic Manual 85

 Cardsharp PL Memory Map

FMC110, FMC310,
FMC500, FMC1000,
FMCServo

3:1 -

4 adc_test_mode R/W 0 ADC test mode: 0 = unpaced sawtooth, 1 = paced
sawtooth

ADC20, FMC250,
FMC110, FMC310,
FMC500, FMC1000,
FMCServo

15:5 -

16 dac_test_en R/W 0 Enable DAC test generator. 0 = off, 1 = on FMC110, FMC250,
FMC500, FMC1000,
FMCServo

19:17 -

22:20 dac_test_mode R/W 0 DAC test mode: 0 = ramp, 1 = sine, 2 = dac test
pattern, 3 = zeros, 4 = max positive, 5 = max
negative, 6 = alternating 1's and 0's, 7 =
alternating two 1's and two 0's

FMC110, FMC250,
FMC500, FMC1000,
FMCServo

31:23 -

Table 103. FMC Test Controls Register

FMC Software Trigger Controls (MR_FMC_SW_TRIG, Base+0x7)
This register enables software triggering for different components in the FMC.

Bits Field R/W Default Description Modules

0 adc_sw_trig R/W 0 ADC software trigger. 0 = off, 1 = on ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,

FMCServo

15:1 -

16 dac_sw_trig R/W 0 DAC software trigger. 0 = off, 1 = on FMC110, FMC250, FMC500,
FMC1000, FMCServo

31:17 -

Table 104. FMC Software Trigger Controls Register

FMC External Sync Select (MR_FMC_EXT_SYNC_CFG, Base+0x8)

Bits Field R/W Default Description Modules

0 ext_sync_sel R/W 0 External sync select (0=front panel, 1=FMC) ADC20, FMC250,
FMC310, FMC500,
FMCServo

31:1 unused

Table 105. FMC External Sync Select Register

FMC External Trigger Select (MR_FMC_EXT_TRIG_SEL, Base+0x8)

Bits Field R/W Default Description Modules

Cardsharp Framework Logic Manual 86

 Cardsharp PL Memory Map

0 ext_trig_sel R/W 0 External trigegr select (0=clk3_bidir, 1=front panel) FMCServo

31:1 unused

Table 106. FMC External Sync Select Register

FMC External Clock Configuration (MR_FMC_EXT_CLK_CFG, Base+0x9)

Bits Field R/W Default Description Modules

11:0 clk_mux_cfg_data R/W 0 Clock mux configuration data FMC1000

30:12 unused

31 clk_mux_cfg_rdy R Clock mux configuration ready FMC1000

Table 107. FMC External Clock Configuration Register

FMC External Sync Configuration (MR_FMC_EXT_SYNC_CFG, Base+0xA)

Bits Field R/W Default Description Modules

11:0 sy_mux_cfg_data R/W 0 sy_mux configuration data FMC1000

30:12 unused

31 sy_mux_cfg_rdy R sy_mux configuration ready FMC1000

Table 108. FMC External Sync Configuration Register

Cardsharp Framework Logic Manual 87

 Cardsharp PL Memory Map

FMC ADC Registers (WB Device 14)
These are the registers for the FMC ADC control and configuration.

WB Base WB
Address

Register Simulation Define R/W Description Modules

ADC Common Registers

0xE00 0x0 MR_FMC_ADC_EN1 R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

0x1 MR_FMC_ADC_EN2 R/W

0x2 MR_FMC_ADC_PDN1 R/W FMC310, FMC500, FMC1000

0x3 MR_FMC_ADC_PDN2 R/W

0x4 MR_FMC_ADC_TRGR R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

0x5 MR_FMC_ADC_DECI R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

0x6 MR_FMC_ADC_PRI_TRGR R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

0x7 MR_FMC_ADC_PRI R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

0x8 MR_FMC_ADC_PRI_PARAM R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

0x9 MR_FMC_ADC_PRI_WIDTH R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

0xA -
0xF

-

ADC Specific Registers

0x10 MR_FMC_ADC_SPI_EN R/W ADC20, FMC110, FMC310

MR_FMC_ADC0_SPI_CTRL R/W FMC250

0x11 MR_FMC_ADC_SPI_CTRL R/W ADC20, FMC110, FMC310,
FMC500, FMC1000

MR_FMC_ADC0_SPI_STAT R/W FMC250

0x12 MR_FMC_ADC_SPI_STAT R/W ADC20, FMC110, FMC310,
FMC500, FMC1000

MR_FMC_ADC1_SPI_CTRL R/W FMC250

0x13 MR_FMC_ADC_CAL R/W ADC20

MR_FMC_ADC1_SPI_STAT R/W FMC250

0x14 MR_FMC_VGA R/W ADC20

MR_FMC_ADC_PHY_CAL R/W FMC250, FMC500, FMC1000

0x15 MR_FMC_ADC_CAL_STS R/W FMC500

0x16 -

0x17 -

0x18 MR_FMC_ADC_PHY_CAL R/W FMC110

Cardsharp Framework Logic Manual 88

 Cardsharp PL Memory Map

WB Base WB
Address

Register Simulation Define R/W Description Modules

0x19 MR_FMC_ADC_AMP_CFG R/W FMC110, FMC1000

0x1A MR_FMC_ADC_CTRL R/W FMCServo

0x1B MR_FMC_ADC_FIFO_CTRL R FMCServo

0x1C MR_FMC_ADC_FIFO_THRS R/W FMCServo

0x1D MR_FMC_ADC_FIFO_DATA R FMCServo

0x1E MR_FMC_ADC_GAIN_CTRL R/W FMCServo

0x1F -

ADC VITA Packet Configuration and Timestamping

0x20 MR_FMC_ADC_TS_LD R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000

0x21 MR_FMC_ADC_TS_CTRL R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000

0x22 MR_FMC_ADC_VITA_CTRL R/W ADC20, FMC250, FMC110,
FMC310, FMC500

0x23 -
0x2F

-

ADC VITA Frame Sizes and Stream IDs

0x30 -
0x34

MR_FMC_ADC_VFRAME R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000

0x35 -
0x3F

-

0x40 -
0x44

MR_FMC_ADC_SID R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000

0x45 -
0x4F

-

ADC Gain Registers

0x50 -
0x63

MR_FMC_ADC_GAIN R/W ADC20, FMC250, FMC110,
FMC500, FMC1000,
FMCServo

0x64 -
0x8F

-

ADC Offset Registers

0x90 -
0xA3

MR_FMC_ADC_OFST R/W ADC20, FMC250, FMC110,
FMC500, FMC1000,
FMCServo

0xA4 -

0xCF

Table 109. FMC ADC Component Registers

ADC Low Channel Enables (MR_FMC_ADC_EN1, Base+0x0)
This is the lower A/D 32 channel enable register.

Bits Field R/W Default Description Modules

31:0 adc_ch_en R/W 0x0000 A/D channel enables. ADC20 = 20, FMC250=2, FMC110 = 2, FMC310 =
4, FMC500 = 2, FMC1000 = 2, FMCServo = 8

Cardsharp Framework Logic Manual 89

 Cardsharp PL Memory Map

Table 110. FMC Low ADC Channel Enables Register

ADC High Channel Enables (MR_FMC_ADC_EN2, Base+0x1)
This is the higher A/D 32 channel enable register.

Bits Field R/W Default Description Modules

31:0 adc_ch_en R/W 0x0000 A/D channel enables.

Table 111. FMC High ADC Channel Enables Register

ADC Low Power Enables (MR_FMC_ADC_PDN1, Base+0x2)
This is the lower A/D 32 power enable register.

Bits Field R/W Default Description Modules

31:0 adc_pwr_en R/W 0x0000 A/D power enables. FMC250=2, FMC310 = 4, FMC500 = 2, FMC1000 = 2

Table 112. FMC Low ADC Power Enables Register

ADC High Power Enables (MR_FMC_ADC_PDN2, Base+0x3)
This is the higher A/D 32 power enable register.

Bits Field R/W Default Description Modules

31:0 adc_pwr_en R/W 0x0000 A/D power enables.

Table 113. FMC High ADC Power Enables Register

FMC ADC Trigger Controls (MR_FMC_ADC_TRGR, Base+0x4)
This register configures the A/D trigger modes.

Bits Field R/W Default Description Modules

23:0 adc_window_size R/W 0 ADC trigger window size. This is the number of points, after
decimation, that make up one data window.

All

28:24

31:29 adc_trigger_mode R/W “000” ADC trigger modes.

Bit29 = rising edge (1) or level (0)

Bit30 = framed (1) or unframed (0)

Bit31 = external (1) or software (0)

All

Table 114. FMC ADC Trigger Controls Register

ADC Decimation (MR_FMC_ADC_DECI, Base+0x5)
This register specifies the decimation ratio for the A/D triggering.

Bits Field R/W Default Description Modules

11:0 adc_decimation R/W 0 Decimation count for A/D samples. Decimation keeps 1 point
every N specified by this field.

All

31:12 -

Table 115. FMC ADC Decimation Ratio Register

ADC PRI trigger enable register (MR_FMC_ADC_PRI_TRGR, Base+0x6)
This register is the ADC PRI trigger control register

Cardsharp Framework Logic Manual 90

 Cardsharp PL Memory Map

Bits Field R/W Default Description Modules

0 en_pri_trig R/W Enable PRI trigger mode All

1 stop_pri R/W Stop PRI triggering All

2 en_num_pri R/W enable finite number of PRI frames All

3 retrig_num_pri R/W re-arm after number of PRI frames All

7:4 -

8 pri_busy R PRI mode is running when this bit is 1 All

15:9 -

31:16 num_pri R/W number of PRI frames All

Table 116. FMC ADC PRI trigger enable Register

ADC PRI interval configuration register (MR_FMC_ADC_PRI, Base+0x7)
This register is used to set the pulse repetition interval

Bits Field R/W Default Description Modules

31:0 pri R/W Pulse repetition interval All

Table 117. FMC ADC PRI interval configuration Register

ADC PRI trigger parameters register (MR_FMC_ADC_PRI_PARAM, Base+0x8)
This register configures the ADC PRI trigger parameters

Bits Field R/W Default Description Modules

23:0 trig_cycle_delay R/W Delay between trigger and sof All

31:24 -

Table 118. FMC ADC PRI trigger parameters Register

ADC PRI capture window configuration register (MR_FMC_ADC_PRI_WIDTH, Base+0x9)
This register configures the ADC PRI trigger parameters FIFO. Writing to this register generates a write strobe to the ADC
PRI parameters FIFO which causes the width and cycle delay parameters to be written to that FIFO.

Bits Field R/W Default Description Modules

23:0 trig_width R/W trigger width All

31:24 -

Table 119. FMC ADC PRI capture window configuration Register

FMC ADC device SPI enable register (MR_FMC_ADC_SPI_EN, Base+0x10)
This register is used to enable the ADC device that receives the SPI command.

Bits Field R/W Default Description Modules

31:0 ad_spi_dev_en R/W ADC device SPI enable (1 bit per device). When
a certain device's enable bit is set, then that device
will receive a SPI command when the SPI
registers are accessed.

ADC20 = 5, FMC110 = 2,
FMC310 = 2

Cardsharp Framework Logic Manual 91

 Cardsharp PL Memory Map

Table 120. FMC ADC device SPI enable Register

FMC ADC0 SPI control register (MR_FMC_ADC0_SPI_CTRL, Base+0x10)
This is the FMC250 ADC0 SPI control register.

Bits Field R/W Default Description Modules

7:0 ad0_spi_wdata R/W ADC0 SPI write data FMC250

15:8 - Unused

23:16 ad0_spi_addr R/W ADC0 SPI address FMC250

27:24 - Unused

28 ad0_spi_rd_wrn R/W ADC0 SPI read/write enable FMC250

31:29 - Unused

Table 121. FMC250 ADC0 device SPI control register

FMC ADC SPI Control (MR_FMC_ADC_SPI_CTRL, Base+0x11)
This is the A/D devices SPI port writes.

Bits Field R/W Default Description Modules

7:0 adc_spi_wdata R/W 0x00 ADC SPI write data ADC20, FMC110, FMC310,
FMC500, FMC1000

15:8 -

27:16 adc_spi_addr R/W 0 ADC SPI address ADC20, FMC110, FMC310

30:16 adc_spi_addr R/W 0 ADC SPI address FMC500, FMC1000

28 adc_spi_rd_wrn R/W 0 ADC SPI read/write bit. 0= write, 1 = read ADC20, FMC110, FMC310

31 adc_spi_rd_wrn R/W 0 ADC SPI read/write bit. 0= write, 1 = read FMC500, FMC1000

31:29 -

Table 122. FMC ADC SPI Control Register

FMC ADC0 SPI status register (MR_FMC_ADC0_SPI_STAT, Base+0x11)
This is the FMC250 ADC0 SPI status register.

Bits Field R/W Default Description Modules

7:0 ad0_spi_rdata R 0x00 ADC0 SPI read data FMC250

29:8 - Unused

30 ad0_spi_rdy R ADC0 SPI ready FMC250

31 ad0_spi_rdata_valid R ADC0 SPI data valid FMC250

Table 123. FMC250 ADC SPI Stauts Register

FMC ADC SPI Status (MR_FMC_ADC_SPI_STAT, Base+0x12)
This is the A/D devices SPI port reads.

Bits Field R/W Default Description Modules

Cardsharp Framework Logic Manual 92

 Cardsharp PL Memory Map

7:0 adc_spi_rdata R ADC SPI read data ADC20, FMC110, FMC310,
FMC500, FMC1000

29:8 -

30 adc_spi_rdy R ADC SPI is ready for use. ADC20, FMC110, FMC310,
FMC500, FMC1000

31 adc_spi_rdata_valid R ADC SPI read data is valid. ADC20, FMC110, FMC310,
FMC500, FMC1000

Table 124. FMC ADC SPI Status Register

FMC ADC0 SPI control register (MR_FMC_ADC1_SPI_CTRL, Base+0x12)
This FMC250 ADC1 SPI control register.

Bits Field R/W Default Description Modules

7:0 ad1_spi_wdata R/W ADC1 SPI write data FMC250

15:8 - Unused

23:16 ad1_spi_addr R/W ADC1 SPI address FMC250

27:24 - Unused

28 ad1_spi_rd_wrn R/W ADC1 SPI read/write enable FMC250

31:29 - Unused

Table 125. FMC250 ADC device SPI control register

FMC ADC calibration Control and Status (MR_FMC_ADC_CAL, Base+0x13)
This is the status register for the ADC calibration.

Bits Field R/W Default Description Modules

0 cal_start R/W Start ADC calibration (should be toggled after programming
the ADC registers)

ADC20

15:1

20:16 cal_done R ADC device calibration done ADC20

31:21 -

Table 126. FMC ADC calibration control and status register

FMC ADC1 SPI status register (MR_FMC_ADC1_SPI_STAT, Base+0x13)
This is the FMC250 ADC1 SPI status register.

Bits Field R/W Default Description Modules

7:0 ad1_spi_rdata R 0x00 ADC1 SPI read data FMC250

29:8 - Unused

30 ad1_spi_rdy R ADC1 SPI ready FMC250

31 ad1_spi_rdata_valid R ADC1 SPI data valid FMC250

Cardsharp Framework Logic Manual 93

 Cardsharp PL Memory Map

Table 127. FMC250 ADC SPI Stauts Register

FMC VGA Controls (MR_FMC_VGA, Base+0x14)
This is the interface to the VGA. The VGA I2C port is a bit-banged interface through this register.

Bits Field R/W Default Description Modules

0 vga_sdo R/W 0 VGA I2C data output bit. ADC20

1 vga_scl R/W 0 VGA I2C clock output bit. ADC20

2 vga_sdi R - VGA I2C data input bit. ADC20

3 vga_scl R - VGA I2C port clock readback. ADC20

7:4 -

8 vga_ldac_n R/W 0 Load VGA DAC latch enable (active low). ADC20

31:9 -

Table 128. FMC VGA Controls Register

FMC ADC PHY Calibration register (MR_FMC_ADC_PHY_CAL, Base+0x14)
This is the adc phy calibration register.

Bits Field R/W Default Description Modules

1:0 adc_rst R/W ADC reset FMC250

8 adc_pwr_gd R ADC power good FMC500, FMC1000

13:12 adc_phy_cal_start R/W Start ADC PHY calibration (write 1 then 0) FMC500

14 adc_lat_cal_start R/W Enable latency calibration FMC500

15 adc_en_data_fmt R/W Enable data format module FMC500

17:16 adc_cal_done R ADC calibration status FMC250

17:16 adc_phy_cal_done R ADC PHY calibration status FMC500

18 adc_lat_cal_done R ADC latency calibration done FMC500

20 adc_clk_stopped R ADC clock stopped FMC250

21 adc_clk_locked R ADC clock locked FMC250

31:18 - Unused

Table 129. FMC ADC PHY Calibration register

FMC ADC PHY Calibration status register (MR_FMC_ADC_CAL_STS, Base+0x15)
This is the adc phy calibration status register.

