Innovative
Integration

1able of Contents

TREPOAUCTION. ...t e e e aaae s 8
Real TIMe SOTULIONS !coiiiiiiii ettt et ettt et et e st eeabee e et e e e enaees 8
Scope Of thiS USET GUIAEeeeviiiiiiiiiiiie ettt ettt ae et e st eebeeseaeesseesabeesseessseeeenes 8

GEIING SIAVICU. ...ttt e et e e et e e e et e e e e e staaaeeaeeeens 9
Prerequisite Experience and Required TOOIS.........ccooiiriiiiiiiniiiiiiiieccccceeeeeeeee e 9
Installing the FrameWOork LOZIC........ccuiiiiiiiiiiieiecceeee ettt et e e eaaaee s 10
Logic Directories and Files Organization............coeeveeierienienienienieeienie ettt 11
Logic Component Naming CONVENTIONS.ccueerrureerruieeriuieerieeenteeesseeesseeessseeessseesssseesssseesssssseeeess 13
Organization of thisS Manual...........c.cooiiiiiiiiii et ettt ettt et ee e e 14
WHETE t0 GOt HEIP...oe ittt et e et s e e st e e st e e e enbeeessseeesseeennsaaaeas 14

LOGIC DeVelOPMENTt PFOCESS............cc.ooeeeeeieeeciii e e e e eivae e e 15
Developing Using VHDL........c.oooiiiiiiiiieiieeieeitesite ettt ettt et e st vt e saesseesaaeesseessneensaessseenseeennes 16
USING VIVAAO. ...ttt ettt ettt et e et e e bt e s et e et e e sateenbeesateeabeesateenbeeeensneeeennee 17
Using the FrameWOork LiDIary.........cccoocuieriiiiiioriieiieieeieesee ettt et enaeesseeesseessnesnnees 19
STMULALION. ...ttt ettt et e a e et e e aee et e e bt e eabeeaseeeabteeeantaeesnseeeenneeans 20
Logic Development using MATLAB STmMUulink..........ccccoooiiiiiiiiiiiiiieeieeeece e 22
MaAKING the LOGIC.eiiiieiiieie ettt et e st e et e et e et e e st e e e bt e e enteeeenees 23
L0AAING LLOZIC...c.tiieiiieiieeiieiie ettt ettt et e e et e et e e bt e ssaeesbeessbeesseessseesseessseensaenssseesnsseesnnseeeennses 25
DIEDUGZING. ...ttt ettt ettt e et e s bt e et e et e e sab e e bt e sabe e bt e eabe e bt e enbeeenbeeeenreeeennees 30

Cardsharp TOP LeVel.................ccccoeeuiiiiiiiiiii et 35
OVETVIBW ...ttt ettt ettt et e bt e et e e bt e ea bt e bt e e ab e e bt e ea bt e ebbeeabeeebeeeabeesabeenbeeabbeeeenbeeeennbeeeeneee 35
2] (0 Te) QDT T ¥ i 4 N OO PSR SPUPURTPRR 35
| oY (o E 1SS 1 o] 1 2SRRI 36
STMUIATION. ..ttt sttt et b et e a e st et e b e e bt et e e bt e e baeenbeeenaneennneens 44

Cardsharp PL Memory Map.............cc.coocuueeaeiiieeeeiie e eanaaaae s 47
Peripheral Registers (WB DEVICE 0).....cccuiiiiiiiiiiiiieiieiie ettt sttt et e e e 48

Packetizer Registers (WB DEVICE 3)....ciiiuiiiiiiiiiiiiecie ettt sttt e e e ssraeeaeeas 54

P16 DIO REEISTEIS. ..ccuuieiuiieiieiiiieiieeiieetteete et e site et e stte et e seteebeesseeesbeesseesaseessseenseessseenseesnseenseasnseeennes 56

P15 Aurora 0 Registers (WB Device 18).....ccciiiiiiiiiiiieeiie ettt e siae e e e e sareae e e 57
P15 Aurora 1 Registers (WB Device 19)......cccuiiiiiiiiiiieiiieie ettt 58
Application logic Interface registers (WB Device 21)....cccuiiviiiiiiiieiiieeieeeeeeee et 61
FMC MEMOTY MAP.......ccccceeviiieeaiiiiiie ettt e e e 62
FMC status and configuration Registers (WB Device 12)......ccccooviieiiiiiiiiiiiiieiiecieeeeeee e 63
FIMC DIO REZISTETS....cueiieniiiiiieiieite ettt ettt ettt ettt ettt et sttt et s bt et et sbe e bt et e ebeenbeeanesaeens 67
FMC Aurora 0 Registers (WB DeViICe 16).......cccuiiiiiiiiiiiieiiieieeeie ettt eve e e e sevaee e 69
FMC Aurora 1 Registers (WB DeVICe 17)...c..eeiuiiiiiiiieiieiieeiieee ettt 71
REVISION HISTOTY....uiiiiiiiiiiieiiceie ettt ettt ettt ettt e st e esbeeetaeesbeessseensaessseesseessseensaessseesseenssaeennes 73
K7 LOGIC LIDFATY ... oottt e e et e e e asaeeeenenes 74
11 ACh IO AAINET.....ccuiiiiieiiece et ettt et e et e e b e e teeeabeesaeenssaeeennnes 75
Ve LIl T o) PSPPSR 77
V1 (S A (<) TP R PRSP 78
VY (S W S 70 o USSR 79
11 AIETES @XIS..uiiiuiieiieiieeitieeteeitee st et e et e et e et e esbeessteenseessseenbeesseeesseesseenseeseeesseensseenseenseeenseenseeenseeennes 82
T1 DINZ2EIAY .. tiiiiiieeeieeeeiee ettt e et e et e et e e e teeesaaeeessaeeeassee e sseeassaeansseeasssaeansseeanssaeassseeassseeanseeenssaeennseens 83
11 CACETB00S SPIuuiiiuiieiiieiieeiie ettt ettt et e st e et et e e abe e teeesbeesseessbeeseeenseenseessseansaessseanseesssesnseeennsses 84
11 CACET20T0 SPIuuriiiiiieiiiiieeiiie et e ettt e ettt e ettt eeteeesteeessbeeessbee e ssaeassseeasseeasssaesssseeansseessseaessseeeasseeaeeans 85
T CITC DUTTRT. ...ttt ettt ettt et e e et e e beeeabeesbeeesbeeseesnseeeennsaeeennses 86
LTI o1 5 3§ USRS 87
11 AECIMALE. X2...uiiiiiieiieeiiieiie ettt ettt ettt e et e e bt e sebeeseessbe e seesase e saeesseensseenseesseansseeeanssaeeansseesnsses 90
VI (S5 5 11 L) ST URRU USSRt 91
T A@SEACKET ...ttt ettt et e st e et e e st e e b e e s sbesab e e aeeenbeensaeenbeeseeenbeesaeenbeeaeeennres 93
LU IS (0T 703 o TSRS 95
11 drainer deSTACKET......ccuiiiiiiiii ettt ettt ettt et et e et e e aaeenbbee e naaeeeensseeennnes 96
VIO G % s o [| USRS URR 98
T EXE SYNC STPA ittt ettt e ettt e et e e bt e s abe et eeeabe e bt e eabeenseeenbe e bt e enbeeteeeennbeeeennees 99
VI RN O T |2 4 1<) USSR 100
N 4 T o T 0 U i 1) T PP PPRTRRPRRN 102
VIS -2 o) 4 PSSP 104
T 0T ZAIN. ..ttt ettt e et et e et e e bt e e b e e tee et e e beeenbeeennbeeeenbaaeeannaeeenns 105
11 PACKETIZET LD .eeecutiieeiiieeiie et et e et e ettt e ettt e et e e e teeesabeeesaseeessseeesseeessseesssseesnsseeannssseeaesennsssaeeens 107
T T@ES IMNASTET....eeutiieuteetieeteetie ettt etteeeteeteeesteeseeesseesseassseesseessseenseeasseenseesnseenseeasseenseesnseenseesssesnseennses 110
V] 2 1o] 1G] PRSP SRUUSRRUPR 112
T EIMIESTAINIP. .. eteeiteetie et eite ettt e et et e et e eteeeaaeesteeeabeesseeesseenseesssesasaensseenseensseensaenssesensseesensseeennsseens 113
VIR BT USRS 114
N g oS ol o) o DO OO PRSPPI 115
U0 01 Py s T | APPSR PPPRN 117
VA I (53 21 10 1<) O TP 118
VI L D 111 USRS PRR 119

1 VIEA INMOVET....eitieeiietieeiteetteeiteeteeeeteeteeesteeaeeesbeeseeeaseanseeeaseenseeanseensseensaensseanseensseensaensseanseenssennsens 121

T VIEA TOULET....eeuiietieeiieetie ettt et e ettt et e et et eette et e e e abeeaseeeateesseassseenseesaseenseassseenseesnseensseeeenssaeeannseeanns 122

VA - T RO OO PP PP PROTPROPP 123
T VIA VEIO PAG..iiiiiiiiiiiee ettt ettt ettt sttt 124
11 VIEAZAIMIA. .ttt a et h e et e bt et e e h e e e bt e bt e et e e bt e e abe e bt e e e earaee s 125
T XAOML PUISE....eeieiteeieteee ettt ettt st st e bt et esbe e bt sab e e sabeesabeesabeeean 126
List of Tables
Table 1. Supported Logic Development TOOIS.........cc.eieiiiieiiiieiiieeiieeee et e 9
Table 2. PrOJECE FlES.....eiiiiiiiieiieiie ettt ettt ettt et e st eebeeensbeeeennseeeennneees 11
Table 3. FrameWork Logic Directories SIIUCLUTIE.cccuieiiuiieeiiieiiieeeiieeeteeesieeeeireee e e e eavaeeeeeenees 13
Table 4. Logic Environment Pros and COmS............ccoccuiiiiiiiieniieeiieniie ettt ettt sieesevee e 15
Table 5. Vivado Report Files Generated During Synthesis and Implementation..............cccceuvveennnn. 24
Table 6. PS CONTIGUIATION.coiuiiiiieiieeie ettt ettt et saeeebeessaeenbeeeenabeeeennseeeennees 38
[lustration 1: MIO Peripheral I/O Pins........c.cooocuiiiiiiiiiiiie ettt etee e saeeesree e s e evaeeeeeennes 39
Table 7. Zynq PS Peripheral I[/O Configuration..............ccceeeieeiiienieeiiienieeieesie et 39
Table 8. Block Design INterfaces & POTTS......cccuuiirueririieieiieeiieeeiieeestteeetaeeeeeeestaeesseeessseeessseeensseeens 40
Table 9. Multiqueue VFIFO main interfaces..........cccuieuiiiiiiiiieniiieieeie ettt 42
Table 10. FMC mMain INtEITaCES.cc..ieiuiiiiieiieeiieiie ettt ettt et e et e e 43
Table 11. Simulation suite hierarchy............cccoeciiiiiiiiiiii e e 44
[lustration 2: Behavioral Simulation Window...........cccoiiiiiiiiiiiie e 46
Table 12. MEMOTY IMAD.....ccouiiiiieiieeie ettt ettt ettt et et e et e st e eabeestteenbe e seeenseenseesnseesseeesnsseeeennns 47
Table 14. System INfO REGISET.......cccuiiiiiiiiiiece e et e e e e e araaeeeeenees 49
Table 15. System ReSet REGISTET.......ccuiiiiiiiiieiieiiieie ettt ettt et eeibae e e 49
Table 16. System Sub Revision REGISLET........c.coiiiiiiiiiiiiiieeiie ettt 49
Table 17. System Sub ReviSion REGISTEr.......cc.uiiiiiiiiiiiiiiieiiieiieete et 49
Table 18. System DDR3 DRAM Control and Status...........ccccceeeriiieiiieeiieeeieeciee e eeiveee e 50
Table 19. OUt0OING PID MAD......ccooiiiiiiiiieiieeieeeeee ettt ettt ettt e e beeseaeentee e enabeeeennbeeeennes 50
Table 20. System PID Define REISIET........cccviiiiiieeiiiieiie et saaae e 50
Table 21. Alert Monitor Enables REeGISter........ccc.eeiiiiiiiiiiieiieeieeieeitete et 50
Table 22. Alert Monitor Defined ALCTES........coouiiiiiiiiiiiieiee e 50
Table 23. Alert Monitor CONMIOLS......cc.ceiiiiriieeiieiieeie ettt ettt ettt steeebeeseaeenteeeesabeeeennseeeennes 51
Table 24. SOTTWATE ALCTL........ooiiiiieie ettt ettt e bt et e saeesateenbeeeeas 51
Table 25. Alert Monitor CONMIOLS......cc.ceiiiiriieiieeiieeieeiee ettt ettt e et et eebeeseaeeebeeeenbeeeennseeeennes 51
Table 26. Alert Monitor CONIOLS.c.eiiiiiiiiiieeiiee ettt ettt e et e e e eeeaees 51
Table 27. QSFP port CONtrol/Status TEEISTET.ccuieieiiiiieriieeiieeie et esite et e eee et e st e bt e seaeeteesaaeesaeeenes 52
Table 28. QSFP POTt I2C T@GISLOT.....cccuiieiiieeeieeeeiee et ettt e e et e e ae e e s teeesaaeeesaaaeeeeesnsnaeaeeeennnns 52
Table 29. QSFP port CONtrol/Status TEEISTET.ccvieriieiiieriieeiieete ettt ereete e st e bt e saeeteesaeeesaeeenns 53
Table 30. QSFP POTt I2C T@EISLOT.....cccviieiiieeeiieeciee et ettt et e et e e aeeessbeeesaveeesaaeeeeeesnnnsaaeeeennnns 53
Table 31. SIO XO I2C @ISO . ccueeeieeiieeiieiie ettt ettt e sttt e st e et e ssbeeteesaaeenseessseenseesssesensseeeennns 53
Table 32. Velocia Packetizer Component REZISIETS.eevuiiiriiriiiieeiiieeieeeiee e eevee e svaeee e e 54
Table 33. Velocia Packetizer Data Channel Enable Register...........cccceeviiviiiiiiiniieiiieeiieeeieeeee 54
Table 34. Velocia Packetizer Auxiliary Header Re@ISter..........ccoovviviiiieiiieeiieeieecee e 54
Table 35. Velocia Packetizer Alert Header Re@ISter........c.coviiiiiiiiiiiiieieeieeeeeee e 54
Table 36. INCOMING PID MAP.....ccuiiiiiiiiieceecee ettt et e et e et e e sabe e e abee e e e e nnnnaeeaeens 55
Table 37. Velocia Packetizer Data Header REGISTET..........ccveeiieiiiiiiiiiieeieeiece e 55
Table 38. Force Velocia Packet Size Per Channel RegISter..........ccvvivviiieiiieeiieeieeeee e 55
Table 39. PaCKEtIZET TIMET.......coouiiiiiiiiiieierieet ettt sttt sttt et st e st e e 55

Table 40. P16 DIO T@EISTET......cccuviiiuiieeiieeeiie e cieeeeite et e e steeesteeesteeessaeestaeeessaaesssaeessseeessseeesssseeeaeans 56

Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table &9.

P15 Aurora Port 1 Component REZIStErS..........eouieiiiirieiiieiienieeiie et 57
P15 Aurora 0 Test Control REGISTET........ccvuiieriiiieiiieeciee ettt sree e esaaeeee e 57
P15 Aurora 0 Control/Status ReZISter........ccvieriiiiiieiieeiieiieeie et 58
P15 Aurora 0 Sub-channel Write REgISter.........c.covviieiiiiiiiiiecie et 58
P15 Aurora 0 Sub-channel Read RegiSter..........ccoeouiiiiiiiiiiiiiiiieieeeee e 58
P15 Aurora Port 1 Component REGIStETS.........cccuviieiiiiieiieeiiie ettt evae e 59
P15 Aurora 1 Test Control REGISLEr.......ccuiiiiiiiieiieiieiieeeie ettt 59
P15 Aurora 1 Control/Status REGIStET........ccuuieeiiieriieeiieeee ettt 59
P15 Aurora 1 Sub-channel Write RegISter........cc.ceviiriiieiiiiiieieeieeeeceeeee e 60
P15 Aurora 1 Sub-channel Read RegISter.........cccveveeiiiiiiiiiiiieciecce e 60
Application 10giC INtErface TEGISTETS.ieiuieriieriieiiieiie ettt ettt e e e eeaeeeenes 61
APPIICAtION TUN REGISTOT....cccuiiiiiiiieiiieeiiie ettt ettt e e st e e s reeesnaeeeeeenens 61
FIMC MEMOTY MaAP....eiiiiiiieiiie ettt ettt ettt e st e st e st e e st eesataeenaneee s 62
FMC status and configuration T@EISTETS.eevvureerveeerieeeiieeeireeeieeeereeesreeeeereeennreeeneeeeeens 63
FIMC CONETOL T@EISTT ... eeeuiieiiieiieiie ettt ettt ettt ettt et e et eebee et eeeaseeeenbeeeennees 64
FIMC I2C IEEITACE. c...ee ettt ettt ettt et e nbaee e 65
FIMC ID ettt ettt ettt ettt e s e e st e et e eabeeeanee 65
FMC BIDIR ClOCK REZISLET.....cccuviieiiieiiiieeiieeciie ettt estee et eesite e esiveeeiveeessaaeseennsnaeees 65
FMC ClockO M2C REEISOT....c..eieiiieiieiiieiie ettt ettt ettt siae e e e eebeeeenes 65
FMC CIoCK] M2C REZISLET.......ccciiieiiiieiiie ettt ettt ettt e e et eseae e e ennnsaeeaeeas 66
FMC CloCK2 M2C REEISLOT ...c.uiieiiiiiiieiieiie ettt ettt ettt e e eeeebeaeenes 66
FMC ClIOCK3 M2C REZISLET......ccciiieiiiieiiie ettt ettt ettt e et eetaeesnaeeeennnaneaaeens 66
FMC CloCK2 €2 REEISLOT....c.ueieiiieiiieiieiie ettt ettt ettt e e eeeebeaeenes 66
FMC ClIOCK3 €21M REEISLET......ccciiieiiiieciiie ettt et e et e snae e e e nnaaeeeeeas 66
|\ (O DY D) (@ 5 (<4] 1<) SRR 67
|V (O 5 VAN D) (O I (o] 1<) PSP PR 68
FIMC HB DIO T@ISTOT....ccutieiieeiieeiieeiie ettt ettt et et eteeetteenbeeseeesabeesseesnbeennseeesnseeeennne 68
FMC Aurora Port 0 Component REZISTETS.......ccueeeruiieriieeiiieeiieeieeeiieeeeesveeeeeeeniaveeee s 69
FMC Aurora 0 Test Control REGISter.........ccueeiuiiiiiiiiieeiieiieeie et 69
FMC Aurora 0 Control/Status REZISTET........cccveeriiieeriieeeiie et esiee e e e e e seaaeeee s 70
FMC Aurora 0 Sub-channel Write RegISter.........ccoeriiiiiiiiiiiiiiiieeiiecie e 70
FMC Aurora 0 Sub-channel Read RegISter.........cccviiiriiiiiiiiiiieciee e 70
FMC Aurora Port 1 Component REZIStETS..........cocviiiiiriiieriieiieiieeieeee et 71
FMC Aurora 1 Test Control REGISter..........oevcuiiiiiiiiiiiieciie et 71
FMC Aurora 1 Control/Status REZISET........ccouieiiiiiiiiieiieeieee et 72
FMC Aurora 1 Sub-channel Write ReZISIET.........cccuvieriiiieiiieeiie e 72
FMC Aurora 1 Sub-channel Read RegiSter..........ccoouieiiiiiiiiiiiiiciieeeeee e 72
REVISION HISTOTY .. .eeiiiiiiiiieciie ettt ettt e et e e eeesbeeesaaeseennnnnaeees 73
ii_4ch_fifo drainer Component POTtS...........ccoeviiiiiiiiiiiiieiieciiee et 76
11._ad9516 spi ComPONENt POTES.........eeeuiiiiiiiieiieeeiie ettt e e s 77
11_alert gen GeneriC POTtS..........ccciiiiiiiiiiiieeieee ettt e 78
11_alert gen Component POTES.........ccocuiiiiiiiiiiieeiee e e e e e eaaae e 78
11_alerts Packet FOTMAL..........c.oooiiiiiiiiiiiiiee ettt 80
11_alerts top GENETIC POTS.......ccouiiiiiiieiie e e e e e e aaaaeeees 81
1i_alerts top Component POTtS..........ccccuiiiuiiiiiiiieiie ettt 81
Alrts data STIUCLUTE.eeiiiiiiietiee ettt sttt e e s abeee e 82
1i_alerts_axis CompPONENt POITS.........cccuiiiiiiiiiiiiiieiieiece et e 82
11 bIN2Zray GENETIC POTTS.....cciiiiiiiieiiie ettt e e s e e e beeesnnnaeeeeens 83
11_bin2gray Component POTTS..........ccuiiiiiiiiiiiiieiieeteeeeee ettt 83

Table 90. ii_cdcel8005 spi Component POTtS...........cccuiiiiiiiiiiiiienieeiieie et 84
Table 91. 11_cdce72010 spi Component POTtS..........ccueeeiiieiiiiieiiieeieeeiee et ee e 85
Table 92. ii_circ_buffer Generic POTtS...........cciiiiiiiiiiiicieie e 86
Table 93. 11 circ_buffer Component POTtS..........c.coooiiiiiiiiiiiieeiiceee e 86
Table 94. ii_clock ReSet SEqUENCING........ccveriiiiiiiieiiieeie ettt ettt et see et eesaaeebeaeenes 87
Table 95. 11 M GENETIC POTES.....ccccuiiieiiiieiie ettt et e e et e e st e e e baeessseeeessseaaeeeas 88
Table 96. ii_crm ComPONENt POTTS........coiiiiiiiiiiieiieeie ettt ettt e s eseeeereaeenes 89
Table 97. 11_Crm GENETIC POTTS.....ccccuiiieiiiiciie ettt et e e st e e saaeessbeeesssneeeaeens 90
Table 98. ii_decimate X2 ComPONENt POTES.........c.cooiiiiiiriiiiiieiieeit ettt et 90
Table 99. 11_deframer CompONent POTtS..........c.oiiiiiiiiiiiiiie ettt aee s 92
Table 103. ii_dio_top Component POTS..........cccuiiiiiiiiiiiieiieeieeieeee ettt 95
Table 104. ii_drainer destacker Component POTtS...........ccceeviieeiiiiiiiieeiieeeeeeee e 97
Table 105. ii_ext_sync_iddr Component POITS..........ccoeriiiiiiiiiiiiiieieeieeee e 98
Table 106. ii_ext sync_s1p4 Component POTLS.........cceeeiuiieriieiniiieeiiee et e e ee e e 99
Table 107. ii_fifo drainer Component POrtS............ccoooiiiiiiiiiiiiieieeieee e 101
Table 108. ii_flash_intf top GENETiC POTtS........coovviiiiiiiiiie et e 102
Table 109. ii_flash_intf top Component POTtS............ccueeiiieriiiiiiiiieiiee et 103
Table 110. 1i_bin2gray GeneriC POTTS........c.ceivuiieiiieeiiie ettt et e s ee e e e e eeeaeeas 104
Table 111. ii_gray2bin Component POTtS..........cceiiiieiiiiiiiiiieeiieie e 104
Table 112. 11 offgain Generic POTTS........cc.viviiiieiiecieece ettt sree e 106
Table 113. ii_offgain Component POTLS..........c.eeiiiiiieriiiiiieieeie et 106
Table 114. 1i_packetizer top Generic POTtS.........ccciiviiiiiiiiiiiiie ettt 109
Table 115. ii_packetizer top Component POTtS...........ccoeviieiiiiiiiiiiienie e 109
Table 116. 1i_regs master Component POTtS..........ccueiveiiiiiiiiiiiieeie e e reee e 111
Table 117. 1i_stacker GENeric POTTS........cc.uiiiiiiiiiiiiieieeie et 112
Table 119. 1i_timestamp CompPONENt POTES..........cciiiiiiiiieiieeieeeie et eee e e 113
Table 120. 1i_trigger GeNeriC POTtS........c.ooiiiiiiiiiiieiieie ettt ettt e ea 114
Table 122. 1i_trigger pri Component POTtS.........cccuiieiiiiiiiieiiieciee et 116
Table 123. ii_unsign_sat GENeriC POItS..........cccuiviiiiiiiiiiiiiiieiiee et 117
Table 125. 11_vita_deframer Component POTtS..........cccueieiiiiiiiiiiiiiceiie e e 118
Table 126. ii_vita framer GENericC POTtS...........cocuiiiiiiiiiiiiicieece et 119
Table 127. 11_vita_framer Component POTES...........cccvuiieiiieiiiieiiie et eeeeee e 120
Table 128. ii_vita mover GeneriC POItS..........cccuiiiiiiiiiiieiiiciiee e 121
Table 129. 11_vita_ mover Component POTtS...........cceiiiiiiiiiiieiiieciee e 121
Table 130. ii_vita router GENeriC POTtS........c.ccoiiiiiiiiiiiiiieiiecie ettt 122
Table 131. 11_vita_router COmMpPONENt POTES.........cccoviieiiiiiiieeieeee e e e 122
Table 132. 11_vita ts GENEIIC POTtS......cccuiiiiiiiiiiiiciieie et e e e s 123
Table 133. 11_vita ts COmMPONENt POTTS.......ccccuiiiiiiieiiieeieeee et e e e e seraneee e 123
Table 134. 1i_vita velo pad Component POTtS...........cccueiviiiiiiiiiiinieiiiee et 124
Table 135. 11_vita2dma Component POTES.........c..ceecuieiiiiieiiiie et e e e e seaneeee s 125
Table 136. ii_xdom_pulse Component POTtS............ccueiiieiiiiiiiiiieiie e 126

List of Figures

FIgure 1. TCL Shell...c..ooiiiiiiie ettt sttt ettt ettt sttt et e e st enaree e 10
Figure 2. Cardsharp FrameWork Logic Directory Structure...........ccveevveeeeieeeiieeeieeeiieeeiee e 12
Figure 3. High-level Synthesis Design FIOW.......c.cocoiiiiiiiiiiiniiieeceeeeeeeee e 16
Figure 4. Logic Architecture Showing Hardware and Application Layers..........ccccceevevveeeeenciieeeennns 17
Figure 5. Generating the vivado PrOJECL.......cceiiiiiiiriiiiiiiieriieieet ettt 18
Figure 6. EXample VIVAO PIOJECT.....uiiiiiiieiiiieiiie ettt ettt e tee et e s e e eaveeesaeeesaeesnnnaaaee s 19
Figure 7. Behavioral Simulation Window EXample.........ccccoocieiiriiniiiiniiniieeeeseeeeeeene 21
Figure 8. MATLAB Simulink Development.............cccviiiiiiiiiiieiieecieeee e 23
Figure 9. Vivado Design ENVITONMENT.........ccuiitiiiiiriiniiiieniieieeie sttt sttt s 23

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.

Getting Started with Hardware Manager.............ccccveeviiieiiieciiieeie e 26

Hardware Manager on the Welcome SCIEEN...........cccvievuieiiieriiieiieiieeie et 27
Hardware device Chain..........cocioiiiiiiiiiie e e 27
Selecting the Configuration IMage..........c.coovieiiiiiieiiieieeieee et 28
Programming Devices USING JTAG........cooviiieiiieiiiie ettt e 28
Logic Loader Download Applet eXample.........cceeevieiieiiieniienieeiieeie et 30
Typical Debug BIock Diagram............cccueieiiieiiiiieiiie et e e e 31
Debugging With VIVAAO.......ccuiiiiiiiiiiiciiecie ettt 32
Xilinx Parallel IV Cable for Debug and Development.............cccccvveviiiieiiiiniiieeiieee e 33
Xilinx Target Debug Cable..........cocuiiiiiiiiiieciieee ettt 33
Xilinx Parallel Cable IV Pinout on IDC 5x2 2MM Header............ccooceeviiiniiiiiinienieeee 33
ii_4ch fifo drainer COMPONENL.........c.ceciiiiiiieriieiieeie ettt ettt 75
11 AleTt COMPONENL....citiieiiiieiiieeiieeeiteeeiteeeeteeeebeeesteeesaeeesseeesaeesnsaeesssaeessseeenssaeansseensns 80
11 CTMN COMPONENL.....iiuiiiiiiieiiieeiteeiteeteesiteeteeeteeteesaeeebeesaaeesseessseeseessseeeenseeesnseeesnnseeaans 88
11_deframer COMPONENLceiuvieeriiieeiieeeiieeeteeeereeeereeesreeesabeeesaseessaeessaeeeesnssrseeessensssees 91
11 destacker COMPONENL.........ccuieiiieiiieiieiieeieeete et ete ettt e te e aae e bt e seaeebeesaaeenseessneenseas 93
1i_drainer destacker COMPONENL...........ccccuiiiriuieeriiieeeiieeeieeerteeeireeesaeesete e e e e aareeeeeenenes 96
Using 11_drainer deStaCKET..........ccuuiiiiiiieiiieiieeieeie ettt e et e e e eennees 97
11_fifo drainer COMPONENL........cceiuiieeiiieeiieeeiieeetee et e et e et e e e raeesaeeessbeeesaseeesssaeesseenas 100
USINg 11_fifO draiNeT.......c.coeiuiiiiiiiiieie et et 101
11_0ffZain COMPONENLcceviiiiiiiiciii ettt e e e e e e ste e e steeessaeae e e e nnsreeeeeannes 105
ii_packetizer BIoCk Diagrami............cccccuiiiiiiiiiiiieiie et 107
11_packetiZer COMPONENL...........eeeiuiieeiiieeiieeeieeeeieeeetee et eeesreeeateeessaeessaeeeesesnnsreeeeeennns 108
11 timeStamp COMPONENL......ccc.eeruiirieiriierieeitteeieerieesteeteesteenseessteesseessreenseesasseesssseesns 113
11 Xdom_pulse COMPONENL........c.eeeiiiiiiiiieiiieeciee et et eete e teesteeesaaeesree e e e eareeeeeannes 126

Cardsharp Framework Logic Manual

Introduction

Real Time Solutions!

Thank you for choosing Innovative Integration, we appreciate your business! Since 1988, Innovative Integration has grown
to become one of the world's leading suppliers of DSP and data acquisition solutions.

Our products offer a wide range of solutions for demanding signal processing and data acquisition applications that integrate
high performance DSPs, FPGAs and I0. To enhance your productivity, our hardware products are supported by
comprehensive software libraries and device drivers providing optimal performance and maximum portability.

Innovative Integration's products employ the latest digital signal processor technology thereby providing you the competitive
edge so critical in today's global markets. Using our powerful data acquisition and DSP products allows you to incorporate
leading-edge technology into your system without the risk normally associated with advanced product development. Your
efforts are channeled into the area you know best ... your application.

Scope of this User Guide

The Cardsharp Framework Logic Manual provides support to logic developers for the Cardsharp family products. The Guide
provides design information to assist developers in the addition of new functionality to the logic, from the creation of the
logic through to the implementation.

The Guide shows Cardsharp product logic firmware in detail and explains how to use this logic for your development. The
Guide shows the overall structure of each design, shows the standard registers and memory map, discusses the details of how
to modify the logic, and finally presents an overview of each component in a library section. Source code for most
components is delivered with your Cardsharp product along with a Xilinx Vivado® project and a simulation testbed. Control
files such as constraints are also documented and provided in the FrameWork Logic package.

While the development tools and methods are discussed in this manual, it does not intend to substitute for the tools
documentation from Xilinx. The discussion is limited to using these tools during the logic development process as it pertains
to the Cardsharp product family. Source code examples are also shown for illustration of use, but a knowledge of RTL
(VHDL) is presumed.

Hardware information is provided in another manual, the Cardsharp Hardware Guide. Consult this manual for documentation
such as pin assignments, connector information and performance data.

Innovative Integration Inc.

Cardsharp Framework Logic Manual

Getting Started

This manual is written to assist in the creation, implementation and testing of custom logic for Innovative Integration
products. The scope of this manual is limited to discussion of the logic development tools, example logic designs and logic
libraries provided in the FrameWork Logic toolset.

Additional documentation on each product is provided for hardware features and software in other manuals. These are used
in conjunction with this manual for product development and use.

Thank you for using our products. Your comments and input are appreciated so that we can improve our support and help
you to be successful on your project. Email us at techsprt@innovative-dsp.com with your input or give us a call.

Prerequisite Experience and Required Tools

The designer is expected to have experience in VHDL and FPGA design to use the FrameWork Logic tools and code. All
components in the FrameWork Logic are VHDL source code whenever provided and supported by VHDL models and test
code. As a standard, the code is written in VHDL 1993 version which is widely used and supported.

The design tools used are listed here. We make an effort to keep the logic supported under the newest versions, but in many
cases the logic must be reworked and retested to support the newest tool version. For each product, we have listed the

required tool set that was used to create the logic.

Here is the toolset we use for supporting the FrameWork Logic use and development.

Function Tool Vendor Tool Name

Synthesis, Implementation, Simulation Xilinx Vivado

Bit Image Creation Xilinx Vivado

Logic Debug and Testing Xilinx Vivado “Set up Debug” wizard
Logic JTAG Cable Xilinx USB

Table 1. Supported Logic Development Tools

The documentation for the development tools is provided by the tool vendor. They have on-line documentation and help
that can acquaint you with their use. This manual makes no attempt to replace them, but rather supplement them with
specifics on using them with FrameWork Logic application development.

While it is not expected that you are expert in these tools, these tools are used for FrameWork Logic development and are
discussed in this manual. If you are using other tools, they should have similar capabilities.

Innovative Integration Inc.

Cardsharp Framework Logic Manual

Installing the FrameWork Logic

The Framework Logic is delivered as an compressed archive ZIP file (product name.zip). A TCL script (make vivado.tcl) is
provided to build a Vivado IDE project and set the project options. To get started, follow these steps.

1.

Unzip the logic archive into a folder. You will find the archive in the hardware directory of the product installation,
by default C:\Innovative\<product name>\Hardware\Framework Logic\. For example, unzip to this folder:

/Innovative/<product name>

If a previous version of the project file exists, it must be deleted. Delete or rename old copies of the <product
name>.xpr project file. If you had an old project file from a previous installation, it would be in

/Innovative/<product name>/logic/rev_*/vivado
Open Vivado IDE.
Close the project if one is open.

The tcl console is at the bottom of the welcome screen.

INVADD™ oo £ XILINX

[«]
Quick Start [| Recent Projects
k7_shc_sw fmc250
/ . £ fprojectsiravi/Projects/k7/SEC_ SW FMC250...
«\ = i
Create New Project Open Project Open Example Project
Tasks
TCL Shell
Vi 3__’_]: = ‘:g]
Manage IP Open Hardware Manager Xilinx Tcl Store
Information Center 0
- T N
P liss 570 =
Tcl Console / S mE R

XP&=H

]

=
B
J 4 0
source make_vivado, tcl|

Figure 1. TCL Shell

6.

In the text box on the TCL console, type

Innovative Integration Inc.

10

Cardsharp Framework Logic Manual

cd <tcl script location> ie. /Innovative/<product name>/logic/rev */vivado
7. At the % prompt on the TCL screen, type

source make vivado.tcl

This generates a directory with the Vivado project ...vivado/<device>/<product name>.xpr

Wait about a minute while the Vivado project is created.

Tool File Name Directory

Vivado IDE <product_name>.xpr $project\vivado\<device>\
Table 2. Project Files

Logic Directories and Files Organization

The logic files for all Cardsharp products are organized by product with a library of components used by many designs. The
logic for each design provides support for simulating, creating and debugging. Design-specific source files in the source
directory include the top-level and other components. Constraints for the design are located in the xdc directory for the main
design, while individual components may have additional xdc files in their respective directories. The tools will combine all
xdc files to create an overall xdc that includes all the physical and timing constraints required for the product. Results of the
compilation are included in the vivado/<device> and syn directories showing the compilation and fitting results.

Innovative Integration Inc. 1"

Cardsharp Framework Logic Manual

— rev_a

<Logic lib —— common
release> fme
ip
tools
— <product> —— logic—
| <fmc —— logic —
product>

—rev_b...

—rev_a

Figure 2. Cardsharp FrameWork Logic Directory Structure

—rev_b...

rom
sim
src
syn
vivado
xdc

rom
sim
src
syn
vivado

Innovative Integration Inc.

12

Cardsharp Framework Logic Manual

Directory Files
J/product/logic/rev_*/vivado vivado project and build directory
Jproduct/logic/rev_*/xdc Vivado constraint files

Jfmc_product/logic/rev_*/xdc

Jproduct/logic/rev_*/rom The released logic image in BIT format

Jfmc_product/logic/rev_*/rom

/product/logic/rev_*/sim Logic simulation files. Including simulation models.

Jfmc_product/logic/rev_*/sim

Jproduct/logic/rev_*/src Logic source files and constraints (UCF)

Jfmc_product/logic/rev_*/src

/lib/common Source files for Cardsharp library components common to all products

Jlib/ip Logic components in netlist files for Cardsharp library components common to all products
Jib/fmc Source, netlist and constraint files for fmc modules

Jlib/tools Logic tools provided with this design. (This may be empty.)

Table 3. FrameWork Logic Directories Structure

Logic Component Naming Conventions

For all components provided by Innovative Integration, the standard naming convention is

ii <function name>

where <function_name> is a descriptor of the component.

For example,

i1i pcie intf

is the PCI Express interface component.

Innovative Integration Inc.

13

Cardsharp Framework Logic Manual

Organization of this Manual

This manual covers the main topics in using the FrameWork Logic for Innovative Integration products for HDL
development methods. The first few sections describe the HDL tools and development methods including synthesis,
placement and routing, and simulation. Finally, the generating the logic image and debugging are discussed.

Each product supported by the logic is discussed, showing the details of the example logic are shown. The hardware
interface components and application logic internals are shown.

Finally, the FrameWork Logic library components are shown with details about functionality, ports and use.

Where to Get Help

In addition to this manual, the example design for each product is provided with an HTML document that allows designers
to quickly navigate the design to understand the hierarchy, entities used, ports and source code.

For help on Innovative Integration hardware or software, there are separate help manuals and an on-line help system for the
software tools. These manuals are provided on the CDs delivered with the product or on the web at http://www.innovative-
dsp.com/support/productdocs.htm . At this site, you can download the product information, software and logic updates.
Help for other tools such as Xilinx is provided on-line with the tool. Xilinx also has an excellent Answers Database on the

web (http://www.xilinx.com/support/mysupport.htm) and many examples of techniques used in FPGA design. This is the
primary site for support on Xilinx- specific problems that can include tools problems and workarounds.

Technical support from Innovative Integration is available at

Web Site www.innovative-dsp.com (product manuals, software updates, firmware and discussion forums)

Email us at techsprt@innovative-dsp.com

Phone : ++1 805-578-4260 Monday through Friday, 8 AM to 5 PM Pacific Standard Time

Innovative Integration Inc. 14

http://www.innovative-dsp.com/
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com
mailto:techsprt@innovative-dsp.com

Cardsharp Framework Logic Manual

Logic Development Process

The FrameWork Logic system supports two logic development methods: VHDL, MATLAB Simulink, or a combination.
Each system offers benefits and have strengths that in some cases complement each other.

VHDL development is very flexible, allowing the developer the full freedom of a high level language that is expressive and
extensible. The FrameWork Logic system provides VHDL components for hardware interfaces that allow the designer to
quickly integrate custom VHDL code into the application logic. Other library components are offered that provide some
common functions used in signal processing and control. Libraries from Xilinx and third parties are also used to provide
broad support for signal processing, analytical and communications applications.

Development Pro Con
Tool
VHDL Expressive, extensible language. Gives complete | Design and debug of DSP algorithms is
flexibility to the designer. more difficult and time consuming.
MATLAB Allows design of complex DSP algorithms at a Less capable of handling low-level details.
Simulink high level. Great visualization and analysis tools | Less visibility and control of logic design
for design and debug. process.
VHDL + Best of both tools gives optimum flexibility Multiple tools must be used resulting in a
MATLAB where needed and high level design for complex | more complex development process.
DSP algorithms.

Table 4. Logic Environment Pros and Cons

MATLAB Simulink offers a high-level block diagram approach to logic design that allows the designer to work at a higher,
more abstract level. Signal processing algorithms can be quickly developed and simulated in MATLAB then directly ported
to the logic hardware. Inside of the FrameWork Logic tools, the designer can concentrate on the algorithms because the
system has a hardware interface layer that integrates the hardware with MATLAB cleanly and efficiently. Application
development is dramatically sped up for complex signal processing algorithms because of the powerful capabilities within
MATLAB for algorithm design, visualization and analysis.

Many applications find that a mix of VHDL and MATLAB offer the best of both worlds: high level signal processing
development and the full flexibility of a high level language. It is common that unique data handling, triggering and
interface functions may be better expressed in VHDL, but nothing beats the power of MATLAB for things like filter design,
down-conversion and mathematical analysis of data. The designer can mix VHDL components, or MATLAB-generated
components with one another in either environment and reap the benefits of each system.

Innovative Integration Inc. 15

Cardsharp Framework Logic Manual

Developing Using VHDL

Application logic development with the FrameWork Logic in VHDL follows the typical development cycle: code creation,
simulation, physical implementation and test. This flow is summarized in the following diagram showing the Vivado tools
for design, synthesis, implementation and simulation tool.

High-Level DSP Design IP Integration
C:Baumes nghesis » (System »| (Embedded, Logic, |«—- Custor 1P
Y Generator) DSP...) | ¢
T L == |
o ““whkn}
S = N
s :
TR IP Packaging
y y \
Sources - IP Catalog
el Metiss, » RTL System-Level Integration
Constraints
Third-Party IP
L 4
Synthesis

Design Analysis
Constraints

‘ Simulation
Implementation Debugging
Cross Probing
Programming ECO

and Debug

X12973

Figure 3. High-level Synthesis Design Flow

The application development begins with the FrameWork Logic code for the product you are using. In many cases, the
example application code provides a good starting point for your application logic. In most cases the application logic
shows a basic data flow between the IO devices, such as A/D and D/A converters, to the logic and DSP or system. You can
then build on top of the example logic by inserting your algorithms into the data flow along with unique triggering and other
application-specific logic.

The FrameWork Logic provides a library of components for the hardware interfaces as well as others functions, an example
application showing IO interfacing and data flow, design constraints, a simulation testbench, and a Vivado project. This
gives you the basic foundation to begin work. After you install the FrameWork Logic on your system, you should be able to
recreate the logic and verify its operation. Once that is complete, you are ready to begin development.

At this point, you should have a look at the example logic and determine the best place to insert your logic and how you can
best use the example in your development. If you can preserve many of the basic memory mappings, controls and system

Innovative Integration Inc. 16

Cardsharp Framework Logic Manual

interfaces, you will then be able to use the example application software delivered with the product. That saves time for
both you and the software developers.

In most cases, you will see that the logic is organized as a hardware interface layer composed of components that directly
interface to the hardware and an application layer that is composed of the analysis, data handling and triggering functions.
The application layer is on a single clock domain so that it is easy to integrate functions into the design.

Hardware | | Application | |Hardware
Interface Logic Interface

Figure 4. Logic Architecture Showing Hardware and Application Layers

Code for your application layer design can be created in a number of ways: written in VHDL or Verilog, created in
MATLAB, or included as a black box netlist from a third party such as Xilinx or others. If you design your logic to run on a
single clock it is then easier to integrate into the application layer of the FrameWork Logic. The other clocks in the design,
such as the A/D sample clocks, or hardware-specific clocks are handled in the hardware interface layer. The use of a single
clock in the application layer allows designers to use timing and physical constraints associated with the hardware interface
components.

Using Vivado

Xilinx Vivado IDE is recommended for the logic development. Vivado provides code editing, core generation, synthesizing
and fitting tools integrating all of the tools for the project. An example project is shown here.

The existing project should be used as a starting point. This project has all the options set and file structure required to
recreate the design. The Vivado project is created by running a tcl script located in the ./logic/rev_*/vivado directory. When
you open Vivado, in the tcl command window, use the command source to run the make vivado.tcl file as shown in the
image below. Before running the script, make sure that the DEV, SPEED and LANES properties are set correctly. The DEV
and SPEED properties should match the FPGA on the baseboard. The LANES property is for the number of lanes of pcie you
want integrated in your design. You have a choice of “x4” or “x8” for a 4 lane or 8 lane pcie core respectively. If you need to
use the aurora interface, set the ADD AURORA FMC, ADD AURORA 0 or ADD AURORA 1 to “TRUE”

1

Note: if the value of a property you're modifying is in quotations or has a '-', do maintain the same format when you change

the value to avoid errors when generating the project.

Innovative Integration Inc. 17

Cardsharp Framework Logic Manual

VIVADO™ o £ XILINX

ALL PROGRAMMABLE.

v

Quick Start —| Recent Projects
k7_she_sw frnc250

/‘ Vi - fprojectsfravifProjects/K7/SBC_SW FMC250...

Create New Project Open Project Open Example Project
Tasks
VEN;

g @

Manage IP Open Hardware Manager Xilinx Tel Store

Information Center

. Tel Console AimE
== | [
—

e
L

i
&l
2

x

0

Kl I

source make_vivado.tcl|

Figure 5. Generating the vivado project

The generated project is saved under a folder that is named after the device and pcie lanes. For example, if you're creating a
vivado project for a 045 part of speed grade 2 with 8 lane pcie core, the vivado project is saved under a folder with the name
045-2_x8. Click on Open Project and navigate to the *.xpr file in the created folder.

Innovative Integration Inc.

Cardsharp Framework Logic Manual

cardsharp - [/projects/pcarr/K7/Cardsharp/logic/rev_a/vivado/045-2 _x8/cardsharp.xpr] - Vivado 2015.4.2

File Edit Flow Tools Window Layout View Help [|

2Bl X ® Db U® X E GEmimw X &R ®

Project Manager - cardsharp x |
Sources —Oe = Z Project Summary X 0w =
| o = pag & | (3 ol -
gl A= @J J =1 Project Settings Edit % =
& | = Design Sources (19) =3
H ¢~ cardsharp_top - arch Project name: cardsharp
§ o= inst_crm - ii_erm - arch Project location: fprojectsfpoarrK7Cardsharp/logicirev_afivado/045-2_x8
k=l ' ps_sys_i - ps_sys_wrapper - STRUCTURE Product farnily: Zyng-7000
b 'wh_master - ii_regs_master_cs - arch p t nart: K6 72045/ q900-2
i sys_ctrl -ii_regs_periph - arch roject part: ¥c7204511g900-2
ifmc - ii_fmc_intf_top - arch Top motdule narme: cardsharp_top
o~ Inst_vita2dma - ii_vita2dma - arch Target language: WHOL
Inst_ma_pb - ii_mq_pb Sirmulator language: Mixed
ah fmc_loopback - ii_fifo_drainer - arch guage: =
| 'inst_mem_alert_gen - i_alert_gen -arch Synthesis 2 || Implementation H
o~ inst_alerts - ii_alerts_axis - arch =
ku Sidhinst - 2=kl |""”‘ (vl Status: Mot started Status: Mot started
Hierarchy IP Sources Libraries Compile Order Messages: Mo errors or wamings Messages: Mo errors or warnings
& Sources ¢ Templates Part: He72045ffgo00-2 Part: He72045ffgo00-2
= = Strategy: Vivado Synthesis Defaults Strategy: vivado Implementation Defaults
Source File Properties — 0O F X
Incrermental cornpile: Mone
h ps_sys wrapper.vhd
DRC Violations 2 | Timing 2
Locatian: .’prolectsfpcarer?fCardsharpfloglcfrev_aB
o . ! . L
Type: VHOL Bun Implementation Bun Implementation
= — [-]
[| [l Utilization 2 | Power 2
General Properties [+ I
Design Runs i m E
Mame | Constraints | Status | wns | TMs | wHs | THS | TPwS | Failed Routes | LUT | FF | BRaM
| G- synth_1 constrs_1 Mot started
23| Lepimpl_l constrs_1 Not started
n
=
[D
& Tel Consele © Messages ElLog 2 Reports 3> Design Runs

Figure 6. Example Vivado project
Note: The project options have been set to use the directory structure for the FrameWork logic design. It is important to use

these options when compiling the project so that the cores and source code can be found. It is also required to preserve
hierarchy on the design to use the constraints provided.

Using the FrameWork Library

The components in the FrameWork Logic library are divided into common components used in many designs and more
complex IP cores that are usually hardware-specific. All common components provide source code while IP cores are
provided in netlist form.

Innovative Integration Inc. 19

Cardsharp Framework Logic Manual

The hardware-specific components are used in the designs for A/Ds, DACs, memories and the like that have unique
interface protocols and timings. Constraints in the specific design for IO standards and specific timing requirements are
usually required for use. The constraints for the hardware-specific components are found in the application example that
includes that component.

All components have unique names such as ii_sdf adc. The naming convention prevents inadvertent naming collisions with
your design if you do not use a ii_ prefix on your components. The hardware name is included in the name showing which
design uses this component.

In the installation, you will find that hardware-specific components in the directory for that specific design. The common
components are in the lib directory. To use the components, you can point at the library Vivado when they are used.

Also, you may need to include packages supporting the components in your design. For example, ii_pcie intf component
requires k7 pkg to be included. This is done by including these statements in the component and by compiling the package
in your design.

library work;

use work.ii k7_pkg.ALL;

Directory structure for FMC modules

This section will describe the file structure for fmc modules. The firmware directory of an fmc module has 3 sub-directories. The
lib, baseboard and the fimc module. As a user, you will be working in the third sub-directory if you are adding custom logic. The
1ib and baseboard source files should not be modified. The lib/fmc folder has the source and constraint files of each of the fimc
modules in their respective folder. The baseboard source and constraint files are in the Cardsharp folder.

When working in the fmc module directory, the rev of the baseboard and the fmc hardware will decide which rev folder you will
be working in. rev_a directory is to be used when both the baseboard and fmc are revision 'a’, both hardwares being revision 'b'
means you will be working in the rev_b directory. In case of the rev_ab and rev_ba, the first letter of the rev is for the baseboard
and the second is for the fmc. The vivado directory inside the appropriate rev folder can be used to generate the bit file.

Simulation

Simulation is an important part of the logic development process. Unless the design change is very simple, you should
simulate the design. In the end, you will save time and frustration especially when larger devices are used.

The FrameWork Logic includes a test bench and models required for most simulations. These models are functionally
equivalent to the component. In many cases the models are simple representations of the device that give a data pattern
that is easy to follow through the simulations. More complex waveforms can always be substituted later for proving out the
signal processing or data analysis portions of the design. In each design, the list of files shows the applicable test bench
name and available models.

Innovative Integration Inc. 20

Cardsharp Framework Logic Manual

The testbench contains a set of simulation steps that exercise various functions on the FrameWork logic for basic interface
testing. Behavioral procedures have been written to simulate the host timing for the Processing System (PS) and PCI
Express that are useful in simulating data movement. Other features such as DDR interface, alert log and triggering are
demonstrated in the testbench.

As delivered, the FrameWork Logic example provides a basic example in the use of the hardware interface components,
data flow through the design, and some simple triggering control. It is anticipated that you can use this example test bench
as a starting point for your application logic simulation. Your logic can be added to the simulation in many cases without
modifying the test bench since the application logic does not change the external pins on the design.

Simulation can be started from within the Vivado environment, from the menu option Flow — Run Simulation — Run
Behavioral Simulation.

File Edit Flow Tools Window Layout View Run Help [0 Search commands]
3 P > %|@® K| T G Eoefault layout -] Kk b [s -Juz 1l @@ Ready
Behavioral Simulation Functional - sim_1 -test X

B untitled 1* x o x

B

Flow Navigater

frontend_

ckend_

Tcl Console — O x
= i1 - Received AXI-S on . channel 4607299, length O 12

1 - Received AXI-S on . channel 4607299, length O 6
1 - Received AXI-S on 2, channel 4607299, length O 18
1 - Received AXI-S on r, channel 4607299, length © 6
1
1

1]

- - Received AXI-S on . channel 4607299, length O 16

H
H
H
i
0 1us ‘
@'I [I |

B Td Console > Messages Gl Log

Sim Time: 3 us

Figure 7. Behavioral Simulation Window Example

Once you are inside the Simulation environment, you should be able to use the tools to run simulations of the design. The
wave window is many times the main focus since it gives a logic analyzer view of the design.

You can quickly view the design because you can probe the logic down to the lowest level. This visibility is often lost after
synthesis and fitting because logic is minimized by the tools and may be trimmed out if unused, even if by accident. When
you select an design unit within Simulation Scopes & Objects windows, the processes, signals and variable for that design
unit are shown. You can add them to the window by selecting them and right-clicking to add to the wave window.

Innovative Integration Inc. 21

Cardsharp Framework Logic Manual

Logic Development using MATLAB Simulink

These tools are described in the Cardsharp MATLAB BSP manual for each product. Refer to that manual for details on logic
development using MATLAB Simulink and Xilinx System Generator. The following description is just to orient you to what
that tools are and how they may be useful in developing applications.

MATLAB Simulink provides a powerful method of developing logic using a high level design tool that integrates hardware
into the MATLAB Simulink environment. Complex signal processing designs can be developed rapidly using the Simulink
block diagrams interacting with the actual hardware in real time. Gateways between MATLAB Simulink and the hardware
allow data to flow between the actual hardware and MATLAB, bringing the power of MATLAB to the logic development
process.

Simulink blocks diagrams are directly translated into logic using the Xilinx System Generator tool. For each supported
product, a hardware interface layer of Simulink components is provided that allows the hardware to be used in the the
Simulink design. Simulink components from the various libraries provided by Mathworks, Xilinx and Innovative interface
with this hardware interface layer for building the application logic on the product. The Xilinx place and route tools are
used for the logic build as in any HDL project.

(din | dout
read en: vali

System Blooks
din|———»{dout

readenable valid P vali dstready
frame in » frame out
ADC 1 Input ADC 1 Output

vali res
frame in » frame out
ADC 0 Input ADC 0 Output

din P dout

read enable valid P vali dst_rdy

DAC 0 Input DAC 0 Cufput

read enable walid » valid dst_rdy

frame in | frame out

DAC 1 Input DAC 1 Cutput

]

Innovative Integration Inc.

22

Cardsharp Framework Logic Manual

Figure 8. MATLAB Simulink Development

Here is a typical Simulink block diagram design. Notice the Xilinx icon in the upper left; this is the Xilinx System
Generator control block. This block provides the link to the Xilinx synthesis and implementation tools. The other blocks
are mixture of data interface components to the A/D and D/A converters, SRAM and wishbone interface if desired.

Making the Logic

The Xilinx tools are used for the physical logic creation. For HDL designs, these tools are accessed through the Vivado
environment in the processes window as shown here. The main steps are synthesis, implementation and bitstream

generation.
File Edit Flow Tools Window Layout WView Help
Pl N X | & b %8 X T S| 0efault Layout ~ |l &K |B
Flow Navigator « Project Manager - k7_sbc_sw fmc250
aQ e Sources
A= e =
4 Project Manager i = -

=

i k7_sbc_sw_fmc250 top - arch (k
o~ inst_crm - ii_crm - arch

@ Project Settings

=4 add Sources L3 L inst_pcie - i__pc\e_\ntf-ii
4F 1P catalog @l wb_master - ii_regs_master - arch
wh sys_ctrl - ii_regs_periph - arch (il r

i inst_flash_top - ii_flash_intf_top - arch (ii_fl

A dRintegranor il inst_loader_top - ii_flash_intf_top - arch

—oc % | L Project Summary X

Project Settings
Froject name:
Product family:
Froject part:

k7_shc_sw frnc250
Kintex-7
xe7k325tffgo00-1

Top module name: k7_sbc_sw_fmc250_top

- 5 7
#% create Block Design @ inst_mem _alert gen - il_alert_gen - arch (Synthesis % Implementation
\t_n‘lnstia\artsitop -ii_alerts_top - arch (il Status: = Mot started Statuis:
i inst_packetizer_top - ii_packetizer_top - arch (ii_
@ inst_deframer - ii_deframer - arch (ii deframer.. Messages: Mo errors or warnings Messages:
Sl 4] | Part: #e7k325tffgens-1 Part:
a
il et Hierarchy IP Sources Libraries Compile Order Strategy: Vivado Svnthesis Defaults Strateqy:
#5 simulation Settings L - = = o
’,' i Sources ¢ Templates Incremental Compile:
() Run simulation
Froperties B
4 RTL Analysis e ! DRC Violations % Timing
> &% Open Elaborated Design
4 Syrthesis DRC information is not available because it hasn't been run Timing information is
#5 Synthesis Settings
& Run Syrthesis utilization A Power
Utilization information is not available because it hasn't been run Power information is
4 |mplementation
@ Implementation Settings
[» Run Implernentation [« | [
B Design Runs P
.1 Name |_Constraints | wnS [TMS | WHS | THS | TPWS | FailedRoutes | LUT | FF | BRAM | DSP | St
4 Program and Debug = | @ synth_1 constrs_1
= | L impl_L1 constrs_1
#3 Bitstream Settings ‘[[_A_} L i
3 =
¥ Generate Bitstream 4
> @ Open Hardware Manager e
14
»
L |
o] DIE
B Tcl console © Messages [dlog 2 Reports 3 Design Runs

Figure 9. Vivado Design Environment

Innovative Integration Inc.

Cardsharp Framework Logic Manual

There are many options for the implementation step which are set in the individual project files for each FrameWork Logic
example.

Since most of the parts on the products are very large, we have chosen to preserve the hierarchy of the design during the
implementation so that area constraints and incremental design approach may be used. Area constraints allow the designer
to control the placement of logic on the FPGA part for best timing control. With area constraints, the logic will be
constrained to where you put it and in many cases helps the tool do a better job overall.

Synthesis and Implementation Reports

The reports generated during the synthesis and implementation steps are saved in synth 1 and impl_1 directories respectively
in the <project _name>.runs folder. In the synth 1 folder, the *.vds file is the synthesis report and the

<project name> utilization synth.rpt details the resource utilization in the fpga.

File extension Contents What to Look For
.VDS Vivado synthesis report There should be no errors. This program issues numerous
generated after the warnings but there should be no errors. Synthesis errors point to
synthesis step is issues in the RTL code
completed.
.VDI Vivado implementation There should be no errors, but warnings are usually OK.
report generated after the | Common problems range from incompatible logic mappings,
implementation step impossible area constraints, and clock connections.
<project name> top | The output of the Place Timing constraints should be met. Review the summary at the end
_timing_summary ro | and Route of this report to see if timing is OK since it will complete no
uted.rpt implementation process. | matter how bad it is. Also look for any incomplete routing.
Shows timing results and
fit results.

Table 5. Vivado Report Files Generated During Synthesis and Implementation

In many designs, you will have to resolve timing problems that are shown in the place and route process. Xilinx has several
tools to help find the problems; Timing Analyzer is usually the place to start. This tool helps you to understand the reason
the logic did not meet timing — too many connections, bad routing, etc. The tool suggests how to fix it. This is usually
helpful but may mean you are back to functional simulation again to add pipelining or change the logic and must re-
implement the design.

Once you achieve one good result, you may want to switch to incremental mode in the tool. This allows you to use the last
good result for most of the design that is unchanged when minor fixes are made. For big changes however, you will need to
reroute the whole chip.

Expect that the implementation process will be in the range of % to 2 hours depending on your computer, how easy it is to
meet constraints and how big the part is. A tightly packed, fast big part will take a while.

The final output of the implementation process is a .BIT file that represents the logic image. This file is loaded into the
FLASH using the EEPROM applet or the JTAG cable. When the JTAG cable is used, the Xilinx IMPACT program
uses .bit files.

Innovative Integration Inc. 24

Cardsharp Framework Logic Manual

Loading Logic

The Cardsharp module logic can be loaded from either FLASH ROM or through the FPGA JTAG port. The Logic Loader
applet is used to burn logic images into the FLASH ROM. JTAG is usually used during the development process because it
is quick, easy to to use and loading can be done from the ChipScope debug environment.

Cardsharp FLASH Images

Logic is loaded each power-up or from the FLASH ROM. As delivered, the Cardsharp module has two logic images in
FLASH: the application logic and the “golden image”. The application logic is where your logic is deployed. The golden
image is the backup that is used in case a bad image is burnt into the FLASH. If a bad image is put into FLASH by mistake
that makes the card malfunction, you can set a jumper on the card to force the logic to boot using the golden image (see
hardware manual). This allows you to boot the card and reburn the FLASH with a good image. The Logic Loader also allows
golden image to be rewritten.

Loading Logic Through JTAG

The FPGA can be loaded through its JTAG port using a Xilinx JTAG cable. This provides a convenient method of quickly
loading the logic during the development process but is not usually used in deployed applications.

Caveats
The logic loaded over the JTAG interface is volatile. If the card is powered down it must be reloaded.

The system must be restarted (not power-cycled) for Cardsharp logic to work after a JTAG download. Since the logic has the
PCI Express interface, it must go through the system enumeration process for the bus to work.

Innovative Integration Inc. 25

Cardsharp Framework Logic Manual

Fie Edt Fow Toos Window Layout View Help

ARweRhX| > RGXIGE 3 & 3V

write_bitstream Complete

Flow Navigator «| | Hardware Manager -unconnect=d

x|

o e @ o hardware target is open. QOpen recent target Open a new hardware target

I»

Hardware — O 1 X DebugProbes
e

4L Open New Hardware Target

4 Project Manager
153 Profect Settings
5% Add Sources

£F P Catalog Open Hardware Target

3

1P Integrator This wizard wil guide you through connecting to a hardware target.

7 Create Block Design To connect to a remote hardware target, provide the host name and 1P port of the
remot machine an which the instance of a Vivado Hardware Server s running.
¥ Open Block Design

8 Generate Block Design

.

Simulation
1 Simulation Settings
(I, Run Smulation

3

RITL Analysis
& g% Open Elaborated Design

4 Synthesis
3 Synthesis Settings
& Run Synthesis
& [Open Synthesized Design

Implementation V | V D O [}
1f3 Implementation Settings A .

[» Run Implementation To continue, dick Next.

.

b g% Open Implemented Design

| 4 Program and Debug J
1f5 Bitstream Settings

" open_project:

%) Generate Sitstream { open_hw
4 [Hardware Manager
4l L

P Open Target

= 93.262

@ Program Device P2 2iLeL 200, 2

cl Console | (= Messages | % Serial [/O Links | [5] Serial 1/0 Scans |

4 add configuration Mem(S| |

Figure 10. Getting Started with Hardware Manager

The Hardware Manager is used to load the logic into the application FPGA. The tool may be invoked from within the
Vivado project or from the welcome screen when you launch vivado as shown below.

Fle Fow Toos Windon Help

VIVADO! .. s

Quick Start Recent Projects
k7_sbe_sw_fme2s0

k7_sbe_finc110

Create NewProject OpenProject Open Example Project

Tasks

Manage 17 Open Hardware Mansger Xiinx Td Store
Information Center
Documentation and Tutorials Quick Take Videos Release Notes Guide

Project wave_gen_virtex?
C:iinVivado/2014.2JexamplesVivado TutorialProjects/pro.

& XILINX

ALL PROGRAMMABLE.

¥:Jravi Projects K7ISBC_SW_FMC250]ogic kev _a ivado/325t-

2 [Projects/K7/SBC_FMC110fogic/ey_a/ivado/325t-1_xB

|2 Tdconsoe

Innovative Integration Inc.

26

Cardsharp Framework Logic Manual

Figure 11. Hardware Manager on the welcome screen

When you enter the tool, if no target is open, you will be given an option to either open a recent target or open a new one. If
you open a new target, the open new hardware target window appears as shown in earlier figure. Click next and select local
server if the target is connected to the machine you are working on. On how to use remote server option, please refer to xilinx

documentation.

When you click next, you are shown the devices on the chain as shown in the figure below.

| Hardware Manager - uncome

@ Nohardware target s open. Open cosed target QOpen recent target Qpen anew hardware target

t+3
!

=*

|

|
\

_ O % DebugProbes

sl
—{ ¢ Open New Hardware Target -
Select Hardware Target

Select s hardware target from the It of availzble targets, then set the appropriste JTAG dock (TCK)
frequency. If you donot see o the frequency or g

Hardware Targets

Type Port Name ITAG Clock Frequency

[+ imo_tef| [Xiinx/00001637996d01 J600

(for speafy the
Name Deode Rlength
[xcBsx75L0 24026093 6
@ A3/ L 43651093 6

() length)

i

[open_w

X i &= @ b

|| vesEservers locahost:é0001
Hardware server: locahost: 3121

— o x

«
[T + 72 o5

[7d Console |

5 | Serial /0 Links | 3] Serial 10 Scans | N

Figure 12. Hardware device chain

If it does not work, check the cable connection to the board. The cable should be detected by Vivado; if not, check that the
port it is connected to on the PC is working and in the proper mode. If the chip is not detected, be sure you have the right
scan path, that the board is powered up normally, and that Vivado was able to connect to the scan path. Power everything
off and try again if it fails and you don't see any obvious problems. You can also check your setup and software on a good

card if you have one.

The next step is to assign a logic file to each device to be programmed. The FPGA image is a .BIT file, the CPLD is
a .JED file. Right click the device you need to progrm and use the option “Program Device” to assign the BIT file for
programming the FPGAdevice. Double-check that you are using the correct logic file — you could damage the chip if
it gets the wrong logic or render the card inoperable.

Innovative Integration Inc.

27

Cardsharp Framework Logic Manual

(@) There are no debug cores. Procram device Refresh device
Hardware. EE Debug Probes et

azs@

&= B
Name Status
& B locahost (1) Comnected
£+ e xinx_cfXink/00001637566401 (7) Open
{0) Not programmed

4L Program Device
Hardware Device Properties @ elect to your a
debug probes f o f

« 215 A
L TR Bisiregm fle: |gicfrev_a[vivado/325t-1_x3k7_sbe_sw_fmc250.runsfimpl_17_sbc_sn_fmc250_top.bit |[=]

Name: senast L DebugPrabes fe: &

Part serast

IDcoce: azes1093

Status: Programmed

5) =l

Properties | |

Td Console

2 | set_property PARRM.FREQUENCY 6000000 [get_hw_tergets */xiling tof/Kilinx/00001697996d01] B

| [open_hw target
INFO: [Labtools 27-147) vese server: ICF plugin commeeting to B server...
(/INFO: [Labteols 27-147] vese server: ICF Plugin connection established with hy_server.
| | currenc_hy_device [lindex [get_hw_devices] 1]
zefresh_hw_device -update_d_probes felse [Lindex [get_hw_devices] 1] L
| CINFO: [Tabtaols 27-1434] Device Xc7k325T (JTAG device index = 1) i3 programmed with a design that has no supported debug core(s) in it. i

«

Type 2 Tel c re

2 Tel Console | © Messages | % Serial /0 Links | (5] Serial /O Scans | ‘

Figure 13. Selecting the Configuration Image

Click on Program to begin the logic load process. This will only program the device you are selecting at that time. If it
succeeds, the status of the device in the hardware window will say “Programmed”.

Fle Edt Fow Tods Window Layout View Hep [Search command]

A2 D AR R XK G [Eckueor - [W EK|Q

X

(@ There are no debug cores, Proaram device Refresh device

e FHERE S
SEEr»E

Name Status

5§ locabhost (1) Connected
£ Ble xin_tfine00001637896d01 (2) Open

@ xcesh75t 0 0) Not programmed |
= et () Progarned — g

2 XADC (System Moritor)

Hardware Device Properties. AT WL Y
« » @5
W xcA3B_L
Narme: XcTk325t_t =
Part: xc7k325t =]
1D code: 43651093
Rlengt &
Status Programmed I
« I =
[General] Poperis |

Td Gansole Bt
[| set_propercy EROGRAM.FILE {Y:/ravi/Brojects/K7/SBC_SW_FMC250/l0gic/Tev_a/vivado/325t~1_x4/k7_sbc_sw_fmc250.runs/impl_1/k7_sbc_sw_fmcas0_top.bi
| ('program hw_devices [lindex [get_hw_devices] 1]

'~ INFO: [Labrools 27-2154] Reading 11443714 bytes from file ¥:/ravi/Projects/K7/SBC_SK_EMC250/logic/rev_a/vivado/325c-1_xd/K7_sbe_sw_fme250.runs
M| | mmrmic: (Labeocts 27-33] Done pin stacus: 108

]| ©program hw_devices: Time (3): cpu = 00:00:09 : elapsed = 00:00:41 . Memory (MBy: peak = 969.973 ; gain = 106.688
¢ refresh hw_device [lindex [gec_hw_devices] 1]
(/INEO: (Lebtools 27-1434] Device xc7k325t (JTAG device index = 1) is programmed with a design that has no supported debug core(s) in it.