Bits Field R/W Default Description Modules

14:0 adc_cal1_sts R ADC level1 calibration status FMC500

30:16 adc_cal2_sts R ADC level2 calibration status FMC500

Cardsharp Framework Logic Manual 94

 Cardsharp PL Memory Map

Table 130. FMC ADC PHY Calibration status register

FMC ADC PHY Calibration register (MR_FMC_ADC_PHY_CAL, Base+0x18)
This is the FMC110 adc phy calibration register.

Bits Field R/W Default Description Modules

0 adc_phy_init R/W Initialize ADC PHY of the selected ADC channel FMC110

1:7 - Unused

8 sel_adc_ch R/W Select ADC channel to forward calibration control and status FMC110

11:9 - Unused

12 skip_adc_phy_cal R/W Skip ADC PHY calibration FMC110

13 - Unused

26:14 adc_eye_aligned R ADC data eye is aligned FMC110

27 adc_prbs_locked R local PRBS is locked to ADC bit0 FMC110

28 adc_prbs_aligned R ADC PRBS data sequence is aligned FMC110

29 adc_phy_rdy R ADC PHY is calibrated and ready FMC110

30 adc_clka_stopped R ADC output clock stopped FMC110

31 adc_clka_locked R ADC output clock locked FMC110

Table 131. FMC110 ADC PHY Calibration register

FMC ADC Amplitude Configuration (MR_FMC_ADC_AMP_CFG, Base+0x19)

Bits Field R/W Default Description Modules

1:0 adc_multx16_en R/W 0 Multiply ADC output by 16 FMC110

0 adc_multx4_en R/W 0 Multiply ADC output by 4 FMC1000

31:2

Table 132. FMC ADC Amplitude Configuration Register

ADC Control (MR_FMC_ADC_CTRL, Base+0x1A)
ADC control register

Bits Field R/W Default Description Modules

0 -

1 adc_stby R/W ADC standby FMCServo

2 adc_asleep R/W ADC sleep FMCServo

31:3 -

Table 133. FMC ADC Control Register

FMC Servo ADC Fifo Control (MR_FMC_ADC_FIFO_CTRL, Base+0x1B)

Bits Field R/W Default Description Modules

10:0 adc_ofifo_data_count R ADC ofifo data count FMCServo

Cardsharp Framework Logic Manual 95

 Cardsharp PL Memory Map

27:11 -

28 adc_ofifo_prog_empty R ADC ofifo almost empty FMCServo

29 adc_ofifo_empty R ADC ofifo empty FMCServo

30 adc_ofifo_prog_full R ADC ofifo almost full FMCServo

31 adc_ofifo_full ADC ofifo full FMCServo

Table 134. FMC Servo ADC FIFO Control

FMC Servo ADC FIFO Threshold (MR_FMC_ADC_FIFO_THRS, Base+0x1C)

Bits Field R/W Default Description Modules

9:0 adc_ofifo_empty_thresh R/W ADC ofifo almost empty threshold FMCServo

15:10 -

25:16 adc_ofifo_full_thresh R/W ADC ofifo almost full threshold FMCServo

31:26 -

Table 135. FMC Servo ADC FIFO Threshold

FMC Servo ADC FIFO Data (MR_FMC_ADC_FIFO_DATA, Base+0x1D)

Bits Field R/W Default Description Modules

15:0 adc_data R ADC ofifo data FMCServo

30:16 -

31 Valid R ADC data valid when this bit is 1 FMCServo

Table 136. FMC Servo ADC FIFO Data

FMC Servo Gain Amp Control (MR_FMC_ADC_GAIN_CTRL, Base+0x1E)

Bits Field R/W Default Description Modules

2:0 gain_amp_sel R/W Gain amp sel FMCServo

3 gain_amp_wr R/W Gain amp wr FMCServo

5:4 gain_amp_setting R/W Gain amp setting FMCServo

31:6 -

Table 137. FMC Servo Gain Amp Control

FMC ADC Timestamp Load (MR_FMC_ADC_TS_LD, Base+0x20)
This is the VITA packet timestamp load.

Bits Field R/W Default Description Modules

31:0 ts_initial R/W 0 VITA timestamp load initial value All

Table 138. FMC ADC Timestamp Load Register

Cardsharp Framework Logic Manual 96

 Cardsharp PL Memory Map

FMC ADC Timestamp Control (MR_FMC_ADC_TS_CTRL, Base+0x21)
This is the VITA packet timestamp load and control.

Bits Field R/W Default Description Modules

0 ts_arm R/W 0 VITA timestamp arm. Set this bit to initiate timestamp
counting on rising edge of PPS when in PPS mode.

All

1 ts_pps_mode R/W 0 VITA timestamp PPS mode.

1 = pps mode

0 = internal timer

All

3:2 tsi R/W 11 VITA timestamp Integer-seconds mode

00 = No Integer-seconds Timestamp field included (Not
supported)

01 = UTC: seconds elapsed since January 1, 1970 GMT.

10 = GPS: seconds elapsed since January 6, 1980 GMT.

11 = Other: seconds elapsed since some documented start
time.

All

5:4 tsf R/W 01 VITA timestamp Fractional-seconds mode

00 = No Fractional-seconds Timestamp field included (Not
supported)

01 = Sample count timestamp: fractional seconds since last
integer-seconds event, counting in samples.

10 = Real time timestamp: counts in increments of 1
picosecond since last integer-seconds event. (Not supported)

11 = Free running count timestamp: No relation to the integer-
seconds field. Counts in samples.

All

31:6 -

Table 139. FMC ADC Timestamp Control Register

FMC ADC VITA-49 framer Control (MR_FMC_ADC_VITA_CTRL, Base+0x22)
This register controls turning on/off the ADC VITA-49 framers.

Bits Field R/W Default Description Modules

0 disable_vita R/W Disable ADC VITA-49 framers All

31:1 -

Table 140. FMC ADC VITA-49 framer control register

FMC ADC VITA Frame Sizes (MR_FMC_ADCx_VFRAME, Base+0x30 +x)
This is the VITA packet frame size for each ADCx. Number of streams defined is shown for each module.

Bits Field R/W Default Description Modules

15:0 adcx_frame_size R/W 0x1000 VITA packet frame size, in 32-bit words. ADC20 = 5, FMC250 = 2,
FMC110 = 2, FMC310 = 4,
FMC500 = 1, FMC1000 = 1

31:16 adcx_dest_id R/W 1 Internal routing destination Id (1=PCIE). All

Table 141. FMC ADC VITA Frame Size Register

Cardsharp Framework Logic Manual 97

 Cardsharp PL Memory Map

FMC ADC VITA Stream IDs (MR_FMC_ADCx_SID, Base+0x40 +x)
This is the VITA Stream ID (SID) each ADCx. Number of streams defined is shown for each module.

Bits Field R/W Default Description Modules

15:0 adcx_stream_id R/W 0 VITA packet stream Id ADC20 = 5, FMC250, FMC110 = 2,
FMC310 = 4, FMC500 = 1, FMC1000 = 1

31:16 adcx_dest_id R/W 1 Internal routing destination Id
(1=PCIE).

FMC250

Table 142. FMC ADC VITA Stream ID Register

FMC ADC Gain Error Correction (MR_FMC_ADCx_GAIN, Base+0x50 +x)
This is the gain error correction factor for each ADC. Number of ADC is shown for each module.

Bits Field R/W Default Description Modules

17:0 adcx_gain R/W 0x10000 Gain coefficient for error correction (0x10000 = 1.00) ADC20 = 20,
FMC500 = 2,

FMC1000 = 2,

FMCServo = 8

11:0 adcx_gain R/W 0x0000 Gain coefficient for error correction, check ADC datasheet
for the correct format

FMC110

30:18 -

Table 143. FMC ADC Gain Error Correction Register

FMC ADC Offset Error Correction (MR_FMC_ADCx_OFST, Base+0x90 +x)
This is the offset error correction factor for each ADC. Number of ADC is shown for each module.

Bits Field R/W Default Description Modules

15:0 adcx_offset R/W 0 Offset error correction ADC20 = 20,
FMC500 = 2,

FMC1000 = 2,

FMCServo = 8

8:0 adcx_offset R/W 0x100 Offset error correction, check ADC datasheet for the correct
format

FMC110

31:16 -

Table 144. FMC ADC Offset Error Correction Register

Cardsharp Framework Logic Manual 98

 Cardsharp PL Memory Map

FMC DAC Registers (WB Device 15)
These are the registers for the FMC DAC control and configuration.

WB Base WB
Address

Register Simulation Define R/W Description Modules

DAC Common Registers

0xF00 0x0 MR_FMC_DAC_EN1 R/W FMC110, FMC250, FMC1000,
FMCServo

0x1 MR_FMC_DAC_EN2 R/W

0x2 MR_FMC_DAC_PDN1 R/W FMC250, FMC1000

0x3 MR_FMC_DAC_PDN2 R/W

0x4 MR_FMC_DAC_TRGR R/W FMC110, FMC250, FMC1000,
FMCServo

0x5 MR_FMC_DAC_DECI R/W FMC110, FMC250, FMC1000,
FMCServo

0x6 MR_FMC_DAC_PRI_TRGR R/W FMC110, FMC250, FMC1000,
FMCServo

0x7 MR_FMC_DAC_PRI R/W FMC110, FMC250, FMC1000,
FMCServo

0x8 MR_FMC_DAC_PRI_PARAM R/W FMC110, FMC250, FMC1000,
FMCServo

0x9 MR_FMC_DAC_PRI_WIDTH R/W FMC110, FMC250, FMC1000,
FMCServo

0xA MR_FMC_DAC_PINC R/W FMC110, FMC250, FMC1000,
FMCServo

0xB MR_FMC_DAC_RST R/W FMC250, FMC1000

MR_FMC_DAC_POFF FMCServo

0xC MR_FMC_DAC_CTRL R/W FMCServo

0xD -
0xF

DAC Specific Registers

0x10 MR_FMC_DAC_SPI_EN R/W FMC110

0x11 MR_FMC_DAC_SPI_CTRL R/W FMC110, FMC250, FMC1000

0x12 MR_FMC_DAC_SPI_STAT R/W FMC110, FMC250, FMC1000

0x13 -

0x19

-

0x1A MR_FMC_DAC_FIFO_CTRL FMCServo

0x1B MR_FMC_DAC_FIFO_THRS FMCServo

0x1C MR_FMC_DAC_FIFO_DATA FMCServo

0x1D MR_FMC_DAC_LDAC_DLY FMCServo

0x1E-
0x1F

DAC VITA Packet Configuration and Stream IDs

0x20-
0x2F

MR_FMC_DAC_SID R/W FMC110, FMC250, FMC1000

DAC Gain Registers

0x30-
0x6F

MR_FMC_DAC_GAIN R/W FMC110, FMC1000,
FMCServo

DAC Offset Registers

Cardsharp Framework Logic Manual 99

 Cardsharp PL Memory Map

WB Base WB
Address

Register Simulation Define R/W Description Modules

0x70-

0xAF

MR_FMC_DAC_OFST R/W FMC110,FMC1000,

FMCServo

Table 145. FMC DAC Component Registers

Cardsharp Framework Logic Manual 100

 Cardsharp PL Memory Map

DAC Low Channel Enables (MR_FMC_DAC_EN1, Base+0x0)
This is the lower D/A 32 channel enable register.

Bits Field R/W Default Description Modules

31:0 dac_ch_en R/W 0x0000 D/A channel enables. FMC110, FMC250 = 2, FMC1000 = 2, FMCServo=8

Table 146. FMC Low DAC Channel Enables Register

DAC High Channel Enables (MR_FMC_DAC_EN2, Base+0x1)
This is the lower D/A 32 channel enable register.

Bits Field R/W Default Description Modules

31:0 dac_ch_en R/W 0x0000 D/A channel enables.

Table 147. FMC High DAC Channel Enables Register

DAC Low Power Enables (MR_FMC_DAC_PDN1, Base+0x2)
This is the lower D/A 32 power enable register.

Bits Field R/W Default Description Modules

31:0 dac_pwr_en R/W 0x0000 D/A power enables. FMC250=2, FMC1000 = 2

Table 148. FMC Low DAC Power Enable Register

DAC High Power Enables (MR_FMC_DAC_PDN2, Base+0x3)
This is the higher D/A 32 power enable register.

Bits Field R/W Default Description Modules

31:0 dac_pwr_en R/W 0x0000 D/A power enables.

Table 149. FMC High DAC Power Enable Register

FMC DAC Trigger Controls (MR_FMC_DAC_TRGR, Base+0x4)
This register configures the D/A trigger modes.

Bits Field R/W Default Description Modules

23:0 dac_window_size R/W 0 DAC trigger window size. This is the number of points, after
decimation, that make up one data window.

FMC110,
FMC250,
FMC1000,
FMCServo

28:24

31:29 dac_trigger_mode R/W “000” DAC trigger modes.

Bit29 = rising edge (1) or level (0)

Bit30 = framed (1) or unframed (0)

Bit31 = external (1) or software (0)

FMC110,
FMC250,
FMC1000,
FMCServo

Table 150. FMC DAC Trigger Controls Register

Cardsharp Framework Logic Manual 101

 Cardsharp PL Memory Map

DAC Decimation (MR_FMC_DAC_DECI, Base+0x5)
This register specifies the decimation ratio for the D/A triggering.

Bits Field R/W Default Description Modules

11:0 dac_decimation R/W 0 Decimation count for D/A samples. Decimation keeps 1 point
every N specified by this field.

FMC110,
FMC250,
FMC1000,
FMCServo

31:12 -

Table 151. FMC DAC Decimation Ratio Register

DAC PRI trigger enable register (MR_FMC_DAC_PRI_TRGR, Base+0x6)
This register is the DAC PRI trigger control register

Bits Field R/W Default Description Modules

0 en_pri_trig R/W Enable PRI trigger mode FMC110, FMC250, FMC1000,
FMCServo

1 stop_pri R/W Stop PRI triggering FMC110, FMC250, FMC1000,
FMCServo

2 en_num_pri R/W enable finite number of PRI frames FMC110, FMC250, FMC1000,
FMCServo

3 retrig_num_pri R/W re-arm after number of PRI frames FMC1000FMC110, FMC250,
FMCServo

7:4 -

8 pri_busy R PRI mode is running when this bit is 1 FMC110, FMC250, FMC1000,
FMCServo

15:9 -

31:16 num_pri R/W number of PRI frames FMC110, FMC250, FMC1000,
FMCServo

Table 152. FMC DAC PRI trigger enable Register

DAC PRI interval configuration register (MR_FMC_DAC_PRI, Base+0x7)
This register is used to set the pulse repetition interval

Bits Field R/W Default Description Modules

31:0 pri R/W Pulse repetition interval FMC110, FMC250, FMC1000,
FMCServo

Table 153. FMC DAC PRI interval configuration Register

DAC PRI trigger parameters register (MR_FMC_DAC_PRI_PARAM, Base+0x8)
This register configures the DAC PRI trigger parameters

Bits Field R/W Default Description Modules

23:0 trig_cycle_delay R/W Delay between trigger and sof FMC110, FMC250, FMC1000,
FMCServo

Cardsharp Framework Logic Manual 102

 Cardsharp PL Memory Map

31:24 -

Table 154. FMC DAC PRI trigger parameters Register

DAC PRI capture window configuration register (MR_FMC_DAC_PRI_WIDTH, Base+0x9)
This register configures the DAC PRI trigger parameters FIFO. Writing to this register generates a write strobe to the DAC
PRI parameters FIFO which causes the width and cycle delay parameters to be written to that FIFO.

Bits Field R/W Default Description Modules

23:0 trig_width R/W trigger width FMC110, FMC250, FMC1000,
FMCServo

31:24 -

Table 155. FMC DAC PRI capture window configuration Register

FMC DAC device phase increment register (MR_FMC_DAC_PINC, Base+0xA)
This register is used to set the DDS phase increment value.

Bits Field R/W Default Description Modules

31:0 phase_inc R/W DDS phase increment FMC110, FMC250, FMC1000, FMCServo

Table 156. FMC DAC phase increment Register

FMC DAC reset register (MR_FMC_DAC_RST, Base+0xB)
This register is used to reset the DAC.

Bits Field R/W Default Description Modules

31:0 dac_reset R/W DAC reset FMC110, FMC250

Table 157. FMC DAC reset Register

FMC DAC reset register (MR_FMC_DAC_RST, Base+0xB)
This register is used to reset the DAC.

Bits Field R/W Default Description Modules

0 dac_reset R/W DAC reset FMC1000

7:1 unused

8 dac_per_gd R DAC power good FMC1000

11:9 unused

12 dac_alarm R FMC1000

31:13 unused

Table 158. FMC DAC reset Register

FMC DAC control register (MR_FMC_DAC_CTRL, Base+0xB)
This register is used to control the DAC.