Wl

X i
i

< i

Type a Tcl
3 T Console || Messages | % Serial /O Liks | (8] Serial 1/0 Scans |

command here

Figure 14. Programming Devices using JTAG

Note: For FPGAs that are on PCI or PCI Express interfaces, the system must be restarted to force the new logic to load. The
system enumeration process must assign address mappings and resources before the logic will operate. Whenever the PCI

Innovative Integration Inc.

Cardsharp Framework Logic Manual

information such as revision number changes, it is common for the system to recognize the new device and will want the
device driver reloaded. This is normal.

Logic Update Utility (Logic Loader.exe)

The Logic Loader applet is used for field-upgrades of the logic firmware on the Cardsharp module. The applet updates the
FLASH ROM, which stores the "personality”" of the board. The Logic Loader uses BIT format files that are created by the
logic tools (BITGEN).

This applet should only be used after firmware development and debugging has been completed. During the development
cycle, it is much more efficient to download and debug firmware using the Xilinx JTAG cable.

To use the applet, select the instance of the Cardsharp module to be updated. This will be target zero in single-card
installations. For multi-card systems, the target number can be found by using the FINDER program that will flash the LED
on a selected target number. It is important to get this target ID correct since burning the wrong image into a card could
cause it to stop working.

Then browse to select the logic bit file image containing the updated firmware image. Typically, this is located in the
Innovative\<product name>\Hardware\Images folder on your default drive.

Finally, click the Write button to program the firmware into the on-board FLASH ROM. Programming typically takes
about five minutes. After power-cycling the PC, the new firmware will take effect.

Innovative Integration Inc.

29

Cardsharp Framework Logic Manual

Logic Programmer,

Diriver
Board # RE
Logic Image
EiE:'\Innovative\XE-HX\Hardware'\lmages'\HEVA\HB_r:-:_rDuted.bit | lj
|pdate Logic
Write] [Werfy
Cpld Yerzion: 1

Log =

Leaving GOLDEN IMAGE Mode ?

Driver opened ok

Cpld Type: 0x0 Cpld Bew: 0Oxl Mode:0
MzEEW Tvype RBOM Detected

Prom Query: OxE510051 = [Ox005100E1]
Prom Dewld: OxzZz7ezz39

Protected Bit: 0Ox0

Tnlock Bypass Capable Bit: 0Oxl
Image file parsed ok

Firmware; 0x102, Hardware: Ox0, Id; Ox0
Idle

Figure 15. Logic Loader Download Applet example

The Logic Loader applet also shows the logic revisions, hardware revisions and other information. The logic revision
is reported from the logic itself, while the hardware revision and hardware variant are set by the hardware PCB and
PCle interface FPGA.

What To Do If FLASH Programming Fails

The Event Log window reports any failures during the programming. If anything goes wrong, DO NOT TURN
OFF THE COMPUTER. Parsing failures usually mean that the file was not EXO format. A load failure is more
serious in that the hardware failed somehow. Try to rerun the Logic Loader applet. If this doesn't work, then
turn off the computer and set the jumper to use the Golden Image. Restart the system and attempt to burn the
logic again. If this fails, then the card is faulty and must be repaired.

Debugging

It is inevitable that the logic will require some debugging and it is best to have a strategy for debug before you actually use
the hardware. Debugging on actual hardware is difficult because you have poor visibility into the FPGA internals.

Innovative Integration Inc. 30

Cardsharp Framework Logic Manual

For HDL designs, the best and easiest debug method is simulation for functional and timing problems. This gives the best
visibility and interactivity to debug problems before the real hardware is tested. A good set of test cases that stress the
design should be run prior to working on the real hardware. You will save time in the overall design process by doing a
thorough job in simulation.

There are several techniques that have worked for us on projects: Xilinx ChipScope, built-in test modes, and judicious use
of test points. Between these techniques and the capabilities of each method, it is usually possible to find and fix bugs that
are either functional design errors or timing problems.

MATLAB Simulink developers can use the “hardware in the loop” features of system to debug the design at a high level.
Simulink can be used to generate test data or for viewing and analyzing real hardware data. This is invaluable in debugging
complex signal processing designs.

Here we will discuss a few of these techniques.

Built-in Test Modes

Another good way to debug your design is to have built-in test modes in the logic. If you plan ahead for test, then you can
more quickly validate your design later and spot problems. When you finish the design, if the test generators and checkers
can be left in the design, they are there later as production debug or test.

In many designs, test pattern or data generators are invaluable since they provide known data into the FPGA so that the
output is known. If the data source is analog in the real design, substituting perfect data is nice because it helps spot
problems that may be hidden in the noise. The test pattern may be an easily recognized stream, like incrementing numbers,
that are easy to check in the logic or on the test equipment. Also, its easier to test the extreme cases of the design that may
be difficult to reproduce with real signals.

Output
Interface

v
Trigger
Test Generator Data Checker

3

ChipScope LA

AD Interface Fiz)

h 4

Figure 16. Typical Debug Block Diagram

Another built-in test method is to use data checkers in the logic sprinkled through the data chain help to spot the source of
problems. If you have a missing timing constraint or a clock domain issue, these can be hard to catch since they may be
rare. A data checker gives you a way to look for bad data and then trigger ChipScope or the logic analyzer. In many cases,
rare errors are impossible to catch without this sort of data checker. This technique has saved time because the trigger at the
bad data point allows you to inspect all the suspect signals and find the culprit.

Innovative Integration Inc. 31

Cardsharp Framework Logic Manual

ILA debug cores

Xilinx allows for logic debugging by inserting ILA debug cores generated using the “set up debug” wizard. This tool works
over the FPGA JTAG port using any of the standard Xilinx JTAG cables. Vivado connects to ILA core that you embed in
your logic. Refer to Xilinx documentation on how to insert the ILA debug cores.

Tearoal Davica Lindar Tas)

Lis=r ser
Funzban Function
Hasi Dom puter with
Vivado
E ‘\\-‘_.-'_F
Uszr
Funchion

) ., B
I
o
1
————

Board-Lnder-Test

Figure 17. Debugging with Vivado

The ILA core alows you to monitor internal FPGA signals using triggers and a sample clock. It is as though you can embed
a logic analyzer in the logic itself, hence the ILA core name (integrated logic analyzer). Other core supported is theVirtual
IO (VIO) core, which allows you to monitor and control some internal signals, and cores for working with the PowerPC
cores in some logic devices.

The ILA core is very configurable and it allows you to set the number of signals you can monitor, the trigger methods and
the signals used for triggers is set up when you generate the core. The core size is determined by the number of signals
monitored and the number of samples stored. If the core gets too big, it will affect your design and tends to muddle the
debug process. Sometimes it is better to have a small core that has a small footprint and does not interfere with the other
logic for this reason.

The clock is used as the sample clock for the logic so it should be synchronous to the inputs signals or sufficiently fast to
sample them accurately. If you sample signals on other clock domains, be aware that the clock used by the ILA core is used
for the sampling of the signals so the signals will not precisely represent the real signal running on another clock domain.

You will interact with the Vivado software over a JTAG cable to the target device. This link is limited to about 1-20 Mb/s
depending on the target device JTAG chain, so it is not really real-time, but rather just a means to get the data from the
FPGA to Vivado. The signals are captured in the FPGA block RAMSs so the record length is somewhat short being limited
in most cases to 256 to 1K points. In some experiments though we have made larger captures of up to 16K points in large
devices, useful for capturing a signal.

Because of these limitations in JTAG speed and capture size, it is important to devise triggering methods that allow you to
catch the error condition. It is common to devise a piece of error detection logic that serves as a trigger to ILA to best use
the capture RAM. It is possible to pre-trigger or post-trigger in the software which makes trigger design easier. You can also
selectively store data so that the memory is preserved just for useful data by using an option on the trigger panel in Vivado.

Innovative Integration Inc. 32

Cardsharp Framework Logic Manual

Here is one of the common cables used for debug, just for reference.

//Xmum;ﬁmiﬁ | @

iR
§ Ry

Top View

‘H—H’ Parallel CablelL | & Dleiatd_
g Model DLCT e s fox | | B¢
Power 5V=-02A -
il Skl UG- 12345 | |- e | s e
mdonusa CE | s | mms

Figure 18. Xilinx Parallel IV Cable for Debug and Development

Figure 19. Xilinx Target Debug Cable

Slave Serial JTAG

INIT NC 14 o o 13 GND
NC NC 12||= =||11 GND
DIN TDI 10| | = = |9 GND
DONE TDO 8|[s = |7 GND
CCLK TCK 6||= =[|5 GND
PROG TMS 4{ o = ||3 GND
Vref Vref 2! o 1 V'gTNLI'DAL

Figure 20. Xilinx Parallel Cable IV Pinout on IDC 5x2 2MM Header

CAUTION:

Innovative Integration Inc.

Cardsharp Framework Logic Manual

The user MUST make sure that Xilinx JTAG cable connector is plugged in the proper polarity to the Innovative
target connector. If by mistake, the user connects the Xilinx cable incorrectly, this may damage the target card and
Xilinx POD. See the hardware manual for each product to locate the connector and its pinout.

Innovative Integration Inc.

34

Cardsharp Framework Logic Manual

Cardsharp Top Level

Overview

Cardsharp is based on Xilinx Zyng-7000 System-on-a-Chip (SoC) architecture. It integrates a feature-rich dual-core ARM®
Cortex™ -A9 based processing system (PS) and 28 nm Xilinx programmable logic (PL) in a single device. This chapter will

detail the PL section structure and functionality.

Block Diagram

The following block diagram shows the two main sections on Cardsharp within the Zynq part. It includes the Processing
System (PS) and the Programmable Logic (PL), using the Block Design to interface them. The PS runs the embedded
software stack including 1/0 peripherals under software control, including Ethernet, USB, eMMC (flash storage), PS DDR3,
UART, etc. The PL holds the interfaces to FMC, PCI Express, PL DDR3 and PPS timing controls.

PS
ARM® CPU x2
I/0 #
Peripherals
DDR
§—P» Interconnect ~—————P=Controller
PL
IPI - Block Design
 / # PCle
-l FMC DMA
Interface MultiQueue Endpoint
<P \Virtual FIFO _
Playback Velocia |-

Innovative Integration Inc.

35

Cardsharp Framework Logic Manual

Logic Hierarchy

The PL logic is organized hierarchically as shown in the following diagram. The top level instantiates the main functional
blocks, namely the FMC interface, Multiqueue Virtual FIFO, PCle DMA, Block Design with Zynq subsystem, Register Files,
Alerts module, clock generators, Velocia Packetizer/Deframer modules, and miscellaneous interfacing modules. Also shown
is the main datapath structure moving data from/to the FMC interface to the Zynq for processing.

Block Design

The Block Design is a Xilinx IP Integrator instance and contains the Zynq PS sybsystem, two custom DMA engines, the AXI
to Wishbone bridge for register access and the necessary AXI Interconnects. Its main function is to adapt and interface the
streams from/to the FMC and PCI Express interfaces into a format appropriate for the PS to process. The DMA engines help
move streaming data from/to the Zynq PS memory.

Innovative Integration Inc. 36

Cardsharp Framework Logic Manual

processing_system7_0

{FS_ANI_HPO_FIFD_CTRL

4BS_ANI_HP2_FIFD_CTRL DR DDR
dhS_AXI_HPD FIXED_10dh FIXED_IO
_AX1_HP2 - USBIND_0ds USBIND_0
ps_ap._axi_interconnact M A0 _GPO ACLE ZYNQ. M_AX_GPOGs (2
A0 HPO ALK FCLK CLKD
Hda SO0 AN AI_HP2_ACLE FCLE RESETD_N
———cLK ——={IRQ_F2P{2:0]
THID: 0] -
lena ZYNOT Processing Systam
} ACLK =
500 ARESETNIO:0 [27 MO0_nooids (2 5 cle1s0
) ACLE §Dmuuu¢ S 1 {3 k75
00 ARESETHEN:D) 11 M02_A01 | I axi to_ctrl 0
_ACLE orm | ap 500 aon
»—-mi:mnckﬁmo:m o P . - ’"‘_:x:_::lz 01t | e T, ctrl_reg
b—mhi02_ARESETHID:O] 150 La_aresels
z AxI'ta Control Register Bridge
AxlIntarconnect inl lockad
e pheral
i phveral_ 3 plrsti0:0)
_ dconcat 0
o)
1 ot
pps_int [
Concat
PCIE_DMA
5_axis_pcie
int_ext[3:0]
MOO_AXIH
i s mD_axis_rdh [3 m_axis_pcie
k150 int_out b—
, axi_lite ack
; axis clic
S
FMC_DMA
a
MDO_ANIEE
5_axis_fme e : ANIS SIMM MO aXE_rxd mi_axis_fmec
s Mo UTE ml_axis o m1_axis_fme
s_axis_alrt [T] dos_ais_alt m2_axis_exeh m2_axis_fmc
s_anis_clk [i m3_axis_oelh m3_axis_fmc
cik150 m_axis_ ok mi_axis_frme
int_ext[3:0] 5_aie_raclh m5_axis_fme
s axi e ack mG_axis o mé_zxis_frme
X Clk MT_8Kis iy m7_axis_fmc
it out
T —

The Zynq PS is customized for Cardsharp applications to maximize processing power and memory bandwidth, clocking the
CPU PLL at 800MHz and the DDR PLL at 533MHz. The 10 PLL serves to clock several PS peripherals such as Ethernet,
QSPI, eMMC and the PL clock. This clock (FCLK_CLKO) is programmed to run at 150MHz and clocks all the high
performance master AXI interfaces to/from the PS. The Zynq PS is customized by double-clicking on its instance within the
block design. The following images show its various configuration options, including the main overview of its internal
architecture, clock configuration, PS-PL interface, peripherals I/O pins, MIO configuration, etc.

Page Mawvigator <

Zynq Block Design

Zyng Block Design

FS-PL Configuration
Peripheral IfO Pins
MID Configuration
Clock Configuration
DOR Configuration
SMC Timing Calculatio

Interrupts

Tl 110 Peripherals
5Pl
o SPI1
Mo 12C 0 W
150 12c 1 -
CAND
CAN PR
USRTO %
D USRT 1 %
WL GPIO [| —
AMIZy s50:0 [
i SO 1
USE O W
USE 1
ENETD W
EMET1
Bankl
Mic FLASH Memary |
I5% 1A [ERSTS ey -

Innovative Integration Inc.

37

Cardsharp Framework Logic Manual

ZYNQ7 Processing System (5.5) ' Clock Configuration

Basic Clocking Advanced Clocking

4 input Frequency (MHz) [33.3333 CPU Clock Ratio

i Documentation & Presets [IP Location & Import XPS Settings

Page Navigator % | 2ynq Block Design Summary Report

Zjnq Block D _ [~ ————— = search: []
corarais
PS-PL Configuration L) — Appicaion Prosessar Unk tAPU - Compenent Clock Source |Requested Frequ..Jactual Frequenc: Range(MHz)
S
2 == ProcessorfMemory Clocks
Peripheral I/0 Pins "o ST - B P B
e I = — s A onesns cPuU ARMPLL ~ 799.999207 50.0: 800.0
I=o— Sz
MIO Configuration Cr— 4—‘ oot egs =N DDR 533,332825 200.000000 : 534,00..,
Clock Configuration v, %". e | - 7 10 Peripheral Clocks
= e R e e L smc 10 PLL 100 10.000000 10.000000 : 100.000.
DDR Configuration ||y T ! EEEE| L qspI 199,999786 10.000000 : 200.000.
 —— A
sy o |z
Interrupts Bankt % e 7y [) b ENETL 10 PLL 1000 Mbps 10.000000
e eertoees . |e—] DA I | I L spio 24.999973 10.000000 ; 125.000.
[Samaor—] TS
| —| i Pt B I spl 10 PLL 166.666666 10.000000 0.000000 : 200.0000...
4 - 2
e - PLFabric Clocks
oA e L @ Fecciko 10 PLL -]ts0 T 1azeseess 0.100000 ; 250.0000.
=
hees | || conaston & Frocessing System(Pe) b O Felk el 10 PLL 50 49.999947 0.100000 : 250.0000...
Tl e T [e [e T como [™ [Jisiarmres 00 b [oLk cLkz 10 PLL 50 49.999947 0,100000 ; 250.0000..,
coccrors | | BB st g L O Fek_CLks 10 PLL 50 49,900047 0,100000 : 250,0000..,
> System Debug Clocks
Frogrammable Logic(PL) [External 200 200,000000 10.000000 : 300,000...
> Timers
woT CPU1X - |[133.333333 133333206 0,100000 ; 200.0000...
TTco
T
PS-PL Configuration MIO Configuration
€ search: [@] 4 Bank 0 /0 Voltage [LvcMOS 1.8V~ Bank 1 110
g

Narne | select | Description
L |9 ceneral Search: [C0]
s
|| |-UARTO Baud Rate Baud rate is generated with internally fixed UART Ref Clock Fr... EEIGHERE] | o |_Signal

{-UARTL Baud Rate Baud rate is generated with internally fixed UART Ref Clock Fr... 3 Memory Interfaces

Q¥ {kk

[-PL AXI idle Port O Enables idle &XI signal to the PS used to indicate that there ... > @ Quad SPI Flash
|- DDR ARB bypass Port O Enables DDR urgent/arb signal used to signal a critical memo, L] SRAM/NGR Flash

—~PS-PL Debug interface O Enables PL debug signals to PS and viceversa

L FTM Trace data interface O Enables FTM Trace AXI stream interface used to capture dat... 3=) DSRB el

(~FTM Trace buffer 0 Generates a FIFO to hold trace data L0 datanns:al

{-FTM Data edge detector 0 Stores trace data in the FIFO when the data changes as mar. 3 110 Peripherals

{-FTM Trace buffer FIFO size 128 FTM Trace buffer FIFO size b @ ENET O
FTM Trace buffer clock delay 12 Number of clock cycles interval for a trace data output from

L include ACP transaction checker O Enables ACP transaction checker. = [] ENET1
|-Trace datajcontrol signal pipeline wi... 8 Enables configurable number of pipeline stages on the TRAC. > 7 USB O
|-Power-on reset(POR) 4k timer o Enables power-on reset(POR) 4k timer. By default, 64k timer i.. L use1
L processor event interface O Enables evert bus which provides a low-latency and direct m.
5 deress Edtor > @ spo
2 Enable Clock Triggers =[] sD1
3 Enable Clock Resets - 01011 -
FCLK RESETO_N 2 Enables general purpose reset signal 0 for PL logic i
FCLK_RESETL_N [m] Enables general purpose reset signal 1 for PL logic >] UART 1 M012.. 13 i
FCLK_RESETZ_M O Enables general purpose reset signal 2 for PL logic b @ 12¢0 MIO 46 .. 47 -
FCLK RESET3_N O Enables general purpose reset signal 2 for PL logic L O i2c1
2 AXl Non Secure Enablement Enable A Non Secure Transaction
&- GP Master AXl Interface - O spPio
i:M AXI GPO interface] Enables General purpose £X| master interface 0 >~ [sPIl
M AXI GP1 interface O Enables General purpose AXl master interface 1 =] CANO
3 GP Slave AXI Interface L o can
ts AXI GPO interface O Enables General purpose 32-bit AXI Slave interface 0 L pio
S AXI GPL interface O Enables General purpose 32-bit AXI Slave interface 1) ’
- Application Processor Unit
2 HP Slave AXI Interface
&5 AXI HPD interface Iz Enables £ high performance slave interface 0 [O Timero
=5 AXI HPL interface O Enables AXI high performance slave interface 1 - [Timer1
©=5 AXI HP2 interface [ci] Enables AX| high performance slave interface 2 > @ Watchdog
©=S AX| HP3 interface [} Enables AXI high performance slave interface 3

> Programmable Logic Test and Debug
o= ACP Slave AX| Interface

Innovative Integration Inc.

Cardsharp Framework Logic Manual

Table 6. PS Configuration

The Zynq PS is configured with a number of peripherals connected over the MIO pins. The following image shows the Zynq
Peripheral 1/0 Pins configuration screen showing the enabled peripheral units and their respective pin assignments, shadowed
in green color.

Page Navigator < |Peripheral /O Pins Summary Re

Zynq Block Design Search [@]

PS-PL Configuration

Peripheral 1/0 Pins

MIO Configuration (1]

‘ Bank0 [LvcMos 1.8V~ | ‘ Bank1 [LveMOS LBV - |

| penphersls) (o) aJ(2]a) el 5] 2] ol)[xo] x] 2] e 6] 5] e oz) 5] 0])z]2 2]) 2] 2]] om) 2]] o) o 2] o) o) o) i i)]])] 30] o) 2] o]
|

> /] quad SPI Flash 1 Quad 5P Flash

5= [SRAM/NOR Flas| I SRAMNOR: Flash ‘ U I SRAMNOR: Flash, =d]0-24]]
Clock Configuration —
> OnanoFlash L] | HAND Flach |
DDR Configuration
9 - 9] Ethernet 0 | Eneio | cHio
SMC Timing Caleulatio > [Ethernet 1 | Enatl] Euio
Interrupts L Zuss o 1 useo]
FOussL 1 ussL]
- ¥SD 0 soo s00 soo Emio

il
> [IsPl 0 @ @ @ @ @ @ @
SR [T - -] [esta)
[maten]
==
ozt
[mtea]
[F=m

- oTreo o o TTcn Mo

= OTreL el L ey EMIO

- M swoT SWDT. swoT SWDT swoT || swor || Emio
= OrTAaG PITAG PITAG PITAG FITAG. EMIO.
> CITPIU Trace Trace EMIO

> 1 GRIO MIO (PR EN I3 B0 1N (PN (e R (U [0 Y /RS0 VS N/ Y) R) R 0N RN PPN) [P0) L) PR Y [P0) () (Y [P ())) [() (PR)) DL P [e [Y0 P Y

Ilustration 1: MIO Peripheral 1/0 pins

Innovative Integration Inc. 39

Cardsharp Framework Logic Manual

MIO Pins Peripheral Direction Description

MIO 0 Ethernet Reset Out Ethernet PHY reset.

MIO 1-6 Quad SPI Flash Inout Quad SPI Flash control signals.
MIO 7 USB Reset Out USB PHY reset.

MIO 8 GPIO Out GPS Reset (active low)

MIO 9 GPIO In GPS Lock-out Okay

MIO 10-11 UARTO In/Out GPS UARTO Tx/Rx.

MIO 12-13 UARTI1 In/Out GPS UART1 Rx

MIO 14-15 GPIO Inout

MIO 16-27 Ethernet In/Out Ethernet data & control to PHY.
MIO 28-39 USB In/Out USB PHY signals.

MIO 40-45 SDO In/Out SD signals (eMMC memory).
MIO 48-49 GPIO In/Out

MIO 50-51 Watchdog In/Out Watchdog timer external clock in & reset out.
MIO 52-53 Ethernet In/Out Ethernet serial control to PHY.

Table 7. Zynq PS Peripheral I/0O Configuration

The DMA engines are controlled by embedded software running on the CPU's. The FMC DMA is a custom multichannel
DMA that takes AXI-Stream data (s_axis_fmc) from the PL and routes it to one of 8 busmaster memory regions allocated
within PS memory. In turn, data from 8 busmaster memory regions is routed to one of 8§ Master AXI-Streams (m?_axis_fimc).
The PCle DMA is a similar DMA with only one channel enabled, that exchanges data coming and going from a host over the
PCI Express link.

Innovative Integration Inc.

40

Cardsharp Framework Logic Manual

Port name Direction Format Description

DDR Out DDR Interface Dedicated PS DDR3 /O pins.

FIXED IO In/Out FIXED IO Interface Dedicated PS I/O Peripherals (MIO).

USBIND 0 In/Out USBIND Interface Dedicated PS I/O USB pins.

pl rst Out [0] Main PL reset.

s axis_clk In [0] Slave AXI-Stream clock.

clk150 Out [0] AXI clock.

clk75 Out [0] Wishbone Clock.

ctrl reg In/Out ctrl reg Interface Control bus to Wishbone Master.

pps_int In [0] PPS Interrupt to PS.

int_ext In [3:0] External Interrupt Inputs.

s axis_pcie In AXIS Interface Slave AXI Stream from PCI Express link in PL to PCle DMA.
m_axis_pcie Out AXIS Interface Master AXI Stream from PCle DMA to PL en-route to PCI

Express link.

s axis_fmc In AXIS Interface Slave AXI Stream from PL to FMC DMA.

m* axis_fmc Out AXIS Interface Master AXI Streams from FMC Multichannel DMA out to the PL.
s_axis_alrt In AXIS Interface Slave AXI Stream carrying Alerts from PL.

Table 8. Block Design interfaces & ports

The PS has two high performance slave AXI ports enabled, namely S AXI HPO, S AXI HP2, used by two custom DMA
engines used to move streaming data from the PL to the PS memory. The s_axis pcie & s_axis_fmc AXI-Stream interfaces
take data from the PL into their respective DMA engines. In turn, the m_axis pcie & m* axis_fmc deliver data from the PS
memory to the PL also in AXI-Stream format.

The AXI to Control Register component acts as a bridge between the AXI-Lite signaling from the PS to the Wishbone bus
used in the PL register files. It takes register reads & writes from the PS as AXI-Lite transactions and transforms them into a
format appropriate for the Wishbone Master to accept to and respond.

The Clock and Register Module (crm) within the Block Design has a PLL that generates clocks & resets that interface with
the PS. A 75MHz clock is used for AXI-Lite transactions from the PS General Purpose Master AXI port (M_AXI GPO) to
the DMA's and the AXI to Control Register Bridge (axi_to_ctrl) component. A 150MHz clock is used to interface to the PS
through High Performance Slave AXI ports (S_AXI HPO0/2).

The block design is scripted in Tcl and run when the project is being built by executing the ps_sys.tcl script that resides in the
project directory under the bd/ subdirectory. If any modifications are done to the block design, it is suggested to write the
changes by exporting it by using the menu option File/Export/Block Design. The block design has a wrapper that instantiates
it, and it's managed by Vivado, so in case of modifications it will be updated automatically. The wrapper allows the block
design to be synthesized in out-of-context mode if desired. This may help reduce synthesis time after the component has been
synthesized once.

Innovative Integration Inc. 41

Cardsharp Framework Logic Manual

Multiqueue VFIFO

This component uses a bank of SDRAM memory as a buffer to implement either a “virtual FIFO” or an arbitrary pattern
generator in two independent queues. The operating mode is selected during initialization. These operating modes support
either a flow-through data architecture or an arbitrary waveform generator architecture for the design. The buffer depth is the
size of the memory bank. Each of the external SDRAM devices is a bank of 512MB, arranged as 256Mx16, for a combined
total of 256M x64 memory locations, or 2 GB capacity.

vfifoO_i b Hﬁ >

pbcmdO

»[ﬂﬁ@]__; vfifo0_o
VFIFO Controller

> }Vfifoo Status/Counts
L

vfifo1_i vfifo1_o
—>

pbemdl_L________g VFIFO Controller p Viifo1 Status/Counts

Self Test g—Pp p Playback alerts

Each of the two queues operates with independent data input/output interfaces used in both operating modes, and independent
Playback command interfaces used in the arbitrary waveform generator mode.

The flow-through mode or Virtual FIFO mode receives incoming data on the vfifo? i * interface, buffers the data in
SDRAM and moves it to the vfifo? o * interface, waiting to be read.

Innovative Integration Inc. 42

Cardsharp Framework Logic Manual

Port name Direction Description

run In Enable data flow.

playback en In Enable Playback mode.

test_en In Enable self-test mode.

test_error Out Self-test error results. Each bit corresponds to a SDRAM device.

pbemd?_fifo * In Playback Command FIFO Interface. Receives Command instructions for Arbitrary Waveform

Generation mode.

vfifo? i * In Data Stream Interface. Receives streaming data to be buffered in VFIFO or data to be played
back in Arbitrary Waveform Generation mode.

vfifo? o * Out Data Stream Interface. Sends buffered data out in VFIFO mode or playback data in Arbitrary
Waveform Generation mode.

ddr3_* In/Out Interface to SDRAM DDR3 memory devices.

Table 9. Multiqueue VFIFO main interfaces

FMC Interface

The FMC Interface contains basic functionality to be able to test all the pins on the FMC connector. This functionality is
bound to be modified and adapted to the FMC daughter card to be plugged in. In this configuration, there's register controlled
Digital I/O's on each of the FMC data buses, namely LA, HA & HB ports. Additionally, the high speed serial I/O lines are
controlled by two Aurora instances with their own data streams exposed to the top level.

FMC Interface

FMC LA |; g Wishbone bus
4 LADIO >

FMC HA |;
24 HADIO

FMC HB ;
22 HBDIO [«

FMC Connector

_Control/Status EMC
-¢ L X
Registers

A

EMC RIO) <
) FMC RIOO Data
4 Aurora0 - &
EMC RIO) <
— FMg RIO1 Data
4 Aurora1l = Q;

Innovative Integration Inc.

43

Cardsharp Framework Logic Manual

Port name Direction Description

wb_* In/Out Wishbone bus.

fmc rio0 src* In Data stream input en-route to Aurora0 links.
fmc rio0_dest Out Data stream output coming from Aurora0 links.
fmc riol src* In Data stream input en-route to Auroral links.
fmc riol dest Out Data stream output coming from Auroral links.
fmc la * In/Out FMA LA bus.

fmc ha * In/Out FMC HA bus.

fme hb * In/Out FMC HB bus.

fmc _clk? * In/Out FMC module-to-carrier clocks.

fme rio * In/Out FMC High speed serial links (Aurora data)
fmc_gbtclk? In FMC GBT clocks (Aurora reference clocks).

Table 10. FMC main interfaces

Wishbone Master

This component is a bridge between two register control interfaces and the Wishbone Bus that reaches all registers in the PL.
It can receive commands from the PS under embedded software control, or alternatively from the PCI Express bus if the
system is plugged onto a host over the XMC connector. This would allow a system to control all PL registers from either
control software, namely Zynq PS or a PC host in a transparent way. More information about Wishbone Master can be found
in the K7 Logic Library guide.

WB Master

PCle Control I/F
. Wishbone Bus
PS Control I/F

Innovative Integration Inc. 44

Cardsharp Framework Logic Manual

Simulation

Simulating the Cardsharp logic is possible within Vivado, using its built-in simulation capabilities. In order to make the
simulation faster, a number of Bus Functional Models (BFM) have been created to replace components that are too complex
or simply unavailable for simulation; for example, the Zynq PS, the PCle DMA and the Multiqueue components have been
replaced by their BFM counterparts. The AXI BFM simulation model license is required to run the top level simulation. The
license is non-free and should be acquired through Xilinx vendors.

The simulation suite has a hierarchy that makes it flexible for modifications and customization, counting with a top level
“Test” that instantiates the actual testbench, and it includes accesses simulating software accesses from its various interfaces.
Various components in the suite are written in Verilog HDL, making possible to access points deep through the hierarchy.
VHDL doesn't allow for this.

Test (test.v): Through hierarchical function calls, it accesses tasks Testbench Hierarchy
in the BFMs to perform a number of functions, such as resets, [G-i test [test Verilog M.,
: . o-@th cardsharp_tb Verilog M...
register accesses, data streaming, etc. ¢ 3wt cardsharp_... VDL Ertiy
. . . o=} inst ii h WHDL Entit
Testbench (cardsharp_tb.v): It instantiates the Unit Under Test .}g ;“55 S—y“:’l‘ ";—S”S?ga\;ia) Ver”ug”mff
and contains clock generators and other devices interfacing with @ m0_anis_fmc m_axis_bfm_0 Verilog M...
. . . @ ml_axis_frc m_axis_bfm_0 Werilog M.,
the design, such as memories and analog parts like ADCs and/or | @ m2_ais_fme m_ais_bfm 0 Verilag M...
DACs within a FMC model @ m3_axis_frc m_axis_bfm_0 werilog M...
: @ ma_axis_frc m_axis_bfm_0 wverilog M...
UUT (cardsharp_top.vhd): Design top level. Instantiates all :g mg—:::z—imi m—::::—gm—g 52:::23 m
components or its correspondent BFMs. L@ m7_ads_fmc m_axis_bfm_0 Verilog M...
. . . @ m_axis_pcie m_axis_bfm_0 Werilog M.,
Block Design (ps_sys_i): This is a custom BFM that emulates the |- @ s_aas_fmc_fifo sffo_512x1.. VHDL Entity
. R T I . . @ s_axis_fmc s_axis_bfm_0 Verilog M...
Zynq PS design, with all its streaming interfaces. |3 o ais pcle_fifo sfo_S12xT,. VHDL Ertity
. L i bfm_0 Verilog M...
PCle (ii_pcie_wrapper.v): Custom BFM that emulates the PCI - fiﬁ:ﬁff‘e \raqs. mas... \HIDL Bty
1 o= sys_ctrl ii_regs_peri... WHDL Entit
xpress intertace to the host .)_ufy X - 9 _Ptft oLE t_ty
é mec ii_fmc_intf_t... ntity
Multiqueue (ii_mgq_pb.v): Custom BFM that emulates the Virtual ;i* inst_\”‘tafddga ”_Vi;aﬁdma(--- mgt Elﬁtitky
. - . . =] gen_pl_ddr: cardsharp_.. oc
FIFO multiqueue in flow-through mode. Pattern mode is not L lgennoplddr3 cardsharp_.. VHDL Block
1 —@ fme_loopback ii_fifo_drain... WHDL Entity
Supported in the BFM. 2= (J inst_mem_alert_gen ii_alert_gen... VHDL Entity
2= 0 inst_alerts ii_alerts_axi... WVHDL Entity
2=} inst_ps_to_pcie ii_anis2afifo... WVHDL Entity
@~} inst_packetizer_top ii_packetize... WHDL Entity
2= 1] gen_pcie cardsharp_.. WHDL Block
2l gen_no_pcie cardsharp_.. WHDL Block
2= (1} inst_deframer ii_deframer(... VHDL Entity
o= {J inst_pcie_to_ps ii_afifo2axis... WVHDL Entity
2= (I pl6_dio ii_dio_top(a... VHDL Entity
2] gen_aurora0 cardsharp_... WHDL Block
[gen_auroral cardsharp_.. VHDL Block

Table 11. Simulation suite hierarchy

Testbench hierarchy

The following block diagram shows the testbench hierarchy and its main components. At the top, there's the Test which calls
tasks within the Testbench. These tasks make use of particular components within the BFM's to provide simulation stimulus
to the design.