Bits Field R/W Default Description Modules

0 -

Cardsharp Framework Logic Manual 103

 Cardsharp PL Memory Map

1 dac_clk_sel R/W DAC clock select FMCServo

31:2 -

Table 159. FMC DAC control Register

FMC DAC device SPI enable register (MR_FMC_DAC_SPI_EN, Base+0x10)
This register is used to enable the DAC device that receives the SPI command.

Bits Field R/W Default Description Modules

31:0 dac_spi_dev_en R/W DAC device SPI enable (1 bit per device). When a certain
device's enable bit is set, then that device will receive a SPI
command when the SPI registers are accessed.

FMC110 = 2

Table 160. FMC DAC device SPI enable Register

FMC DAC SPI Control (MR_FMC_DAC_SPI_CTRL, Base+0x11)
This is the D/A devices SPI port writes.

Bits Field R/W Default Description Modules

7:0 dac_spi_wdata R/W 0x00 DAC SPI write data FMC110, FMC250

15:8 -

22:16 dac_spi_addr R/W 0 DAC SPI address FMC110, FMC250

27:23 -

28 dac_spi_rd_wrn R/W 0 DAC SPI read/write bit. 0= write, 1 = read FMC110, FMC250

31:29 -

Table 161. FMC DAC SPI Control Register

FMC DAC SPI Control (MR_FMC_DAC_SPI_CTRL, Base+0x11)
This is the D/A devices SPI port writes.

Bits Field R/W Default Description Modules

15:0 dac_spi_wdata R/W 0x00 DAC SPI write data FMC1000

22:16 dac_spi_addr R/W 0 DAC SPI address FMC1000

27:23 -

28 dac_spi_rd_wrn R/W 0 DAC SPI read/write bit. 0= write, 1 = read FMC1000

31:29 -

Table 162. FMC DAC SPI Control Register

FMC DAC SPI Status (MR_FMC_DAC_SPI_STAT, Base+0x12)
This is the D/A devices SPI port reads.

Bits Field R/W Default Description Modules

7:0 dac_spi_rdata R DAC SPI read data FMC110, FMC250

29:8 -

30 dac_spi_rdy R DAC SPI is ready for use. FMC110, FMC250

Cardsharp Framework Logic Manual 104

 Cardsharp PL Memory Map

31 dac_spi_rdata_valid R DAC SPI read data is valid. FMC110, FMC250

Table 163. FMC DAC SPI Status Register

FMC DAC SPI Status (MR_FMC_DAC_SPI_STAT, Base+0x12)
This is the D/A devices SPI port reads.

Bits Field R/W Default Description Modules

15:0 dac_spi_rdata R DAC SPI read data FMC1000

29:16 -

30 dac_spi_rdy R DAC SPI is ready for use. FMC1000

31 dac_spi_rdata_valid R DAC SPI read data is valid. FMC1000

Table 164. FMC DAC SPI Status Register

FMC Servo DAC Fifo Control (MR_FMC_DAC_FIFO_CTRL, Base+0x1A)

Bits Field R/W Default Description Modules

9:0 dac_ofifo_data_count R DAC ofifo data count FMCServo

27:10 -

28 dac_ofifo_prog_empty R DAC ofifo almost empty FMCServo

29 dac_ofifo_empty R DAC ofifo empty FMCServo

30 dac_ofifo_prog_full R DAC ofifo almost full FMCServo

31 dac_ofifo_full DAC ofifo full FMCServo

Table 165. FMC Servo DAC FIFO Control

FMC Servo DAC FIFO Threshold (MR_FMC_DAC_FIFO_THRS, Base+0x1B)

Bits Field R/W Default Description Modules

9:0 dac_ofifo_empty_thresh R/W DAC ofifo almost empty threshold FMCServo

15:10 -

25:16 dac_ofifo_full_thresh R/W DAC ofifo almost full threshold FMCServo

31:26 -

Table 166. FMC Servo DAC FIFO Threshold

FMC Servo DAC FIFO Data (MR_FMC_DAC_FIFO_DATA, Base+0x1C)

Bits Field R/W Default Description Modules

15:0 dac_data R DAC ofifo data FMCServo

31:16 -

Table 167. FMC Servo ADC FIFO Data

FMC Servo DAC trigger delay register (MR_FMC_DAC_LDAC_DLY, Base+0x1D)

Bits Field R/W Default Description Modules

9:0 dac_ldac_delay R/W Count value adds delay of 1 us FMCServo

31:5 -

Cardsharp Framework Logic Manual 105

 Cardsharp PL Memory Map

Table 168. FMC Servo DAC trigger delay

FMC DAC VITA Stream IDs (MR_FMC_DACx_SID, Base+0x20 +x)
This is the VITA Stream ID (SID) each DACx. Number of streams defined is shown for each module.

Bits Field R/W Default Description Modules

15:0 dacx_stream_id R/W 0 VITA packet stream Id FMC110 = 2, FMC250 = 1,
FMC1000 = 1

31:16 dacx_dest_id R/W 1 Internal routing destination Id (1=PCIE). FMC110 = 2

Table 169. FMC DAC VITA Stream ID Register

FMC DAC Gain Error Correction (MR_FMC_DACx_GAIN, Base+0x30 +x)
This is the gain error correction factor for each DAC. Number of DAC is shown for each module.

Bits Field R/W Default Description Modules

17:0 dacx_gain R/W 0x10000 Gain coefficient for error correction (0x10000 = 1.00) FMC110 = 2,
FMC1000 = 2,
FMCServo=8

31:18 -

Table 170. FMC DAC Gain Error Correction Register

FMC DAC Offset Error Correction (MR_FMC_DACx_OFST, Base+0x70 +x)
This is the offset error correction factor for each DAC. Number of DAC is shown for each module.

Bits Field R/W Default Description Modules

15:0 dacx_offset R/W 0 Offset error correction FMC110 =2,
FMC1000 = 2,

FMCServo=8

31:16 -

Table 171. FMC DAC Offset Error Correction Register

Cardsharp Framework Logic Manual 106

 Cardsharp PL Memory Map

FMC Aurora 0 Registers (WB Device 16)

These are the registers for Aurora port 0.

WB Base WB
Address

Register Simulation Define R/W Description

0x1000

0x00 MR_FMC_RIO0_TEST_CTRL R/W

0x01 MR_FMC_RIO0_CTRL_STAT R/W

0x02 MR_FMC_RIO0_CMD_WR R/W

0x03 MR_FMC_RIO0_CMD_RD R/W

others -

Table 172. FMC Aurora Port 0 Component Registers

FMC Aurora Port 0 Test Control (MR_FMC_RIO0_TEST_CTRL, Base+0x00)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 tx_test_gen_en R/W 0 = off Enable test generator for transmission. VPX, PEX, SBC

1 rx_test_chk_en R/W 0 = off Enable test generator for receive. VPX, PEX, SBC

15:2 -

31:16 test_errors R Test error count VPX, PEX, SBC

Table 173. FMC Aurora 0 Test Control Register

FMC Aurora Port 0 Control/Status (MR_FMC_RIO0_CTRL_STAT, Base+0x01)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 Gtxreset_n R/W 0 = reset MGT reset, active low. VPX, PEX,SBC

1 power_down R/W 1 = on MGT power down. (Turned off by default) VPX, PEX,SBC

2 run R/W 0 = off Aurora interface run. VPX, PEX,SBC

5:3 loopback R/W 000 000 = Disable loopback

001 = Parallel

010 = Serial

VPX, PEX,SBC

6 error_clr R/W 0 = off Clear port error. VPX, PEX,SBC

7 tx_channel_en R/W 0 = off Enable transmit channel. VPX, PEX,SBC

8 rx_channel_en R/W 0 = off Enable receive channel. VPX, PEX,SBC

22:9 -

23 hard_error R Hard error. Link lost due to serious disruption. VPX, PEX,SBC

24 soft_error R Soft error such as bit error. VPX, PEX,SBC

25 frame_error R Frame error from Aurora. VPX, PEX,SBC

Cardsharp Framework Logic Manual 107

 Cardsharp PL Memory Map

29:26 lane_up R Number of lane the Aurora port is using. VPX, PEX,SBC

30 channel_up R The Aurora channel is active. VPX, PEX,SBC

31 pll_locked R PLL for MGT is locked. VPX, PEX,SBC

Table 174. FMC Aurora 0 Control/Status Register

FMC Aurora Port 0 Sub-channel Write Port (MR_FMC_RIO0_CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_wr_data R/W 0 Command write data. VPX, PEX,SBC

29:24 usr_cmd_wr_addr R/W 0 Command write address. VPX, PEX,SBC

30 usr_cmd_wr_rdn R/W 0=write Command read/write control.

0= write, 1 = read.

VPX, PEX,SBC

31 cmd_ch_rdy R Command sub-channel is ready. VPX, PEX,SBC

Table 175. FMC Aurora 0 Sub-channel Write Register

FMC Aurora Port 0 Sub-channel Read Port (MR_FMC_RIO0_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_rd_data R Command read data. VPX, PEX,SBC

29:24 usr_cmd_rd_addr R Command read address. VPX, PEX,SBC

30 -

31 usr_cmd_rd_vld R Command sub-channel is read data is valid. VPX, PEX,SBC

Table 176. FMC Aurora 0 Sub-channel Read Register

These registers are only available for FMC SFP+/QSFP+

FMC SFP/QSFP port control/status register (MR_FMC_RIO0_CTRL_SFP/MR_FMC_RIO0_CTRL_QSFP,
Base+0x04)
This is the SFP port control status register.

Bits Field R/W Default Description Modules

3:0 sfp_disable R/W Transmitter disable when asserted high SFP+

0 qsfp_modesel_n R/W When “low”, the module responds to 2-wire serial
communication. When “high”, the module shall not respond
or acknowledge any 2-wire communication

QSFP+

3:1 - Unused QSFP+

11:4 sfp_ratesel R/W SFP rate select 2 bits for every connector SFP+

4 qsfp_reset_n R/W A low level on this pin resets the qsfp module QSFP+

11:3 - Unused QSFP+

15:12 sfp_los R Receiver loss of signal indication, when high indicates that
the signal level is below the specified relevant standards.

SFP+

Cardsharp Framework Logic Manual 108

 Cardsharp PL Memory Map

12 qsfp_lpmode R/W Setting this bit high sets the qsfp module in low power mode.
When low, the qsfp module is in high power mode

QSFP+

15:13 - Unused QSFP+

19:16 sfp_txfault R Module transmitter fault, when high, indicates that the
module transmitter has detected a fault condition.

SFP+

16 qsfp_int_n R When low, indicates possible module fault QSFP+

19:17 - Unused QSFP+

23:20 sfp_detect R Module detected, when high indicates that a module is
physically present in a host slot

SFP+

20 qsfp_modpres_n R A high on this bit indicates module absent QSFP+

23:21 - Unused QSFP+

31:24 - Unused

Table 177. FMC SFP port control/status register

Rate select

Bits Field Description Modules

sfp_ratesel(0) Low RX signalling rate less than or equal to 4.25 GBd SFP+

High RX signalling rate greater than 4.25 GBd SFP+

sfp_ratesel(1) Low TX signalling rate less than or equal to 4.25 GBd SFP+

High TX signalling rate greater than 4.25 GBd SFP+

Table 178. Rate select hardware control

FMC SFP/QSFP port I2C register (MR_FMC_RIO0_I2C_SFP/MR_FMC_RIO0_I2C_QSFP, Base+0x05)
This is the SFP/QSFP port I2C register.

Bits Field R/W Default Description Modules

3:0 *_sdata_o R/W I2C data out SFP+ = 4, QSFP+ = 1

7:4 *_sclk R/W I2C clock SFP+ = 4, QSFP+ = 1

11:8 *_sdata_i R I2C data in SFP+ = 4, QSFP+ = 1

15:12 *_sclk_i R I2C clock (readback) SFP+ = 4, QSFP+ = 1

31:16 - Unused

* is sfp for SFP+ module and qsfp for QSFP+ module

Table 179. FMC SFP port I2C register

Cardsharp Framework Logic Manual 109

 Cardsharp PL Memory Map

FMC SIO XO I2C register (MR_FMC_RIO0_I2C_SIO, Base+0x06)
This is the SIO XO I2C register.

Bits Field R/W Default Description Modules

0 *_sio_sdo R/W XO I2C data out SFP+, QSFP+

1 *_sio_sck R/W XO I2C clock SFP+, QSFP+

2 *_sio_sdi R XO I2C data in SFP+, QSFP+

3 *_sclk_i R XO I2C clock (readback) SFP+, QSFP+

4 *_sio_intr XO Interrupt SFP+, QSFP+

31:5 - Unused

* is sfp for SFP+ module and qsfp for QSFP+ module

Table 180. FMC SIO XO I2C register

Cardsharp Framework Logic Manual 110

 Cardsharp PL Memory Map

FMC Aurora 1 Registers (WB Device 17)

These are the registers for Aurora port 1.

B Base WB
Address

Register Simulation Define R/W Description

0x1100

0x00 MR_FMC_RIO1_TEST_CTRL R/W

0x01 MR_FMC_RIO1_CTRL_STAT R/W

0x02 MR_FMC_RIO1_CMD_WR R/W

0x03 MR_FMC_RIO1_CMD_RD R/W

others -

Table 181. FMC Aurora Port 1 Component Registers

FMC Aurora Port 1 Test Control (MR_FMC_RIO1_TEST_CTRL, Base+0x00)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 tx_test_gen_en R/W 0 = off Enable test generator for transmission. VPX, PEX, SBC

1 rx_test_chk_en R/W 0 = off Enable test generator for receive. VPX, PEX,SBC

15:2 -

31:16 test_errors R Test error count VPX, PEX,SBC

Table 182. FMC Aurora 1 Test Control Register

FMC Aurora Port 1 Control/Status (MR_FMC_RIO1_CTRL_STAT, Base+0x01)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 Gtxreset_n R/W 0 = reset MGT reset, active low. VPX, PEX,SBC

1 power_down R/W 1 = on MGT power down. (Turned off by default) VPX, PEX,SBC

2 run R/W 0 = off Aurora interface run. VPX, PEX,SBC

5:3 loopback R/W 000 000 = Disable loopback

001 = Parallel

010 = Serial

VPX, PEX,SBC

6 error_clr R/W 0 = off Clear port error. VPX, PEX,SBC

7 tx_channel_en R/W 0 = off Enable transmit channel. VPX, PEX,SBC

8 rx_channel_en R/W 0 = off Enable receive channel. VPX, PEX,SBC

22:9 -

23 hard_error R Hard error. Link lost due to serious disruption. VPX, PEX,SBC

24 soft_error R Soft error such as bit error. VPX, PEX,SBC

25 frame_error R Frame error from Aurora. VPX, PEX,SBC

Cardsharp Framework Logic Manual 111

 Cardsharp PL Memory Map

29:26 lane_up R Number of lane the Aurora port is using. VPX, PEX,SBC

30 channel_up R The Aurora channel is active. VPX, PEX,SBC

31 pll_locked R PLL for MGT is locked. VPX, PEX,SBC

Table 183. FMC Aurora 1 Control/Status Register

FMC Aurora Port 1 Sub-channel Write Port (MR_FMC_RIO1_CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_wr_data R/W 0 Command write data. VPX, PEX,SBC

29:24 usr_cmd_wr_addr R/W 0 Command write address. VPX, PEX,SBC

30 usr_cmd_wr_rdn R/W 0=write Command read/write control.

0= write, 1 = read.

VPX, PEX,SBC

31 cmd_ch_rdy R Command sub-channel is ready. VPX, PEX,SBC

Table 184. FMC Aurora 1 Sub-channel Write Register

FMC Aurora Port 1 Sub-channel Read Port (MR_FMC_RIO1_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_rd_data R Command read data. VPX, PEX,SBC

29:24 usr_cmd_rd_addr R Command read address. VPX, PEX,SBC

30 -

31 usr_cmd_rd_vld R Command sub-channel is read data is valid. VPX, PEX,SBC

Table 185. FMC Aurora 1 Sub-channel Read Register

Cardsharp Framework Logic Manual 112

 Cardsharp PL Memory Map

FMC Aurora 2 Registers (WB Device 18)

These are the registers for Aurora port 2.

B Base WB
Address

Register Simulation Define R/W Description

0x1200

0x00 MR_FMC_RIO2_TEST_CTRL R/W

0x01 MR_FMC_RIO2_CTRL_STAT R/W

0x02 MR_FMC_RIO2_CMD_WR R/W

0x03 MR_FMC_RIO2_CMD_RD R/W

others -

Table 186. FMC Aurora Port 1 Component Registers

FMC Aurora Port 2 Test Control (MR_FMC_RIO2_TEST_CTRL, Base+0x00)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 tx_test_gen_en R/W 0 = off Enable test generator for transmission. PEX,SBC

1 rx_test_chk_en R/W 0 = off Enable test generator for receive. PEX,SBC

15:2 -

31:16 test_errors R Test error count PEX,SBC

Table 187. FMC Aurora 2 Test Control Register

FMC Aurora Port 2 Control/Status (MR_FMC_RIO2_CTRL_STAT, Base+0x01)
These are controls and status for Aurora port 0.

Bits Field R/W Default Description Modules

0 Gtxreset_n R/W 0 = reset MGT reset, active low. PEX,SBC

1 power_down R/W 1 = on MGT power down. (Turned off by default) PEX,SBC

2 run R/W 0 = off Aurora interface run. PEX,SBC

5:3 loopback R/W 000 000 = Disable loopback

001 = Parallel

010 = Serial

PEX,SBC

6 error_clr R/W 0 = off Clear port error. PEX,SBC

7 tx_channel_en R/W 0 = off Enable transmit channel. PEX,SBC

8 rx_channel_en R/W 0 = off Enable receive channel. PEX,SBC

22:9 -

23 hard_error R Hard error. Link lost due to serious disruption. PEX,SBC

24 soft_error R Soft error such as bit error. PEX,SBC

25 frame_error R Frame error from Aurora. PEX,SBC

Cardsharp Framework Logic Manual 113

 Cardsharp PL Memory Map

27:26 lane_up R Number of lane the Aurora port is using. PEX,SBC

30 channel_up R The Aurora channel is active. PEX,SBC

31 pll_locked R PLL for MGT is locked. PEX,SBC

Table 188. FMC Aurora 2 Control/Status Register

FMC Aurora Port 2 Sub-channel Write Port (MR_FMC_RIO2_CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_wr_data R/W 0 Command write data. PEX,SBC

29:24 usr_cmd_wr_addr R/W 0 Command write address. PEX,SBC

30 usr_cmd_wr_rdn R/W 0=write Command read/write control.

0= write, 1 = read.

PEX,SBC

31 cmd_ch_rdy R Command sub-channel is ready. PEX,SBC

Table 189. FMC Aurora 2 Sub-channel Write Register

FMC Aurora Port 2 Sub-channel Read Port (MR_FMC_RIO2_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.

Bits Field R/W Default Description Modules

23:0 usr_cmd_rd_data R Command read data. PEX,SBC

29:24 usr_cmd_rd_addr R Command read address. PEX,SBC

30 -

31 usr_cmd_rd_vld R Command sub-channel is read data is valid. PEX,SBC

Table 190. FMC Aurora 1 Sub-channel Read Register

Cardsharp Framework Logic Manual 114

 Cardsharp PL Memory Map

FMC2 status and configuration Registers (WB Device 19)

These are the registers for FMC2 (LPC) interface.

WB Base WB Address Register Simulation Define R/W Description

0x1300

0x00 MR_FMC_IF_STAT R/W

0x01 MR_FMC_IF_CFG R/W FMC I2C interface

0x02 MR_FMC_ID R

Table 191. FMC2 status and configuration registers

FMC2 status register (MR_FMC2_IF_STAT, Base+0x00)
These are status bits for FMC2.

Bits Field R/W Default Description Modules

0 fmc_prsnt_m2c_l R - FMC present (active low) SBC

1 fmc_vadj_en R/W 1 Unused SBC

2 fmc_vadj_pwr_gd R Reads '1' SBC

3 fmc_vadj_forced R Reads '0' SBC

10:4 fmc_vadj_sel R/W Unused SBC

15:11 -

16 fmc_pg_m2c R - FMC power good M2C SBC

17 fmc_pg_c2m R/W 1 FMC power good C2M SBC

31:18 -

Table 192. FMC status register

FMC2 I2C interface (MR_FMC2_IF_CFG, Base+0x01)
This is the I2C interface to the FMC2.

Bits Field R/W Default Description Modules

0 fmc_sdo R/W - FMC I2C data out SBC

1 fmc_scl R/W - FMC I2C clock SBC

2 fmc_sdi R - FMC I2C data in SBC

3 - R FMC I2C clock readback SBC

Table 193. FMC I2C interface

Cardsharp Framework Logic Manual 115

 Cardsharp PL Memory Map

FMC2 ID (MR_FMC2_ID, Base+0x2)
This register has the FMC2 ID.

Bits Field R/W Default Description Modules

31:0 fmc_id R FMC ID = Reads '2' SBC

Table 194. FMC2 ID RegisterFMC2 DIO Registers

FMC2 LA DIO register (WB Device 20)
These are the registers for FMC2 LA DIO bus.

WB Base WB
Address

Register Simulation Define R/W Description

0x1400

0x00 MR_FMC2_LA_DOUT_L R/W Lower 32 bit word of the FMC LA DIO bus

0x01 MR_FMC2_LA_DOUT_H R/W Upper 32 bit word of the FMC LA DIO bus

0x02 MR_FMC2_LA_OE_L R/W Output enable of the lower 32 bit word of the
FMC LA DIO bus

0x03 MR_FMC2_LA_OE_H R/W Output enable of the upper 32 bit word of the
FMC LA DIO bus

Table 195. FMC LA DIO register

Cardsharp Framework Logic Manual 116

 Cardsharp PL Memory Map

FMC2 AFE

FMC2 AFE Common Registers (WB Device 20)
These are the FMC common Analog Front End control and configuration registers.

WB Base WB
Address

Register Simulation Define R/W Description Modules

Clock Registers

0x1400 0x0 MR_FMC2_PLL_CTRL R/W FMC310, FMC500

0x1 MR_FMC2_PLL_SPI R/W FMC310, FMC500

MR_FMC2_PLL_UW

0x2 MR_FMC2_VCXO R/W FMC500

0x3 MR_FMC2_CLK_CTRL R/W

0x4 -
0x5

AFE Common Registers

0x6 MR_FMC2_TEST_CTRL R/W FMC310, FMC500

0x7 MR_FMC2_SW_TRIG R/W FMC310, FMC500

0x8 MR_FMC2_EXT_SYNC_CFG R/W FMC310, FMC500

0x9 -
0xF

Table 196. FMC AFE Common Registers

PLL Control (MR_FMC2_PLL_CTRL, Base+0x0)
This register has the PLL controls and status.

Bits Field R/W Defa
ult

Description Modules

0 pll_pwr_down_n R/W 0 PLL power down. PLL is from 0.5 to 2W when operating.
Allow 5 min warm-up time when device is powered up for
best performance. 0 = power off, 1 = power on

1 pll_reset R/W 0 PLL reset FMC310, FMC500

2 pll_mode R/W 0 PLL configuration mode.

'0' = SPI configuration

'1' = load from default registers

3 fpga_pll_clkin_stoppe
d

R FPGA PLL input clock stopped

4 pll_lock R PLL lock indicator, '1' = locked.

4 fpga_pll_lock R FPGA PLL locked

5 fpga_pll_rst R/W 0 FPGA PLL reset (active high)

5 pll_ref_sel/pll_clk_sel(
0)

R/W '0' 0 = PRI, 1 = SEC

Cardsharp Framework Logic Manual 117

 Cardsharp PL Memory Map

6 pll_clk_sel(1) R/W

7 pll_sync R/W 0 pll_sync

8 pll_status_ho R PLL programmable status pin

9 pll_status_ld R PLL programmable status pin

10 pll_status_clkin0 R PLL programmable status pin

11 pll_status_clkin1 R PLL programmable status pin

12 pll_gpo R PLL general purpose output

13 pll_status_ld1 R PLL programmable status pin FMC310, FMC500

14 pll_status_ld2 R PLL programmable status pin FMC310, FMC500

15 pll_clkin_sel0_o W PLL clkin selector (bit 0) FMC310,

15 pll_clkin_sel0_i R PLL programmable status pin FMC310,

15 pll_clkin_sel0 R PLL programmable status pin FMC500

16 pll_clkin_sel1_o W PLL clkin selector (bit 1) FMC310,

16 pll_clkin_sel1_i R PLL programmable status pin FMC310,

16 pll_clkin_sel1 R PLL programmable status pin FMC500

17 pll_clkin_sel0_dir R/W PLL clkin_sel0 direction (1=out, 0=in) FMC310,

18 pll_clkin_sel1_dir R/W PLL clkin_sel1 direction (1=out, 0=in) FMC310,

29:19 - unused

30 pll_uw/spi_rdy R PLL uw/spi ready FMC310, FMC500

31 pll_uw/spi_rdata_valid R PLL uw/spi data valid FMC310, FMC500

Table 197. FMC PLL Control Register

PLL SPI Data (MR_FMC2_PLL_SPI, Base+0x1)
This is the interface to the PLL SPI port.

Bits Field R/W Default Description Modules

12:0 pll_spi_addr R/W PLL SPI address. FMC310, FMC500

14:13 Unused

15 pll_spi_rd_wrn R/W PLL SPI 1=read/0=write access FMC310, FMC500

23:16 pll_spi_wdata R/W PLL SPI write data FMC310, FMC500

31:24 pll_spi_rdata R PLL SPI read data FMC310, FMC500

Table 198. FMC PLL SPI Data Register

VCXO Control (MR_FMC2_VCXO, Base+0x2)
This is the interface to the VCXO controls.

Bits Field R/W Default Description Modules

3:0

Cardsharp Framework Logic Manual 118

 Cardsharp PL Memory Map

4 vcxo_pwr_en W VCXO power enable FMC500

7:5

8 vcxo_pwr_gd R VCXO power good FMC500

31:9

Table 199. FMC VCXO control Register

FMC Test Controls (MR_FMC2_TEST_CTRL, Base+0x6)
This register sets the test mode for different components in the FMC.

Bits Field R/W Default Description Modules

0 adc_test_en R/W 0 Enable ADC test generator. 0 = off, 1 = on FMC310, FMC500

3:1 -

4 adc_test_mode R/W 0 ADC test mode: 0 = unpaced sawtooth, 1 = paced
sawtooth

FMC310, FMC500

15:5 -

16 dac_test_en R/W 0 Enable DAC test generator. 0 = off, 1 = on FMC500

19:17 -

22:20 dac_test_mode R/W 0 DAC test mode: 0 = ramp, 1 = sine, 2 = dac test pattern,
3 = zeros, 4 = max positive, 5 = max negative, 6 =
alternating 1's and 0's, 7 = alternating two 1's and two
0's

FMC500

31:23 -

Table 200. FMC Test Controls Register

FMC Software Trigger Controls (MR_FMC2_SW_TRIG, Base+0x7)
This register enables software triggering for different components in the FMC.

Bits Field R/W Default Description Modules

0 adc_sw_trig R/W 0 ADC software trigger. 0 = off, 1 = on FMC310, FMC500

15:1 -

16 dac_sw_trig R/W 0 DAC software trigger. 0 = off, 1 = on FMC500

31:17 -

Table 201. FMC Software Trigger Controls Register

FMC External Sync Select (MR_FMC2_EXT_SYNC_CFG, Base+0x8)
This register allows for selecting either JP1 or FMC external trigger.

Bits Field R/W Default Description Modules

0 ext_sync_sel R/W 0 External sync select (0=front panel, 1=FMC) FMC310, FMC500

31:1 unused

Table 202. FMC External Sync Select Register

Cardsharp Framework Logic Manual 119

 Cardsharp PL Memory Map

FMC2 ADC Registers (WB Device 21)
These are the registers for the FMC ADC control and configuration.

WB Base WB
Address

Register Simulation Define R/W Description Modules

ADC Common Registers

0x1500 0x0 MR_FMC2_ADC_EN1 R/W FMC310, FMC500

0x1 MR_FMC2_ADC_EN2 R/W

0x2 MR_FMC2_ADC_PDN1 R/W FMC310, FMC500

0x3 MR_FMC2_ADC_PDN2 R/W

0x4 MR_FMC2_ADC_TRGR R/W FMC310, FMC500

0x5 MR_FMC2_ADC_DECI R/W FMC310, FMC500

0x6 MR_FMC2_ADC_PRI_TRGR R/W FMC310, FMC500

0x7 MR_FMC2_ADC_PRI R/W FMC310, FMC500

0x8 MR_FMC2_ADC_PRI_PARAM R/W FMC310, FMC500

0x9 MR_FMC2_ADC_PRI_WIDTH R/W FMC310, FMC500

0xA -
0xF

-

ADC Specific Registers

0x10 MR_FMC2_ADC_SPI_EN R/W FMC310,

MR_FMC2_ADC0_SPI_CTRL R/W

0x11 MR_FMC2_ADC_SPI_CTRL R/W FMC310, FMC500

MR_FMC2_ADC0_SPI_STAT R/W

0x12 MR_FMC2_ADC_SPI_STAT R/W FMC310, FMC500

MR_FMC2_ADC1_SPI_CTRL R/W

0x13 MR_FMC2_ADC_CAL R/W

MR_FMC2_ADC1_SPI_STAT R/W

0x14 MR_FMC2_VGA R/W

MR_FMC2_ADC_PHY_CAL R/W FMC500

0x15 MR_FMC2_ADC0_CAL_STS R/W

0x16 MR_FMC2_ADC1_CAL_STS R/W

0x17 -

0x18 MR_FMC2_ADC_PHY_CAL R/W

0x19 MR_FMC2_ADC_AMP_CFG R/W

0x1A-
0x1F

-

ADC VITA Packet Configuration and Timestamping

0x20 MR_FMC2_ADC_TS_LD R/W FMC310, FMC500

0x21 MR_FMC2_ADC_TS_CTRL R/W FMC310, FMC500

0x22 MR_FMC2_ADC_VITA_CTRL R/W FMC310, FMC500

0x23 -
0x2F

-

ADC VITA Frame Sizes and Stream IDs

0x30 -
0x34

MR_FMC2_ADC_VFRAME R/W FMC310 = 4, FMC500 = 2

0x35 -
0x3F

-

0x40 - MR_FMC2_ADC_SID R/W FMC310 = 4, FMC500 = 2

Cardsharp Framework Logic Manual 120

 Cardsharp PL Memory Map

WB Base WB
Address

Register Simulation Define R/W Description Modules

0x44

0x45 -
0x4F

-

ADC Gain Registers

0x50 -
0x63

MR_FMC2_ADC_GAIN R/W FMC310 = 4

0x64 -
0x8F

-

ADC Offset Registers

0x90 -
0xA3

MR_FMC2_ADC_OFST R/W FMC310 = 4

0xA4 -

0xCF

Table 203. FMC ADC Component Registers

ADC Low Channel Enables (MR_FMC2_ADC_EN1, Base+0x0)
This is the lower A/D 32 channel enable register.

Bits Field R/W Default Description Modules

31:0 adc_ch_en R/W 0x0000 A/D channel enables. FMC310 = 4, FMC500 = 2

Table 204. FMC Low ADC Channel Enables Register

ADC High Channel Enables (MR_FMC2_ADC_EN2, Base+0x1)
This is the higher A/D 32 channel enable register.

Bits Field R/W Default Description Modules

31:0 adc_ch_en R/W 0x0000 A/D channel enables.

Table 205. FMC High ADC Channel Enables Register

ADC Low Power Enables (MR_FMC2_ADC_PDN1, Base+0x2)
This is the lower A/D 32 power enable register.

Bits Field R/W Default Description Modules

31:0 adc_pwr_en R/W 0x0000 A/D power enables. FMC310 = 4, FMC500 = 2

Table 206. FMC Low ADC Power Enables Register

ADC High Power Enables (MR_FMC2_ADC_PDN2, Base+0x3)
This is the higher A/D 32 power enable register.

Bits Field R/W Default Description Modules

31:0 adc_pwr_en R/W 0x0000 A/D power enables.

Table 207. FMC High ADC Power Enables Register

Cardsharp Framework Logic Manual 121

 Cardsharp PL Memory Map

FMC ADC Trigger Controls (MR_FMC2_ADC_TRGR, Base+0x4)
This register configures the A/D trigger modes.

Bits Field R/W Default Description Modules

23:0 adc_window_size R/W 0 ADC trigger window size. This is the number of
points, after decimation, that make up one data window.

FMC310, FMC500

28:24

31:29 adc_trigger_mode R/W “000” ADC trigger modes.

Bit29 = rising edge (1) or level (0)

Bit30 = framed (1) or unframed (0)

Bit31 = external (1) or software (0)

FMC310, FMC500

Table 208. FMC ADC Trigger Controls Register

ADC Decimation (MR_FMC2_ADC_DECI, Base+0x5)
This register specifies the decimation ratio for the A/D triggering.

Bits Field R/W Default Description Modules

11:0 adc_decimation R/W 0 Decimation count for A/D samples. Decimation keeps 1
point every N specified by this field.