Innovative Integration Inc.

Cardsharp Framework Logic Manual

Here's a brief description of the function calls to tasks within the different BFMs.

tb.porb: Direct signal assignment to the PS BFM PORB port; active low.
tb.ps7_rst(value): Sets Block Design pl rst output to argument value.
tb.pex_app_wr(address, data): PCle slave write access to address, data on Wishbone Bus.

tb.pex_app_rd(address, rdata): PCle slave read access to address on Wishbone Bus, storing read value on rdata
variable.

tb.pex_app_rd poll(address, bit_pos, expected): PCle slave read access to address on Wishbone Bus, polling the
selected bit position until its value matches the expected argument.

tb.ps7_app_wr(address, data): Zynq PS slave write access to address, data on Wishbone Bus.

tb.ps7_app_rd(address, rdata): Zynq PS slave read access to address on Wishbone Bus, storing read value on rdata
variable.

Innovative Integration Inc.

46

Cardsharp Framework Logic Manual

» tb.ps7 app rd poll(address, bit_pos, expected): Zynq PS slave read access to address on Wishbone Bus, polling the
selected bit position until its value matches the expected argument.

+ tb.axi4_bfm_send(channel, axis_data, tlast): Sends a single AXI-Stream point to the corresponding AXI-Stream
FMC DMA channel. Intended to be used by the testbench itself through the put_packet task.

« tb.put_packet(dma, channel, seed, length): Generates a ramp on the AXI-Stream Master interface selected by “dma”
parameter (“FMC”, “PEX”). The seed is the initial value for the ramp; length selects the stream length in points.

e tb.put vita packet(dma, channel, packet count, frame size, stream Id, initial value): Generates a VITA packet on the
selected AXI-Stream Master interface. Packet count is the VITA packet Id. Frame size is the VITA packet size.
Stream Id is the VITA Stream Id field. Initial Value is the ramp initial value.

+ tb.get packet(dma): Reads the selected Slave AXI-Stream interface, either from “FMC” or “PEX” DMAs.

File Edit Flow Tools Window Layout Wiew Run Help [Q-Search commands]
3 P D ¥ & K| I 3 Default Layout i 1 B bin u3 Q@ ® Ready

Behavioral Simulation - Functional - sim_1 - test

B Untitled 1% x

= Scope

Flow Navigator

&, Objects

Tcl Console —Owx
= [1] - Received AXI-S on , channel 48607299, length O 12
g [1] - Received AXI-S on . channel 4607299, length O 6
b [i] - Received AXI-S on Z, channel 4607299, length O 18
]I} [i] - Received AXI-S on r, channel 4807299, length 0 6
[1] - Received AXI-S on , channel 4607299, length O 16
& run 1 us B
@l Gl | |
2 Tcl Console Messages Bl Log

Sim Time: 3 us

Illustration 2: Behavioral Simulation window

Innovative Integration Inc. 47

Cardsharp PL Memory Map

Cardsharp PL Memory Map

The memory map is shown for the components on the Wishbone Bus. The AXI to Control bus on Cardsharp is on base
address 0x43C00000. Each component is mapped to a BASE address, with its registers offset from that BASE. The
simulation define is the BASE address for that device used in the simulations. Individual registers with bit assignments are
shown for each component on the Wishbone Bus.

Note: All addresses are word-aligned.

WB Base WB Simulation Define Description Module

Address Component

0x000 Peripheral MR_PRF Peripheral registers : logic and hardware versions, Cardsharp
resets, top level controls and status

0x100- Reserved

0x200

0x300 Packetizer MR _PKT Data packetizing controls Cardsharp

0x400- Reserved

0x500

0x600 Digital I/O MR _DIO Digital I/O for testing Cardsharp

0x700 Matlab MR _BSP Matlab BSP General purpose registers Cardsharp

0x800 - Reserved

0xb00

0xc00- FMC MR_FMC* See FMC section Cardsharp

0x1100

0x1200- P15 Aurora MR_AU0/1 Aurora High Speed Serial Interfaces Cardsharp

0x1300

0x1400 - Reserved

0x1900

0x1A00 Application MR_APP Application logic Interface registers Cardsharp

0x2000- IP Cores Cardsharp

0x3F00

Table 12. Memory Map

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

Peripheral Registers (WB Device ()

These are the top level registers used for system functions.

WB Base | WB Register Simulation Define R/W | Description Modules
Address
0x00 Information MR _PRF_INFO R Hardware and logic version
information.

0x01 Reset MR_PRF_RST R/W | Reset control

0x03 Sub revision MR PRF SUB REV R Sub revision

0x04 Bypass VITA MR PRF BYPASSV R/W | Bypass VITA padding in
padder Velocia packets. Test feature.

0x07 PL DDR3 MR PRF DDR DRAM power down controls

0x08- Define PID MR _PRF DEF PID Peripheral ID assignment for

0x0A stream O

0x0B alert_enable MR _ALR ENAB R/W | Alert enables.

0x000 0x0C control MR ALR CTRL R/W | Alert monitor controls.

0x0D sw_alert MR_ALR _SW R/W | Software Alert

0x0E alert_clr MR _ALR_CLR R/W | Clear alert FIFO

0xOF alert_cnt MR_ALR_CNT R/W | Number of Alerts to process

0x10 QSFPO control MR PRF QSFPO CTRL | R/W | QSFPO control & status

0x11 QSFPO I2C MR _PRF_QSFP0O I2C R/W | QSFPO I2C clock control

0x12 QSFP1 control MR PRF QSFP1_CTRL | R/W | QSFPI1 control & status

0x13 QSFP1 I2C MR _PRF QSFP1 I2C R/W | QSFP1 I2C clock control

0x14 QSFP XO I12C MR_PRF QSFP XO I2C | R/W | QSFP I2C clock generator

Table 13. System Peripherals Registers

Information (MR_PRF _INFOQO, Base+0x00)
This register provides hardware and logic revision information.

Bits Field R/W Description
15:0 revision R Logic revision code. Split in two byte words: major:minor. (ie. 0x0102=v1.2).
19:16 cfg R Hardware configuration code (variant code; ie. AC coupled)
23:20 hw_rev R Hardware revision (Rev. A, B, etc.)
27:24 hw_type R Hardware type code (Module Id, ie. SBC=2, etc.)
29:28 fpga type R FPGA type.
0x01 = 045
0x10 =100

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

‘ 31:30

unused

Table 14. System Info Register

Reset (MR_PRF_RST, Base+0x01)
This register provides hardware reset for the FPGA (soft reset)

Bits Field R/W Description Modules
0 app_rst R/W Application reset. Default=1. Cardsharp
1 Green LED R/W LED controls. '1' = on (default) Cardsharp
2 Front panel LED R/W LED controls. '1' = on (default) Cardsharp
3 Unused RO
4 run R/W Enable backend data flow. '0'=off (default). Cardsharp
31:5 -
Table 15. System Reset Register
Sub Revision (MR_PRF_SUB_REY, Base+0x03)
This register provides the sub revision code which is used to track logic builds.
Bits Field R/W Description Modules
23:0 -
31:24 sub_rev R Sub revision Cardsharp

Table 16. System Sub Revision Register

Bypass VITA padding in Velocia packets (MR_PRF_BYPASSYV, Base+0x4)
VITA padding packets within Velocia packets allows an integer number of VITA packets to fit in a Velocia packet. For test
reasons, this feature may be bypassed.

Bits Field R/W Description Modules
0 Bypass_vita_pad R/W Bypass VITA padder (default = 0)
1 VITA header error R Error on VITA header
2 VITA trailer error R Error on VITA trailer
31:3 - - -
Table 17. System Sub Revision Register
DDR3 Control and Status (MR_PRF_DDR Base+0x07)
This register provides the DDR2 bank power control, VFIFO mode control, and PHY initialization status.
Bits Field R/W | Description Modules
5:4 Ddr3_init_done R DRAM PHY initialization status. 'l'=PHY init completed
successfully.
13:12 mem_test en R/W Enable memory test mode
17:16 mem_test error R Memory test status. 'l' = error.
31:20 | -

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

Table 18. System DDR3 DRAM Control and Status

Outgoing PID Defines (MR_PRF_DEF PIDx Base+0x08... +0x0B)
This register defines the PID for Velocia packet streams. Multiple streams may be assigned beginning with register 0x8 up to
register OxB.

Offset Description Modules
0x8 Test LoopBack PID
0x9 DAC data and playback command PID

Table 19. Outgoing PID Map

Bits Field R/W Description Modules
23:0 -
31:24 def pid addr R/W PID address. (default = 0x0)

Table 20. System PID Define Register

Alert Enables (MR_PRF_AL_EN, Base+0xB)
This register enables each alert.

Bits Field R/W Default | Description
31:0 | alert _enables R/W 0=off | Alert enables. One bit per alert source.
others | -

Table 21. Alert Monitor Enables Register

Alert Defines
Bits Alert Alert Data Word Description Modules
0 timestamp_rollover (x"1303000" & "000" & Alert timestamp rollover. All
timestamp_rollover)
1 alert_sw_stb alert_sw Software Alert. All
2 Tag * tag_rep_value(15 downto 8) | VFIFO Arbitrary Waveform Generator tags Cardsharp
& tag load value(15 events.
downto 8) &
tag_rep_value(7 downto 0)
& tag_load_value(7 downto
0
3 mem_alert dout (x"1303000" & VFIFO status alerts from ii_alert gen
mem_alert dout)
31:4 -

Table 22. Alert Monitor Defined Alerts

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

Alert Controls (MR_PRF_AL_CTRL, Base+0xC)
This register provides reset and timestamp enable functions for the Alert monitor.

Bits Field R/W Default | Description
0 timestamp_run R/W 0 Enable Alert monitor timestamp.
1 alert fifo rst R/W 0 Alert monitor reset. Clears all pending alerts and the FIFO.
others -

Table 23. Alert Monitor Controls

Software Alert (MR_PRF_AL_SW, Base+0xD)
This register fires a software alert whenever written to.

Bits Field R/W Default | Description
31:0 sw_data R/W 0 Software alert
Table 24. Software Alert

Clear Alerts (MR_PRF AL CLR

, Base+0xE)

Bits

Field

R/W

Default

Description

31:0

alert_clr

R/W

0

Clear alerts.

Table 25. Alert Monitor Controls

Alerts count (MR_PRF_AL_CNT, Base+0xF)
This register sets the number of alerts inputs that will be processed

Bits

Field

R/W

Default

Description

31:0

alert_cnt

R/W

0

Number of alert inputs to be processed, ignoring the others.

Table 26. Alert Monitor Controls

QSFPO port control/status register (MR_PRF_DEF PIDx Base+0x10)
This is the QSFPO port control status register.

Bits Field R/W Default | Description Modules

0 gsfp_modesel n R/W When “low”, the module responds to 2-wire serial
communication. When “high”, the module shall not respond
or acknowledge any 2-wire communication

3:1 - Unused

4 gsfp_reset n R/W A'low level on this pin resets the qsfp module

11:3 - Unused

12 gsfp_lpmode R/W Setting this bit high sets the qsfp module in low power mode.
When low, the gsfp module is in high power mode

15:13 - Unused

16 gsfp_int n R When low, indicates possible module fault

Cardsharp Framework Logic Manual

52

Cardsharp PL Memory Map

19:17 - Unused
20 gsfp_modpres_n R A high on this bit indicates module absent
23:21 - Unused
31:24 - Unused

Table 27. QSFP port control/status register

QSFPO port 12C register (MR_PRF_DEF_PIDx Base+0x11)

This is the QSFPO port 12C register.

Bits Field R/W Default | Description Modules
3:0 gsfp_sda o R/W 12C data out
7:4 gsfp_scl R/W 12C clock
11:8 gsfp_sda i R 12C data in
15:12 | qgsfp_scl i R 12C clock (readback)
31:16 | - Unused
Table 28. QSFP port 12C register
QSFP1 port control/status register (MR_PRF_DEF_PIDx Base+0x12)
This is the QSFP1 port control status register.
Bits Field R/W Default | Description Modules
0 gsfp_modesel n R/W When “low”, the module responds to 2-wire serial
communication. When “high”, the module shall not respond
or acknowledge any 2-wire communication
3:1 - Unused
4 gsfp_reset n R/W Alow level on this pin resets the qsfp module
11:3 - Unused
12 gsfp_lpmode R/W Setting this bit high sets the gsfp module in low power mode.
When low, the gsfp module is in high power mode
15:13 - Unused
16 gsfp_int n R When low, indicates possible module fault
19:17 | - Unused
20 gsfp_modpres_n R A high on this bit indicates module absent
23:21 - Unused
31:224 | - Unused

Cardsharp Framework Logic Manual

53

Cardsharp PL Memory Map

Table 29. QSFP port control/status register

QSFP1 port 12C register (MR_PRF_DEF_PIDx, Base+0x13)
This is the QSFP1 port 12C register.

Bits Field R/W Default | Description Modules
3:0 gsfp_sda o R/W 12C data out
7:4 gsfp_scl R/W 12C clock
11:8 gsfp_sda i R 12C data in
15:12 | gsfp_scl i R 12C clock (readback)
31:16 - Unused

Table 30. QSFP port 12C register

QSFP SIO XO I12C register (MR_PRF_QSFP_XO_I2C, Base+0x14)
This is the QSFP SIO XO I2C register that controls the QSFP reference clock generator.

Bits Field R/W Default | Description Modules
0 gsfp_sio_sdo R/W XO I2C data out
1 gsfp_sio_sck R/W XO I2C clock
2 gsfp_sio_sdi R XO 12C data in
3 gsfp_sclk i R XO I2C clock (readback)
4 gsfp_sio_intr XO Interrupt
31:5 - Unused

Table 31. SIO XO I2C register

PPS Trigger Arm register (MR_PRF_PPS, Base+0x15)
Arm PPS trigger waits until a PPS event to assert the PPS trigger. When disarmed it waits for the next PPS event to deassert
the trigger.

Bits Field R/W Description Modules
0 arm_pps_trig R/W Arm PPS trigger (Default=0, not armed)
31:1 - R/W

Cardsharp Framework Logic Manual 54

Cardsharp PL Memory Map

Packetizer Registers (WB Device 3)

These are the Velocia packetizer control registers. These are NOT associated with the VITA packetizers.

WB WB Register Simulation Define R/W Description

Base Address
0x00 pkt data ch en | MR PKT DATA CH EN R/W Velocia packetizer data channel enables
0x01 aux_hdr2 MR _PKT AUX HDR R/W Second header word for Velocia packets
0x02 alert pkt hdr MR _PKT ALRT HDR R/W Alert Velocia packet PID and size

0x300 0x03 data_pkt hdr MR _PKT DATA HDR R/W Data Velocia packet PID and size
others
0x22 force_pkt size MR_PKT FRC CH_SIZE R/W Force packet size
0x23 Timer MR PKT TIMER R/W Timeout timer

Table 32. Velocia Packetizer Component Registers

Packetizer Data Channel Enables (MR_PKT DATA_CH_EN, Base+0x0)

This register enables each Velocia packetizer data channel.

Bits Field R/W Default Description Modules
num_dat | pkt data ch en | R'W Packetizer data channel enables.

a_pkt ch

-1:0

others -

Table 33. Velocia Packetizer Data Channel Enable Register

Auxiliary header word (MR_PKT AUX_ HDR, Base+0x1)

This register defines the second word in the Velocia packets header.

Bits

Field

R/W

Default

Description

31:0

aux_hdr2

R'W | 0

Auxiliary second header word for Velocia packets.

Table 34. Velocia Packetizer Auxiliary Header Register

Alert Velocia Packet Header (MR_PKT_ ALRT_HDR, Base+0x2)
This register defines the alert Velocia packet header.

Bits Field R/W | Default | Description

23:0 alert pkt size R/W | 0x28 Alert packet size

31:24 alert pd addr R/W | 0Oxff Alert packet Peripheral ID
others -

Table 35. Velocia Packetizer Alert Header Register

Cardsharp Framework Logic Manual

55

Cardsharp PL Memory Map

Data Velocia Packet Header (MR_PKT DATA HDR, Base+0x3 ..x”2+num_data_pkt_ch”)
These registers, one for each data packet channel, define the Velocia header.

Offset Description Modules
00x03 ADC data
00x04 Test LoopBack PID

Table 36. Incoming PID Map

Bits Field R/W | Default | Description
23:0 ch_pkt size(i) R/W Maximum packet size for ith data Velocia channel.
31:24 pd_addr(i) R/W Peripheral ID for ith data Velocia channel .
others -

Table 37. Velocia Packetizer Data Header Register

Force Velocia Packet Size (MR_PKT_FRC_CH_SIZE, Base+0x22)
This register forces the maximum size for each Velocia packetizer data channel.

Bits Field R/W Default Description Modules
num dat | force pkt size R/W Force maximum packet size for each data
a pkt ch channel when set. Otherwise, if the data
-1:0 available is less than the max size, a smaller

packet is constructed.

others -
Table 38. Force Velocia Packet Size Per Channel Register

Timer (MR_PKT _TIMER, Base+0x23)
This register sets a timer inside packetizer to avoid sending too many small packets and potentially slowing down the host

processing. By default the timer is set to 1ms, but may be programmed by software.

Bits Field R/W Default Description Modules

21:0 timer R/W | 250000 clock cycles (at Packetizer timer.
250MHz default = Ims).

others -

Table 39. Packetizer Timer

Cardsharp Framework Logic Manual 56

Cardsharp PL Memory Map

P16 DIO Registers

The single ended Digital I/O registers are concatenated as follows:

pl6_dio p[6:0] are on even bits, p16_dio_n[6:0] on odd bits.

For example:

positive on even bits, negative on odd bits, ie.

Bits[31:6]

Bit5

Bit4

Bit3

Bit2

Bitl Bit0

pl6 _dio n[2]

pl6_dio p[2]

pl6_dio n[1]

pl6_dio p[1]

pl6_dio n[0] |pl6_dio p[0]

P16 DIO register (WB Device 6)

These are the registers for P16 DIO bus.

WB Base | WB Register Simulation Define R/W Description
Address
0x00 MR _DIO DOUT R/W Lower 32 bit word of the P16 DIO bus. The entire
DIO bus is updated when writing to this register.
0x600 0x01 Reserved
0x02 MR DIO OE R/W Output enable of the lower 32 bit word of the P16
DIO bus

Table 40. P16 DIO register

Cardsharp Framework Logic Manual

57

Cardsharp PL Memory Map

P15 Aurora 0 Registers (WB Device 18)

These are the registers for Aurora port 0.

Base WB Register Simulation Define R/W Description
Address
0x00 MR_AUL_TEST CTRL R/W
0x01 MR_AU1 _CTRL STAT R/W
0x1100 0x02 MR_AUl_CMD_WR R/W
0x03 MR_AU1 CMD RD R/W
others

Table 41. P15 Aurora Port 1 Component Registers

P15 Aurora Port 1 Test Control (MR_AU1_TEST_CTRL, Base+0x00)
These are controls and status for P15 Aurora port 0.

Bits Field R/W Default | Description Modules
0 tx_test gen en R/W 0 =off Enable test generator for transmission.
1 rx_test chk en R/W 0= off Enable test generator for receive.
15:2
31:16 | test errors R Test error count
Table 42. P15 Aurora 0 Test Control Register
P15 Aurora Port 1 Control/Status (MR_AU1_CTRL_STAT, Base+0x01)
These are controls and status for P15 Aurora port 0.
Bits Field R/W Default | Description Modules
0 Gtxreset n R/W 0 = reset MGT reset, active low.
1 power_down R/W l=on MGT power down. (Turned off by default)
2 run R/W 0=off Aurora interface run.
5:3 loopback R/W 000 000 = Disable loopback
001 = Parallel
010 = Serial
6 error_clr R/W 0 =off Clear port error.
7 tx_channel en R/W 0 =off Enable transmit channel.
8 rx_channel en R/W 0 =off Enable receive channel.
22:9 -
23 hard_error R Hard error. Link lost due to serious disruption.
24 soft_error R Soft error such as bit error.

Cardsharp Framework Logic Manual

58

Cardsharp PL Memory Map

25 frame_error R Frame error from Aurora.

29:26 | lane up R Number of lane the Aurora port is using.
30 channel up R The Aurora channel is active.

31 pll_locked R PLL for MGT is locked.

Table 43. P15 Aurora 0 Control/Status Register

P15 Aurora Port 1 Sub-channel Write Port (MR_AU1_CMD_WR, Base+0x02)
This is the sub-channel write port for P15 Aurora 0.

Bits Field R/W Default | Description Modules
23:0 usr_cmd wr_data | R/W 0 Command write data.
29:24 | usr_ cmd wr addr | R/'W 0 Command write address.
30 usr_cmd wr_rdn R/W | O=write | Command read/write control.
0= write, 1 = read.
31 cmd _ch rdy R Command sub-channel is ready.
Table 44. P15 Aurora 0 Sub-channel Write Register
P15 Aurora Port 1 Sub-channel Read Port (MR_AU1_CMD_RD, Base+0x03)
This is the sub-channel read port for P15 Aurora 0.
Bits Field R/W Default | Description Modules
23:0 usr_cmd rd data R Command read data.
29:24 | usr_cmd rd_addr | R Command read address.
30 -
31 usr_cmd rd vld R Command sub-channel is read data is valid.

Table 45. P15 Aurora 0 Sub-channel Read Register

P15 Aurora I Registers (WB Device 19)

These are the registers for Aurora port 1.

Base WB Register Simulation Define R/W Description
Address
0x00 MR_AUI_TEST_CTRL R/W
0x01 MR_AU1 _CTRL STAT R/W
0x1100 0x02 MR_AUl_CMD_WR R/W
0x03 MR_AU1_CMD_RD R/W
others

Table 46. P15 Aurora Port 1 Component Registers

P15 Aurora Port 1 Test Control (MR_AU1_TEST_CTRL, Base+0x00)
These are controls and status for P15 Aurora port 1.

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

Bits Field R/W Default | Description Modules
0 tx_test gen en R/W 0 =off Enable test generator for transmission.
1 rx_test chk en R/W 0= off Enable test generator for receive.
15:2
31:16 | test errors R Test error count
Table 47. P15 Aurora 1 Test Control Register
P15 Aurora Port 1 Control/Status (MR_AU1_CTRL_STAT, Base+0x01)
These are controls and status for P15 Aurora port 1.
Bits Field R/W Default | Description Modules
0 Gtxreset_n R/W 0 = reset MGT reset, active low.
1 power _down R/W l=on MGT power down. (Turned off by default)
2 run R/W 0 =off Aurora interface run.
5:3 loopback R/W 000 000 = Disable loopback
001 = Parallel
010 = Serial
6 error_clr R/W 0=off Clear port error.
7 tx_channel en R/W 0 =off Enable transmit channel.
8 rx_channel en R/W 0 =off Enable receive channel.
22:9 -
23 hard_error R Hard error. Link lost due to serious disruption.
24 soft_error R Soft error such as bit error.
25 frame_error R Frame error from Aurora.
29:26 | lane up R Number of lane the Aurora port is using.
30 channel up R The Aurora channel is active.
31 pll_locked R PLL for MGT is locked.
Table 48. P15 Aurora 1 Control/Status Register
P15 Aurora Port 1 Sub-channel Write Port (MR_AU1_CMD_WR, Base+0x02)
This is the sub-channel write port for P15 Aurora 1.
Bits Field R/W Default | Description Modules
23:0 usr cmd wr data | R/W 0 Command write data.
29:24 | usr_cmd wr addr | R/'W 0 Command write address.
30 usr_cmd_wr_rdn R/W | O=write | Command read/write control.
0= write, 1 = read.
31 cmd ch rdy R Command sub-channel is ready.

Cardsharp Framework Logic Manual

60

Cardsharp PL Memory Map

Table 49. P15 Aurora 1 Sub-channel Write Register

P15 Aurora Port 1 Sub-channel Read Port (MR_AU1_CMD_RD, Base+0x03)
This is the sub-channel read port for P15 Aurora 1.

Bits Field R/W Default | Description Modules
23:0 usr_cmd_rd_data R Command read data.
29:24 | usr cmd rd addr | R Command read address.
30 -
31 usr_cmd_rd vld R Command sub-channel is read data is valid.

Table 50. P15 Aurora 1 Sub-channel Read Register

Cardsharp Framework Logic Manual

61

Cardsharp PL Memory Map

Application logic Interface registers (WB Device 21)

This is the registers for Application logic Interface.

WB Base | WB Register Simulation Define R/W Description
Address
0x1500 0x00 MR_APP_RUN R/W

Table 51. Application logic interface registers

Application run register (MR_APP_RUN, Base+0x00)
Application run register.

Bits Field R/W Default | Description Modules

0 run R/W - Run

31:1 - - -

Table 52. Application run Register

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

FMC Memory Map

FMC Registers

The memory map for the FMC components on the Wishbone Bus is shown below. Some components are common to all the
FMC modules, whereas others are card specific.

WB Base WB Simulation Define Description Module

Address Component
0xc00 FMC MR _FMC_IF FMC interface registers Cardsharp
0xd00 FMC MR FMC LA DIO FMC LA DIO register Cardsharp
0xe00 FMC MR _FMC HA DIO FMC HA DIO register Cardsharp
0xf00 FMC MR_FMC HB DIO FMC HB DIO register Cardsharp
0x1000 FMC MR _FMC RIO0 Aurora core 0 within FMC interface Cardsharp
0x1100 FMC MR _FMC RIO1 Aurora core 1 within FMC interface Cardsharp
0x1200 FMC MR_FMC RIO2 Aurora core 2 within FMC interface Cardsharp

Table 53. FMC Memory Map

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

FMC status and configuration Registers (WB Device 12)

These are the registers for FMC interface.

WB Base | WB Address | Register ‘ Simulation Define R/W Description

0x00 MR_FMC_CTRL R/W | FMC control and status
0x01 MR FMC 12C_IF R/W FMC 12C interface
0x02 MR _FMC ID R FMC ID
0x03 MR FMC CLK CFG R/W FMC BIDIR clock control and status
0x04 MR _FMC CLKO M2C STS | R FMC clock 0 m2c status

0xe00 0x05 MR_FMC CLKI M2C STS | R FMC clock 1 m2c status
0x06 MR_FMC _CLK2 M2C STS R FMC clock 2 m2c status
0x07 MR _FMC CLK3 M2C STS R FMC clock 3 m2c status
0x08 MR _FMC CLK2 C2M_STS R FMC clock 2 ¢2m status
0x09 MR_FMC CLK3 C2M_STS R FMC clock 3 c2m status

Table 54. FMC status and configuration registers

FMC control register (MR_FMC_CTRL, Base+0x00)

These are FMC control and status bits.

Bits Field R/W Default | Description Modules
0 fmc_present n R - FMC present (active low) Cardsharp
1 fmc vadj en n o w 1 Enable FMC VAD]J (active low) Cardsharp
1 fmc vadj en n i R 1 Actual status of FMC VADIJ Enable pin (active low) Cardsharp
2 fmc_vadj_forced R FMC VADI is forced by the hardware Cardsharp
3 fmc vadj pwr gd | R FMC VADIJ power good status Cardsharp
6:4 fmc_vadj_1vl R Selected VADIJ level Cardsharp

000 =>1.2V

001 =>1.35V

010 => 1.5V

011 => 1.8V

100 =>2.5V

111 - 101 => N/A (spare)
15:7 -
16 fmc pg m2c n R - FMC power good M2C (active low) Cardsharp
17 fme_pg c2m_n R/W 1 FMC power good C2M (active low) Cardsharp
31:18 | -

Table 55. FMC control register

Cardsharp Framework Logic Manual

64

Cardsharp PL Memory Map

FMC 12C interface (MR_FMC_I2C_IF, Base+0x01)
This is the 12C interface to the FMC.

Bits Field R/W Default | Description Modules
0 fme sdo R/W - FMC I2C data out Cardsharp
1 fmc_scl R/W - FMC 12C clock Cardsharp
2 fme_sdi - FMC I2C data in Cardsharp
3 - FMC I2C clock readback Cardsharp
31:4 -

Table 56. FMC I2C interface
FMC ID (MR_FMC _ID, Base+0x2)
This register has the FMC ID.
Bits Field R/W Default | Description Modules
31:0 fmc_id R FMC ID Cardsharp
Table 57. FMC ID
FMC BIDIR Clock control and status (MR_FMC_CLK CFG, Base+0x3)
This register has the FMC BIDIR clock control and status bits.

Bits Field R/W | Default | Description Modules
0 fmc clk dir R FMC BIDIR clock direction (0=M2C, 1=C2M) Cardsharp
1 fmc clk 2 3 en R/W 0 FMC clock 2 & 3 driver enable Cardsharp
2 fme clk2 sel R/W 0 FMC clock 2 source select 0=DIFF, 1=SE Cardsharp
3 fmc clk3 sel R/W 0 FMC clock 3 source select 0=DIFF, 1=SE Cardsharp
31:4 -

Table 58. FMC BIDIR Clock Register
FMC Clock0 m2c¢ status (MR _FMC _CLKO0 M2C_STS, Baset+0x4)

Bits Field R/W | Default | Description Modules
9:0 fmc_clk0 _m2c_freq R FMC clock0 M2C frequency in MHz Cardsharp
31:10 | -

Table 59. FMC Clock0 m2¢ Register
FMC Clockl m2c status (MR_FMC_CLK1 M2C _STS, Base+0x5)

Bits Field R/W | Default | Description Modules
9:0 fme clkl m2c freq R FMC clockl M2C frequency in MHz Cardsharp
31:10 | -

Cardsharp Framework Logic Manual

65

Cardsharp PL Memory Map

Table 60. FMC Clockl m2c Register

FMC Clock2 m2c status (MR_FMC_CLK2 M2C_STS, Base+0x6)

Bits Field R/W | Default | Description Modules
9:0 fme clk2 m2c freq R FMC clock2 M2C frequency in MHz Cardsharp
31:10 | -

Table 61. FMC Clock2 m2c Register
FMC Clock3 m2c status (MR_FMC_CLK3 M2C_STS, Base+0x7)

Bits Field R/W | Default | Description Modules
9:0 fmc clk3 m2c freq R FMC clock3 M2C frequency in MHz Cardsharp
31:10 | -

Table 62. FMC Clock3 m2c¢ Register
FMC Clock2 ¢2m status (MR FMC CLK2 C2M _STS, Base+0x8)

Bits Field R/W | Default | Description Modules
9:0 fmc _clk2 c2m_freq R FMC clock2 C2M frequency in MHz Cardsharp
31:10 | -

Table 63. FMC Clock2 c2m Register

FMC Clock3 ¢2m status (MR_FMC CLK3 C2M _STS, Base+0x9)

Bits Field R/W | Default | Description Modules
9:0 fmc clk3 c2m_freq R FMC clock3 C2M frequency in MHz Cardsharp
31:10 | -

Table 64. FMC Clock3 c2m Register

Cardsharp Framework Logic Manual

66

Cardsharp PL Memory Map

FMC DIO Registers

The single ended Digital I/O registers are concatenated as follows: positive on even bits, negative on odd bits, ie.

fmc _la p[33:0] are on even bits, fmc_la n[33:0] on odd bits.

For example:
Bits[31:6] | Bit5 Bit4 Bit3 Bit2 Bitl Bit0
fmc la n[2] | fmc la p[2] | fmc la n[1] | fmc la p[1] | fmc la n[0] | fmc la p[0]
FMC LA DIO register (WB Device 13)
These are the registers for FMC LA DIO bus.
WB Base | WB Register Simulation Define R/W Description
Address
0x00 MR _FMC LA DOUT L R/W | Lower 32 bit word of the FMC LA DIO bus. The
entire DIO bus is updated when writing to this
register.
0x01 MR_FMC LA DOUT H R/W | Middle 32 bit word of the FMC LA DIO bus
0x02 MR _FMC LA DOUT V R/W | Upper 2 bit word of the FMC LA DIO bus
0xd00 0x04 MR _FMC LA OE L R/W | Output enable of the lower 32 bit word of the FMC
LA DIO bus
0x05 MR _FMC LA OE H R/W | Output enable of the middle 32 bit word of the
FMC LA DIO bus
0x06 MR FMC LA OE V R/W | Output enable of the upper 2 bit word of the FMC
LA DIO bus
Table 65. FMC LA DIO register
FMC HA DIO register (WB Device 14)
These are the registers for FMC HA DIO bus.
WB Base | WB Register Simulation Define R/W Description
Address
0x00 MR _FMC HA DOUT L R/W | Low 32 bit word FMC HA DIO bus. The entire
DIO bus is updated when writing to this register.
0x01 MR _FMC HA DOUT H R/W | High 32 bit word FMC HA DIO bus
0xe00 0x02 MR _FMC HA OE L R/W | Output enable of the low 32-bit word FMC HA
DIO bus
0x03 MR _FMC HA OE H R/W Output enable of the high 16-bit word FMC HA
DIO bus

Cardsharp Framework Logic Manual

67

Cardsharp PL Memory Map

Table 66. FMC HA DIO register

FMC HB DIO register (WB Device 15)
These are the registers for FMC HB DIO bus.

WB Base | WB Register Simulation Define R/W Description
Address

0x00 MR_FMC_HB DOUT L R/W | Low 32 bit word FMC HB DIO bus. The entire
DIO bus is updated when writing to this register.

0x01 MR_FMC HB DOUT H R/W | High 32 bit word FMC HB DIO bus

0xf00 0x02 MR_FMC HB OE L R/W | Output enable of the low 32-bit word FMC HB

DIO bus

0x03 MR FMC HB OE H R/W Output enable of the high 12-bit word FMC HB
DIO bus

Table 67. FMC HB DIO register

Cardsharp Framework Logic Manual

68

Cardsharp PL Memory Map

FMC Aurora 0 Registers (WB Device 16)

These are the registers for Aurora port 0.

WB Base | WB Register Simulation Define R/W Description
Address
0x00 MR_FMC_RIOO0 TEST CTRL R/W
0x01 MR_FMC RIO0 CTRL STAT R/W
0x1000 0x02 MR_FMC_RIO0_CMD_WR R/W
0x03 MR_FMC RIO0_CMD_RD R/W
others -

Table 68. FMC Aurora Port 0 Component Registers

FMC Aurora Port 0 Test Control (MR_FMC_RIO0_TEST_CTRL, Base+0x00)

These are controls and status for Aurora port 0.