FMC310, FMC500

31:12 -

Table 209. FMC ADC Decimation Ratio Register

ADC PRI trigger enable register (MR_FMC2_ADC_PRI_TRGR, Base+0x6)
This register is the ADC PRI trigger control register

Bits Field R/W Default Description Modules

0 en_pri_trig R/W Enable PRI trigger mode FMC310, FMC500

1 stop_pri R/W Stop PRI triggering FMC310, FMC500

2 en_num_pri R/W enable finite number of PRI frames FMC310, FMC500

3 retrig_num_pri R/W re-arm after number of PRI frames FMC310, FMC500

7:4 -

8 pri_busy R PRI mode is running when this bit is 1 FMC310, FMC500

15:9 -

31:16 num_pri R/W number of PRI frames FMC310, FMC500

Table 210. FMC ADC PRI trigger enable Register

Cardsharp Framework Logic Manual 122

 Cardsharp PL Memory Map

ADC PRI interval configuration register (MR_FMC2_ADC_PRI, Base+0x7)

Bits Field R/W Default Description Modules

31:0 pri R/W Pulse repetition interval FMC310, FMC500

Table 211. FMC ADC PRI interval configuration Register

ADC PRI trigger parameters register (MR_FMC2_ADC_PRI_PARAM, Base+0x8)

Bits Field R/W Default Description Modules

23:0 trig_cycle_delay R/W Delay between trigger and sof FMC310, FMC500

31:24 -

Table 212. FMC ADC PRI trigger parameters Register

ADC PRI capture window configuration register (MR_FMC2_ADC_PRI_WIDTH, Base+0x9)
This register configures the ADC PRI trigger parameters FIFO. Writing to this register generates a write strobe to the ADC
PRI parameters FIFO which causes the width and cycle delay parameters to be written to that FIFO.

Bits Field R/W Default Description Modules

23:0 trig_width R/W trigger width FMC310, FMC500

31:24 -

Table 213. FMC ADC PRI capture window configuration Register

FMC ADC device SPI enable register (MR_FMC2_ADC_SPI_EN, Base+0x10)
This register is used to enable the ADC device that receives the SPI command.

Bits Field R/W Default Description Modules

31:0 ad_spi_dev_en R/W ADC device SPI enable (1 bit per device). When a certain
device's enable bit is set, then that device will receive a SPI
command when the SPI registers are accessed.

FMC310 = 2

Table 214. FMC ADC device SPI enable Register

FMC ADC0 SPI control register (MR_FMC2_ADC0_SPI_CTRL, Base+0x10)

Bits Field R/W Default Description Modules

7:0 ad0_spi_wdata R/W ADC0 SPI write data

15:8 - Unused

23:16 ad0_spi_addr R/W ADC0 SPI address

27:24 - Unused

28 ad0_spi_rd_wrn R/W ADC0 SPI read/write enable

31:29 - Unused

Table 215. FMC250 ADC0 device SPI control register

Cardsharp Framework Logic Manual 123

 Cardsharp PL Memory Map

FMC ADC SPI Control (MR_FMC2_ADC_SPI_CTRL, Base+0x11)
This is the A/D devices SPI port writes.

Bits Field R/W Default Description Modules

7:0 adc_spi_wdata R/W 0x00 ADC SPI write data FMC310

15:8 -

15:0 adc_spi_wdata R/W ADC SPI write data FMC500

27:16 adc_spi_addr R/W 0 ADC SPI address FMC310

22:16 adc_spi_addr R/W 0 ADC SPI address FMC500

28 adc_spi_rd_wrn R/W 0 ADC SPI read/write bit. 0= write, 1 = read FMC310, FMC500

31:29 -

Table 216. FMC ADC SPI Control Register

FMC ADC0 SPI status register (MR_FMC2_ADC0_SPI_STAT, Base+0x11)
This is the FMC250 ADC0 SPI status register.

Bits Field R/W Default Description Modules

7:0 ad0_spi_rdata R 0x00 ADC0 SPI read data

29:8 - Unused

30 ad0_spi_rdy R ADC0 SPI ready

31 ad0_spi_rdata_valid R ADC0 SPI data valid

Table 217. FMC250 ADC SPI Stauts Register

FMC ADC SPI Status (MR_FMC2_ADC_SPI_STAT, Base+0x12)
This is the A/D devices SPI port reads.

Bits Field R/W Default Description Modules

7:0 adc_spi_rdata R ADC SPI read data FMC310

29:8 -

15:0 adc_spi_rdata R ADC SPI read data FMC500

30 adc_spi_rdy R ADC SPI is ready for use. FMC310, FMC500

31 adc_spi_rdata_valid R ADC SPI read data is valid. FMC310, FMC500

Table 218. FMC ADC SPI Status Register

Cardsharp Framework Logic Manual 124

 Cardsharp PL Memory Map

FMC ADC0 SPI control register (MR_FMC2_ADC1_SPI_CTRL, Base+0x12)
This FMC250 ADC1 SPI control register.

Bits Field R/W Default Description Modules

7:0 ad1_spi_wdata R/W ADC1 SPI write data

15:8 - Unused

23:16 ad1_spi_addr R/W ADC1 SPI address

27:24 - Unused

28 ad1_spi_rd_wrn R/W ADC1 SPI read/write enable

31:29 - Unused

Table 219. FMC250 ADC device SPI control register

FMC ADC calibration Control and Status (MR_FMC2_ADC_CAL, Base+0x13)
This is the status register for the ADC calibration.

Bits Field R/W Default Description Modules

0 cal_start R/W Start ADC calibration (should be toggled after
programming the ADC registers)

15:1

20:16 cal_done R ADC device calibration done

31:21 -

Table 220. FMC ADC calibration control and status register

FMC ADC1 SPI status register (MR_FMC_ADC1_SPI_STAT, Base+0x13)
This is the FMC250 ADC1 SPI status register.

Bits Field R/W Default Description Modules

7:0 ad1_spi_rdata R 0x00 ADC1 SPI read data FMC250

29:8 - Unused

30 ad1_spi_rdy R ADC1 SPI ready FMC250

31 ad1_spi_rdata_valid R ADC1 SPI data valid FMC250

Table 221. FMC250 ADC SPI Stauts Register

Cardsharp Framework Logic Manual 125

 Cardsharp PL Memory Map

FMC VGA Controls (MR_FMC2_VGA, Base+0x14)
This is the interface to the VGA. The VGA I2C port is a bit-banged interface through this register.

Bits Field R/W Default Description Modules

0 vga_sdo R/W 0 VGA I2C data output bit.

1 vga_scl R/W 0 VGA I2C clock output bit.

2 vga_sdi R - VGA I2C data input bit.

3 vga_scl R - VGA I2C port clock readback.

7:4 -

8 vga_ldac_n R/W 0 Load VGA DAC latch enable (active low).

31:9 -

Table 222. FMC VGA Controls Register

FMC ADC PHY Calibration register (MR_FMC2_ADC_PHY_CAL, Base+0x14)
This is the FMC250 adc phy calibration register.

Bits Field R/W Default Description Modules

1:0 adc_rst R/W ADC reset

0 adc_rst R/W ADC reset FMC500

15:2 - Unused

3:1 - Unused FMC500

4 adc_cal R/W ADC calibrate FMC500

7:5 Unused FMC500

8 adc_pwr_gd R ADC power good FMC500

17:9 Unused FMC500

17:16 adc_cal_done R ADC calibration status

19:18

20 adc_clk_stopped R ADC clock stopped

21 adc_clk_locked R ADC clock locked

31:18 - Unused

Table 223. FMC250 ADC PHY Calibration register

Cardsharp Framework Logic Manual 126

 Cardsharp PL Memory Map

FMC ADC PHY Calibration register (MR_FMC2_ADC_PHY_CAL, Base+0x18)
This is the FMC110 adc phy calibration register.

Bits Field R/W Default Description Modules

0 adc_phy_init R/W Initialize ADC PHY of the selected ADC channel

1:7 - Unused

8 sel_adc_ch R/W Select ADC channel to forward calibration control and status

11:9 - Unused

12 skip_adc_phy_cal R/W Skip ADC PHY calibration

13 - Unused

26:14 adc_eye_aligned R ADC data eye is aligned

27 adc_prbs_locked R local PRBS is locked to ADC bit0

28 adc_prbs_aligned R ADC PRBS data sequence is aligned

29 adc_phy_rdy R ADC PHY is calibrated and ready

30 adc_clka_stopped R ADC output clock stopped

31 adc_clka_locked R ADC output clock locked

Table 224. FMC110 ADC PHY Calibration register

FMC ADC Amplitude Configuration (MR_FMC2_ADC_AMP_CFG, Base+0x19)

Bits Field R/W Default Description Modules

1:0 adc_multx16_en R/W 0 Multiply ADC output by 16

31:2

Table 225. FMC ADC Amplitude Configuration Register

FMC ADC Timestamp Load (MR_FMC2_ADC_TS_LD, Base+0x20)
This is the VITA packet timestamp load.

Bits Field R/W Default Description Modules

31:0 ts_initial R/W 0 VITA timestamp load initial value FMC310, FMC500

Table 226. FMC ADC Timestamp Load Register

FMC ADC Timestamp Control (MR_FMC2_ADC_TS_CTRL, Base+0x21)
This is the VITA packet timestamp load and control.

Bits Field R/W Default Description Modules

0 ts_arm R/W 0 VITA timestamp arm. Set this bit to initiate timestamp
counting on rising edge of PPS when in PPS mode.

FMC310, FMC500

1 ts_pps_mode R/W 0 VITA timestamp PPS mode.

1 = pps mode

0 = internal timer

FMC310, FMC500

3:2 tsi R/W 11 VITA timestamp Integer-seconds mode FMC310, FMC500

Cardsharp Framework Logic Manual 127

 Cardsharp PL Memory Map

00 = No Integer-seconds Timestamp field included (Not
supported)

01 = UTC: seconds elapsed since January 1, 1970 GMT.

10 = GPS: seconds elapsed since January 6, 1980 GMT.

11 = Other: seconds elapsed since some documented start
time.

5:4 tsf R/W 01 VITA timestamp Fractional-seconds mode

00 = No Fractional-seconds Timestamp field included
(Not supported)

01 = Sample count timestamp: fractional seconds since
last integer-seconds event, counting in samples.

10 = Real time timestamp: counts in increments of 1
picosecond since last integer-seconds event. (Not
supported)

11 = Free running count timestamp: No relation to the
integer-seconds field. Counts in samples.

FMC310, FMC500

31:6 -

Table 227. FMC ADC Timestamp Control Register

FMC ADC VITA-49 framer Control (MR_FMC2_ADC_VITA_CTRL, Base+0x22)
This register controls turning on/off the ADC VITA-49 framers.

Bits Field R/W Default Description Modules

0 disable_vita R/W Disable ADC VITA-49 framers FMC310, FMC500

31:1 -

Table 228. FMC ADC VITA-49 framer control register

FMC ADC VITA Frame Sizes (MR_FMC2_ADCx_VFRAME, Base+0x30 +x)
This is the VITA packet frame size for each ADCx. Number of streams defined is shown for each module.

Bits Field R/W Default Description Modules

15:0 adcx_frame_size R/W 0x1000 VITA packet frame size, in 32-bit words. FMC310 = 4, FMC500 = 2

31:16 adcx_dest_id R/W 1 Internal routing destination Id (1=PCIE).

Table 229. FMC ADC VITA Frame Size Register

FMC ADC VITA Stream IDs (MR_FMC2_ADCx_SID, Base+0x40 +x)
This is the VITA Stream ID (SID) each ADCx. Number of streams defined is shown for each module.

Bits Field R/W Default Description Modules

15:0 adcx_stream_id R/W VITA packet stream Id FMC310 = 4, FMC500 = 2

31:16 adcx_dest_id R/W 1 Internal routing destination Id (1=PCIE). FMC310 = 4, FMC500 = 2

Table 230. FMC ADC VITA Stream ID Register

Cardsharp Framework Logic Manual 128

 Cardsharp PL Memory Map

FMC ADC Gain Error Correction (MR_FMC2_ADCx_GAIN, Base+0x50 +x)
This is the gain error correction factor for each ADC. Number of ADC is shown for each module.

Bits Field R/W Default Description Modules

17:0 adcx_gain R/W 0x10000 Gain coefficient for error correction (0x10000 = 1.00) FMC310 = 4

11:0 adcx_gain R/W 0x0000 Gain coefficient for error correction, check ADC datasheet for
the correct format

30:18 -

Table 231. FMC ADC Gain Error Correction Register

FMC ADC Offset Error Correction (MR_FMC2_ADCx_OFST, Base+0x90 +x)
This is the offset error correction factor for each ADC. Number of ADC is shown for each module.

Bits Field R/W Default Description Modules

15:0 adcx_offset R/W 0 Offset error correction FMC310 = 4

8:0 adcx_offset R/W 0x100 Offset error correction, check ADC datasheet for the correct
format

31:16 -

Table 232. FMC ADC Offset Error Correction Register

Cardsharp Framework Logic Manual 129

Cardsharp Framework Logic Manual

K7 Logic Library

The logic library contains the logic components used on multiple K7 products. These library components are
provided with VHDL source code.

Innovative Integration Inc. 130

Cardsharp Framework Logic Manual

ii_4ch_fifo_drainer

Source file: ii_4ch_fifo_drainer.vhd

Description:

This component is used to move data from up to four source channel FIFOs to other logic. When the enabled source channel
FIFOs have data, as indicated by the empty and almost empty flags, the data flow state machine generates the control
signals to read from the source FIFOs and write to the destination. The data is read continuously in a burst mode when
all the enabled source channel FIFOs' SRC_AEMPTY flag is false and DEST_RDY is true. If at least one of the
source channel FIFOs' SRC_AEMPTY flag is true but its SRC_EMPTY is false and DEST_RDY is true, then the
data flow is one point every 8 clocks in a “drip” mode.

The component requires that all the source FIFOs provide the AEMPTY and EMPTY flags. The AEMPTY threshold must be
> 8 points to allow for latencies. The destination must provide the DEST_RDY flag, indicating that it can accept at least 8
data points without overflow.

Figure 21. ii_4ch_fifo_drainer Component

The source usually has a data valid signal for each point read from the FIFO. This valid signal is used as a write enable to the
destination logic.

Innovative Integration Inc. 131

Cardsharp Framework Logic Manual

Port Direction Function
srst In Synchronous active high reset

clk In Clock

src_ch_en In Source channel enable

src_ch_empty In Source channel FIFO is empty

src_ch_aempty In Source channel FIFO is almost empty (< 8 points)

dest_rdy Out Destination is ready (room for > 8 points)

src_ch_rden In Source channel FIFO read enable

Table 233. ii_4ch_fifo_drainer Component Ports

Innovative Integration Inc. 132

Cardsharp Framework Logic Manual

ii_ad9516_spi

Source file: ii_ad9516_spi.vhd

Description:

This component is an SPI port interface to the Analog Devices AD9516. The AD9516 device is configured and monitored
over this SPI port. The maximum clock rate to this serial port is 25 MHz and it is configured as a 3 pin interface.

Each read/write operation is composed of 2 cycles: a 16-bit Instruction cycle followed by 8-bit data transfer cycle. Data is
transferred MSB first. A strobe on spi_wr_strb initiates an SPI read or write transaction depending on the value of
spi_rd_wrn.

For writes, a 16-bit instruction word is transmitted followed by an 8-bit data word. For reads, a 16-bit word instruction word
is sent and an 8-bit word is received and is output on the spi_rdata byte. The spi_rdata_valid output indicates when the SPI
read data is valid. The spi_rdy output indicates when the SPI port is ready for the next transfer.

Port Direction Function
srst In Synchronous active high reset

clk In Clock

spi_wr_strb In trigger an SPI transaction

spi_wdata In PLL SPI write data

spi_addr In PLL register address

spi_rd_wrn In PLL SPI 1=read/0=write access

spi_rdy Out PLL SPI port is ready

spi_rdata_valid Out SPI read data is valid

spi_rdata Out last SPI read data

spi_sclk Out PLL SPI clock

spi_cs_n Out PLL SPI enable, active low

spi_sdio Inout PLL SPI input/output data

Table 234. ii_ad9516_spi Component Ports

Innovative Integration Inc. 133

Cardsharp Framework Logic Manual

ii_alert_gen

Source file: ii_alert_gen.vhd

Description:

This component generates an alert strobe and latches the input alert bus for 4 cycles when any input alert occurs. This
component is useful in generating alert triggers when multiple alerts on the same alert data bus assert and remain asserted.
Otherwise, when an alert asserts on an alert line, then it will mask the detection of other alerts on the same bus since no
trigger will be generated.

Generic Default Function

width 16 Number of alerts on the same alert data bus

Table 235. ii_alert_gen Generic Ports

Port Direction Function
srst In Synchronous active high reset

sys_clk In System clock

alert_din In alert data in

alert_strb Out alert strobe

alert_dout Out alert data out

Table 236. ii_alert_gen Component Ports

Innovative Integration Inc. 134

Cardsharp Framework Logic Manual

ii_alerts_top

Source files: ii_alerts_top.vhd, ii_alerts_regs.vhd, ii_alerts.vhd

Description:

The alert component is used to monitor critical system events, such as trigger active or overrange, and report these
occurrences to the system. This is done by monitoring alert inputs and generating a packet to the host for each alert. In most
cases, these packets are rare and tell the host software that an important event or error has occurred.

The alerts logic is comprised of 3 components: ii_alerts; responsible for generating an alert packet when any of its alert
trigger inputs occurs, ii_alerts_regs; which is a wishbone slave that provides access to the registers that control the ii_alerts
module, and finally ii_alerts_top; which is a wrapper around the two components mentioned earlier.