Bits Field R/W Default | Description Modules
0 tx_test gen en R/W 0 =off Enable test generator for transmission.
1 rx_test chk en R/W 0= off Enable test generator for receive.
15:2 -
31:16 | test errors R Test error count

Table 69. FMC Aurora 0 Test Control Register

FMC Aurora Port 0 Control/Status (MR_FMC_RIO0_CTRL_STAT, Base+0x01)

These are controls and status for Aurora port 0.

Bits Field R/W Default | Description Modules
0 Gtxreset n R/W 0 = reset MGT reset, active low.
1 power_down R/W l=on MGT power down. (Turned off by default)
2 run R/W 0=off Aurora interface run.
5:3 loopback R/W 000 000 = Disable loopback
001 = Parallel
010 = Serial
6 error_clr R/W 0 =off Clear port error.
7 tx_channel en R/W 0 =off Enable transmit channel.
8 rx_channel en R/W 0 =off Enable receive channel.
22:9 -
23 hard_error R Hard error. Link lost due to serious disruption.
24 soft_error R Soft error such as bit error.

Cardsharp Framework Logic Manual

69

Cardsharp PL Memory Map

25 frame_error R Frame error from Aurora.

29:26 | lane up R Number of lane the Aurora port is using.
30 channel up R The Aurora channel is active.

31 pll_locked R PLL for MGT is locked.

Table 70. FMC Aurora 0 Control/Status Register

FMC Aurora Port 0 Sub-channel Write Port (MR_FMC_RIO0_CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.

Bits Field R/W Default | Description Modules
23:0 usr_cmd wr_data | R/W 0 Command write data.

29:24 | usr_ cmd wr addr | R/'W 0 Command write address.

30 usr_cmd wr_rdn R/W | O=write | Command read/write control.

0= write, 1 = read.

31 cmd _ch rdy R Command sub-channel is ready.

Table 71. FMC Aurora 0 Sub-channel Write Register

FMC Aurora Port 0 Sub-channel Read Port (MR_FMC_RIO0_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.

Bits Field R/W Default | Description Modules
23:0 usr_cmd rd data R Command read data.
29:24 | usr_cmd rd_addr | R Command read address.
30 -
31 usr_cmd rd vld R Command sub-channel is read data is valid.

Table 72. FMC Aurora 0 Sub-channel Read Register

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

FMC Aurora 1 Registers (WB Device 17)

These are the registers for Aurora port 1.

B Base WB Register Simulation Define R/W Description
Address
0x00 MR_FMC _RIO1_TEST CTRL R/W
0x01 MR_FMC RIO1 _CTRL STAT R/W
0x1100 0x02 MR_FMC _RIO1_CMD_WR R/W
0x03 MR_FMC RIO1_CMD_RD R/W
others -

Table 73. FMC Aurora Port 1 Component Registers

FMC Aurora Port 1 Test Control (MR_FMC_RIO1_TEST_CTRL, Base+0x00)

These are controls and status for Aurora port 0.

Bits Field R/W Default | Description Modules
0 tx_test gen en R/W 0 =off Enable test generator for transmission.
1 rx_test chk en R/W 0= off Enable test generator for receive.
15:2 -
31:16 | test errors R Test error count

Table 74. FMC Aurora 1 Test Control Register

FMC Aurora Port 1 Control/Status (MR_FMC_RIO1_CTRL_STAT, Base+0x01)

These are controls and status for Aurora port 0.

Bits Field R/W Default | Description Modules
0 Gtxreset n R/W 0 = reset MGT reset, active low.
1 power_down R/W l=on MGT power down. (Turned off by default)
2 run R/W 0=off Aurora interface run.
5:3 loopback R/W 000 000 = Disable loopback
001 = Parallel
010 = Serial
6 error_clr R/W 0 =off Clear port error.
7 tx_channel en R/W 0 =off Enable transmit channel.
8 rx_channel en R/W 0 =off Enable receive channel.
22:9 -
23 hard_error R Hard error. Link lost due to serious disruption.
24 soft_error R Soft error such as bit error.

Cardsharp Framework Logic Manual

7

Cardsharp PL Memory Map

25 frame_error R Frame error from Aurora.

29:26 | lane up R Number of lane the Aurora port is using.
30 channel up R The Aurora channel is active.

31 pll_locked R PLL for MGT is locked.

Table 75. FMC Aurora 1 Control/Status Register

FMC Aurora Port 1 Sub-channel Write Port (MR_FMC_RIO1_CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.

Bits Field R/W Default | Description Modules
23:0 usr_cmd wr_data | R/W 0 Command write data.

29:24 | usr_ cmd wr addr | R/'W 0 Command write address.

30 usr_cmd wr_rdn R/W | O=write | Command read/write control.

0= write, 1 = read.

31 cmd _ch rdy R Command sub-channel is ready.

Table 76. FMC Aurora 1 Sub-channel Write Register

FMC Aurora Port 1 Sub-channel Read Port (MR_FMC_RIO1_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.

Bits Field R/W Default | Description Modules
23:0 usr_cmd rd data R Command read data.
29:24 | usr_cmd rd_addr | R Command read address.
30 -
31 usr_cmd rd vld R Command sub-channel is read data is valid.

Table 77. FMC Aurora 1 Sub-channel Read Register

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

Revision History

The following table shows the revision history for this document.

Date

03/30/16

Version

1.1

Revision

Added Alerts registers to Peripheral Registers.

Table 78. Revision History

Cardsharp Framework Logic Manual

73

Cardsharp PL Memory Map

FMC Memory Map

FMC Registers

The memory map for the FMC components on the Wishbone Bus is shown below. Some components are common to all the
FMC modules, whereas others are card specific.

WB Base WB Simulation Define Description Module
Address Component
0xc00 FMC MR _FMC_IF FMC interface registers VPX, PEX, SBC
0xd00 FMC MR FMC LA DIO FMC LA DIO register VPX, PEX, DIO, SBC
FMC MR _FMC AFE CMN FMC AFE common registers ADC20, FMC500,
/MR_FMC CMN FMC1000, FMCServo
0xe00 FMC MR_FMC_HA_DIO FMC HA DIO register VPX, PEX, DIO, SBC
FMC MR_FMC_ADC FMC ADC registers ADC20, FMC500,
FMC1000, FMCServo
0xf00 FMC MR _FMC HB DIO FMC HB DIO register VPX, PEX, DIO, SBC
FMC MR_FMC _DAC FMC DAC registers DAC40, FMC500,
FMC1000, FMCServo
0x1000 FMC MR_FMC RIO0 Aurora core 0 within FMC interface VPX, PEX, SBC,
FMC_SFP, FMC_QSFP
0x1100 FMC MR _FMC RIOL1 Aurora core 1 within FMC interface VPX, PEX, SBC,
FMC_QSFP
0x1200 FMC MR FMC RIO2 Aurora core 2 within FMC interface PEX, SBC
0x1300 FMC2 MR _FMC2_IF FMC2 interface registers SBC
0x1400 FMC2 MR FMC2 LA DIO FMC2 LA DIO register SBC
FMC2 MR _FMC2 CMN FMC2 AFE common registers FMC310, FMC500
0x1500 FMC2 MR_FMC2 ADC FMC ADC registers FMC310, FMC500

Table 79. FMC Memory Map

Cardsharp Framework Logic Manual

74

Cardsharp PL Memory Map

FMC status and configuration Registers (WB Device 12)

These are the registers for FMC interface.

WB Base | WB Address | Register ‘ Simulation Define R/W Description

0x00 MR FMC CTRL R/W FMC control and status
0x01 MR _FMC I2C TIF R/W | FMC I2C interface
0x02 MR_FMC ID R FMC ID
0x03 MR FMC CLK CFG R/W FMC BIDIR clock control and status
0x04 MR_FMC CLKO M2C STS R FMC clock 0 m2c status

0xc00 0x05 MR_FMC CLKI M2C STS | R FMC clock 1 m2c status
0x06 MR FMC CLK2 M2C STS R FMC clock 2 m2c status
0x07 MR FMC CLK3 M2C STS R FMC clock 3 m2c status
0x08 MR_FMC _CLK2 C2M_STS R FMC clock 2 ¢2m status
0x09 MR _FMC CLK3 C2M STS R FMC clock 3 c2m status

Table 80. FMC status and configuration registers

FMC control register (MR_FMC_CTRL, Base+0x00)
These are FMC control and status bits.

Bits Field R/W Default | Description Modules
0 fmc present n R - FMC present (active low) VPX, PEX, SBC
1 fmc vadj en n o W 1 Enable FMC VADJ (active low) VPX, PEX, SBC
1 fmc vadj en n i R 1 Actual status of FMC VADIJ Enable pin (active low) VPX, PEX, SBC
2 fmc vadj forced R FMC VADI is forced by the hardware PEX, SBC
3 fmc vadj_pwr gd | R FMC VADIJ power good status PEX, SBC
6:4 fmc_vadj_1vl R Selected VADIJ level PEX, SBC
000 => 1.2V
001 =>1.35V
010 => 1.5V
011 =>1.8V
100 =>2.5V
111 - 101 =>N/A (spare)
15:7 -
16 fmc pg m2c n R - FMC power good M2C (active low) VPX, PEX, SBC
17 fmc pg c¢2m n R/W 1 FMC power good C2M (active low) VPX, PEX, SBC
31:18 -

Table 81. FMC control register

Cardsharp Framework Logic Manual 75

Cardsharp PL Memory Map

FMC VADJ setting procedure for PEX-COP boards:

1- Read fmc_present_n register. If set (= 0), skip to line 4.

2- Read fmc_vadj lvl and compare it with the required VADJ value read from the FMC module. If the two values match, skip
to line 4.

3- Set fmc_vadj_en n o to 'l' and report a mismatch between the carrier VADJ and the required FMC VADJ value and exit.
4- Set fmc _vadj en n o to '0' to turn on the VADJ power supply, wait for 100ms for the actual power supply enable pin to
assert, and read the fmc_vadj_en_n_i to make sure its not forced off by external devices. If forced off, report it, set

fmc vadj en n oto'l’, and exit.

5- Poll fmc_vadj pwr_gd register till it sets and report a VADJ power good status message. Timeout if it doesn't set within 2

seconds, set fmc_vadj en n_o to'l', and report a faulty VADJ power supply.

FMC 12C interface (MR_FMC_I2C_IF, Base+0x01)
This is the I2C interface to the FMC.

Bits Field R/W Default | Description Modules
0 fmc_sdo R/W - FMC 12C data out VPX, PEX, SBC
1 fmc_scl R/W - FMC 12C clock VPX, PEX, SBC
2 fme_sdi R - FMC 12C data in VPX, PEX, SBC
3 - R FMC 12C clock readback VPX, PEX, SBC
31:4 -

Table 82. FMC I2C interface

FMC ID (MR_FMC_ID, Base+0x2)
This register has the FMC ID.

Bits Field R/W Default | Description Modules

31:0 | fme id R FMC ID VPX, PEX, SBC

Table 83. FMC ID

Cardsharp Framework Logic Manual 76

Cardsharp PL Memory Map

FMC BIDIR Clock control and status (MR_FMC_CLK _CFG, Base+0x3)
This register has the FMC BIDIR clock control and status bits.

Bits Field R/W | Default | Description Modules
0 fme clk dir R FMC BIDIR clock direction (0=M2C, 1=C2M) PEX, SBC
1 fmc clk 2 3 en R/W 0 FMC clock 2 & 3 driver enable PEX
2 fme_clk2_sel R/W 0 FMC clock 2 source select 0=DIFF, 1=SE PEX
3 fmc _clk3 sel R/W 0 FMC clock 3 source select 0=DIFF, 1=SE PEX
31:4 -

Table 84. FMC BIDIR Clock Register
FMC Clock0 m2c¢ status (MR _FMC CLKO0 M2C STS, Base+0x4)

Bits Field R/W | Default | Description Modules
9:0 fmc_clk0 m2c freq R FMC clock0 M2C frequency in MHz PEX, SBC
31:10 | -

Table 85. FMC Clock0 m2c¢ Register
FMC Clockl m2c status (MR FMC CLK1 M2C _STS, Baset+0x5)

Bits Field R/W | Default | Description Modules
9:0 fmc _clkl _m2c_freq R FMC clockl M2C frequency in MHz PEX, SBC
31:10 | -

Table 86. FMC Clockl m2c¢ Register
FMC Clock2 m2c status (MR_FMC_CLK2 M2C_STS, Baset+0x6)

Bits Field R/W | Default | Description Modules
9:0 fmc_clk2 m2c_freq R FMC clock2 M2C frequency in MHz PEX, SBC
31:10 | -

Table 87. FMC Clock2 m2c Register
FMC Clock3 m2c¢ status (MR _FMC_CLK3 M2C STS, Base+0x7)

Bits Field R/W | Default | Description Modules
9:0 fmc clk3 m2c_freq R FMC clock3 M2C frequency in MHz PEX, SBC
31:10 | -

Table 88. FMC Clock3 m2c Register
FMC Clock2 c2m status (MR FMC CLK2 C2M_STS, Base+0x8)

Bits Field R/W | Default | Description Modules
9:0 fmc_clk2 c2m_freq R FMC clock2 C2M frequency in MHz PEX
31:10 | -

Cardsharp Framework Logic Manual

77

Cardsharp PL Memory Map

Table 89. FMC Clock2 c¢2m Register

FMC Clock3 c2m status (MR FMC CLK3 C2M_STS, Base+0x9)

Bits Field R/W | Default | Description

Modules

9:0 fme clk3 c2m_freq R FMC clock3 C2M frequency in MHz

PEX

31:10 -

Table 90. FMC Clock3 c¢2m Register

Cardsharp Framework Logic Manual

78

Cardsharp PL Memory Map

FMC DIO Registers

The single ended Digital I/O registers are concatenated as follows: positive on even bits, negative on odd bits, ie.

fmc _la p[33:0] are on even bits, fmc_la n[33:0] on odd bits.

For example:
Bits[31:6] | Bit5 Bit4 Bit3 Bit2 Bitl Bit0
fmc la n[2] | fmc la p[2] | fmc la n[1] | fmc la p[1] | fmc la n[0] | fmc la p[0]
FMC LA DIO register (WB Device 13)
These are the registers for FMC LA DIO bus.
WB Base | WB Register Simulation Define R/W Description
Address
0x00 MR _FMC LA DOUT L R/W | Lower 32 bit word of the FMC LA DIO bus. The
entire DIO bus is updated when writing to this
register.
0x01 MR_FMC LA DOUT H R/W | Middle 32 bit word of the FMC LA DIO bus
0x02 MR _FMC LA DOUT V R/W | Upper 2 bit word of the FMC LA DIO bus
0xd00 0x04 MR _FMC LA OE L R/W | Output enable of the lower 32 bit word of the FMC
LA DIO bus
0x05 MR _FMC LA OE H R/W | Output enable of the middle 32 bit word of the
FMC LA DIO bus
0x06 MR FMC LA OE V R/W | Output enable of the upper 2 bit word of the FMC
LA DIO bus
Table 91. FMC LA DIO register
FMC HA DIO register (WB Device 14)
These are the registers for FMC HA DIO bus.
WB Base | WB Register Simulation Define R/W Description
Address
0x00 MR _FMC HA DOUT L R/W | Low 32 bit word FMC HA DIO bus. The entire
DIO bus is updated when writing to this register.
0x01 MR _FMC HA DOUT H R/W | High 32 bit word FMC HA DIO bus
0xe00 0x02 MR _FMC HA OE L R/W | Output enable of the low 32-bit word FMC HA
DIO bus
0x03 MR _FMC HA OE H R/W Output enable of the high 16-bit word FMC HA
DIO bus

Cardsharp Framework Logic Manual

79

Cardsharp PL Memory Map

Table 92. FMC HA DIO register

FMC HB DIO register (WB Device 15)
These are the registers for FMC HB DIO bus.

WB Base | WB Register Simulation Define R/W Description
Address

0x00 MR_FMC_HB DOUT L R/W | Low 32 bit word FMC HB DIO bus. The entire
DIO bus is updated when writing to this register.

0x01 MR_FMC HB DOUT H R/W | High 32 bit word FMC HB DIO bus

0xf00 0x02 MR_FMC HB OE L R/W | Output enable of the low 32-bit word FMC HB

DIO bus

0x03 MR FMC HB OE H R/W Output enable of the high 12-bit word FMC HB
DIO bus

Table 93. FMC HB DIO register

Cardsharp Framework Logic Manual

80

Cardsharp PL Memory Map

FMC AFE

FMC AFE Common Registers (WB Device 13)

These are the FMC common Analog Front End control and configuration registers.

WB Base WB Register | Simulation Define R/W Description | Modules
Address
Clock Registers
0xD00 0x0 MR_FMC PLL CTRL R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000
0x1 MR_FMC _PLL_SPI R/W ADC20, FMC110, FMC310,
FMC500, FMC1000
MR _FMC PLL UW FMC250
0x2 MR_FMC_VCXO R/W FMC500
0x3 MR_FMC CLK_CTRL R/W
0x4 -
0x5
AFE Common Registers
0x6 MR_FMC_TEST_CTRL R/W ADC20, FMC250, FMC310,
FMC500, FMC1000
0x7 MR_FMC_SW_TRIG R/W ADC20, FMC250, FMC310,
FMC500, FMC1000, FMCServo
0x8 MR_FMC_EXT SYNC_CFG | R/W ADC20, FMC250, FMC310,
MR_FMC_EXT TRIG_SEL EMC500, FMCServo
0x9 MR_FMC_EXT _CLK_CFG R/W FMC1000
O0xA MR_FMC _EXT SYNC _CFG | R/W FMC1000
0xB-
OxF
Table 94. FMC AFE Common Registers
PLL Control (MR_FMC_PLL_CTRL, Base+0x0)
This register has the PLL controls and status.
Bits Field R/W | Defau | Description Modules
It
0 pll_pwr_down n R/W 0 PLL power down. PLL is from 0.5 to ADC20
2W when operating. Allow 5 min warm-
up time when device is powered up for
best performance. 0 = power off, 1 =
power on
1 pll_reset R/W 0 PLL reset FMC310, FMC500, FMC1000
2 pll_mode R/W 0 PLL configuration mode.
'0' = SPI configuration
'l' =load from default registers
3 fpga pll_clkin_stoppe R FPGA PLL input clock stopped FMC110

Cardsharp Framework Logic Manual

81

Cardsharp PL Memory Map

d
4 pll_lock R PLL lock indicator, '1' = locked. ADC20
4 fpga pll lock R FPGA PLL locked FMC110
5 fpga pll_rst R/W 0 FPGA PLL reset (active high) FMCI110
5 pll_clk sel(0) R/W ‘0’ 0=PRI, 1 =SEC

pll_ref sel R/W '0' 0 = output of pll_clk sel mux FMCServo

1 =10 MHz oscillator

6 pll_clk sel(1) R/W

pll_clk sel R/W '0' 0=rclk2 bidir FMCServo

1 =ext clk
7 pll_sync R/W 0 pll_sync ADC20, FMC250, FMC500
7 pll_syncl R/W pll_sync FMCServo
8 pll_status_ho R PLL programmable status pin FMC250
8 pll_sync2 R/W pll_sync FMCServo
9 pll_status_1d R PLL programmable status pin FMC250
10 pll_status_clkinO R PLL programmable status pin FMC250
11 pll_status_clkinl R PLL programmable status pin FMC250
12 pll_gpo R PLL general purpose output FMC310, FMC500, FMC1000
13 pll_status_1d1 R PLL programmable status pin FMC310, FMC500, FMC1000
13 pll_status R/W PLL status pin FMCServo
14 pll_status 1d2 R PLL programmable status pin FMC310, FMC500, FMC1000
15 pll _clkin_sel0 o W PLL clkin selector (bit 0) FMC310, FMC1000
15 pll_clkin_sel0_i R PLL programmable status pin FMC310
15 pll_clkin_sel0 R/W PLL programmable status pin FMC500
16 pll _clkin_sell o W PLL clkin selector (bit 1) FMC310, FMC1000
16 pll_clkin_sell i R PLL programmable status pin FMC310
16 pll_clkin_sell R/W PLL programmable status pin FMC500
17 pll_clkin_sel0_dir R/W PLL clkin_sel0 direction (1=out, 0=in) FMC310, FMC1000
18 pll_clkin_sell_dir R/W PLL clkin_sell direction (1=out, 0=in) FMC310, FMC1000
29:19 | - unused
30 pll_uw/spi_rdy R PLL uw/spi ready ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo

31 pll_uw/spi_rdata_vali R PLL uw/spi data valid ADC20, FMC250, FMC110,

d

FMC310, FMC500, FMC1000,
FMCServo

Cardsharp Framework Logic Manual

82

Cardsharp PL Memory Map

Table 95. FMC PLL Control Register

Cardsharp Framework Logic Manual

83

Cardsharp PL Memory Map

PLL SPI Data (MR_FMC_PLL_SPI, Base+0x1)

This is the interface to the PLL SPI port.

Bits Field R/W | Default | Description Modules
3:0 pll_spi_addr R/W 0x0 PLL SPI address. ADC20
31:4 pll_spi_wdata(W) R/W | 0x000 | PLL SPIdata. The pll_spi_rdy bit must be checked before ADC20

pll_spi_rdata(R) 0000 writing to this register. Reads from this register return the SPI
T read data from a read request.
Table 96. FMC PLL SPI Data Register
PLL uWire Data (MR_FMC_PLL_UW, Base+0x1)
This is the interface to the PLL SPI port for FMC SPL

Bits Field R/W | Default | Description Modules
4:0 pll_uw_addr R/W 0x0 PLL uWire address FMC250
31:5 pll_uw_wdata(W) R/W | 0x000 | PLL SPIdata. The pll_spi_rdy bit must be checked before FMC250

pll_uw rdata(R) 0000 writing to this register. Reads from this register return the SPI
- read data from a read request.

Table 97. FMC PLL SPI Data Register

PLL SPI Data (MR_FMC_PLL_SPI, Base+0x1)

This is the interface to the PLL SPI port.

Bits Field R/W | Default | Description Modules
9:0 pll_spi_addr R/W 0x0 PLL SPI address. FMCI110, FMCServo
10 pll_sel R/W PLL select FMCServo
11 unused
12 pll_spi rd wrn R/W SPI read/write select 1=read/0=write FMCI110, FMCServo
15:13 | unused
23:16 | pll_spi wdata R/W SPI write data FMC110, FMCServo
31:24 | pll_spi_rdata R SPI read data FMCI110, FMCServo

Table 98. FMC PLL uWire/SPI Data Register

PLL SPI Data (MR_FMC_PLL_SPI, Base+0x1)

This is the interface to the PLL SPI port.

Bits Field R/W | Default | Description Modules
12:0 pll_spi_addr R/W 0x0 PLL SPI address. FMC310, FMC500,
FMC1000
14:13 | unused
15 pll_spi rd wrn R/W SPI read/write select 1=read/0=write FMC310, FMC500,
FMC1000
23:16 | pll_spi_wdata R/W SPI write data FMC310, FMC500,

Cardsharp Framework Logic Manual

84

Cardsharp PL Memory Map

] T i \

31:24 | pll_spi_rdata R SPI read data FMC310, FMC500,

FMC1000
Table 99. FMC PLL SPI Data Register
VCXO Control (MR_FMC_VCXO, Base+0x2)
This is the interface to the VCXO controls.

Bits Field R/W | Default | Description Modules
3:0
4 VCX0 _pWrI_en R/W VCXO power enable FMC250, FMC500
7:5
8 vexo pwr_gd R VCXO power good FMC500
31:9

Table 100. FMC VCXO control Register
CPLD Status (MR_FMC_CPLD_STAT, Base+0x4)
This register has the CPLD SPI status.

Bits Field R/W | Default | Description Modules
29:0 - unused
30 cpld_spi_rdy R CPLD spi ready FMC110
31 cpld spi_rdata valid | R CPLD spi data valid FMC110

Table 101. FMC CPLD Status Register
CPLD SPI Data (MR_FMC_CPLD_SPI, Base+0x5)
This is the interface to the CPLD SPI port.

Bits Field R/W | Default | Description Modules
1:0 cpld spi_addr R/W 0x0 CPLD SPI address. FMCI110
11:2 unused
12 cpld_spi_rd_wrn R/W CPLD SPI read/write select 1=read/0=write FMC110
15:13 | unused
23:16 | cpld_spi_wdata R/W CPLD SPI write data FMC110
31:24 | cpld _spi_rdata R 0x000 | CPLD SPI read data FMCI110

0000
Table 102. FMC CPLD SPI Data Register
FMC Test Controls (MR_FMC_TEST_CTRL, Base+0x6)
This register sets the test mode for different components in the FMC.

Bits Field R/W Default | Description Modules

0 adc_test en R/W 0 Enable ADC test generator. 0 = off, 1 = on ADC20, FMC250,

Cardsharp Framework Logic Manual

85

Cardsharp PL Memory Map

FMC110, FMC310,
FMC500, FMC1000,

FMCServo

3:1 -

4 adc_test mode R/W 0 ADC test mode: 0 = unpaced sawtooth, 1 =paced | ADC20, FMC250,
sawtooth FMC110, FMC310,

FMC500, FMC1000,
FMCServo

15:5 -

16 dac_test en R/W 0 Enable DAC test generator. 0 = off, 1 =on FMC110, FMC250,
FMC500, FMC1000,
FMCServo

19:17 -

22:20 dac_test mode R/W 0 DAC test mode: 0 =ramp, 1 = sine, 2 = dac test FMC110, FMC250,
pattern, 3 = zeros, 4 = max positive, 5 = max FMC500, FMC1000,
negative, 6 = alternating 1's and 0's, 7= FMCServo
alternating two 1's and two 0's

31:23 -

Table 103. FMC Test Controls Register
FMC Software Trigger Controls (MR_FMC_SW_TRIG, Base+0x7)
This register enables software triggering for different components in the FMC.
Bits Field R/W Default | Description Modules
0 adc_sw_trig R/W 0 ADC software trigger. 0 = off, 1 =on ADC20, FMC250, FMCI110,
FMC310, FMC500, FMC1000,
FMCServo
15:1 -
16 dac_sw_trig R/W 0 DAC software trigger. 0 = off, 1 =on FMCI110, FMC250, FMC500,
FMC1000, FMCServo
31:17 -

Table 104. FMC Software Trigger

Controls Register

FMC External Sync Select (MR _FMC_EXT SYNC_CFG, Base+0x8)

Bits Field R/W Default | Description Modules

0 ext_sync_sel R/W 0 External sync select (O=front panel, 1=FMC) ADC20, FMC250,
FMC310, FMC500,
FMCServo

31:1 unused

Table 105. FMC External Sync Select Register
FMC External Trigger Select (MR_FMC _EXT TRIG_SEL, Base+0x8)
Bits Field R/W Default | Description Modules

Cardsharp Framework Logic Manual

86

Cardsharp PL Memory Map

0 ext_trig_sel R/W 0 External trigegr select (0=clk3_bidir, 1=front panel) FMCServo
31:1 unused
Table 106. FMC External Sync Select Register
FMC External Clock Configuration (MR FMC EXT_CLK CFG, Baset+0x9)

Bits Field R/W Default | Description Modules
11:0 clk mux_cfg data R/W 0 Clock mux configuration data FMC1000
30:12 unused
31 clk mux_cfg rdy R Clock mux configuration ready FMC1000

Table 107. FMC External Clock Configuration Register
FMC External Sync Configuration (MR_FMC_EXT SYNC_CFG, Base+0xA)

Bits Field R/W Default | Description Modules
11:0 sy _mux_cfg data R/W 0 sy_mux configuration data FMC1000
30:12 | unused
31 sy mux_cfg rdy R sy_mux configuration ready FMC1000

Table 108. FMC External Sync Configuration Register

Cardsharp Framework Logic Manual

87

Cardsharp PL Memory Map

FMC ADC Registers (WB Device 14)

These are the registers for the FMC ADC control and configuration.

WB Base WB Register | Simulation Define R/W Description Modules
Address
ADC Common Registers
0xE00 0x0 MR _FMC ADC ENI1 R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo
0x1 MR FMC ADC EN2 R/W
0x2 MR_FMC ADC PDNI1 R/W FMC310, FMC500, FMC1000
0x3 MR _FMC ADC PDN2 R/W
0x4 MR_FMC ADC TRGR R/W ADC20, FMC250, FMCI110,
FMC310, FMC500, FMC1000,
FMCServo
0x5 MR _FMC ADC DECI R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo
0x6 MR_FMC_ADC_PRI_TRGR R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo
0x7 MR_FMC ADC PRI R/W ADC20, FMC250, FMCI110,
FMC310, FMC500, FMC1000,
FMCServo
0x8 MR _FMC ADC PRI PARAM R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo
0x9 MR_FMC_ADC_PRI_WIDTH R/W ADC20, FMC250, FMC110,
FMC310, FMC500, FMC1000,
FMCServo
OxA - -
OxF
ADC Specific Registers
0x10 MR_FMC ADC SPI EN R/W ADC20, FMC110, FMC310
MR _FMC ADCO _SPI CTRL R/W FMC250
0x11 MR _FMC ADC SPI CTRL R/W ADC20, FMC110, FMC310,
FMC500, FMC1000
MR _FMC ADCO SPI_STAT R/W FMC250
0x12 MR _FMC ADC SPI STAT R/W ADC20, FMC110, FMC310,
FMC500, FMC1000
MR FMC ADC1 SPI CTRL R/W FMC250
0x13 MR _FMC ADC CAL R/W ADC20
MR _FMC ADCI _SPI _STAT R/W FMC250
0x14 MR FMC VGA R/W ADC20
MR _FMC ADC PHY CAL R/W FMC250, FMC500, FMC1000
0x15 MR _FMC ADC CAL _STS R/W FMC500
0x16 -
0x17 -
0x18 MR _FMC ADC PHY CAL R/W FMC110

Cardsharp Framework Logic Manual

88

Cardsharp PL Memory Map

WB Base WB Register | Simulation Define R/W Description Modules
Address
0x19 MR_FMC ADC AMP_CFG R/W FMC110, FMC1000
0x1A MR_FMC ADC CTRL R/W FMCServo
0x1B MR_FMC _ADC _FIFO_CTRL R FMCServo
0x1C MR_FMC ADC FIFO_THRS R/W FMCServo
0x1D MR_FMC _ADC_FIFO_DATA R FMCServo
0x1E MR _FMC ADC GAIN CTRL R/W FMCServo
0x1F -
ADC VITA Packet Configuration and Timestamping
0x20 MR _FMC ADC TS LD R/W ADC20, FMC250, FMCI110,
FMC310, FMC500, FMC1000
0x21 MR_FMC ADC TS CTRL R/W ADC20, FMC250, FMCI110,
FMC310, FMC500, FMC1000
0x22 MR_FMC ADC VITA CTRL R/W ADC20, FMC250, FMCI110,
FMC310, FMC500
0x23 - -
0x2F
ADC VITA Frame Sizes and Stream [Ds
0x30 - MR _FMC ADC VFRAME R/W ADC20, FMC250, FMCI110,
0x34 FMC310, FMC500, FMC1000
0x35 - -
0x3F
0x40 - MR_FMC ADC SID R/W ADC20, FMC250, FMCI110,
0x44 FMC310, FMC500, FMC1000
0x45 - -
0x4F
ADC Gain Registers
0x50 - MR_FMC_ADC_GAIN R/W ADC20, FMC250, FMCI110,
0x63 FMC500, FMC1000,
FMCServo
0x64 - -
0x8F
ADC Offset Registers
0x90 - MR_FMC ADC OFST R/W ADC20, FMC250, FMCI110,
0xA3 FMC500, FMC1000,
FMCServo
0xA4 -
0xCF

Table 109. FMC ADC Component Registers

ADC Low Channel Enables MR_FMC_ADC_ENI1, Base+0x0)

This is the lower A/D 32 channel enable register.

Bits

Field

R/W

Default | Description

Modules

31:0

adc _ch_en

R/W 0x0000 A/D channel enables.

ADC20 =20, FMC250=2, FMC110 =2, FMC310 =
4, FMC500 = 2, FMC1000 = 2, FMCServo = 8

Cardsharp Framework Logic Manual

89

Cardsharp PL Memory Map

Table 110. FMC Low ADC Channel Enables Register

ADC High Channel Enables (MR_FMC_ADC_EN2, Base+0x1)
This is the higher A/D 32 channel enable register.

Bits

Field

R/W

Default

Description

Modules

31:0

adc_ch_en

R/W

0x0000

A/D channel enables.

Table 111. FMC High ADC Channel Enables Register

ADC Low Power Enables (MR_FMC_ADC_PDN1, Base+0x2)
This is the lower A/D 32 power enable register.

Bits

Field

R/W

Default

Description

Modules

31:0

adc_pwr_en

R/W

0x0000

A/D power enables.

FMC250=2, FMC310 =4, FMC500 = 2, FMC1000 =2

Table 112. FMC Low ADC Power Enables Register

ADC High Power Enables (MR_FMC_ADC_PDN2, Base+0x3)
This is the higher A/D 32 power enable register.