The number of alerts (num_alerts) is defined in the project package. Note that num_alerts MUST be a multiple of 4 number.
The package should be modified for the number of alerts required.

The ii_alerts component monitors num_alerts input alerts and looks for rising edges on the enabled alerts. An enable for each
alert is provided on the alert_enable inputs which correspond to the alerts on a bit-by-bit basis. When enabled, a rising edge
indicates an alert is signaled and the logic then generates a packet indicating which alerts were triggered, the system time it
was triggered and a status word for each alert. The status words can be anything of interest, the logic just puts these into the
packet.

The system time is from a 32-bit counter clocked by the reference clock. This time stamp is included in each packet
indicating when this alert occurred. The time stamp counter can be extended in software by enabling the time stamp rollover
event so that an alert is generated to the system.

Alert Data Format

The packets are timestamped using a 32-bit counter running off the system clock, showing the system time that the alert
occurred. Multiple alerts can be active for each alert packet as reported in the alerts signaled field of the packet.

Dword # Description
0 Alerts Signaled : a '1' in a bit indicates that alert is active

1 Timestamp : a 32-bit system time clocked by a reference clock.

2.3 Reserved

3..num_alerts Alert status words

Table 237. ii_alerts Packet Format

The array of alert data is the status word that is included in the alert packet for each enabled alert. This 32-bit word can be
anything of interest and is included in the timestamped alert packet when any alert is triggered.

Innovative Integration Inc. 135

Cardsharp Framework Logic Manual

Figure 22. ii_alert Component

The alert component is usually followed by a packetizing component, such as ii_packetizer, to format the alerts for
transmission to the host via the host interface such as PCI Express.

Maximum Alert Rates and Overflow Behavior

The alert log is intended for occasional use in the system, events that occur at rates expected to be no higher than 10 kHz.
Since each alert generates a small data packet, higher rates require a larger data buffer. System performance may also be
impacted by the large number of interrupts resulting from the packet stream.

If the FIFO fills the alert will remain pending until there is room in the FIFO for another alert packet. If the active alerts
signal again when the FIFO is full however, only the first occurrence is signaled.

Innovative Integration Inc. 136

Cardsharp Framework Logic Manual

Generic Default Function

offset Alerts Wishbone slave address offset

Table 238. ii_alerts_top Generic Ports

Port Direction Function

wb_rst_i In WB synchronous active high reset

wb_clk_i In WB clock

wb_adr_i In WB address in

wb_dat_i In WB data in

wb_we_i In WB write enable

wb_stb_i In WB strobe from master

wb_ack_o Out WB acknowledge out

wb_dat_o Out WB data out

srst In Synchronous reset

sys_clk In System clock

ref_clk In Reference clock used for timebase.

alert_data(num_alerts -1 ..0)(31..0) In Array of status words for the alert packet. The dimension is defined in
k7_pkg for num_alerts.

alert(num_alerts -1..0) In Alert trigger inputs. The component monitors these signals for a rising
edge.

trigger In Trigger

alert_sw_data Out Software alert status word

alert_sw_stb Out Software alert trigger

timestamp_rollover Out The timestamp counter rolled over. Used for software extending the
counter.

alert_fifo_wrd_cnt Out Alert FIFO word count

alert_fifo_aempty Out Alert FIFO almost empty

alert_fifo_empty Out Alert FIFO empty

alert_fifo_rd In Alert FIFO read enable

alert_dout_vld Out Alert FIFO data output is valid

alert_dout(127..0) Out Alert FIFO data output

Table 239. ii_alerts_top Component Ports

Innovative Integration Inc. 137

Cardsharp Framework Logic Manual

ii_alerts_axis

Source files: ii_alerts_axis.vhd

Description:

This component is a variant of the ii_alerts_top component, that captures events in a similar way and instead sends a AXI4-
Stream data with the alerts payload to the system. The main difference is the alerts_cnt input, changing to a programmable
number of alerts being processed from 1 to 32. Only alerts under this number would be processed, the rest are ignored. In
turn, the output AXI-Stream will vary in size according to the number of alerts and will delimit the stream using the TLAST
signal on the last strobe of the stream.

This component streams alerts to the alerts processing engine built into the Multichannel DMA, which will trigger an
interrupt to the software, which in turn will read the alerts payload. The alerts structure is similar to the component in
ii_alerts.vhd except for its programmable variable size.

Dword # Description
0 Alerts Signaled : a '1' in a bit indicates that alert is active

1 Timestamp : a 32-bit system time clocked by a reference clock.

2..num_alerts Alert status words

Table 240. Alerts data structure

Port Direction Function

srst In Synchronous reset

sys_clk In System clock

ref_clk In Reference clock used for timebase.

alert_data(num_alerts -1 ..0)(31..0) In Array of status words for the alert packet. The dimension is defined in
k7_pkg for num_alerts.

alert(31..0) In Alert trigger inputs. The component monitors these signals for a rising
edge.

trigger In Trigger

timestamp_rollover Out The timestamp counter rolled over. Used for software extending the
counter.

m_axis_tvalid Out AXI-Stream TVALID

m_axis_tready In AXI-Stream TREADY input

m_axis_tdata Out AXI-Stream TDATA

m_axis_tstrb Out AXI-Stream TSTRB

m_axis_tlast Out AXI-Stream TLAST

Table 241. ii_alerts_axis Component Ports

Innovative Integration Inc. 138

Cardsharp Framework Logic Manual

ii_bin2gray

Source file: ii_bin2gray.vhd

Description:

This component onverts the binary input into a grey coded output.

Generic Default Function

bw 8 Bit width

Table 242. ii_bin2gray Generic Ports

Port Direction Function
binary_i(bw-1:0) In Binary data in

gray_o(bw-1:0) Out Gray coded data out

Table 243. ii_bin2gray Component Ports

Innovative Integration Inc. 139

Cardsharp Framework Logic Manual

ii_cdce18005_spi

Source file: ii_cdce18005_spi.vhd

Description:

This component is an SPI port interface to the TI CDCE18005. The CDCD18005 device is configured and monitored over
this SPI port. The maximum clock rate to the serial port is 20 MHz. For reads, a 28-bit word instruction word is sent with a
4-bit address and a 32-bit word is returned. For writes, a 32-bit word is transmitted consisting of a 4-bit address followed by
28-bits of data.

Port Direction Function
srst In Synchronous active high reset

clk In Clock

spi_wr_strb In trigger an SPI transaction

spi_wdata In PLL SPI write data

spi_addr In PLL register address

spi_rdy Out PLL SPI port is ready

spi_rdata_valid Out SPI read data is valid

spi_rdata Out last SPI read data

spi_sclk Out SPI clock

spi_le Out SPI load enable, active low

spi_mosi Out SPI master out slave in

spi_miso In SPI master in slave out

Table 244. ii_cdce18005_spi Component Ports

Innovative Integration Inc. 140

Cardsharp Framework Logic Manual

ii_cdce72010_spi

Source file: ii_cdce72010_spi.vhd

Description:

This component is an SPI port interface to the TI CDCE72010. The CDCD18005 device is configured and monitored over
this SPI port. The maximum clock rate to the serial port is 20 MHz. For reads, a 28-bit word instruction word is sent with a
4-bit address and a 32-bit word is returned. For writes, a 32-bit word is transmitted consisting of a 4-bit address followed by
28-bits of data.

Port Direction Function
srst In Synchronous active high reset

clk In Clock

spi_wr_strb In trigger an SPI transaction

spi_wdata In PLL SPI write data

spi_addr In PLL register address

spi_rdy Out PLL SPI port is ready

spi_rdata_valid Out SPI read data is valid

spi_rdata Out last SPI read data

spi_sclk Out SPI clock

spi_le Out SPI load enable, active low

spi_mosi Out SPI master out slave in

spi_miso In SPI master in slave out

Table 245. ii_cdce72010_spi Component Ports

Innovative Integration Inc. 141

Cardsharp Framework Logic Manual

ii_circ_buffer

Source file: ii_circ_buffer.vhd

Description:

This component is a circular buffer that is used to synchronize signals between two clock domains. The two clocks should
have the same frequency but can be of different phase.

Generic Default Function

WIDTH 1 Number of bits in data bus

Table 246. ii_circ_buffer Generic Ports

Port Direction Function
arst In Asynchronous active high reset

wclk In Write clock

wdata(WIDTH-1:0) In Write data

rclk In Read clock

rdata(WIDTH-1:0) Out Read data

Table 247. ii_ circ_buffer Component Ports

Innovative Integration Inc. 142

Cardsharp Framework Logic Manual

ii_crm

Source file: ii_crm.vhd

Description:

This component provides clocks and resets used in the K7 logic. The 200 MHz input clock is buffered and a
MMCM is used to create the system clock. Resets to the logic are derived from the power on reset, board reset,
and MMCM's lock so that the logic remains in reset until the clock is stable.

The resets to the system are controlled to allow the clock to stabilize before use and sequenced according to the
requirements of the logic design and its dependencies. The hardware power-on-reset por_arst is the highest priority and
resets the memory and all the logic. The run input is lowest priority, used for the backend reset data flow reset.

Step Function Result

1 Power-on-reset por_arst All logic and memory clock MMCM is reset. All resets are asserted.

2 por_arst deasserted Memory clock MMCM locks. Memory reset deasserts.

3 brd_arst asserts System clock MMCM is reset.

4 brd_arst deasserted System clock MMCM locks.

5 MMCM is Locked clks_locked is set true. Wishbone reset deasserts.

4 app_rst is deasserted Frontend reset deasserts.

5 run is asserted Backend reset deasserts.

Table 248. ii_clock Reset Sequencing

As this sequence shows, the application logic will not come out of reset until the Power-on-reset and board reset are false,
MMCM is locked, and app_rst is false. This allows the front end logic – PCI Express and Wishbone system control bus- to
be active before the application logic for configuration.

Innovative Integration Inc. 143

Cardsharp Framework Logic Manual

Figure 23. ii_crm Component

Generic Default Function

SYS_CLK_FREQ 250 System clock frequency in MHz

Table 249. ii_crm Generic Ports

Innovative Integration Inc. 144

Cardsharp Framework Logic Manual

Port Direction Function
por_arst In Asynchronous active high power on reset

brd_arst In Asynchronous active high board reset

clk200_p/n In 200 MHz differential clock input pair

ref_clk200 Out 200MHz reference clock

sys_clk Out System clock output

mem_clk_div2 Out Memory clock divided by 2

clks_locked Out MMCMs are locked

app_rst In Application reset request

run Enable data flow

mem_rst Out Synchronous active high memory reset at mem_clk_div2 domain.
(asserted only while power on and before memory clock lock)

wb_rst Out Wishbone system reset (asserted when clocks are not locked)

frontend_rst Out Synchronous active high reset (asserted while clocks are not locked and
upon software reset request)

backend_rst Out Synchronous active high reset (asserted while clocks are not locked, upon
software reset request, and while run is low)

Table 250. ii_crm Component Ports

Innovative Integration Inc. 145

Cardsharp Framework Logic Manual

ii_decimate_x2

Source file: ii_decimate_x2.vhd

Description:

This component generates an (scnt) sample output word by dropping the odd numbered samples in two (scnt) sample input
data words in a frame to achieve a decimate by 2 function when not bypassed. In bypass mode, the input is passed to the
output as is.

Generic Default Function

scnt 8 sample count

sbw 8 sample bit width

Table 251. ii_crm Generic Ports

Port Direction Function
srst In Synchronous active high reset

clk In Clock

bypass In bypass decimation

din_frame In input data frame

din_rdy In input data ready

din(scnt*sbw-1 : 0) In input data (scnt samples)

dout_frame Out data out frame

dout_vld Out data out is valid

dout(scnt*sbw-1 : 0) Out data out (scnt samples)

Table 252. ii_decimate_x2 Component Ports

Innovative Integration Inc. 146

Cardsharp Framework Logic Manual

ii_deframer

Source file: ii_deframer.vhd

Description:

The deframer component parses incoming packets and routes them to the peripheral device number (PDN) embedded in the
header. Data is pulled from the source FIFO, is stripped of its header, and written to a destination device. Each destination
has a specific PDN as defined in the PD_ADDR array.

The header for each packet has the PDN and packet size that is used by the deframer for packet routing. The deframer state
machine reads the packet header and then transfers the data payload to its destination. The deframer does not do anything
with the data payload – it simply passes through whatever payload is attached to a packet header.

The packet size taken from the first header word is used to move the data points as available from the source FIFO to the
destination. These data moves are controlled by the flow control signals SRC_EMPTY, SRC_AEMPTY, and DEST_RDY.
DEST_RDY must be true when it can accept at least 8 points. The source flags are usually the output of a FIFO.

Figure 24. ii_deframer Component

The PDN definitions for device mapping are assigned to the array PD_ADDR. These addresses can be dynamic, provided
that they are changed on packet boundaries.

Innovative Integration Inc. 147

Cardsharp Framework Logic Manual

Several signals are also available to monitor the packet flow: NEW_PACKET, BAD_PDN and END_OF_PACKET. These
can be used by destination logic to know when a packet is complete for processing. The error signal BAD_PDN reports if an
unknown PDN is received. If a bad PDN is detected, then the packet data is dumped.

Port Direction Function
srst In Synchronous active high reset

sys_clk In System clock

pd_addr In peripheral device numbers for decoding (defined in k7 packages)

new_packet Out Signals the beginning of a packet (for debug)

bad_pdn Out A bad PDN was detected, indicating a malformed packet

end_of_packet Out Signals the end of a packet (for debug)

src_aempty In Source is almost empty (< 8 points)

src_empty In Source is empty

src_rden Out Source read enable

src_data_vld In Source data is valid

data_in(127:0) In Data input bus (32 bits)

dest_rdy(num_pd_df-1:0) In Destinations are ready indicating that at least 8 points can be accepted.

dest_wren(num_pd_df-1:0) Out Destination write enables, one for each of the Peripheral Devices

data_out(127:0) Out Data bus output

Table 253. ii_deframer Component Ports

Innovative Integration Inc. 148

Cardsharp Framework Logic Manual

ii_destacker

Source file: ii_destacker.vhd

Description:

This component is used to split data words into two words. This is required on many K7 modules to split the 128-bit system
words into two 64-bit words for the DACs. This is referred to as “destacking” the data.

The word width is specified by the generic OBW port. The OBW must be an even number. The input data path is 2x larger
than the output data path.

Data flow is moderated by the DIN_RDY and DOUT_RDY flags indicating when the input and output data streams are ready
to flow data. When both are ready, and a request is issued by the destination, then data is read (RDEN) from the source. The
output data is received by the destination when valid (DOUT_VLD) is true.

Figure 25. ii_destacker Component

Generic Default Function
obw 64 Data bus width, in bits

Table 254. ii_destacker Generic Ports

Innovative Integration Inc. 149

Cardsharp Framework Logic Manual

Port Direction Function
srst In Synchronous reset

clk In Clock

ce In Enable

req In Data request

rden Out Read enable

din_rdy In Input data is ready.

din(2*obw-1:0) In Data bus input

dout_rdy Out Data out is ready (available)

dout_vld Out Data out is valid

dout(obs-1:0) Out Data bus output

Table 255. ii_destacker Component Ports

Innovative Integration Inc. 150

Cardsharp Framework Logic Manual

ii_dio_top

Source files: ii_dio_top.vhd, ii_dio_regs.vhd, ii_dio.vhd

Description:

The DIO component provides a simple registered IO functionality for the K7 P16 DIO pins. The main purpose of this
component is to provide either simple control IO or as an easily modifiable interface.

The DIO logic is comprised of 3 components: ii_dio; the basic digital I/O component that provides the interface between the
DIO pins and a wishbone slave that configures, controls, and monitors these bits. ii_dio_regs; is a wishbone slave that
provides access to registers that interface to the ii_dio module, and finally ii_dio_top; which is a wrapper around the two
components mentioned earlier.

The direction of each bit on the DIO bus is controlled by a register.

Generic Default Function
width 8 DIO width

diff_en FALSE Enable differential mode DIO pins

addr_bits 2 DIO Wishbone slave address bits

offset DIO Wishbone slave address offset

Table 256. ii_dio_top Generic Ports

Port Direction Function
wb_rst_i In WB synchronous active high reset

wb_clk_i In WB clock

wb_adr_i In WB address in

wb_dat_i In WB data in

wb_we_i In WB write enable

wb_stb_i In WB strobe from master

wb_ack_o Out WB acknowledge out

wb_dat_o Out WB data out

clk In System clock

dio_p(width-1:0) InOut Differential (P-side) DIO pins when diff_en generic is set true or

even numbered single ended DIO pins when diff_en generic is set false

dio_n(width-1:0) InOut Differential (N-side) DIO pins when diff_en generic is set true or

odd numbered single ended DIO pins when diff_en generic is set false

Table 257. ii_dio_top Component Ports

Innovative Integration Inc. 151

Cardsharp Framework Logic Manual

ii_drainer_destacker

Source file: ii_drainer_destacker.vhd

Description:

This component is used to move from a source FIFO to some destination logic with data split from 128-bit to 64-bit
width. This component is usually used to move data from the DRAM memory to the output devices such as DACs.