Bits Field R/W Default | Description Modules
31:0 adc_pwr_en R/W 0x0000 A/D power enables.
Table 113. FMC High ADC Power Enables Register
FMC ADC Trigger Controls (MR_FMC_ADC_TRGR, Base+0x4)
This register configures the A/D trigger modes.
Bits Field R/W Default | Description Modules
23:0 adc_window_size R/W 0 ADC trigger window size. This is the number of points, after | All
decimation, that make up one data window.
28:24
31:29 adc_trigger mode R/W “000” ADC trigger modes. All
Bit29 = rising edge (1) or level (0)
Bit30 = framed (1) or unframed (0)
Bit31 = external (1) or software (0)
Table 114. FMC ADC Trigger Controls Register
ADC Decimation (MR_FMC_ADC_DECI, Base+0x5)
This register specifies the decimation ratio for the A/D triggering.
Bits Field R/W Default | Description Modules
11:0 adc_decimation R/W 0 Decimation count for A/D samples. Decimation keeps 1 point | All
every N specified by this field.
31:12 | -

Table 115. FMC ADC Decimation Ratio Register

ADC PRI trigger enable register (MR_FMC_ADC_PRI_TRGR, Base+0x6)

This register is the ADC PRI trigger control register

Cardsharp Framework Logic Manual

90

Cardsharp PL Memory Map

Bits Field R/W Default | Description Modules
0 en_pri_trig R/W Enable PRI trigger mode All
1 stop_pri R/W Stop PRI triggering All
2 en_num_pri R/W enable finite number of PRI frames All
3 retrig_num_pri R/W re-arm after number of PRI frames All
7:4 -
8 pri_busy R PRI mode is running when this bit is 1 All
15:9 -
31:16 num_pri R/W number of PRI frames All
Table 116. FMC ADC PRI trigger enable Register
ADC PRI interval configuration register (MR_FMC_ADC_PRI, Base+0x7)
This register is used to set the pulse repetition interval
Bits Field R/W Default | Description Modules
31:0 pri R/W Pulse repetition interval All
Table 117. FMC ADC PRI interval configuration Register
ADC PRI trigger parameters register (MR_FMC_ADC_PRI_PARAM, Base+0x8)
This register configures the ADC PRI trigger parameters
Bits Field R/W Default | Description Modules
23:0 trig_cycle delay R/W Delay between trigger and sof All
31:24 -

Table 118. FMC ADC PRI trigger parameters Register

ADC PRI capture window configuration register (MR_FMC_ADC_PRI_WIDTH, Base+0x9)

This register configures the ADC PRI trigger parameters FIFO. Writing to this register generates a write strobe to the ADC

PRI parameters FIFO which causes the width and cycle delay parameters to be written to that FIFO.

Bits Field R/W Default | Description Modules
23:0 trig_width R/W trigger width All
31:24 -
Table 119. FMC ADC PRI capture window configuration Register
FMC ADC device SPI enable register (MR_FMC_ADC_SPI_EN, Base+0x10)
This register is used to enable the ADC device that receives the SPI command.
Bits Field R/W Default | Description Modules
31:0 ad_spi_dev_en R/W ADC device SPI enable (1 bit per device). When | ADC20 =5, FMC110 =2,

a certain device's enable bit is set, then that device
will receive a SPI command when the SPI
registers are accessed.

FMC310=2

Cardsharp Framework Logic Manual

91

Cardsharp PL Memory Map

Table 120. FMC ADC device SPI enable Register

FMC ADCO SPI control register (MR_FMC_ADCO0_SPI_CTRL, Base+0x10)
This is the FMC250 ADCO SPI control register.

Bits Field R/W Default | Description Modules
7:0 ad0_spi_wdata R/W ADCO SPI write data FMC250
15:8 - Unused
23:16 ad0_spi_addr R/W ADCO SPI address FMC250
2724 | - Unused
28 ad0 spi_rd wrn R/W ADCO SPI read/write enable FMC250
31:29 - Unused

Table 121. FMC250 ADCO0 device SPI control register

FMC ADC SPI Control (MR_FMC_ADC_SPI_CTRL, Base+0x11)
This is the A/D devices SPI port writes.

Bits Field R/W Default | Description Modules

7:0 adc_spi_wdata R/W 0x00 ADC SPI write data ADC20, FMC110, FMC310,

FMC500, FMC1000

15:8 -

27:16 adc_spi_addr R/W 0 ADC SPI address ADC20, FMCI110, FMC310
30:16 adc_spi_addr R/W 0 ADC SPI address FMC500, FMC1000

28 adc_spi rd wrn R/W 0 ADC SPI read/write bit. 0= write, 1 =read | ADC20, FMC110, FMC310
31 adc_spi_rd_wrn R/W 0 ADC SPI read/write bit. 0= write, 1 =read |FMC500, FMC1000

31:29 | -

Table 122. FMC ADC SPI Control Register

FMC ADCO SPI status register (MR_FMC_ADCO0_SPI_STAT, Base+0x11)
This is the FMC250 ADCO SPI status register.

Bits Field R/W Default | Description Modules
7:0 ad0_spi rdata R 0x00 ADCO SPI read data FMC250
29:8 - Unused
30 ad0 _spi_rdy R ADCO SPI ready FMC250
31 ad0_spi_rdata valid R ADCO SPI data valid FMC250

Table 123. FMC250 ADC SPI Stauts Register

FMC ADC SPI Status (MR_FMC_ADC_SPI_STAT, Base+0x12)
This is the A/D devices SPI port reads.

Bits Field R/W Default | Description Modules

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

7:0 adc_spi_rdata R ADC SPI read data ADC20, FMC110, FMC310,
FMC500, FMC1000

29:8 -

30 adc_spi_rdy R ADC SPI is ready for use. ADC20, FMC110, FMC310,
FMC500, FMC1000

31 adc_spi_rdata_valid R ADC SPI read data is valid. ADC20, FMC110, FMC310,
FMC500, FMC1000

Table 124. FMC ADC SPI Status Register

FMC ADCO SPI control register (MR_FMC_ADC1_SPI_CTRL, Base+0x12)
This FMC250 ADC1 SPI control register.

Bits Field R/W Default | Description Modules
7:0 adl spi_wdata R/W ADC1 SPI write data FMC250
15:8 - Unused
23:16 adl spi_addr R/W ADC1 SPI address FMC250
2724 | - Unused
28 adl spi rd wrn R/W ADCI1 SPI read/write enable FMC250
31:29 - Unused

Table 125. FMC250 ADC device SPI control register
FMC ADC calibration Control and Status (MR_FMC_ADC_CAL, Baset+0x13)
This is the status register for the ADC calibration.
Bits Field R/W Default | Description Modules
0 cal_start R/W Start ADC calibration (should be toggled after programming ADC20
the ADC registers)
15:1
20:16 cal_done R ADC device calibration done ADC20
31:21 -
Table 126. FMC ADC calibration control and status register
FMC ADC1 SPI status register (MR_FMC_ADC1_SPI_STAT, Base+0x13)
This is the FMC250 ADC1 SPI status register.

Bits Field R/W Default | Description Modules
7:0 adl _spi_rdata R 0x00 ADCI SPI read data FMC250
29:8 - Unused
30 adl_spi_rdy R ADCI1 SPI ready FMC250
31 adl _spi_rdata_valid ADCI1 SPI data valid FMC250

Cardsharp Framework Logic Manual

93

Cardsharp PL Memory Map

Table 127. FMC250 ADC SPI Stauts Register

FMC VGA Controls (MR_FMC_VGA, Baset+0x14)
This is the interface to the VGA. The VGA 12C port is a bit-banged interface through this register.

Bits Field R/W Default | Description Modules

0 vga_sdo R/W 0 VGA 12C data output bit. ADC20
1 vga scl R/W 0 VGA 12C clock output bit. ADC20
2 vga_sdi R - VGA I2C data input bit. ADC20
3 vga_scl R - VGA 12C port clock readback. ADC20
7:4 -

8 vga_ldac n R/W 0 Load VGA DAC latch enable (active low). ADC20
31:9 -

Table 128. FMC VGA Controls Register

FMC ADC PHY Calibration register (MR_FMC_ADC_PHY_CAL, Base+0x14)
This is the adc phy calibration register.

Bits Field R/W Default | Description Modules
1:0 adc_rst R/W ADC reset FMC250
8 adc_pwr gd R ADC power good FMC500, FMC1000
13:12 adc_phy_cal start R/W Start ADC PHY calibration (write 1 then 0) FMC500
14 adc lat cal start R/W Enable latency calibration FMC500
15 adc_en data fmt R/W Enable data format module FMC500
17:16 adc_cal done R ADC calibration status FMC250
17:16 | adc phy cal done R ADC PHY calibration status FMC500
18 adc lat cal done R ADC latency calibration done FMC500
20 adc_clk_stopped R ADC clock stopped FMC250
21 adc_clk locked R ADC clock locked FMC250
31:18 - Unused

Table 129. FMC ADC PHY Calibration register

FMC ADC PHY Calibration status register (MR_FMC_ADC_CAL_STS, Base+0x15)
This is the adc phy calibration status register.

Bits Field R/W Default | Description Modules
14:0 adc_call_sts R ADC levell calibration status FMC500
30:16 | adc cal2 sts R ADC level2 calibration status FMC500

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

Table 130. FMC ADC PHY Calibration status register

FMC ADC PHY Calibration register (MR_FMC_ADC_PHY_CAL, Base+0x18)
This is the FMC110 adc phy calibration register.

Bits Field R/W Default | Description Modules
0 adc_phy init R/W Initialize ADC PHY of the selected ADC channel FMCI110
1:7 - Unused
8 sel_adc_ch R/W Select ADC channel to forward calibration control and status FMC110
11:9 - Unused
12 skip_adc phy cal R/W Skip ADC PHY calibration FMC110
13 - Unused
26:14 adc_eye aligned R ADC data eye is aligned FMC110
27 adc_prbs locked R local PRBS is locked to ADC bit0 FMC110
28 adc_prbs_aligned R ADC PRBS data sequence is aligned FMC110
29 adc phy rdy R ADC PHY is calibrated and ready FMC110
30 adc_clka_stopped R ADC output clock stopped FMCI110
31 adc_clka_locked R ADC output clock locked FMC110

Table 131. FMC110 ADC PHY Calibration register
FMC ADC Amplitude Configuration (MR FMC _ADC _AMP_CFG, Base+0x19)

Bits Field R/W Default | Description Modules
1:0 adc_multx16_en R/W 0 Multiply ADC output by 16 FMC110
0 adc_multx4 _en R/W 0 Multiply ADC output by 4 FMC1000
31:2

Table 132. FMC ADC Amplitude Configuration Register
ADC Control MR_FMC_ADC_CTRL, Baset+0x1A)
ADC control register

Bits Field R/W Default | Description Modules

0 -
1 adc_stby R/W ADC standby FMCServo
2 adc_asleep R/W ADC sleep FMCServo
31:3 -
Table 133. FMC ADC Control Register
FMC Servo ADC Fifo Control (MR _FMC ADC FIFO CTRL, Baset+0x1B)

Bits Field R/W | Default | Description Modules

10:0 adc_ofifo_data count R ADC ofifo data count FMCServo

Cardsharp Framework Logic Manual

95

Cardsharp PL Memory Map

27:11 | -
28 adc_ofifo_prog_empty R ADC ofifo almost empty FMCServo
29 adc_ofifo_empty R ADC ofifo empty FMCServo
30 adc_ofifo_prog_full R ADC ofifo almost full FMCServo
31 adc_ofifo_full ADC ofifo full FMCServo
Table 134. FMC Servo ADC FIFO Control
FMC Servo ADC FIFO Threshold (MR FMC ADC FIFO _THRS, Baset+0x1C)

Bits Field R/W Default | Description Modules
9:0 adc_ofifo_empty_thresh | R/W ADC ofifo almost empty threshold FMCServo
15:10 | -

25:16 | adc ofifo full thresh R/W ADC ofifo almost full threshold FMCServo
31:26 | -
Table 135. FMC Servo ADC FIFO Threshold
FMC Servo ADC FIFO Data (MR _FMC_ADC FIFO DATA, Baset+0x1D)

Bits Field R/W Default | Description Modules
15:0 adc data R ADC ofifo data FMCServo
30:16 | -

31 Valid R ADC data valid when this bit is 1 FMCServo
Table 136. FMC Servo ADC FIFO Data
FMC Servo Gain Amp Control (MR_FMC_ADC_GAIN_CTRL, Baset+0x1E)

Bits Field R/W Default | Description Modules
2:0 gain_amp_sel R/W Gain amp sel FMCServo
3 gain_amp_wr R/W Gain amp wr FMCServo
5:4 gain_amp_setting R/W Gain amp setting FMCServo
31:6 -

Table 137. FMC Servo Gain Amp Control
FMC ADC Timestamp Load (MR_FMC_ADC_TS_LD, Base+0x20)
This is the VITA packet timestamp load.

Bits Field R/W Default | Description Modules

31:0 ts_initial R/W 0 VITA timestamp load initial value All

Table 138. FMC ADC Timestamp Load Register

Cardsharp Framework Logic Manual

96

Cardsharp PL Memory Map

FMC ADC Timestamp Control (MR_FMC_ADC_TS_CTRL, Base+0x21)
This is the VITA packet timestamp load and control.

Bits Field R/W Default | Description Modules
0 ts_arm R/W 0 VITA timestamp arm. Set this bit to initiate timestamp All

counting on rising edge of PPS when in PPS mode.

1 ts_pps_mode R/W 0 VITA timestamp PPS mode. All
1 = pps mode
0 = internal timer

3:2 tsi R/W 11 VITA timestamp Integer-seconds mode All
00 = No Integer-seconds Timestamp field included (Not
supported)

01 = UTC: seconds elapsed since January 1, 1970 GMT.
10 = GPS: seconds elapsed since January 6, 1980 GMT.
11 = Other: seconds elapsed since some documented start
time.

5:4 tsf R/W 01 VITA timestamp Fractional-seconds mode All
00 = No Fractional-seconds Timestamp field included (Not
supported)

01 = Sample count timestamp: fractional seconds since last
integer-seconds event, counting in samples.

10 = Real time timestamp: counts in increments of 1
picosecond since last integer-seconds event. (Not supported)
11 = Free running count timestamp: No relation to the integer-
seconds field. Counts in samples.

31:6 -

Table 139. FMC ADC Timestamp Control Register
FMC ADC VITA-49 framer Control (MR_FMC_ADC_VITA_CTRL, Base+0x22)
This register controls turning on/off the ADC VITA-49 framers.

Bits Field R/W Default | Description Modules
0 disable vita R/W Disable ADC VITA-49 framers All
31:1 -

Table 140. FMC ADC VITA-49 framer control register
FMC ADC VITA Frame Sizes (MR_FMC_ADCx_VFRAME, Base+0x30 +x)
This is the VITA packet frame size for each ADCx. Number of streams defined is shown for each module.

Bits Field R/W Default | Description Modules
15:0 adcx_frame_size R/W 0x1000 VITA packet frame size, in 32-bit words. ADC20 =5, FMC250 =2,

FMC110 =2, FMC310 =4,
FMC500 = 1, FMC1000 =1

31:16 adex_dest id R/W 1 Internal routing destination Id (1=PCIE). All

Table 141. FMC ADC VITA Frame Size Register

Cardsharp Framework Logic Manual

97

Cardsharp PL Memory Map

FMC ADC VITA Stream IDs (MR_FMC_ADCx_SID, Base+0x40 +x)
This is the VITA Stream ID (SID) each ADCx. Number of streams defined is shown for each module.

Bits Field R/W Default | Description Modules
15:0 adcx_stream_id R/W 0 VITA packet stream Id ADC20 =5, FMC250, FMC110 =2,
FMC310 =4, FMC500 = 1, FMC1000 = 1
31:16 adex_dest id R/W 1 Internal routing destination Id FMC250
(1=PCIE).

Table 142. FMC ADC VITA Stream ID Register

FMC ADC Gain Error Correction (MR_FMC_ADCx_GAIN, Base+0x50 +x)
This is the gain error correction factor for each ADC. Number of ADC is shown for each module.

Bits Field R/W Default | Description Modules
17:0 adex_gain R/W | 0x10000 | Gain coefficient for error correction (0x10000 = 1.00) ADC20 = 20,
FMC500 = 2,
FMC1000 =2,
FMCServo =8
11:0 adcx_gain R/W 0x0000 Gain coefficient for error correction, check ADC datasheet FMC110
for the correct format
30:18 | -
Table 143. FMC ADC Gain Error Correction Register
FMC ADC Offset Error Correction (MR_FMC_ADCx_OFST, Base+0x90 +x)
This is the offset error correction factor for each ADC. Number of ADC is shown for each module.
Bits Field R/W Default | Description Modules
15:0 adex_offset R/W 0 Offset error correction ADC20 = 20,
FMC500 =2,
FMC1000 = 2,
FMCServo =8
8:0 adcx_offset R/W 0x100 Offset error correction, check ADC datasheet for the correct FMC110
format
31:16 | -

Table 144. FMC ADC Offset Error Correction Register

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

FMC DAC Registers (WB Device 15)

These are the registers for the FMC DAC control and configuration.

WB Base WB Register | Simulation Define R/W Description | Modules
Address
DAC Common Registers
0xF00 0x0 MR_FMC_DAC_ENI1 R/W FMC110, FMC250, FMC1000,
FMCServo
0x1 MR_FMC_DAC_EN2 R/W
0x2 MR_FMC DAC_PDNI1 R/W FMC250, FMC1000
0x3 MR_FMC DAC PDN2 R/W
0x4 MR_FMC_DAC_TRGR R/W FMC110, FMC250, FMC1000,
FMCServo
0x5 MR_FMC DAC DECI R/W FMCI110, FMC250, FMC1000,
FMCServo
0x6 MR_FMC _DAC_PRI_TRGR R/W FMC110, FMC250, FMC1000,
FMCServo
0x7 MR_FMC DAC PRI R/W FMCI110, FMC250, FMC1000,
FMCServo
0x8 MR_FMC DAC_PRI_PARAM R/W FMC110, FMC250, FMC1000,
FMCServo
0x9 MR_FMC DAC PRI WIDTH R/W FMCI110, FMC250, FMC1000,
FMCServo
0xA MR_FMC DAC PINC R/W FMC110, FMC250, FMC1000,
FMCServo
0xB MR _FMC DAC RST R/W FMC250, FMC1000
MR_FMC_DAC_POFF FMCServo
0xC MR_FMC DAC CTRL R/W FMCServo
0xD -
OxF
DAC Specific Registers
0x10 MR_FMC_DAC_SPI _EN R/W FMCI110
0x11 MR_FMC DAC SPI CTRL R/W FMC110, FMC250, FMC1000
0x12 MR_FMC_DAC_SPI STAT R/W FMC110, FMC250, FMC1000
0x13 - -
0x19
0x1A MR_FMC DAC FIFO CTRL FMCServo
0x1B MR_FMC _DAC_FIFO_THRS FMCServo
0x1C MR_FMC DAC FIFO DATA FMCServo
0x1D MR_FMC_DAC_LDAC_DLY FMCServo
Ox1E-
O0x1F
DAC VITA Packet Configuration and Stream IDs
0x20- MR_FMC DAC SID R/W FMCI110, FMC250, FMC1000
0x2F
DAC Gain Registers
0x30- MR_FMC _DAC_GAIN R/W FMC110, FMC1000,
0x6F FMCServo
DAC Offset Registers

Cardsharp Framework Logic Manual

99

Cardsharp PL Memory Map

WB Base WB Register | Simulation Define R/W Description | Modules
Address
0x70- MR_FMC_DAC_OFST R/W FMC110,FMC1000,
O0xAF FMCServo
Table 145. FMC DAC Component Registers

Cardsharp Framework Logic Manual

100

Cardsharp PL Memory Map

DAC Low Channel Enables (MR_FMC_DAC_ENI1, Base+0x0)
This is the lower D/A 32 channel enable register.

Bits Field R/W Default | Description

Modules

31:0 dac_ch_en R/W 0x0000

D/A channel enables.

FMC110, FMC250 = 2, FMC1000 = 2, FMCServo=8

Table 146. FMC Low DAC Channel Enables Register

DAC High Channel Enables (MR_FMC_DAC_EN2, Base+0x1)
This is the lower D/A 32 channel enable register.

Bits Field R/W Default | Description

Modules

31:0 dac_ch_en R/W 0x0000

D/A channel enables.

Table 147. FMC High DAC Channel Enables Register

DAC Low Power Enables (MR_FMC_DAC_PDNI1, Base+0x2)
This is the lower D/A 32 power enable register.

Bits Field R/W Default | Description

Modules

31:0 dac_pwr_en R/W 0x0000 D/A power enables.

FMC250=2, FMC1000 =2

Table 148. FMC Low DAC Power Enable Register

DAC High Power Enables (MR_FMC_DAC_PDN2, Base+0x3)
This is the higher D/A 32 power enable register.

Bits Field R/W Default | Description Modules
31:0 dac_pwr _en R/W 0x0000 D/A power enables.
Table 149. FMC High DAC Power Enable Register
FMC DAC Trigger Controls (MR_FMC_DAC_TRGR, Base+0x4)
This register configures the D/A trigger modes.
Bits Field R/W Default | Description Modules
23:0 dac_window_size R/W 0 DAC trigger window size. This is the number of points, after | FMC110,
decimation, that make up one data window. FMC(C250,
FMC1000,
FMCServo
28:24
31:29 dac_trigger mode R/W “000” DAC trigger modes. FMCI110,
Bit29 = rising edge (1) or level (0) Eﬁg%ggb
Bit30 = framed (1) or unframed (0) FMCServo
Bit31 = external (1) or software (0)

Table 150. FMC DAC Trigger Controls Register

Cardsharp Framework Logic Manual

101

Cardsharp PL Memory Map

DAC Decimation (MR_FMC_DAC_DECI, Base+0x5)
This register specifies the decimation ratio for the D/A triggering.

Bits Field R/W Default | Description Modules
11:0 dac_decimation R/W 0 Decimation count for D/A samples. Decimation keeps 1 point | FMC110,
every N specified by this field. FMC250,
FMC1000,
FMCServo
31:12 -

Table 151. FMC DAC Decimation Ratio Register

DAC PRI trigger enable register (MR_FMC_DAC_PRI_TRGR, Base+0x6)

This register is the DAC PRI trigger control register

Bits Field R/W Default | Description Modules

0 en_pri_trig R/W Enable PRI trigger mode FMCI110, FMC250, FMC1000,
FMCServo

1 stop_pri R/W Stop PRI triggering FMC110, FMC250, FMC1000,
FMCServo

2 en_num_pri R/'W enable finite number of PRI frames FMC110, FMC250, FMC1000,
FMCServo

3 retrig_num_pri R/W re-arm after number of PRI frames FMC1000FMC110, FMC250,
FMCServo

7:4 -

8 pri_busy R PRI mode is running when this bitis 1 |FMC110, FMC250, FMC1000,
FMCServo

15:9 -

31:16 num_pri R/W number of PRI frames FMCI110, FMC250, FMC1000,

FMCServo

Table 152. FMC DAC PRI trigger enable Register

DAC PRI interval configuration register (MR_FMC_DAC_PRI, Base+0x7)
This register is used to set the pulse repetition interval

Bits

Field

R/W

Default

Description

Modules

31:0

pri

R/W

Pulse repetition interval

FMC110, FMC250, FMC1000,
FMCServo

Table 153. FMC DAC PRI interval configuration Register

DAC PRI trigger parameters register (MR_FMC_DAC_PRI_PARAM, Base+0x8)
This register configures the DAC PRI trigger parameters

Bits

Field

R/W

Default

Description

Modules

23:0

trig_cycle delay

R/W

Delay between trigger and sof

FMC110, FMC250, FMC1000,
FMCServo

Cardsharp Framework Logic Manual

102

Cardsharp PL Memory Map

e R |

Table 154. FMC DAC PRI trigger parameters Register

DAC PRI capture window configuration register (MR_FMC_DAC_PRI_WIDTH, Base+0x9)
This register configures the DAC PRI trigger parameters FIFO. Writing to this register generates a write strobe to the DAC
PRI parameters FIFO which causes the width and cycle delay parameters to be written to that FIFO.

Bits Field R/W Default | Description Modules
23:0 trig_width R/W trigger width FMCI110, FMC250, FMC1000,
FMCServo
31:24 -

Table 155. FMC DAC PRI capture window configuration Register

FMC DAC device phase increment register (MR_FMC_DAC_PINC, Baset+0xA)
This register is used to set the DDS phase increment value.

Bits Field R/W Default | Description Modules

31:0 phase_inc R/W DDS phase increment FMC110, FMC250, FMC1000, FMCServo

Table 156. FMC DAC phase increment Register

FMC DAC reset register (MR_FMC_DAC_RST, Base+0xB)
This register is used to reset the DAC.

Bits Field R/W Default | Description Modules

31:0 dac_reset R/W DAC reset FMC110, FMC250

Table 157. FMC DAC reset Register

FMC DAC reset register (MR_FMC_DAC_RST, Base+0xB)
This register is used to reset the DAC.

Bits Field R/W Default | Description Modules
0 dac_reset R/W DAC reset FMC1000
7:1 unused
8 dac_per gd R DAC power good FMC1000
11:9 unused
12 dac_alarm R FMC1000
31:13 unused

Table 158. FMC DAC reset Register

FMC DAC control register (MR_FMC_DAC_CTRL, Base+0xB)
This register is used to control the DAC.

Bits Field R/W Default | Description Modules

0 -

Cardsharp Framework Logic Manual

103

Cardsharp PL Memory Map

1 dac_clk sel R/W DAC clock select FMCServo
31:2 -
Table 159. FMC DAC control Register
FMC DAC device SPI enable register (MR_FMC_DAC_SPI_EN, Base+0x10)
This register is used to enable the DAC device that receives the SPI command.
Bits Field R/W Default | Description Modules
31:0 dac_spi_dev_en R/W DAC device SPI enable (1 bit per device). When a certain FMC110=2
device's enable bit is set, then that device will receive a SPI
command when the SPI registers are accessed.
Table 160. FMC DAC device SPI enable Register
FMC DAC SPI Control (MR_FMC_DAC_SPI_CTRL, Base+0x11)
This is the D/A devices SPI port writes.
Bits Field R/W Default | Description Modules
7:0 dac_spi_wdata R/W 0x00 DAC SPI write data FMC110, FMC250
15:8 -
22:16 dac_spi_addr R/W 0 DAC SPI address FMC110, FMC250
27:23 | -
28 dac_spi rd wrn R/W 0 DAC SPI read/write bit. 0= write, 1 = read FMC110, FMC250
31:29 | -

Table 161. FMC DAC SPI Control Register

FMC DAC SPI Control MR_FMC_DAC_SPI_CTRL, Base+0x11)

This is the D/A devices SPI port writes.

Bits Field R/W Default | Description Modules
15:0 dac_spi_wdata R/W 0x00 DAC SPI write data FMC1000
22:16 dac_spi_addr R/W 0 DAC SPI address FMC1000
27:23 -
28 dac_spi_rd_wrn R/W 0 DAC SPI read/write bit. 0= write, 1 = read FMC1000
31:29 | -
Table 162. FMC DAC SPI Control Register
FMC DAC SPI Status (MR_FMC_DAC_SPI_STAT, Base+0x12)
This is the D/A devices SPI port reads.
Bits Field R/W Default | Description Modules
7:0 dac_spi_rdata R DAC SPI read data FMCI110, FMC250
29:8 -
30 dac_spi_rdy R DAC SPI is ready for use. FMCI110, FMC250

Cardsharp Framework Logic Manual

104

Cardsharp PL Memory Map

‘ 31 ‘ dac_spi_rdata valid ‘ R ‘ ‘ DAC SPI read data is valid. FMCI110, FMC250
Table 163. FMC DAC SPI Status Register

FMC DAC SPI Status (MR_FMC_DAC_SPI_STAT, Base+0x12)
This is the D/A devices SPI port reads.

Bits Field R/W Default | Description Modules
15:0 dac_spi_rdata R DAC SPI read data FMC1000
29:16 -

30 dac_spi rdy R DAC SPI is ready for use. FMC1000
31 dac_spi_rdata valid R DAC SPI read data is valid. FMC1000

Table 164. FMC DAC SPI Status Register

FMC Servo DAC Fifo Control (MR_FMC DAC_FIFO_CTRL, Base+0x1A)

Bits Field R/W | Default | Description Modules
9:0 dac_ofifo_data count R DAC ofifo data count FMCServo
27:10 | -

28 dac_ofifo_prog_empty R DAC ofifo almost empty FMCServo
29 dac_ofifo_empty R DAC ofifo empty FMCServo
30 dac_ofifo_prog_full R DAC ofifo almost full FMCServo
31 dac_ofifo_full DAC ofifo full FMCServo

Table 165. FMC Servo DAC FIFO Control

FMC Servo DAC FIFO Threshold (MR _FMC DAC FIFO THRS, Base+0x1B)

Bits Field R/W Default | Description Modules
9:0 dac_ofifo_empty thresh | R/'W DAC ofifo almost empty threshold FMCServo
15:10 | -

25:16 | dac ofifo full thresh R/W DAC ofifo almost full threshold FMCServo
31:26 | -

Table 166. FMC Servo DAC FIFO Threshold

FMC Servo DAC FIFO Data (MR_FMC DAC_FIFO_DATA, Base+0x1C)

Bits Field R/W Default | Description Modules
15:0 dac_data R DAC ofifo data FMCServo
31:16 | -

Table 167. FMC Servo ADC FIFO Data

FMC Servo DAC trigger delay register (MR FMC DAC LDAC DLY, Baset+0x1D)

Bits Field R/W Default | Description Modules
9:0 dac ldac_delay R/W Count value adds delay of 1 us FMCServo
31:5 -

Cardsharp Framework Logic Manual 105

Cardsharp PL Memory Map

Table 168. FMC Servo DAC trigger delay

FMC DAC VITA Stream IDs (MR_FMC_DACx_SID, Baset+0x20 +x)
This is the VITA Stream ID (SID) each DACx. Number of streams defined is shown for each module.

Bits Field R/W Default | Description Modules
15:0 dacx_stream_id R/W 0 VITA packet stream Id FMC110=2, FMC250=1,
FMC1000 = 1
31:16 dacx_dest id R/W 1 Internal routing destination Id (1=PCIE). |FMC110=2

Table 169. FMC DAC VITA Stream ID Register

FMC DAC Gain Error Correction (MR_FMC_DACx_GAIN, Base+0x30 +x)
This is the gain error correction factor for each DAC. Number of DAC is shown for each module.

Bits Field R/W Default | Description Modules
17:0 dacx_gain R/W | 0x10000 | Gain coefficient for error correction (0x10000 = 1.00) FMCI110=2,
FMC1000 =2,
FMCServo=8
31:18 | -
Table 170. FMC DAC Gain Error Correction Register
FMC DAC Offset Error Correction (MR_FMC_DACx_OFST, Base+0x70 +x)
This is the offset error correction factor for each DAC. Number of DAC is shown for each module.
Bits Field R/W Default | Description Modules
15:0 dacx_offset R/W 0 Offset error correction FMC110 =2,
FMC1000 = 2,
FMCServo=8

31:16 -

Table 171. FMC DAC Offset Error Correction Register

106

Cardsharp Framework Logic Manual

Cardsharp PL Memory Map

FMC Aurora 0 Registers (WB Device 16)

These are the registers for Aurora port 0.

WB Base | WB Register Simulation Define R/W Description
Address

0x00 MR_FMC RIO0 TEST CTRL R/W
0x01 MR _FMC RIO0 CTRL STAT R/W

0x1000 0x02 MR_FMC_RIO0_ CMD_WR R/W
0x03 MR _FMC RIO0 CMD RD R/W
others -

Table 172. FMC Aurora Port 0 Component Registers

FMC Aurora Port 0 Test Control (MR_FMC_RIO0_TEST_CTRL, Base+0x00)

These are controls and status for Aurora port 0.

Bits Field R/W Default | Description Modules

0 tx_test gen en R/W 0=off Enable test generator for transmission. VPX, PEX, SBC
1 rx_test chk en R/W 0= off Enable test generator for receive. VPX, PEX, SBC
15:2 -

31:16 test_errors R Test error count VPX, PEX, SBC

Table 173. FMC Aurora 0 Test Control Register
FMC Aurora Port 0 Control/Status (MR_FMC_RIO0_CTRL_STAT, Base+0x01)
These are controls and status for Aurora port 0.
Bits Field R/W Default | Description Modules
0 Gtxreset n R/W 0 =reset MGT reset, active low. VPX, PEX,SBC
1 power_down R/W l=on MGT power down. (Turned off by default) VPX, PEX,SBC
2 run R/W 0= off Aurora interface run. VPX, PEX,SBC
5:3 loopback R/W 000 000 = Disable loopback VPX, PEX,SBC
001 = Parallel
010 = Serial

6 error_clr R/W 0 =off Clear port error. VPX, PEX,SBC
7 tx_channel en R/W 0 =off Enable transmit channel. VPX, PEX,SBC
8 rx_channel en R/W 0 =off Enable receive channel. VPX, PEX,SBC
22:9 -

23 hard_error R Hard error. Link lost due to serious disruption. VPX, PEX,SBC
24 soft_error R Soft error such as bit error. VPX, PEX,SBC
25 frame_error R Frame error from Aurora. VPX, PEX,SBC

Cardsharp Framework Logic Manual

107

Cardsharp PL Memory Map

29:26 lane up R Number of lane the Aurora port is using. VPX, PEX,SBC
30 channel _up R The Aurora channel is active. VPX, PEX,SBC
31 pll locked R PLL for MGT is locked. VPX, PEX,SBC
Table 174. FMC Aurora 0 Control/Status Register
FMC Aurora Port 0 Sub-channel Write Port (MR_FMC_RIO0_CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.
Bits Field R/W Default | Description Modules
23:0 usr_cmd wr data | R/'W 0 Command write data. VPX, PEX,SBC
29:24 usr_cmd wr_addr | R/'W 0 Command write address. VPX, PEX,SBC
30 usr_cmd_wr_rdn R/W | O=write | Command read/write control. VPX, PEX,SBC
0= write, 1 = read.
31 cmd _ch rdy R Command sub-channel is ready. VPX, PEX,SBC
Table 175. FMC Aurora 0 Sub-channel Write Register
FMC Aurora Port 0 Sub-channel Read Port (MR_FMC_RIO0_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.
Bits Field R/W Default | Description Modules
23:0 usr_cmd rd_data R Command read data. VPX, PEX,SBC
29:24 | usr cmd rd addr | R Command read address. VPX, PEX,SBC
30 -
31 usr_cmd rd_vld R Command sub-channel is read data is valid. VPX, PEX,SBC

Table 176. FMC Aurora 0 Sub-channel Read Register

These registers are only available for FMC SFP+/QSFP+

FMC SFP/QSFP port control/status register (MR_FMC_RIO0_CTRL_SFP/MR_FMC_RIO0_CTRL_QSFP,
Base+0x04)
This is the SFP port control status register.

Bits Field R/W Default | Description Modules
3:0 sfp_disable R/W Transmitter disable when asserted high SFP+
0 gsfp_modesel n R/W When “low”, the module responds to 2-wire serial QSFP+
communication. When “high”, the module shall not respond
or acknowledge any 2-wire communication
3:1 - Unused QSFP+
11:4 sfp_ratesel R/W SFP rate select 2 bits for every connector SFP+
4 gsfp_reset n R/W A low level on this pin resets the qsfp module QSFP+
11:3 - Unused QSFP+
15:12 | sfp los R Receiver loss of signal indication, when high indicates that SFP+

the signal level is below the specified relevant standards.

Cardsharp Framework Logic Manual

108

Cardsharp PL Memory Map

12 qsfp_lpmode R/W Setting this bit high sets the qsfp module in low power mode. | QSFP+
When low, the gsfp module is in high power mode
15:13 - Unused QSFP+
19:16 | sfp_txfault R Module transmitter fault, when high, indicates that the SFP+
module transmitter has detected a fault condition.
16 gsfp_int n R When low, indicates possible module fault QSFP+
19:17 - Unused QSFP+
23:20 sfp_detect R Module detected, when high indicates that a module is SFP+
physically present in a host slot
20 gsfp_modpres n R A high on this bit indicates module absent QSFP+
23:21 - Unused QSFP+
31:224 | - Unused
Table 177. FMC SFP port control/status register
Rate select
Bits Field Description Modules
sfp_ratesel(0) Low RX signalling rate less than or equal to 4.25 GBd SFP+
High RX signalling rate greater than 4.25 GBd SFP+
sfp_ratesel(1) Low TX signalling rate less than or equal to 4.25 GBd SFP+
High TX signalling rate greater than 4.25 GBd SFP+

Table 178. Rate select hardware control

FMC SFP/QSFP port 12C register (MR_FMC_RIO0_I2C_SFP/MR_FMC_RIO0_I2C_QSFP, Base+0x05)
This is the SFP/QSFP port I2C register.

Bits Field R/W Default | Description Modules
3:0 * sdata o R/W 12C data out SFP+ =4, QSFP+=1
7:4 *_sclk R/W 12C clock SFP+=4, QSFP+ =1
11:8 * sdata i R 12C data in SFP+ =4, QSFP+=1
15:12 * sclk i R 12C clock (readback) SFP+=4, QSFP+=1
31:16 | - Unused

* is sfp for SFP+ module and qgsfp for QSFP+ module

Table 179. FMC SFP port 12C register

Cardsharp Framework Logic Manual

109

Cardsharp PL Memory Map

FMC SIO XO I2C register (MR_FMC_RIO0_I2C_SIO, Base+0x06)

This is the SIO XO 12C register.

Bits Field R/W Default | Description Modules
0 * sio_sdo R/W XO 12C data out SFP+, QSFP+
1 * sio_sck R/W XO 12C clock SFP+, QSFP+
2 * sio_sdi XO I2C data in SFP+, QSFP+
3 * sclk i XO 12C clock (readback) SFP+, QSFP+
4 * sio_intr XO Interrupt SFP+, QSFP+
315 - Unused

* is sfp for SFP+ module and qgsfp for QSFP+ module

Table 180. FMC SIO XO I12C register

Cardsharp Framework Logic Manual

110

Cardsharp PL Memory Map

FMC Aurora 1 Registers (WB Device 17)

These are the registers for Aurora port 1.

B Base WB Register Simulation Define R/W Description
Address

0x00 MR_FMC RIO1_TEST CTRL R/W
0x01 MR _FMC RIO1 CTRL _STAT R/W

0x1100 0x02 MR_FMC RIO1_CMD_WR R/W
0x03 MR _FMC RIO1 CMD RD R/W
others -

Table 181. FMC Aurora Port 1 Component Registers

FMC Aurora Port 1 Test Control (MR_FMC_RIO1_TEST_CTRL, Base+0x00)

These are controls and status for Aurora port 0.

Bits Field R/W Default | Description Modules

0 tx_test gen en R/W 0=off Enable test generator for transmission. VPX, PEX, SBC
1 rx_test chk en R/W 0= off Enable test generator for receive. VPX, PEX,SBC
15:2 -

31:16 test_errors R Test error count VPX, PEX,SBC

Table 182. FMC Aurora 1 Test Control Register
FMC Aurora Port 1 Control/Status (MR_FMC_RIO1_CTRL_STAT, Base+0x01)
These are controls and status for Aurora port 0.
Bits Field R/W Default | Description Modules
0 Gtxreset n R/W 0 =reset MGT reset, active low. VPX, PEX,SBC
1 power_down R/W l=on MGT power down. (Turned off by default) VPX, PEX,SBC
2 run R/W 0= off Aurora interface run. VPX, PEX,SBC
5:3 loopback R/W 000 000 = Disable loopback VPX, PEX,SBC
001 = Parallel
010 = Serial

6 error_clr R/W 0 =off Clear port error. VPX, PEX,SBC
7 tx_channel en R/W 0 =off Enable transmit channel. VPX, PEX,SBC
8 rx_channel en R/W 0 =off Enable receive channel. VPX, PEX,SBC
22:9 -

23 hard_error R Hard error. Link lost due to serious disruption. VPX, PEX,SBC
24 soft_error R Soft error such as bit error. VPX, PEX,SBC
25 frame_error R Frame error from Aurora. VPX, PEX,SBC

Cardsharp Framework Logic Manual

111

Cardsharp PL Memory Map

29:26 lane up R Number of lane the Aurora port is using. VPX, PEX,SBC
30 channel _up R The Aurora channel is active. VPX, PEX,SBC
31 pll locked R PLL for MGT is locked. VPX, PEX,SBC
Table 183. FMC Aurora 1 Control/Status Register
FMC Aurora Port 1 Sub-channel Write Port (MR_FMC_RIO1_CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.
Bits Field R/W Default | Description Modules
23:0 usr_cmd wr data | R/'W 0 Command write data. VPX, PEX,SBC
29:24 usr_cmd wr_addr | R/W 0 Command write address. VPX, PEX,SBC
30 usr_cmd_wr_rdn R/W | O=write | Command read/write control. VPX, PEX,SBC
0= write, 1 = read.
31 cmd _ch rdy R Command sub-channel is ready. VPX, PEX,SBC
Table 184. FMC Aurora 1 Sub-channel Write Register
FMC Aurora Port 1 Sub-channel Read Port (MR_FMC_RIO1_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.
Bits Field R/W Default | Description Modules
23:0 usr_cmd rd_data R Command read data. VPX, PEX,SBC
29:24 | usr_cmd rd addr Command read address. VPX, PEX,SBC
30 -
31 usr_cmd rd_vld R Command sub-channel is read data is valid. VPX, PEX,SBC
Table 185. FMC Aurora 1 Sub-channel Read Register
Cardsharp Framework Logic Manual 112

Cardsharp PL Memory Map

FMC Aurora 2 Registers (WB Device 18)

These are the registers for Aurora port 2.

B Base WB Register Simulation Define R/W Description
Address

0x00 MR_FMC_RIO2 TEST CTRL | R/W
0x01 MR _FMC RIO2 CTRL STAT R/W

0x1200 0x02 MR_FMC _RIO2 CMD WR R/'W
0x03 MR_FMC_RIO2_CMD_RD R/W
others -

Table 186. FMC Aurora Port 1 Component Registers

FMC Aurora Port 2 Test Control (MR_FMC_RIO2 TEST_CTRL, Base+0x00)

These are controls and status for Aurora port 0.

Bits Field R/W Default | Description Modules
0 tx_test gen en R/W 0=off Enable test generator for transmission. PEX,SBC
1 rx_test chk en R/W 0= off Enable test generator for receive. PEX,SBC
15:2 -

31:16 test_errors R Test error count PEX,SBC
Table 187. FMC Aurora 2 Test Control Register
FMC Aurora Port 2 Control/Status (MR_FMC_RIO2 CTRL_STAT, Base+0x01)
These are controls and status for Aurora port 0.

Bits Field R/W Default | Description Modules
0 Gtxreset n R/W 0 = reset MGT reset, active low. PEX,SBC
1 power_down R/W l=on MGT power down. (Turned off by default) PEX,SBC
2 run R/W 0= off Aurora interface run. PEX,SBC
5:3 loopback R/W 000 000 = Disable loopback PEX,SBC

001 = Parallel

010 = Serial
6 error_clr R/W 0 =off Clear port error. PEX,SBC
7 tx_channel en R/W 0 =off Enable transmit channel. PEX,SBC
8 rx_channel en R/W 0 =off Enable receive channel. PEX,SBC
22:9 -
23 hard_error R Hard error. Link lost due to serious disruption. PEX,SBC
24 soft_error R Soft error such as bit error. PEX,SBC
25 frame_error R Frame error from Aurora. PEX,SBC

Cardsharp Framework Logic Manual

113

Cardsharp PL Memory Map

27:26 lane up R Number of lane the Aurora port is using. PEX,SBC
30 channel _up R The Aurora channel is active. PEX,SBC
31 pll locked R PLL for MGT is locked. PEX,SBC
Table 188. FMC Aurora 2 Control/Status Register
FMC Aurora Port 2 Sub-channel Write Port (MR_FMC_RIO2 CMD_WR, Base+0x02)
This is the sub-channel write port for Aurora 0.

Bits Field R/W Default | Description Modules
23:0 usr_cmd wr data | R/'W 0 Command write data. PEX,SBC
29:24 usr_cmd wr_addr | R/'W 0 Command write address. PEX,SBC
30 usr_cmd_wr_rdn R/W | O=write | Command read/write control. PEX,SBC

0= write, 1 = read.
31 cmd _ch rdy R Command sub-channel is ready. PEX,SBC
Table 189. FMC Aurora 2 Sub-channel Write Register
FMC Aurora Port 2 Sub-channel Read Port (MR_FMC_RIO2_CMD_RD, Base+0x03)
This is the sub-channel read port for Aurora 0.

Bits Field R/W Default | Description Modules
23:0 usr_cmd rd_data R Command read data. PEX,SBC
29:24 | usr_cmd rd addr Command read address. PEX,SBC
30 -

31 usr_cmd rd_vld R Command sub-channel is read data is valid. PEX,SBC

Table 190. FMC Aurora 1 Sub-channel Read Register

Cardsharp Framework Logic Manual

114

Cardsharp PL Memory Map

FMC?2 status and configuration Registers (WB Device 19)

These are the registers for FMC2 (LPC) interface.

WB Base | WB Address | Register Simulation Define R/W Description
0x00 MR_FMC_IF_STAT R/W
0x1300 0x01 MR _FMC IF CFG R/W FMC I2C interface
0x02 MR _FMC ID R
Table 191. FMC?2 status and configuration registers

FMC?2 status register (MR_FMC2_IF_STAT, Base+0x00)
These are status bits for FMC2.

Bits Field R/W Default | Description Modules
0 fmc_prsnt_m2c |1 R - FMC present (active low) SBC
1 fmc vadj en R/W 1 Unused SBC
2 fmc vadj pwr gd | R Reads 'l' SBC
3 fmc_vadj_forced Reads '0' SBC
10:4 fmc vadj_sel R/W Unused SBC
15:11 -
16 fme pg m2c R - FMC power good M2C SBC
17 fmc pg c2m R/W 1 FMC power good C2M SBC
31:18 | -
Table 192. FMC status register
FMC?2 I2C interface (MR_FMC2_IF_CFG, Base+0x01)
This is the I2C interface to the FMC2.
Bits Field R/W Default | Description Modules
0 fmc_sdo R/W - FMC I2C data out SBC
1 fme scl R/W - FMC 12C clock SBC
2 fmc_sdi R - FMC 12C data in SBC
3 - R FMC I2C clock readback SBC

Table 193. FMC I2C interface

Cardsharp Framework Logic Manual

115

Cardsharp PL Memory Map

FMC2 ID (MR_FMC2_ID, Base+0x2)
This register has the FMC2 ID.

Bits Field

R/W

Default | Description

Modules

31:0 fmc id

R

FMC ID = Reads 2

SBC

Table 194. FMC2 ID RegisterFMC2 DIO Registers

FMC?2 LA DIO register (WB Device 20)
These are the registers for FMC2 LA DIO bus.

WB Base | WB Register Simulation Define R/W Description
Address
0x00 MR_FMC2_LA DOUT_L R/W Lower 32 bit word of the FMC LA DIO bus
0x01 MR FMC2 LA DOUT H R/W Upper 32 bit word of the FMC LA DIO bus
0x1400 0x02 MR _FMC2 LA OE L R/W Output enable of the lower 32 bit word of the
FMC LA DIO bus
0x03 MR FMC2 LA OE_H R/W Output enable of the upper 32 bit word of the
FMC LA DIO bus
Table 195. FMC LA DIO register

Cardsharp Framework Logic Manual

116

Cardsharp PL Memory Map

FMC2 AFE

FMC2 AFE Common Registers (WB Device 20)
These are the FMC common Analog Front End control and configuration registers.

WB Base WB Register | Simulation Define R/W Description Modules
Address

Clock Registers

0x1400 0x0 MR _FMC2 PLL CTRL R/W FMC310, FMC500
0x1 MR_FMC2_PLL_SPI R/W FMC310, FMC500

MR_FMC2 PLL UW

0x2 MR_FMC2 VCXO R/W FMC500
0x3 MR_FMC2_CLK_CTRL R/W
0x4 -
0x5

AFE Common Registers
0x6 MR _FMC2 TEST CTRL R/W FMC310, FMC500
0x7 MR_FMC2_SW_TRIG R/W FMC310, FMC500
0x8 MR _FMC2 EXT SYNC CFG R/W FMC310, FMC500
0x9 -
OxF

Table 196. FMC AFE Common Registers

PLL Control (MR_FMC2_PLL_CTRL, Base+0x0)
This register has the PLL controls and status.

Bits Field R/W | Defa | Description Modules
ult
0 pll_pwr_down n R/W 0 PLL power down. PLL is from 0.5 to 2W when operating.
Allow 5 min warm-up time when device is powered up for
best performance. 0 = power off, 1 = power on
1 pll_reset R/W 0 PLL reset FMC310, FMC500
2 pll_mode R/W 0 PLL configuration mode.
'0' = SPI configuration
'l' =load from default registers
3 fpga pll clkin_stoppe R FPGA PLL input clock stopped
d
4 pll_lock R PLL lock indicator, '1' = locked.
4 fpga pll lock R FPGA PLL locked
5 fpga pll_rst R/W 0 FPGA PLL reset (active high)
5 pll_ref sel/pll clk sel(| R/W ‘0’ 0=PRI, 1 =SEC
0)

Cardsharp Framework Logic Manual

117

Cardsharp PL Memory Map

6 pll_clk sel(1) R/W

7 pll_sync R/W 0 pll_sync

8 pll_status_ho R PLL programmable status pin

9 pll_status_1d R PLL programmable status pin

10 pll_status_clkin0 R PLL programmable status pin

11 pll_status clkinl R PLL programmable status pin

12 pll_gpo R PLL general purpose output

13 pll_status_1d1 R PLL programmable status pin FMC310, FMC500
14 pll_status 1d2 R PLL programmable status pin FMC310, FMC500
15 pll_clkin_sel0 o W PLL clkin selector (bit 0) FMC310,

15 pll_clkin_sel0 i R PLL programmable status pin FMC310,

15 pll_clkin_sel0 R PLL programmable status pin FMC500

16 pll_clkin_sell o W PLL clkin selector (bit 1) FMC310,

16 pll_clkin_sell i R PLL programmable status pin FMC310,

16 pll_clkin_sell R PLL programmable status pin FMC500

17 pll_clkin_sel0_dir R/W PLL clkin_sel0 direction (1=out, 0=in) FMC310,

18 pll_clkin_sell dir R/W PLL clkin_sell direction (1=out, 0=in) FMC310,

29:19 | - unused

30 pll_uw/spi_rdy R PLL uw/spi ready FMC310, FMC500
31 pll_uw/spi_rdata valid | R PLL uw/spi data valid FMC310, FMC500

Table 197. FMC PLL Control Register

PLL SPI Data (MR_FMC2_PLL_SPI, Base+0x1)

This is the interface to the PLL SPI port.

Bits Field R/W | Default | Description Modules
12:0 pll_spi_addr R/W PLL SPI address. FMC310, FMC500
14:13 Unused
15 pll_spi rd wrn R/W PLL SPI 1=read/0=write access FMC310, FMC500
23:16 pll_spi_wdata R/W PLL SPI write data FMC310, FMC500
31:24 pll_spi rdata R PLL SPI read data FMC310, FMC500

Table 198. FMC PLL SPI Data Register

VCXO Control (MR_FMC2_VCXO, Baset+0x2)
This is the interface to the VCXO controls.

Bits

Field

R/W

Default

Description

Modules

3:0

Cardsharp Framework Logic Manual

118

Cardsharp PL Memory Map

4 VCXO_pWI_en W VCXO power enable FMC500
7:5
8 vexo pwr_gd R VCXO power good FMC500
319
Table 199. FMC VCXO control Register
FMC Test Controls (MR_FMC2_TEST_CTRL, Base+0x6)
This register sets the test mode for different components in the FMC.
Bits Field R/W Default | Description Modules
0 adc_test _en R/W 0 Enable ADC test generator. 0 = off, 1 =on FMC310, FMC500
3:1 -
4 adc_test mode R/W 0 ADC test mode: 0 =unpaced sawtooth, 1 = paced FMC310, FMC500
sawtooth
15:5 -
16 dac_test en R/W 0 Enable DAC test generator. 0 = off, 1 =on FMC500
19:17 | -
22:20 dac_test_mode R/W 0 DAC test mode: 0 =ramp, 1 = sine, 2 = dac test pattern, | FMC500
3 = zeros, 4 = max positive, 5 = max negative, 6 =
alternating 1's and 0's, 7 = alternating two 1's and two
0's
31:23 | -
Table 200. FMC Test Controls Register
FMC Software Trigger Controls (MR_FMC2_SW_TRIG, Base+0x7)
This register enables software triggering for different components in the FMC.
Bits Field R/W Default | Description Modules
0 adc_sw_trig R/W 0 ADC software trigger. 0 = off, 1 =on FMC310, FMC500
15:1 -
16 dac_sw_trig R/W 0 DAC software trigger. 0 = off, 1 =on FMC500
31:17 -
Table 201. FMC Software Trigger Controls Register
FMC External Sync Select (MR_FMC2_EXT _SYNC_CFG, Base+0x8)
This register allows for selecting either JP1 or FMC external trigger.
Bits Field R/W Default | Description Modules
0 ext_sync_sel R/W 0 External sync select (0O=front panel, 1=FMC) FMC310, FMC500
31:1 unused

Table 202. FMC External Sync Select Register

Cardsharp Framework Logic Manual

119

Cardsharp PL Memory Map

FMC2 ADC Registers (WB Device 21)

These are the registers for the FMC ADC control and configuration.

WB Base WB Register | Simulation Define R/W Description Modules
Address
ADC Common Registers
0x1500 0x0 MR_FMC2_ADC_ENI1 R/W FMC310, FMC500
0x1 MR _FMC2 ADC _EN2 R/W
0x2 MR_FMC2_ADC_PDNI R/W FMC310, FMC500
0x3 MR_FMC2_ADC_PDN2 R/W
0x4 MR FMC2 ADC TRGR R/W FMC310, FMC500
0x5 MR_FMC2_ADC_DECI R/W FMC310, FMC500
0x6 MR_FMC2 ADC PRI TRGR R/W FMC310, FMC500
0x7 MR_FMC2_ADC_PRI R/W FMC310, FMC500
0x8 MR_FMC2 ADC_PRI PARAM R/W FMC310, FMC500
0x9 MR_FMC2_ADC_PRI_WIDTH R/W FMC310, FMC500
OxA - -
OxF
ADC Specific Registers
0x10 MR_FMC2 ADC_SPI EN R/W FMC310,
MR_FMC2_ADCO_SPI_CTRL R/W
0x11 MR_FMC2 _ADC_SPI CTRL R/W FMC310, FMC500
MR _FMC2 ADCO SPI STAT R/W
0x12 MR_FMC2_ADC_SPI_STAT R/W FMC310, FMC500
MR _FMC2 ADC1 SPI CTRL R/W
0x13 MR_FMC2_ADC_CAL R/W
MR_FMC2 ADCI1_SPI STAT R/W
0x14 MR FMC2 VGA R/W
MR_FMC2 _ADC PHY_CAL R/W FMC500
0x15 MR_FMC2 ADCO CAL STS R/W
0x16 MR_FMC2_ADC1_CAL_STS R/W
0x17 -
0x18 MR_FMC2_ADC_PHY_CAL R/W
0x19 MR_FMC2_ADC_AMP_CFG R/W
0x1A- -
0x1F
ADC VITA Packet Configuration and Timestamping
0x20 MR_FMC2 ADC TS LD R/W FMC310, FMC500
0x21 MR_FMC2_ADC_TS_CTRL R/W FMC310, FMC500
0x22 MR_FMC2 ADC_VITA_CTRL R/W FMC310, FMC500
0x23 - -
0x2F
ADC VITA Frame Sizes and Stream [Ds
0x30 - MR_FMC2_ADC_VFRAME R/W FMC310 =4, FMC500 =2
0x34
0x35 - -
0x3F
0x40 - MR_FMC2_ADC_SID R/W FMC310 =4, FMC500 =2

Cardsharp Framework Logic Manual

120

Cardsharp PL Memory Map

Address

WB Base WB Register | Simulation Define R/W

Description

Modules

0x44

0x45 - -
0x4F

ADC Gain Registers

0x50 - MR_FMC2 _ADC_GAIN
0x63

FMC310=4

0x64 - -
0x8F

ADC Offset Registers

0x90 - MR_FMC2_ADC_OFST
0xA3

FMC310=4

0xA4 -
0xCF

Table 203. FMC ADC Component Registers

ADC Low Channel Enables (MR_FMC2_ADC_ENI1, Base+0x0)
This is the lower A/D 32 channel enable register.

Bits Field R/W Default | Description

Modules

31:0 adc_ch_en R/W 0x0000 A/D channel enables.

FMC310 =4, FMC500 =2

Table 204. FMC Low ADC Channel Enables Register

ADC High Channel Enables (MR_FMC2_ADC_EN2, Base+0x1)
This is the higher A/D 32 channel enable register.

Bits Field R/W Default | Description Modules
31:0 adc_ch _en R/W 0x0000 A/D channel enables.
Table 205. FMC High ADC Channel Enables Register
ADC Low Power Enables (MR_FMC2_ADC_PDNI1, Base+0x2)
This is the lower A/D 32 power enable register.
Bits Field R/W Default | Description Modules
31:0 adc_pwr_en R/W 0x0000 A/D power enables. FMC310 =4, FMC500 =2

Table 206. FMC Low ADC Power Enables Register

ADC High Power Enables (MR_FMC2_ADC_PDN2, Base+0x3)
This is the higher A/D 32 power enable register.

Bits Field R/W Default | Description

Modules

31:0 adc_pwr_en R/W 0x0000 A/D power enables.

Table 207. FMC High ADC Power Enables Register

Cardsharp Framework Logic Manual

121

Cardsharp PL Memory Map

FMC ADC Trigger Controls (MR_FMC2_ADC_TRGR, Base+0x4)
This register configures the A/D trigger modes.

Bits Field R/W Default | Description Modules
23:0 adc_window_size R/W 0 ADC trigger window size. This is the number of FMC310, FMCS500
points, after decimation, that make up one data window.
28:24
31:29 adc_trigger mode R/W “000” ADC trigger modes. FMC310, FMC500

Bit29 = rising edge (1) or level (0)
Bit30 = framed (1) or unframed (0)
Bit31 = external (1) or software (0)

Table 208. FMC ADC Trigger Controls Register

ADC Decimation (MR_FMC2_ADC_DECI, Base+0x5)
This register specifies the decimation ratio for the A/D triggering.

Bits Field R/W Default | Description Modules

11:0 adc_decimation R/W 0 Decimation count for A/D samples. Decimation keeps 1 | FMC310, FMC500
point every N specified by this field.

31:12 -
Table 209. FMC ADC Decimation Ratio Register

ADC PRI trigger enable register (MR_FMC2_ADC_PRI_TRGR, Base+0x6)
This register is the ADC PRI trigger control register

Bits Field R/W Default | Description Modules

0 en_pri_trig R/W Enable PRI trigger mode FMC310, FMC500
1 stop_pri R/W Stop PRI triggering FMC310, FMC500
2 en_num_pri R/W enable finite number of PRI frames FMC310, FMC500
3 retrig_ num_pri R/W re-arm after number of PRI frames FMC310, FMC500
7:4 -

8 pri_busy R PRI mode is running when this bit is 1 FMC310, FMC500
15:9 -

31:16 num_pri R/W number of PRI frames FMC310, FMC500

Table 210. FMC ADC PRI trigger enable Register

Cardsharp Framework Logic Manual 122

Cardsharp PL Memory Map

ADC PRI interval configuration register (MR _FMC2 ADC PRI, Base+0x7)

Bits

Field

R/W

Default

Description Modules

31:0

pri

R/W

Pulse repetition interval

FMC310, FMC500

Table 211. FMC ADC PRI

ADC PRI trigger parameters

interval configuration Register

register (MR_FMC2 ADC PRI _PARAM, Base+0x8)

Bits Field R/W Default | Description Modules
23:0 trig_cycle delay R/W Delay between trigger and sof FMC310, FMC500
31:24 -

Table 212. FMC ADC PRI trigger parameters Register

ADC PRI capture window configuration register (MR_FMC2_ADC_PRI_WIDTH, Base+0x9)
This register configures the ADC PRI trigger parameters FIFO. Writing to this register generates a write strobe to the ADC
PRI parameters FIFO which causes the width and cycle delay parameters to be written to that FIFO.

Bits Field R/W Default | Description Modules
23:0 trig_width R/W trigger width FMC310, FMC500
31:24 | -

Table 213. FMC ADC PRI capture window configuration Register

FMC ADC device SPI enable register (MR_FMC2_ADC_SPI_EN, Base+0x10)
This register is used to enable the ADC device that receives the SPI command.

Bits Field R/W Default | Description Modules
31:0 ad_spi_dev_en R/W ADC device SPI enable (1 bit per device). When a certain FMC310=2
device's enable bit is set, then that device will receive a SPI
command when the SPI registers are accessed.
Table 214. FMC ADC device SPI enable Register
FMC ADCO SPI control register (MR _FMC2 ADCO0_SPI _CTRL, Base+0x10)
Bits Field R/W Default | Description Modules
7:0 ad0_spi_wdata R/W ADCO SPI write data
15:8 - Unused
23:16 | ad0_spi_addr R/W ADCO SPI address
27:24 - Unused
28 ad0_spi_rd_wrn R/W ADCO SPI read/write enable
31:29 | - Unused

Table 215. FMC250 ADCO device SPI control register

Cardsharp Framework Logic Manual

123

Cardsharp PL Memory Map

FMC ADC SPI Control (MR_FMC2_ADC_SPI_CTRL, Base+0x11)

This is the A/D devices SPI port writes.

Bits Field R/W Default | Description Modules
7:0 adc_spi_wdata R/W 0x00 ADC SPI write data FMC310
15:8 -
15:0 adc_spi_wdata R/W ADC SPI write data FMC500
27:16 adc_spi_addr R/W 0 ADC SPI address FMC310
22:16 adc_spi_addr R/W 0 ADC SPI address FMC500
28 adc_spi_rd_wrn R/W 0 ADC SPI read/write bit. 0= write, 1 = read FMC310, FMC500
31:29 | -

Table 216. FMC ADC SPI Control Register

FMC ADCO SPI status register (MR_FMC2_ADCO0_SPI_STAT, Base+0x11)
This is the FMC250 ADCO SPI status register.

Bits Field R/W Default | Description Modules
7:0 ad0_spi rdata R 0x00 ADCO SPI read data
29:8 - Unused
30 ad0 _spi_rdy R ADCO SPI ready
31 ad0_spi_rdata_valid R ADCO SPI data valid
Table 217. FMC250 ADC SPI Stauts Register
FMC ADC SPI Status (MR_FMC2_ADC_SPI_STAT, Base+0x12)
This is the A/D devices SPI port reads.
Bits Field R/W Default | Description Modules
7:0 adc_spi_rdata R ADC SPI read data FMC310
29:8 -
15:0 adc_spi_rdata R ADC SPI read data FMC500
30 adc_spi_rdy R ADC SPI is ready for use. FMC310, FMC500
31 adc_spi rdata_valid R ADC SPI read data is valid. FMC310, FMC500

Table 218. FMC ADC SPI Status Register

Cardsharp Framework Logic Manual

124

Cardsharp PL Memory Map

FMC ADCO SPI control register (MR_FMC2_ADC1_SPI_CTRL, Baset+0x12)
This FMC250 ADC1 SPI control register.

Bits Field R/W Default | Description Modules
7:0 adl spi_wdata R/W ADC1 SPI write data
15:8 - Unused
23:16 | adl_spi_addr R/W ADCI1 SPI address
2724 | - Unused
28 adl spi_rd wm R/W ADCI SPI read/write enable
31:29 - Unused

Table 219. FMC250 ADC device SPI control register
FMC ADC calibration Control and Status (MR_FMC2_ADC_CAL, Base+0x13)
This is the status register for the ADC calibration.

Bits Field R/W Default | Description Modules

0 cal_start R/W Start ADC calibration (should be toggled after
programming the ADC registers)
15:1
20:16 cal_done R ADC device calibration done
31:21 -
Table 220. FMC ADC calibration control and status register
FMC ADCI1 SPI status register (MR_FMC_ADC1_SPI_STAT, Base+0x13)
This is the FMC250 ADC1 SPI status register.

Bits Field R/W Default | Description Modules
7:0 adl _spi_rdata R 0x00 ADCI1 SPI read data FMC250
29:8 - Unused
30 adl_spi_rdy R ADCI SPI ready FMC250
31 adl_spi rdata valid R ADCI1 SPI data valid FMC250

Table 221. FMC250 ADC SPI Stauts Register

Cardsharp Framework Logic Manual

125

Cardsharp PL Memory Map

FMC VGA Controls (MR_FMC2_VGA, Base+0x14)

This is the interface to the VGA. The VGA 12C port is a bit-banged interface through this register.

Bits Field R/W Default | Description Modules
0 vga_sdo R/W 0 VGA 12C data output bit.
1 vga_scl R/W 0 VGA 12C clock output bit.
2 vga_sdi R - VGA I2C data input bit.
3 vga_scl - VGA 12C port clock readback.
7:4 -
8 vga_ldac n R/W 0 Load VGA DAC latch enable (active low).
31:9 -
Table 222. FMC VGA Controls Register
FMC ADC PHY Calibration register (MR_FMC2_ADC_PHY_CAL, Base+0x14)
This is the FMC250 adc phy calibration register.
Bits Field R/W Default | Description Modules
1:0 adc_rst R/W ADC reset
0 adc_rst R/W ADC reset FMC500
15:2 - Unused
3:1 - Unused FMC500
4 adc_cal R/W ADC calibrate FMC500
7:5 Unused FMC500
8 adc_pwr_gd R ADC power good FMC500
17:9 Unused FMC500
17:16 adc_cal done R ADC calibration status
19:18
20 adc_clk_stopped ADC clock stopped
21 adc_clk locked ADC clock locked
31:18 - Unused

Table 223. FMC250 ADC PHY Calibration register

Cardsharp Framework Logic Manual

126

Cardsharp PL Memory Map

FMC ADC PHY Calibration register (MR_FMC2_ADC_PHY_CAL, Base+0x18)

This is the FMC110 adc phy calibration register.

Bits Field R/W Default | Description Modules
0 adc_phy init R/W Initialize ADC PHY of the selected ADC channel
1:7 - Unused
8 sel _adc ch R/W Select ADC channel to forward calibration control and status
11:9 - Unused
12 skip_adc_phy cal R/W Skip ADC PHY calibration
13 - Unused
26:14 | adc eye aligned R ADC data eye is aligned
27 adc_prbs_locked R local PRBS is locked to ADC bit0
28 adc_prbs_aligned R ADC PRBS data sequence is aligned
29 adc_phy rdy R ADC PHY is calibrated and ready
30 adc_clka stopped R ADC output clock stopped
31 adc_clka_locked R ADC output clock locked
Table 224. FMC110 ADC PHY Calibration register
FMC ADC Amplitude Configuration (MR _FMC2 ADC AMP_CFG, Base+0x19)
Bits Field R/W Default | Description Modules
1:0 adc_multx16_en R/W 0 Multiply ADC output by 16
31:2
Table 225. FMC ADC Amplitude Configuration Register
FMC ADC Timestamp Load (MR_FMC2_ADC_TS_LD, Base+0x20)
This is the VITA packet timestamp load.
Bits Field R/W Default | Description Modules
31:0 ts_initial R/W 0 VITA timestamp load initial value FMC310, FMC500

Table 226. FMC ADC Timestamp Load Register

FMC ADC Timestamp Control (MR_FMC2_ADC_TS_CTRL, Base+0x21)
This is the VITA packet timestamp load and control.

Bits Field R/W Default | Description Modules
0 ts_arm R/W 0 VITA timestamp arm. Set this bit to initiate timestamp FMC310, FMC500
counting on rising edge of PPS when in PPS mode.
1 ts_pps_mode R/W 0 VITA timestamp PPS mode. FMC310, FMC500
1 = pps mode
0 = internal timer
3:2 tsi R/W 11 VITA timestamp Integer-seconds mode FMC310, FMC500

Cardsharp Framework Logic Manual

127

Cardsharp PL Memory Map

00 = No Integer-seconds Timestamp field included (Not
supported)

01 = UTC: seconds elapsed since January 1, 1970 GMT.
10 = GPS: seconds elapsed since January 6, 1980 GMT.

11 = Other: seconds elapsed since some documented start
time.

5:4 tsf R/W 01 VITA timestamp Fractional-seconds mode FMC310, FMC500

00 = No Fractional-seconds Timestamp field included
(Not supported)

01 = Sample count timestamp: fractional seconds since
last integer-seconds event, counting in samples.

10 = Real time timestamp: counts in increments of 1
picosecond since last integer-seconds event. (Not
supported)

11 = Free running count timestamp: No relation to the
integer-seconds field. Counts in samples.

31:6 -
Table 227. FMC ADC Timestamp Control Register

FMC ADC VITA-49 framer Control (MR_FMC2_ADC_VITA_CTRL, Base+0x22)
This register controls turning on/off the ADC VITA-49 framers.

Bits Field R/W Default | Description Modules

0 disable_vita R/W Disable ADC VITA-49 framers FMC310, FMC500

31:1 -
Table 228. FMC ADC VITA-49 framer control register

FMC ADC VITA Frame Sizes (MR_FMC2_ADCx_VFRAME, Base+0x30 +x)
This is the VITA packet frame size for each ADCx. Number of streams defined is shown for each module.