When the source FIFO has data, as indicated by the empty and almost empty flags, the data flow state machine
generates the control signals to read from source FIFO. The data is read continuously in a burst mode when the
SRC_AEMPTY flag is false and DEST_RDY is true. If the source FIFO is almost empty, with a few points in in it,
then the data flow is one point at a time in a “drip” mode.

The component requires that the source FIFO provide the AEMPTY and EMPTY flags. The AEMPTY must be > 8 points to
allow for latencies. The destination must provide the DEST_RDY flag, indicating that it can accept at least 8 data points
without overflow.

The source FIFO has a data valid signal for each point read from the FIFO that is used as a write enable to
ii_drainer_destacker component. The data is split from a 128-bit word to two 64-bit words and written to the destination
logic with DEST_WREN. Data is written to the destination logic when WR_EN is true, valid for each 64-bit word.

Figure 26. ii_drainer_destacker Component

Innovative Integration Inc. 152

Cardsharp Framework Logic Manual

Figure 27. Using ii_drainer_destacker

Port Direction Function
srst In Synchronous active high reset

clk In Clock

ce In Enable

src_empty In Source FIFO is empty

src_aempty In Source FIFO is almost empty (<8 points)

dest_rdy Out Destination FIFO is ready (room for >8 points)

src_rden Out Source FIFO read enable

src_valid Out Source FIFO data valid

src_data[127:0] In Source FIFO data bus

dest_wren Out Destination write enable

dest_data[63:0] Out Destination data bus

Table 258. ii_drainer_destacker Component Ports

Innovative Integration Inc. 153

Cardsharp Framework Logic Manual

ii_ext_sync_iddr

Source file: ii_ext_sync_iddr.vhd

Description:

This component is used to capture the fast external sync signal using an IDDR component, and generate and latch a
phase value corresponding to the clock cycle in which the external sync asserted. This component is used when ADC/DAC
data synchronization with an external trigger is desired and when the ADC/DAC interface uses IDDR/ODDR components
in its physical layer.

The captured external sync phase value is usually used to select between two sets of parallel samples captured on the
interface to adjust with the external sync signal.

Port Direction Function
reset In Async active high reset

clk_bufio In IO clock

clk_bufr In BUFR (regional) clock

ext_sync_p/n In External sync (trigger) differential pair

trigger_en In Trigger enable (used to latch the phase)

ext_sync Out Detected external sync (in clk_bufr domain)

ext_sync_phase Out Calculated external sync phase

Table 259. ii_ext_sync_iddr Component Ports

Innovative Integration Inc. 154

Cardsharp Framework Logic Manual

ii_ext_sync_s1p4

Source file: ii_ext_sync_s1p4.vhd

Description:

This component is used to capture the fast external sync signal using an ISERDES component, and generate and latch a
phase value corresponding to the clock cycle in which the external sync asserted. This component is used when ADC/DAC
data synchronization with an external trigger is desired and when the ADC/DAC interface uses ISERDES/OSERDES
components in its physical layer.

The captured external sync phase value is usually used to select between four sets of parallel samples captured on
the interface to adjust with the external sync signal.

Port Direction Function
reset In Async active high reset

clk_bufio In IO clock

clk_bufr In BUFR (regional) clock

ext_sync_p/n In External sync (trigger) differential pair

trigger_en In Trigger enable (used to latch the phase)

idelay_rst In Software programmable S1P4 idelay reset

idelay In Software programmable S1P4 idelay value

ext_sync Out Detected external sync (in clk_bufr domain)

ext_sync_phase Out Calculated external sync phase

Table 260. ii_ext_sync_s1p4 Component Ports

Innovative Integration Inc. 155

Cardsharp Framework Logic Manual

ii_fifo_drainer

Source file: ii_fifo_drainer.vhd

Description:

This component is used to move data from a source FIFO to other logic. When the source FIFO has data as indicated
by the empty and almost empty flags, the data flow state machine generates the control signals to read from source FIFO
and write to the destination. The data is read continuously in a burst mode when the SRC_AEMPTY flag is false and
DEST_RDY is true. If the source FIFO is almost empty, with a few points in in it, then the data flow is one point at
a time in a “drip” mode.

The component requires that the source FIFO provide the AEMPTY and EMPTY flags. The AEMPTY must be > 8 points to
allow for latencies. The destination must provide the DEST_RDY flag, indicating that it can accept at least 8 data points
without overflow.

Figure 28. ii_fifo_drainer Component

The source usually has a data valid signal for each point read from the FIFO. This valid signal is used as a write enable to the
destination logic.

Innovative Integration Inc. 156

Cardsharp Framework Logic Manual

Figure 29. Using ii_fifo_drainer

Port Direction Function
clk In Clock

srst In Synchronous reset

ce In Enable

src_empty In Source FIFO is empty

src_aempty In Source FIFO is almost empty (<8 points)

dest_rdy Out Destination FIFO is ready (room for >8 points)

src_rden In Source FIFO read enable
Table 261. ii_fifo_drainer Component Ports

Innovative Integration Inc. 157

Cardsharp Framework Logic Manual

ii_flash_intf_top

Source files: ii_flash_intf_top.vhd, ii_flash_regs.vhd, ii_flash_spi.vhd

Description:

This component provides a link between the software and the on-board calibration ROM (serial flash memory) that is used to
hold the analog front end calibration coefficients. The interface logic is comprised of 3 components: ii_flash_spi; responsile
for generating the SPI interface signals to the SST25VF032B flash memory, ii_flash_regs; which is a wishbone slave that
provides access to the registers that control the ii_flash_spi module, and finally ii_flash_intf_top; which is a wrapper around
the two components mentioned earlier. The sequence of commands used to interface to this flash memory is included in the
memory map section.

The software issues data, address, and opcode writes to initiates a serial transaction to the flash. The opcode is decoded and
the number of cycles for opcode, address, data and dummy cycles and whether the transaction is a read or a write are
determined based on it. The serial clock is 15.625MHz based on a system clock of 250MHz. This clock could be as fast as
80MHz for all commands (except read, which is 25MHz max), but in order to support all instructions up to a 400MHz
system clock, it was intentionally limited. The serial clock is stopped between transactions to avoid analog noise interference.
Note that the high speed read is not faster than the normal read command. All flash operations are fully supported.

Generic Default Function

offset Flash interface Wishbone slave address offset

Table 262. ii_flash_intf_top Generic Ports

Innovative Integration Inc. 158

Cardsharp Framework Logic Manual

Port Direction Function

wb_rst_i In WB synchronous active high reset

wb_clk_i In WB clock

wb_adr_i In WB address in

wb_dat_i In WB data in

wb_we_i In WB write enable

wb_stb_i In WB strobe from master

wb_ack_o Out WB acknowledge out

wb_dat_o Out WB data out

srst In Synchronous reset

sys_clk In System clock

rom_sck Out Serial clock to flash

rom_cs_n Out Chip select to flash

rom_sdi Out Serial data in to flash

rom_sdo In Serial data out from flash

rom_hold_n Out Hold flash interface

rom_wp_n Out Flash write protect

Table 263. ii_flash_intf_top Component Ports

Innovative Integration Inc. 159

Cardsharp Framework Logic Manual

ii_gray2bin

Source file: ii_gray2bin.vhd

Description:

This component onverts the grey coded input into a binary output.

Generic Default Function

bw 8 Bit width

Table 264. ii_bin2gray Generic Ports

Port Direction Function
gray_i(bw-1:0) In Gray coded data in

binary_o(bw-1:0) Out Binary data out

Table 265. ii_gray2bin Component Ports

Innovative Integration Inc. 160

Cardsharp Framework Logic Manual

ii_offgain

Source file: ii_offgain.vhd

Description:

This component applies gain/offset error correction coefficients to the incoming data samples. The input data is multiplied
by the gain coefficient first, and then an offset is added to it to compensate for analog errors. The gain factor is a 2's
complement, 18-bit number ranging from +2 to -2 that allows for precise gain correction to the input data. The offset value
is a 16-bit, 2's complement number that compensates for bias errors.

The error compensated output is

y = Gx + O

where x = input data, G = gain, O = offset

A gain of 1 is represented by 0x10000 and offset of 0 equal to 0.

The component uses a DSP48E block to perform the multiplication and addition followed by a signed number saturator to
produce the output in the desired size.

Figure 30. ii_offgain Component

Innovative Integration Inc. 161

Cardsharp Framework Logic Manual

Generic Default Function

obw 16 Output bit width

Table 266. ii_ offgain Generic Ports

Port Direction Function

srst In Synchronous reset

clk In Clock input

gain(17:0) In Gain factor, X”10000” = 1

offset(15:0) In Offset factor, 0 is offset of 0

ce In Enable

din(15:0) In Input data

data_vld Out Data is valid when true

dout(obw-1:0) Out Output data

Table 267. ii_offgain Component Ports

Innovative Integration Inc. 162

Cardsharp Framework Logic Manual

ii_packetizer_top

Source file: ii_packertizer_top.vhd, ii_packertizer_regs.vhd, ii_packertizer.vhd

Description:

The packetizer component places data streams into Velocia packets by attaching a header to a bundle of data. The primary
use of these packets is to transfer data to the host using the Velocia packet system. Each data packet has a four double word
header, 32-bits each, preceding the data. The packets are programmable in size and for their other routing information.

The packetizer logic is comprised of 3 components: ii_packetizer; the component that constructs Velocia packets from data
received from various sources. ii_packetizer_regs; is a wishbone slave that provides access to registers that set the parameters
for the ii_ packetizer module, and finally ii_packetizer_top; which is a wrapper around the two components mentioned
earlier.

During operation, the packetizer scans the number of input channels in a round robin order and creates packets for the
channels that are ready. Each channel has its packets built with the header information for that channel and the data payload
attached to the header. The packet is transmitted as it is built to the destination; there is no data storage in the ii_packetizer
component.

Figure 31. ii_packetizer Block Diagram

Innovative Integration Inc. 163

Cardsharp Framework Logic Manual

The component reads data from num_pkt_ch (defined in k7-pkg) of data sources for a max of ch_pkt_size points and gives
out a packet with a header. If the amount of data available from a data source is less than the configured channel packet size
programmed in the ch_pkt_size register for that channel, a packet is constructed with only the available size of data. The data
width is 128; input and output are identical in size. The data sources provide data with valid after each src_rden(). Data
destination must sink data continuously when dest_wren is true. The status of the source and destination devices is required
by the src_data_cnt(), src_aempty(), src_empty(), and dest_rdy. No movement occurs if the destination does not have room.

Format of the packet is a four dword header, followed by a data payload. The header format is

bits[23:0] = packet size including header in dwords

bits[31:24] = peripheral device number

bits[63:32] = Auxiliary header (aux_hdr2)

bits[95:64] = Reserved (all zeros)

bits[127:96] = Reserved (all zeros)

dword = 32 bit word

Figure 32. ii_packetizer Component

Innovative Integration Inc. 164

Cardsharp Framework Logic Manual

Generic Default Function

offset Packetizer wishbone slave address offset

Table 268. ii_packetizer_top Generic Ports

Port Direction Function

wb_rst_i In WB synchronous active high reset

wb_clk_i In WB clock

wb_adr_i In WB address in

wb_dat_i In WB data in

wb_we_i In WB write enable

wb_stb_i In WB strobe from master

wb_ack_o Out WB acknowledge out

wb_dat_o Out WB data out

srst In Synchronous reset

sys_clk In System clock

src_data_cnt(num_pkt_ch-1:0)(21:0) In Source channel FIFO word count

src_aempty(num_pkt_ch-1:0) In Source channel FIFO almost empty

src_empty(num_pkt_ch-1:0) In Source channel FIFO empty

src_rden(num_pkt_ch-1:0) Out Source channel FIFO read enables

src_data_vld(num_pkt_ch-1:0) In Source channel data is valid

data_in(num_pkt_ch-1:0)(127:0) In Source channel data in array

dest_rdy In Destination is ready

dest_wren Out Destination write enable

data_out(127:0) Out Packetized data output bus

Table 269. ii_packetizer_top Component Ports

Innovative Integration Inc. 165

Cardsharp Framework Logic Manual

ii_regs_master

Source file: ii_regs_master.vhd

Description:

This component is a bridge between the PCIE register control interface and the application logic connected to Wishbone
system bus. The wishbone master side is connected to all the slaves in the design. Crossing clock domains from/to PCIe
clock to/from Wishbone clock is handled in this component.

Connecting to the Wishbone System Bus

When a new module with a Wishbone slave component in it is added to an K7 design, an offset address is assigned to that
slave. When a Wishbone slave detects a transaction on the Wishbone system bus with an address offset matching its address
offset, the Wishbone slave recognizes that the transaction is intended for it and it responds to it accordingly. It is the
responsibility of the Wishbone slaves to signal the master when each transfer is complete. Transfers are limited to 16 cycles
maximum. If longer cycles are required, then wait states should not be used. An alternate method such as a two-step write
process should be considered if longer access times are required than 64 clocks. If the slave does not respond within 64
cycles then the master will terminate the access and return null data.

By having a Wishbone slave component in each module that needs to be configured or monitored by the software, that
module can be decoupled from the overall system design for both code changes and physical layout requirements, leading to
simplifying the design.

Application logic can connect to the Wishbone interface by decoding the Wishbone controls signals, use the read and write
strobes or use the arrays of registers for IO. The array of registers for control and status are 32-bit each. If a register is not
suitable, then read/write strobes are memory decodes for the slave memory region. Full access to the bus signals are also
provided for logic devices that require multiple memory addresses or unusual decoding requirements.

Innovative Integration Inc. 166

Cardsharp Framework Logic Manual

Port Direction Function

rst In Active high reset on pcie_clk domain

pcie_clk In PCIe clock

ctrl_addr In PCIe control address

ctrl_din In PCIe control data in

ctrl_rd In PCIe control read strobe

ctrl_wr In PCIe control write strobe

ctrl_vld Out PCIe control data out valid

ctrl_dout Out PCIe control data out

wb_rst_i In Active high reset on system clock domain

wb_clk_i In system clock

wb_adr_o Out WB address out (to slaves)

wb_dat_o Out WB data out (to slaves)

wb_we_o Out WB write enable (to slaves)

wb_stb_o Out WB strobe (to slaves)

wb_cyc_o Out WB cycle=strobe (to slaves)

wb_ack_i In WB acknowledge in (from slaves)

wb_dat_i In WB data in (from slaves)

Table 270. ii_regs_master Component Ports

Innovative Integration Inc. 167

Cardsharp Framework Logic Manual

ii_stacker

Source file: ii_stacker.vhd

Description:

This component generates an obw-bit word output by stacking up n ibw-bit word input data points, where n = obw/ibn (ratio).
This ratio must be an integer number.

The first input word goes to the low location of the output word and subsequent words go to the higher locations. ie. little
endian. An output valid is generated after receiving every n input points.

Generic Default Function

ibw Input bit width

obw Output bit width

Table 271. ii_stacker Generic Ports

Port Direction Function

srst In Synchronous active high reset

clk In Clock

din_rdy In Input data is ready.

din(ibw-1:0) In Data bus input

dout_vld Out Data out is valid

dout(obw-1:0) Out Data bus output

Table 272. ii_stacker Component Ports

Innovative Integration Inc. 168

Cardsharp Framework Logic Manual

ii_timestamp

Source Files: ii_timestamp.vhd

Description:

The ii_timestamp component is a simple 32-bit counter used in conjunction with ii_alert to record the time of each alert.

The clock to the timestamp is usually either the sample clock or a reference clock so that the timestamp reports either the
sample number or actual system time. This allows the system to parse the data stream and correlate alerts to the data
samples. The CE (clock enable) input is used to gate the clock so that the counter increments only when CE and
TIMESTAMP_RUN are true.

The output TIMESTAMP_TIMER is on CLK domain. When the counter rolls over from X”FFFFFFFF” to X”00000000”,
the TIMESTAMP_ROLLOVER output is true. TIMESTAMP_ROLLOVER is true for one CLK period and is also on the
CLK domain. In K7 products, the TIMESTAMP_ROLLOVER is connected to an alert so that the software receives
notification of the rollover. For a 100 MHz clock, this rollover occurs every 42.9 seconds.

Figure 33. ii_timestamp Component

Port Direction Function

clk In clock

ce In Clock enable

timestamp_run In Time stamp run enable. The time stamp is reset to 0 when false.

timestamp_timer[31:0] Out Time stamp output.

timestamp_rollover Out The timestamp counter rolled over. Used for software extending the counter.

Table 273. ii_timestamp Component Ports

Innovative Integration Inc. 169

Cardsharp Framework Logic Manual

ii_trigger

Source file: ii_trigger.vhd

Description:

This component provides a trigger for data capture. Two trigger modes are supported : unframed and framed. In unframed
mode, the trigger output is true whenever the selected trigger source is true. In framed mode, the trigger output is true after a
rising edge on the selected trigger source until the frame count number of sample clocks are counted. A point is counted on
each rising edge of the sample clock input. The trigger mode is selected with trig_mode input to be either framed or
unframed, software or external trigger, positive edge or level.

The trigger sources are either external or software. The external trigger must be enabled to be used, however, the software
trigger is always OR'd with the external trigger to allow it to be used anytime. In unframed mode, the mode can be positive
edge or level. In the positive edge mode, the source trigger posedge enables the output, ignoring any subsequent changes. In
Level mode, the output follows the source trigger.

Generic Default Function

SAMPLES_PER_CLK 1 Parallel samples per sample clock

Table 274. ii_trigger Generic Ports

Port Direction Function

reset In Asynchronous active high reset

clk In Clock

ce In Clock enable

ext_sync In External sync (trigger) input

sw_trig In Software trigger input

trig_mode In Select the trigger mode

bit 0: 1 = posedge, 0 = level

bit 1: 1 = framed, 0 = unframed

bit 2: 1 = external, 0 = SW trigger

frame_size In Number of points in a frame count

decimation_coeff In Number of gaps between output triggers

decimation_en Out Set when (decimation_coeff /= 0)

trigger Out Trigger

trigger_en Out Trigger window (frame) is enabled

Table 275. ii_trigger Component Ports

Innovative Integration Inc. 170

Cardsharp Framework Logic Manual

ii_trigger_pri

Source file: ii_trigger_pri.vhd

Description:

This component when connected to the ii_trigger component periodically generates a series of trigger pulses of
programmable width and delay. It only requires a single trigger (external or software) to start its operation in generating
frames of programmable length. Up to 32 triggers can be generated in a frame.

This component generates single clock cycle wide train of trigger pulses at repeated intervals defined by the (pri) input
parameter once a rising edge is detected on the (trig_in) input until a stop is requested by the software. A start of frame (sof)
signal is generated every (pri) number of clock cycles. Each output trigger pulse within a frame is generated after
(trig_cycle_del) number of clock cycles from (sof). For each trigger pulse output, its corresponding width parameter is also
generated at the (dig_trig_width) port. This width parameter and trigger pulse are connected to ii_trigger's (frame_size) and
(ext_sync) ports to generate trigger outputs of the desired width.

Since multiple and variable number of output triggers are needed per frame, their corresponding parameters (trig_cycle_del
and trig_width) are loaded by the software and stored in a circular fifo. After a point is read from this fifo and used to
generate a trigger pulse, the same point is written back into the fifo to be used during the next frame.

Innovative Integration Inc. 171

Cardsharp Framework Logic Manual

Port Direction Function

srst In Synchronous active high reset

clk In Clock

en_pri_trig In enable pri trigger mode

trig_in In external sync or sw trigger input

stop_pri In stop PRI triggering

pri_busy Out PRI trigger is running

pri In PRI (pulse repetition interval)

trig_fifo_rst In reset the pri trigger parameters' fifo

trig_fifo_wr In write to the pri trigger parameters' fifo

trig_cycle_del In delay between the trigger and sof

trig_width In trigger width

dig_trig_pls Out trigger pulse

dig_trig_idx Out trigger index

dig_trig_width Out trigger width

pri_idx Out pri index

pri_sof Out pri start-of-frame

Table 276. ii_trigger_pri Component Ports

Innovative Integration Inc. 172

Cardsharp Framework Logic Manual

ii_unsign_sat

Source file: ii_unsign_sat.vhd

Description:

This component saturates an unsigned input to obw bits. Saturation is done combinatorially, by comparing the MSBs of the
input.

Generic Default Function

ibw input bit width

obw output bit width

Table 277. ii_unsign_sat Generic Ports

Port Direction Function

i In data in

o Out saturated data out

Table 278. ii_unsign_sat Component Ports

Innovative Integration Inc. 173

Cardsharp Framework Logic Manual

ii_vita_deframer

Source Files: ii_vita_deframer.vhd

Description:

This component reads data from a source FIFO in “drip” and “bleed” modes when a destination logic is ready and can accept
data, it strips off the VITA-49 packet header and trailer, and produces the payload data with a valid per byte on its output.

For details on the VITA-49 packet header and trailer, please refer to the subpacketizer section.

Port Direction Function

srst In Synchronous active high reset

sys_clk In System clock

src_aempty In Source FIFO almost empty

src_empty In Source FIFO empty

src_rden Out Source FIFO read enables

src_vld In Source FIFO data is valid

src_din[127:0] In Source FIFO data

pkt_hdr_vld Out Packet header is valid on dst_out

pkt_pyld_size[13:0] Out Packet payload size in 128-bit words

pkt_idx[3:0] Out Packet index

pkt_tsi[1:0] Out Timestamp integer-seconds type

pkt_tsf[1:0] Out Timestamp fractional-seconds type

pkt_stream_id[31:0] Out Packet stream ID

pkt_ts_int_secs[31:0] Out Integer seconds in header

pkt_ts_frc_secs[63:0] Out Fractional time in header

dst_rdy In Destination is ready

dst_frame Out Destination write enable. (data frame)

dst_byte_vld[15:0] Out Destination per byte data valid

dst_dout[127:0] Out Destination data out

Table 279. ii_vita_deframer Component Ports

Innovative Integration Inc. 174

Cardsharp Framework Logic Manual

ii_vita_framer

Source Files: ii_vita_framer.vhd

Description:

This module generates a VITA-49 compliant packet. It stacks the source data to 128-bit wide and writes it to the source
FIFO, then reads data back from the source FIFO once a frame worth of points are available and generates the VITA-49
packets that are written to a destination FIFO.

For details on the VITA-49 packet header and trailer, please refer to the subpacketizer section.

Generic Default Function

ibw 8 Input data bit width (8, 16, 32, 64, 128)

Table 280. ii_vita_framer Generic Ports

Innovative Integration Inc. 175

Cardsharp Framework Logic Manual

Port Direction Function

srst In Synchronous active high reset

sys_clk In System clock

fs_clk In Sample clock

frame_size In Frame size in words Word size specified by ge

stream_id In Unique stream identification (ie. PDN)

packet_type In VITA-49 packet type (4 bits)

ts_int_secs In Timestamp integer-seconds

ts_frc_secs In Timestamp fractional-seconds

tsi In Timestamp integer-seconds type

tsf In Timestamp fractional-seconds type

din_frame In frame data enable (on fs_clk)

din_vld In input data is valid

din In input data

src_fifo_afull In source FIFO is almost full

src_fifo_wren Out Write enable to source FIFO (stacked)

src_fifo_din Out Write data to source FIFO (stacked)

src_fifo_empty In Source FIFO empty flag

src_fifo_rden Out Read enable to source FIFO

src_fifo_vld In Data valid from source FIFO

src_fifo_dout In Data from source FIFO

dst_fifo_empty Out Destination FIFO empty flag

dst_fifo_aempty Out Destination FIFO almost empty flag

dst_fifo_rden In Destination FIFO read enable

dst_fifo_vld Out Destination FIFO valid data output

dst_fifo_dout Out Destination FIFO data output

Table 281. ii_vita_framer Component Ports

Innovative Integration Inc. 176

Cardsharp Framework Logic Manual

ii_vita_mover

Source Files: ii_vita_mover.vhd

Description:

This component routes VITA-49 format data packets, from one of num_src_ch source FIFOs into as many destination FIFOs
as specified in the packet header. This component is used by the VITA router to serve one of the input channels at a time.

Generic Default Function

num_src_ch 4 Number of source channels

log2_num_src_ch 2 log2(num_src_ch)

num_dst_ch 3 Number of destination channels

Table 282. ii_vita_mover Generic Ports

Port Direction Function

srst In Synchronous active high reset

sys_clk In System clock

en_strb In Enable data mover strobe

src_ch_sel(log2_num_src_ch-1:0) In Source channel select

src_ch_hdr(127:0) In Source channel header

mvr_busy Out Mover is busy

dst_wip(num_dst_ch-1:0) Out Destination write in progress

src_rd_done(num_src_ch-1:0) Out Source channel read is done

src_aempty(num_src_ch-1:0) In Source channel FIFO almost empty

src_empty(num_src_ch-1:0) In Source channel FIFO empty

src_rden(num_src_ch-1:0) Out Source channel FIFO read enables

src_vld(num_src_ch-1:0) In Source channel FIFO data is valid

src_data(128*num_src_ch-1:0) In Source channel FIFO data

dst_rdy(num_dst_ch-1:0) In Destination FIFO ready

dst_wren Out Destination FIFO write

dst_data(127:0) Out Destination FIFO data

Table 283. ii_vita_mover Component Ports

Innovative Integration Inc. 177

Cardsharp Framework Logic Manual

ii_vita_router

Source Files: ii_vita_router.vhd

Description:

This component routes VITA-49 format data packets, from num_src_ch source FIFOs into up to num_dst_ch local distributed
FIFOs as specified in the packet header. If more than one destination is selected in the packet header, then the packet is
moved only when both destinations are available and ready for data. This mode is known as “multi-cast” packet.

Generic Default Function

num_src_ch 4 Number of source channels

num_dst_ch 3 Number of destination channels

Table 284. ii_vita_router Generic Ports

Port Direction Function

srst In Synchronous active high reset

sys_clk In System clock

src_aempty(num_src_ch-1:0) In Source channel FIFO almost empty

src_empty(num_src_ch-1:0) In Source channel FIFO empty

src_rden(num_src_ch-1:0) Out Source channel FIFO read enables

src_vld(num_src_ch-1:0) In Source channel FIFO data is valid

src_data(128*num_src_ch-1:0) In Source channel FIFO data

dst_rdy(num_dst_ch-1:0) In Destination channel ready

dst_wren(num_dst_ch-1:0) Out Destination channel write

dst_data(128*num_dst_ch-1:0) Out Destination channel data

Table 285. ii_vita_router Component Ports

Innovative Integration Inc. 178

Cardsharp Framework Logic Manual

ii_vita_ts

Source Files: ii_vita_ts.vhd

Description:

This module generates a VITA-49 compliant timestamp upon request. It sets the initial timestamp value by software, which
then can be enabled through the 'arm' input, or by the PPS pulse input.

The integer-seconds timestamp counts in the system clock domain at 200MHz by keeping track of time as close as possible,
or by the PPS pulse coming from a GPS input.

When the integer-seconds timestamp increments, it generates a pulseto the fractional-seconds counter (running on fs clock) to
reset it.

Generic Default Function

G_SIM True in simulation mode

Table 286. ii_vita_ts Generic Ports

Port Direction Function

srst In Synchronous active high reset

sys_clk In System clock

fs_clk In Sample clock

ts_initial In Initial timestamp integer-seconds value

ts_load In Load initial value

ts_arm In Start timestamp counter

pps_pls In PPS pulse input from ie. GPS (on sys_clk)

pps_mode In PPS mode enabled or internal seconds

tsf In TSF mode

ts_int_secs Out Timestamp integer-seconds value

ts_int_secs Out Timestamp fractional-seconds value

Table 287. ii_vita_ts Component Ports

Innovative Integration Inc. 179

Cardsharp Framework Logic Manual

ii_vita_velo_pad

Source Files: ii_vita_velo_pad.vhd

Description:

This component aligns VITA-49 format data packets into a Velocia packet, making sure an integer number of VITA packets
fit in the requested Velocia packet size. If this is not possible, an extra VITA packet will be generated as a filler to complete
the requested size. The component reads data from one data source. The data width is 128; input and output are identical in
size. The data sources provide data with valid after each src_rden(). The input data is briefly stored in a 512 deep dual-quad-
word FIFOwaiting to be drained by packetizer.

Port Direction Function

srst In Synchronous active high reset

sys_clk In System clock

ch_pkt_size[23:0] In Requested Velocia packet size in number of words.

force_pkt_size In Force Velocia size to be ch_pkt_size number of words.

bypass Out Bypass padding.

src_wrd_cnt[21:0] In Source channel word count

src_aempty In Source channel FIFO almost empty

src_empty In Source channel FIFO empty

src_rden Out Source channel FIFO read enable

src_vld In Source channel FIFO data is valid

src_data[127:0] In Source channel FIFO data

dst_wrd_cnt[21:0] Out Destination channel word count

dst_aempty Out Destination channel FIFO almost empty

dst_empty Out Destination channel FIFO empty

dst_rden In Destination channel FIFO read enable

dst_vld Out Destination channel FIFO data is valid

dst_data[127:0] Out Destination channel FIFO data

Table 288. ii_vita_velo_pad Component Ports

Innovative Integration Inc. 180

Cardsharp Framework Logic Manual

ii_vita2dma

Source file: ii_vita2dma.vhd

Description:

This component reads a VITA-49 stream from a source and converts it into a AXI4-Stream, optionally stripping its VITA
headers & trailer. The StreamId field in the header is used to produce the AXI TDEST output used to route the stream to the
proper DMA channel. Additionally, this field is used to decide whether to remove the VITA information.

Port Direction Function

srst In Synchronous active high reset

sys_clk In System clock

src_aempty In Source channel FIFO almost empty

src_empty In Source channel FIFO empty

src_rden Out Source channel FIFO read enable

src_vld In Source channel FIFO data is valid

src_din[127:0] In Source channel FIFO data

m_axis_tvalid Out AXI-Stream TVALID

m_axis_tready In AXI-Stream TREADY input

m_axis_tdest Out AXI-Stream TDEST carrying channel information

m_axis_tdata Out AXI-Stream TDATA

m_axis_tstrb Out AXI-Stream TSTRB

m_axis_tlast Out AXI-Stream TLAST

Table 289. ii_vita2dma Component Ports

Innovative Integration Inc. 181

Cardsharp Framework Logic Manual

ii_xdom_pulse

Source Files: ii_xdom_pulse.vhd

Description:

The ii_xdom_pulse component makes a pulse from one clock domain to another clock domain. The input pulse must be one
SRC_CLK wide and the output pulse will be one DST_CLK wide.

Upon detecting an input pulse, a latch is toggled to convert it into a level change on the source clock doamin. The latched
signal is then re-sampled on the destination clock domain and a pulse is generated whenever a level change is detected on the
destination clock domain.

Figure 34. ii_xdom_pulse Component

Port Direction Function

src_clk In Source clock

pls_i In Input pulse on source clock domain

dest_clk Out Destination clock

pls_o Out Output pulse on destination clock domain

Table 290. ii_xdom_pulse Component Ports

Innovative Integration Inc. 182

	Table of Contents
	Introduction 8
	Getting Started 9
	Logic Development Process 15
	Cardsharp Top Level 35
	Cardsharp PL Memory Map 47
	FMC Memory Map 62
	K7 Logic Library 74

	Introduction
	Real Time Solutions!
	Scope of this User Guide

	Getting Started
	Prerequisite Experience and Required Tools
	Installing the FrameWork Logic
	Logic Directories and Files Organization
	Logic Component Naming Conventions
	Organization of this Manual
	Where to Get Help

	FMC Memory Map
	Logic Development Process
	Developing Using VHDL
	Using Vivado
	Using the FrameWork Library
	Simulation
	Logic Development using MATLAB Simulink
	Making the Logic
	Loading Logic
	Debugging

	FMC Memory Map
	Cardsharp Top Level
	Overview
	Block Diagram
	Logic Hierarchy
	Simulation

	FMC Memory Map
	Cardsharp PL Memory Map
	Peripheral Registers (WB Device 0)
	Packetizer Registers (WB Device 3)
	P16 DIO Registers
	P15 Aurora 0 Registers (WB Device 18)
	P15 Aurora 1 Registers (WB Device 19)
	Application logic Interface registers (WB Device 21)
	FMC Memory Map
	FMC status and configuration Registers (WB Device 12)
	FMC DIO Registers
	FMC Aurora 0 Registers (WB Device 16)
	FMC Aurora 1 Registers (WB Device 17)
	Revision History
	FMC Memory Map
	FMC DIO Registers
	FMC AFE
	FMC2 AFE
	K7 Logic Library
	ii_4ch_fifo_drainer
	ii_ad9516_spi
	ii_alert_gen
	ii_alerts_top
	ii_alerts_axis
	ii_bin2gray
	ii_cdce18005_spi
	ii_cdce72010_spi
	ii_circ_buffer
	ii_crm
	ii_decimate_x2
	ii_deframer
	ii_destacker
	ii_dio_top
	ii_drainer_destacker
	ii_ext_sync_iddr
	ii_ext_sync_s1p4
	ii_fifo_drainer
	ii_flash_intf_top
	ii_gray2bin
	ii_offgain
	ii_packetizer_top
	ii_regs_master
	ii_stacker
	ii_timestamp
	ii_trigger
	ii_trigger_pri
	ii_unsign_sat
	ii_vita_deframer
	ii_vita_framer
	ii_vita_mover
	ii_vita_router
	ii_vita_ts
	ii_vita_velo_pad
	ii_vita2dma
	ii_xdom_pulse