Bits Field R/W Default | Description Modules
15:0 adcx_frame size R/W 0x1000 VITA packet frame size, in 32-bit words. FMC310 =4, FMC500 =2
31:16 adcx_dest id R/W 1 Internal routing destination Id (1=PCIE).

Table 229. FMC ADC VITA Frame Size Register

FMC ADC VITA Stream IDs (MR_FMC2_ADCx_SID, Base+0x40 +x)
This is the VITA Stream ID (SID) each ADCx. Number of streams defined is shown for each module.

Bits Field R/W Default | Description Modules
15:0 adcx_stream_id R/W VITA packet stream Id FMC310 =4, FMC500 =2
31:16 adex_dest id R/W 1 Internal routing destination Id (1=PCIE). FMC310 =4, FMC500=2

Table 230. FMC ADC VITA Stream ID Register

Cardsharp Framework Logic Manual 128

Cardsharp PL Memory Map

FMC ADC Gain Error Correction (MR_FMC2_ADCx_GAIN, Base+0x50 +x)
This is the gain error correction factor for each ADC. Number of ADC is shown for each module.

Bits Field R/W Default | Description Modules
17:0 adcx_gain R/W | 0x10000 | Gain coefficient for error correction (0x10000 = 1.00) FMC310=4
11:0 adcx_gain R/W 0x0000 Gain coefficient for error correction, check ADC datasheet for

the correct format
30:18 -
Table 231. FMC ADC Gain Error Correction Register
FMC ADC Offset Error Correction (MR_FMC2_ADCx_OFST, Base+0x90 +x)
This is the offset error correction factor for each ADC. Number of ADC is shown for each module.

Bits Field R/W Default | Description Modules
15:0 adcx_offset R/W 0 Offset error correction FMC310=4
8:0 adcx_offset R/'W 0x100 Offset error correction, check ADC datasheet for the correct

format
31:16 -

Table 232. FMC ADC Offset Error Correction Register

Cardsharp Framework Logic Manual

129

Cardsharp Framework Logic Manual

K7 Logic Library

The logic library contains the logic components used on multiple K7 products. These library components are
provided with VHDL source code.

Innovative Integration Inc. 130

Cardsharp Framework Logic Manual

ii_4ch_fifo drainer

Source file: ii_4ch_fifo drainer.vhd

Description:

This component is used to move data from up to four source channel FIFOs to other logic. When the enabled source channel
FIFOs have data, as indicated by the empty and almost empty flags, the data flow state machine generates the control
signals to read from the source FIFOs and write to the destination. The data is read continuously in a burst mode when
all the enabled source channel FIFOs' SRC_AEMPTY flag is false and DEST _RDY is true. If at least one of the
source channel FIFOs' SRC_AEMPTY flag is true but its SRC_EMPTY is false and DEST RDY is true, then the
data flow is one point every 8 clocks in a “drip” mode.

The component requires that all the source FIFOs provide the AEMPTY and EMPTY flags. The AEMPTY threshold must be
> 8 points to allow for latencies. The destination must provide the DEST RDY flag, indicating that it can accept at least 8

data points without overflow.

clk
src_ch_en(4)

src_ch_aempty(4) ——»
src_ch_empty(4) ——»
dest rdy ——»

Flow Control

——»sIc_ch_rden

srst

Figure 21. ii_4ch_fifo_drainer Component

The source usually has a data valid signal for each point read from the FIFO. This valid signal is used as a write enable to the

destination logic.

Innovative Integration Inc.

131

Cardsharp Framework Logic Manual

Port Direction Function

srst In Synchronous active high reset

clk In Clock

src_ch _en In Source channel enable

src_ch_empty In Source channel FIFO is empty

src_ch_aempty In Source channel FIFO is almost empty (< 8 points)
dest rdy Out Destination is ready (room for > 8 points)
src_ch_rden In Source channel FIFO read enable

Table 233. ii_4ch_fifo_drainer Component Ports

Innovative Integration Inc.

132

Cardsharp Framework Logic Manual

ii_ad9516 spi

Source file: ii_ad9516 spi.vhd

Description:

This component is an SPI port interface to the Analog Devices AD9516. The AD9516 device is configured and monitored
over this SPI port. The maximum clock rate to this serial port is 25 MHz and it is configured as a 3 pin interface.

Each read/write operation is composed of 2 cycles: a 16-bit Instruction cycle followed by 8-bit data transfer cycle. Data is
transferred MSB first. A strobe on spi_wr_strb initiates an SPI read or write transaction depending on the value of

spi_rd wrn.

For writes, a 16-bit instruction word is transmitted followed by an 8-bit data word. For reads, a 16-bit word instruction word

is sent and an 8-bit word is received and is output on the spi_rdata byte. The spi_rdata_valid output indicates when the SPI
read data is valid. The spi_rdy output indicates when the SPI port is ready for the next transfer.

Port Direction Function
srst In Synchronous active high reset
clk In Clock
spi_wr_strb In trigger an SPI transaction
spi_wdata In PLL SPI write data
spi_addr In PLL register address
spi_rd wrn In PLL SPI 1=read/0=write access
spi_rdy Out PLL SPI port is ready
spi_rdata valid Out SPI read data is valid
spi_rdata Out last SPI read data
spi_sclk Out PLL SPI clock
spi_cs n Out PLL SPI enable, active low
spi_sdio Inout PLL SPI input/output data

Table 234. ii_ad9516_spi Component Ports

Innovative Integration Inc.

133

Cardsharp Framework Logic Manual

ii_alert gen

Source file: ii_alert gen.vhd

Description:

This component generates an alert strobe and latches the input alert bus for 4 cycles when any input alert occurs. This
component is useful in generating alert triggers when multiple alerts on the same alert data bus assert and remain asserted.
Otherwise, when an alert asserts on an alert line, then it will mask the detection of other alerts on the same bus since no

trigger will be generated.

Generic

Default

Function

width

16

Number of alerts on the same alert data bus

Table 235. ii_alert_gen Generic Ports

Port Direction Function

srst In Synchronous active high reset
sys_clk In System clock

alert _din In alert data in

alert_strb Out alert strobe

alert_dout Out alert data out

Table 236. ii_alert_gen Component Ports

Innovative Integration Inc.

134

Cardsharp Framework Logic Manual

ii_alerts top

Source files: ii_alerts_top.vhd, ii_alerts_regs.vhd, ii_alerts.vhd

Description:

The alert component is used to monitor critical system events, such as trigger active or overrange, and report these
occurrences to the system. This is done by monitoring alert inputs and generating a packet to the host for each alert. In most
cases, these packets are rare and tell the host software that an important event or error has occurred.

The alerts logic is comprised of 3 components: ii_alerts; responsible for generating an alert packet when any of its alert
trigger inputs occurs, ii_alerts regs; which is a wishbone slave that provides access to the registers that control the ii_alerts
module, and finally ii_alerts_top; which is a wrapper around the two components mentioned earlier.

The number of alerts (num_alerts) is defined in the project package. Note that num_alerts MUST be a multiple of 4 number.
The package should be modified for the number of alerts required.

The ii_alerts component monitors num_alerts input alerts and looks for rising edges on the enabled alerts. An enable for each
alert is provided on the alert_enable inputs which correspond to the alerts on a bit-by-bit basis. When enabled, a rising edge
indicates an alert is signaled and the logic then generates a packet indicating which alerts were triggered, the system time it
was triggered and a status word for each alert. The status words can be anything of interest, the logic just puts these into the
packet.

The system time is from a 32-bit counter clocked by the reference clock. This time stamp is included in each packet
indicating when this alert occurred. The time stamp counter can be extended in software by enabling the time stamp rollover
event so that an alert is generated to the system.

Alert Data Format

The packets are timestamped using a 32-bit counter running off the system clock, showing the system time that the alert
occurred. Multiple alerts can be active for each alert packet as reported in the alerts signaled field of the packet.

Dword # Description

0 Alerts Signaled : a 'l in a bit indicates that alert is active

1 Timestamp : a 32-bit system time clocked by a reference clock.
2.3 Reserved

3.num_alerts Alert status words

Table 237. ii_alerts Packet Format

The array of alert data is the status word that is included in the alert packet for each enabled alert. This 32-bit word can be
anything of interest and is included in the timestamped alert packet when any alert is triggered.

Innovative Integration Inc. 135

Cardsharp Framework Logic Manual

Timestamp — timestamp_rollover

ref_clk
timestamp_run
srst
sys_clk }
alert Edge
alert_enable Detect
Y k4
Packet
alert_data Generator
trigger State
Machine
Y
alert_fifo_rst rg&
alert_fifo_rd

Figure 22. ii_alert Component

alert_fifo_aempty
alert_fifo_empty

alert_dout_vlid
alert_dout

The alert component is usually followed by a packetizing component, such as ii_packetizer, to format the alerts for
transmission to the host via the host interface such as PCI Express.

Maximum Alert Rates and Overflow Behavior

The alert log is intended for occasional use in the system, events that occur at rates expected to be no higher than 10 kHz.

Since each alert generates a small data packet, higher rates require a larger data buffer. System performance may also be
impacted by the large number of interrupts resulting from the packet stream.

If the FIFO fills the alert will remain pending until there is room in the FIFO for another alert packet. If the active alerts
signal again when the FIFO is full however, only the first occurrence is signaled.

Innovative Integration Inc.

136

Cardsharp Framework Logic Manual

Generic

Default

Function

offset

Alerts Wishbone slave address offset

Table 238. ii_alerts_top Generic Ports

Port Direction |Function
wb_rst i In WB synchronous active high reset
wb_clk i In WB clock
wb_adr i In WB address in
wb_dat i In WB data in
wb_we_i In WB write enable
wb_stb i In WB strobe from master
wb_ack o Out WB acknowledge out
wb_dat o Out WB data out
srst In Synchronous reset
sys_clk In System clock
ref clk In Reference clock used for timebase.
alert data(num_alerts -1 ..0)(31..0) In Array of status words for the alert packet. The dimension is defined in
k7 pkg for num_alerts.
alert(num_alerts -1..0) In Alert trigger inputs. The component monitors these signals for a rising
edge.
trigger In Trigger
alert sw_data Out Software alert status word
alert sw_stb Out Software alert trigger
timestamp_rollover Out The timestamp counter rolled over. Used for software extending the
counter.
alert_fifo wrd cnt Out Alert FIFO word count
alert_fifo aempty Out Alert FIFO almost empty
alert fifo empty Out Alert FIFO empty
alert fifo rd In Alert FIFO read enable
alert_dout vld Out Alert FIFO data output is valid
alert_dout(127..0) Out Alert FIFO data output

Table 239. ii_alerts_top Component Ports

Innovative Integration Inc.

137

Cardsharp Framework Logic Manual

ii_alerts_axis

Sourece files: ii_alerts axis.vhd

Description:

This component is a variant of the ii_alerts top component, that captures events in a similar way and instead sends a AX14-
Stream data with the alerts payload to the system. The main difference is the alerts_cnt input, changing to a programmable
number of alerts being processed from 1 to 32. Only alerts under this number would be processed, the rest are ignored. In

turn, the output AXI-Stream will vary in size according to the number of alerts and will delimit the stream using the TLAST
signal on the last strobe of the stream.

This component streams alerts to the alerts processing engine built into the Multichannel DMA, which will trigger an
interrupt to the software, which in turn will read the alerts payload. The alerts structure is similar to the component in
ii_alerts.vhd except for its programmable variable size.

Dword # Description

0 Alerts Signaled : a'l' in a bit indicates that alert is active

1 Timestamp : a 32-bit system time clocked by a reference clock.
2.num_alerts Alert status words

Table 240. Alerts data structure

Port Direction Function

srst In Synchronous reset

sys_clk In System clock

ref clk In Reference clock used for timebase.

alert data(num_alerts -1 ..0)(31..0) In Array of status words for the alert packet. The dimension is defined in
k7 pkg for num_alerts.

alert(31..0) In Alert trigger inputs. The component monitors these signals for a rising
edge.

trigger In Trigger

timestamp_rollover Out The timestamp counter rolled over. Used for software extending the
counter.

m_axis_tvalid Out AXI-Stream TVALID

m_axis_tready In AXI-Stream TREADY input

m_axis_tdata Out AXI-Stream TDATA

m_axis_tstrb Out AXI-Stream TSTRB

m_axis_tlast Out AXI-Stream TLAST

Table 241. ii_alerts_axis Component Ports

Innovative Integration Inc.

138

Cardsharp Framework Logic Manual

ii_bin2gray

Source file: ii_bin2gray.vhd

Description:

This component onverts the binary input into a grey coded output.

Generic Default Function
bw 8 Bit width
Table 242. ii_bin2gray Generic Ports
Port Direction Function
binary i(bw-1:0) In Binary data in
gray o(bw-1:0) Out Gray coded data out

Table 243. ii_bin2gray Component Ports

Innovative Integration Inc.

139

Cardsharp Framework Logic Manual

ii_cdcel8005 spi

Source file: ii_cdcel8005 spi.vhd

Description:

This component is an SPI port interface to the TI CDCE18005. The CDCD18005 device is configured and monitored over
this SPI port. The maximum clock rate to the serial port is 20 MHz. For reads, a 28-bit word instruction word is sent with a

4-bit address and a 32-bit word is returned. For writes, a 32-bit word is transmitted consisting of a 4-bit address followed by

28-bits of data.

Port Direction Function
srst In Synchronous active high reset
clk In Clock
spi_wr_strb In trigger an SPI transaction
spi_wdata In PLL SPI write data
spi_addr In PLL register address
spi_rdy Out PLL SPI port is ready
spi_rdata_valid Out SPI read data is valid
spi_rdata Out last SPI read data
spi_sclk Out SPI clock
spi_le Out SPI load enable, active low
spi_mosi Out SPI master out slave in
spi_miso In SPI master in slave out

Table 244. ii_cdcel18005_spi Component Ports

Innovative Integration Inc.

140

Cardsharp Framework Logic Manual

ii_cdce72010 spi

Source file: ii_cdce72010 spi.vhd

Description:

This component is an SPI port interface to the TI CDCE72010. The CDCD18005 device is configured and monitored over
this SPI port. The maximum clock rate to the serial port is 20 MHz. For reads, a 28-bit word instruction word is sent with a

4-bit address and a 32-bit word is returned. For writes, a 32-bit word is transmitted consisting of a 4-bit address followed by

28-bits of data.

Port Direction Function
srst In Synchronous active high reset
clk In Clock
spi_wr_strb In trigger an SPI transaction
spi_wdata In PLL SPI write data
spi_addr In PLL register address
spi_rdy Out PLL SPI port is ready
spi_rdata_valid Out SPI read data is valid
spi_rdata Out last SPI read data
spi_sclk Out SPI clock
spi_le Out SPI load enable, active low
spi_mosi Out SPI master out slave in
spi_miso In SPI master in slave out

Table 245. ii_cdce72010_spi Component Ports

Innovative Integration Inc.

141

Cardsharp Framework Logic Manual

ii_circ_buffer

Source file: ii_circ_buffer.vhd

Description:

This component is a circular buffer that is used to synchronize signals between two clock domains. The two clocks should

have the same frequency but can be of different phase.

Generic

Default

Function

WIDTH

1

Number of bits in data bus

Table 246. ii_circ_buffer Generic Ports

Port Direction Function
arst In Asynchronous active high reset
welk In Write clock
wdata(WIDTH-1:0) In Write data
relk In Read clock
rdata(WIDTH-1:0) Out Read data

Table 247. ii_ circ_buffer Component Ports

Innovative Integration Inc.

142

Cardsharp Framework Logic Manual

ii_crm

Source file: ii_crm.vhd

Description.

This component provides clocks and resets used in the K7 logic. The 200 MHz input clock is buffered and a
MMCM is used to create the system clock. Resets to the logic are derived from the power on reset, board reset,
and MMCM's lock so that the logic remains in reset until the clock is stable.

The resets to the system are controlled to allow the clock to stabilize before use and sequenced according to the
requirements of the logic design and its dependencies. The hardware power-on-reset por_arst is the highest priority and
resets the memory and all the logic. The run input is lowest priority, used for the backend reset data flow reset.

Step Function Result

1 Power-on-reset por_arst All logic and memory clock MMCM is reset. All resets are asserted.
2 por_arst deasserted Memory clock MMCM locks. Memory reset deasserts.

3 brd_arst asserts System clock MMCM is reset.

4 brd_arst deasserted System clock MMCM locks.

5 MMCM is Locked clks locked is set true. Wishbone reset deasserts.

4 app_rst is deasserted Frontend reset deasserts.

5 run is asserted Backend reset deasserts.

Table 248. ii_clock Reset Sequencing

As this sequence shows, the application logic will not come out of reset until the Power-on-reset and board reset are false,
MMCM is locked, and app_rst is false. This allows the front end logic — PCI Express and Wishbone system control bus- to
be active before the application logic for configuration.

Innovative Integration Inc. 143

Cardsharp Framework Logic Manual

clk200_p
k200 I -D—> ref_clk200
por_arst —— > MMCM » sys clk
lock
» clks locked
—
app_r3 Bt » mem_rst
brd arst ——————» » wh_rst
Control
run E— » frontend_rst
» backend_rst
Figure 23. ii_crm Component
Generic Default Function
SYS CLK FREQ 250 System clock frequency in MHz

Table 249. ii_crm Generic Ports

Innovative Integration Inc.

144

Cardsharp Framework Logic Manual

Port Direction |Function

por_arst In Asynchronous active high power on reset

brd arst In Asynchronous active high board reset

clk200 _p/n In 200 MHz differential clock input pair

ref clk200 Out 200MHz reference clock

sys_clk Out System clock output

mem_clk_div2 Out Memory clock divided by 2

clks locked Out MMCMs are locked

app_rst In Application reset request

run Enable data flow

mem_rst Out Synchronous active high memory reset at mem_clk div2 domain.
(asserted only while power on and before memory clock lock)

wb_rst Out Wishbone system reset (asserted when clocks are not locked)

frontend_rst Out Synchronous active high reset (asserted while clocks are not locked and
upon software reset request)

backend_rst Out Synchronous active high reset (asserted while clocks are not locked, upon

software reset request, and while run is low)

Table 250. ii_crm Component Ports

Innovative Integration Inc.

145

Cardsharp Framework Logic Manual

ii_decimate x2

Source file: ii_decimate x2.vhd
Description:
This component generates an (scnt) sample output word by dropping the odd numbered samples in two (scnt) sample input

data words in a frame to achieve a decimate by 2 function when not bypassed. In bypass mode, the input is passed to the
output as is.

Generic Default Function
scnt 8 sample count
sbw 8 sample bit width

Table 251. ii_crm Generic Ports

Port Direction Function

srst In Synchronous active high reset
clk In Clock

bypass In bypass decimation

din_frame In input data frame

din_rdy In input data ready
din(scnt*sbw-1 : 0) In input data (scnt samples)
dout frame Out data out frame

dout vld Out data out is valid
dout(scnt*sbw-1 : 0) Out data out (scnt samples)

Table 252. ii_decimate_x2 Component Ports

Innovative Integration Inc. 146

Cardsharp Framework Logic Manual

ii_deframer

Source file: ii_deframer.vhd
Description:

The deframer component parses incoming packets and routes them to the peripheral device number (PDN) embedded in the
header. Data is pulled from the source FIFO, is stripped of its header, and written to a destination device. Each destination
has a specific PDN as defined in the PD_ADDR array.

The header for each packet has the PDN and packet size that is used by the deframer for packet routing. The deframer state
machine reads the packet header and then transfers the data payload to its destination. The deframer does not do anything
with the data payload — it simply passes through whatever payload is attached to a packet header.

The packet size taken from the first header word is used to move the data points as available from the source FIFO to the
destination. These data moves are controlled by the flow control signals SRC_EMPTY, SRC_AEMPTY, and DEST RDY.
DEST RDY must be true when it can accept at least 8 points. The source flags are usually the output of a FIFO.

srst
sys_clk
¥
Deframer new,_packet
pd_addr ————m State L = bad pdn
Machine end_of_packet

Data Pipeline

Destination
src_rcen
src_aempty dlest_rdy
src_empty dest_wren y
src_data_vid data_out
data_in

Figure 24. ii_deframer Component

The PDN definitions for device mapping are assigned to the array PD_ ADDR. These addresses can be dynamic, provided
that they are changed on packet boundaries.

Innovative Integration Inc.

147

Cardsharp Framework Logic Manual

Several signals are also available to monitor the packet flow: NEW_PACKET, BAD PDN and END OF PACKET. These

can be used by destination logic to know when a packet is complete for processing. The error signal BAD PDN reports if an
unknown PDN is received. If a bad PDN is detected, then the packet data is dumped.

Port Direction Function

srst In Synchronous active high reset

sys_clk In System clock

pd_addr In peripheral device numbers for decoding (defined in k7 packages)
new_packet Out Signals the beginning of a packet (for debug)

bad pdn Out A bad PDN was detected, indicating a malformed packet

end of packet Out Signals the end of a packet (for debug)

src_aempty In Source is almost empty (< 8 points)

src_empty In Source is empty

src_rden Out Source read enable

src_data vld In Source data is valid

data_in(127:0) In Data input bus (32 bits)

dest_rdy(num pd df-1:0) In Destinations are ready indicating that at least 8 points can be accepted.
dest_ wren(num_pd_df-1:0) | Out Destination write enables, one for each of the Peripheral Devices
data_out(127:0) Out Data bus output

Table 253. ii_deframer Component Ports

Innovative Integration Inc.

148

Cardsharp Framework Logic Manual

ii_destacker

Source file: ii_destacker.vhd
Description:

This component is used to split data words into two words. This is required on many K7 modules to split the 128-bit system
words into two 64-bit words for the DACs. This is referred to as “destacking” the data.

The word width is specified by the generic OBW port. The OBW must be an even number. The input data path is 2x larger
than the output data path.

Data flow is moderated by the DIN_RDY and DOUT RDY flags indicating when the input and output data streams are ready
to flow data. When both are ready, and a request is issued by the destination, then data is read (RDEN) from the source. The
output data is received by the destination when valid (DOUT_VLD) is true.

srst

clk

ce v
Ll?r? gy | Flow Control ———» Zﬂi'l 55
i dout_vid

din ———» Word split 1 qout

Generic
obw

Figure 25. ii_destacker Component

Generic Default Function
obw 64 Data bus width, in bits
Table 254. ii_destacker Generic Ports

Innovative Integration Inc. 149

Cardsharp Framework Logic Manual

Port Direction Function
srst In Synchronous reset
clk In Clock
ce In Enable
req In Data request
rden Out Read enable
din_rdy In Input data is ready.
din(2*obw-1:0) In Data bus input
dout_rdy Out Data out is ready (available)
dout vld Out Data out is valid
dout(obs-1:0) Out Data bus output

Table 255. ii_destacker Component Ports

Innovative Integration Inc.

150

Cardsharp Framework Logic Manual

ii_dio top

Source files: ii_dio_top.vhd, ii_dio_regs.vhd, ii_dio.vhd

Description:

The DIO component provides a simple registered IO functionality for the K7 P16 DIO pins. The main purpose of this
component is to provide either simple control IO or as an easily modifiable interface.

The DIO logic is comprised of 3 components: ii_dio; the basic digital I/O component that provides the interface between the
DIO pins and a wishbone slave that configures, controls, and monitors these bits. ii_dio_regs; is a wishbone slave that

provides access to registers that interface to the ii_dio module, and finally ii_dio_top; which is a wrapper around the two

components mentioned earlier.

The direction of each bit on the DIO bus is controlled by a register.

Generic Default Function

width 8 DIO width

diff en FALSE Enable differential mode DIO pins
addr_bits 2 DIO Wishbone slave address bits
offset DIO Wishbone slave address offset

Table 256. ii_dio_top Generic Ports

Port Direction |Function
wb_rst i In WB synchronous active high reset
wb_clk i In WB clock
wb_adr i In WB address in
wb_dat i In WB data in
wb_we i In WB write enable
wb_stb i In WB strobe from master
wb_ack o Out WB acknowledge out
wb_dat o Out WB data out
clk In System clock
dio_p(width-1:0) InOut Differential (P-side) DIO pins when diff_en generic is set true or
even numbered single ended DIO pins when diff en generic is set false
dio_n(width-1:0) InOut Differential (N-side) DIO pins when diff en generic is set true or
odd numbered single ended DIO pins when diff en generic is set false

Table 257. ii_dio_top Component Ports

Innovative Integration Inc.

151

Cardsharp Framework Logic Manual

ii_drainer_destacker

Source file: ii_drainer destacker.vhd
Description:

This component is used to move from a source FIFO to some destination logic with data split from 128-bit to 64-bit
width. This component is usually used to move data from the DRAM memory to the output devices such as DACs.

When the source FIFO has data, as indicated by the empty and almost empty flags, the data flow state machine
generates the control signals to read from source FIFO. The data is read continuously in a burst mode when the
SRC_AEMPTY flag is false and DEST_RDY is true. If the source FIFO is almost empty, with a few points in in it,
then the data flow is one point at a time in a “drip” mode.

The component requires that the source FIFO provide the AEMPTY and EMPTY flags. The AEMPTY must be > 8 points to
allow for latencies. The destination must provide the DEST RDY flag, indicating that it can accept at least 8 data points
without overflow.

The source FIFO has a data valid signal for each point read from the FIFO that is used as a write enable to
ii_drainer destacker component. The data is split from a 128-bit word to two 64-bit words and written to the destination
logic with DEST_ WREN. Data is written to the destination logic when WR_EN is true, valid for each 64-bit word.

clk
ce

Src_aempty —
src_empty ———m
Flow Control —= src_rden

dest_rdy —— — = dest wren

srst

src_valid ——»
Data Word Split — data_out[63:0]
data_in[127:0] —m

Figure 26. ii_drainer_destacker Component

Innovative Integration Inc. 152

Cardsharp Framework Logic Manual

clk
ce
srst
Y
Source FIFO n .
ii_drainer_destacker RS eelle
empty = SIC_empty
almost empty —— src_aempty dest_rdy |« rdy
rd_en fe——— Src_rden dest_wren ———= wr_en
data_out[63:0] | din[63:0]
valid | — src_valid
dout[127:0] » data_in[127.0]

Figure 27. Using ii_drainer_destacker

Port Direction Function
srst In Synchronous active high reset
clk In Clock
ce In Enable
src_empty In Source FIFO is empty
src_aempty In Source FIFO is almost empty (<8 points)
dest_rdy Out Destination FIFO is ready (room for >8 points)
src_rden Out Source FIFO read enable
src_valid Out Source FIFO data valid
src_data[127:0] In Source FIFO data bus
dest_wren Out Destination write enable
dest_data[63:0] Out Destination data bus

Table 258. ii_drainer_destacker Component Ports

Innovative Integration Inc. 153

Cardsharp Framework Logic Manual

ii_ext sync_iddr

Source file: ii_ext sync iddr.vhd

Description:

This component is used to capture the fast external sync signal using an IDDR component, and generate and latch a

phase value corresponding to the clock cycle in which the external sync asserted. This component is used when ADC/DAC

data synchronization with an external trigger is desired and when the ADC/DAC interface uses IDDR/ODDR components

in its physical layer.

The captured external sync phase value is usually used to select between two sets of parallel samples captured on the

interface to adjust with the external sync signal.

Port Direction Function

reset In Async active high reset

clk bufio In 10 clock

clk bufr In BUFR (regional) clock

ext_sync p/n In External sync (trigger) differential pair
trigger_en In Trigger enable (used to latch the phase)

ext _sync Out Detected external sync (in clk_bufr domain)
ext_sync_phase Out Calculated external sync phase

Table 259. ii_ext_sync_iddr Component Ports

Innovative Integration Inc.

154

Cardsharp Framework Logic Manual

ii_ext sync slp4

Source file: ii_ext sync_slp4.vhd

Description:

This component is used to capture the fast external sync signal using an ISERDES component, and generate and latch a
phase value corresponding to the clock cycle in which the external sync asserted. This component is used when ADC/DAC

data synchronization with an external trigger is desired and when the ADC/DAC interface uses ISERDES/OSERDES

components in its physical layer.

The captured external sync phase value is usually used to select between four sets of parallel samples captured on

the interface to adjust with the external sync signal.

Port Direction Function
reset In Async active high reset
clk bufio In 10 clock
clk bufr In BUFR (regional) clock
ext_sync p/n In External sync (trigger) differential pair
trigger_en In Trigger enable (used to latch the phase)
idelay rst In Software programmable S1P4 idelay reset
idelay In Software programmable S1P4 idelay value
ext_sync Out Detected external sync (in clk_bufr domain)
ext sync phase Out Calculated external sync phase

Table 260. ii_ext sync_s1p4 Component Ports

Innovative Integration Inc.

155

Cardsharp Framework Logic Manual

ii_fifo drainer

Source file: ii_fifo drainer.vhd

Description:

This component is used to move data from a source FIFO to other logic. When the source FIFO has data as indicated
by the empty and almost empty flags, the data flow state machine generates the control signals to read from source FIFO
and write to the destination. The data is read continuously in a burst mode when the SRC_AEMPTY flag is false and
DEST RDY is true. If the source FIFO is almost empty, with a few points in in it, then the data flow is one point at
a time in a “drip” mode.

The component requires that the source FIFO provide the AEMPTY and EMPTY flags. The AEMPTY must be > 8 points to
allow for latencies. The destination must provide the DEST RDY flag, indicating that it can accept at least 8 data points
without overflow.

clk
ce

src_aempty —
src_empty ——
Flow Control — sic_rden
dest_rdy ———m

srst

Figure 28. ii_fifo_drainer Component

The source usually has a data valid signal for each point read from the FIFO. This valid signal is used as a write enable to the
destination logic.

Innovative Integration Inc. 156

Cardsharp Framework Logic Manual

clk
ce
srst
Source FIFO Destination Logic
k4
src_empty >
src_aempty - Tt clfat
ii_fifo_drainer -
src_rden dest iy
valid = WI_en

data_in » cata_in

Figure 29. Using ii_fifo_drainer

Port Direction Function
clk In Clock
srst In Synchronous reset
ce In Enable
src_empty In Source FIFO is empty
src_aempty In Source FIFO is almost empty (<8 points)
dest_rdy Out Destination FIFO is ready (room for >8 points)
src_rden In Source FIFO read enable

Table 261. ii_fifo_drainer Component Ports

Innovative Integration Inc.

157

Cardsharp Framework Logic Manual

ii_flash_intf top
Source files: ii_flash_intf top.vhd, ii_flash regs.vhd, ii_flash spi.vhd

Description:

This component provides a link between the software and the on-board calibration ROM (serial flash memory) that is used to
hold the analog front end calibration coefficients. The interface logic is comprised of 3 components: ii_flash_spi; responsile
for generating the SPI interface signals to the SST25VF032B flash memory, ii_flash_regs; which is a wishbone slave that
provides access to the registers that control the ii_flash spi module, and finally ii_flash intf top; which is a wrapper around
the two components mentioned earlier. The sequence of commands used to interface to this flash memory is included in the
memory map section.

The software issues data, address, and opcode writes to initiates a serial transaction to the flash. The opcode is decoded and
the number of cycles for opcode, address, data and dummy cycles and whether the transaction is a read or a write are
determined based on it. The serial clock is 15.625MHz based on a system clock of 250MHz. This clock could be as fast as
80MHz for all commands (except read, which is 25MHz max), but in order to support all instructions up to a 400MHz
system clock, it was intentionally limited. The serial clock is stopped between transactions to avoid analog noise interference.
Note that the high speed read is not faster than the normal read command. All flash operations are fully supported.

Generic Default Function

offset Flash interface Wishbone slave address offset
Table 262. ii_flash_intf top Generic Ports

Innovative Integration Inc. 158

Cardsharp Framework Logic Manual

Port Direction |Function

wb_rst i In WB synchronous active high reset
wb_clk i In WB clock

wb_adr i In WB address in

wb_dat i In WB data in

wb_we i In WB write enable

wb_stb i In WB strobe from master
wb_ack o Out WB acknowledge out
wb_dat o Out WB data out

srst In Synchronous reset
sys_clk In System clock

rom_sck Out Serial clock to flash

rom _cs n Out Chip select to flash
rom_sdi Out Serial data in to flash
rom_sdo In Serial data out from flash
rom_hold n Out Hold flash interface
rom_wp_n Out Flash write protect

Table 263. ii_flash_intf top Component Ports

Innovative Integration Inc.

159

Cardsharp Framework Logic Manual

ii_gray2bin

Source file: ii_gray2bin.vhd

Description:

This component onverts the grey coded input into a binary output.

Generic Default Function
bw 8 Bit width
Table 264. ii_bin2gray Generic Ports
Port Direction Function
gray i(bw-1:0) In Gray coded data in
binary o(bw-1:0) Out Binary data out

Table 265. ii_gray2bin Component Ports

Innovative Integration Inc.

160

Cardsharp Framework Logic Manual

ii_offgain

Source file: ii_offgain.vhd

Description:

This component applies gain/offset error correction coefficients to the incoming data samples. The input data is multiplied
by the gain coefficient first, and then an offset is added to it to compensate for analog errors. The gain factor is a 2's
complement, 18-bit number ranging from +2 to -2 that allows for precise gain correction to the input data. The offset value
is a 16-bit, 2's complement number that compensates for bias errors.

The error compensated output is
y=Gx+0

where x = input data, G = gain, O = offset

A gain of 1 is represented by 0x10000 and offset of 0 equal to 0.

The component uses a DSP48E block to perform the multiplication and addition followed by a signed number saturator to

produce the output in the desired size.

clk

srst e

Flow
£L Control ! data—VId
Saturation
Adder - and

din[15:0] H Multiplier

Overflow

—» dout[15:0]

|

gain[17:0]
offset[15:0]

Figure 30. ii_offgain Component

Innovative Integration Inc.

161

Cardsharp Framework Logic Manual

Generic Default Function

obw 16 Output bit width
Table 266. ii_ offgain Generic Ports

Port Direction | Function

srst In Synchronous reset

clk In Clock input

gain(17:0) In Gain factor, X’10000” =1
offset(15:0) In Offset factor, 0 is offset of 0
ce In Enable

din(15:0) In Input data

data vld Out Data is valid when true

dout(obw-1:0) Out Output data

Table 267. ii_offgain Component Ports

Innovative Integration Inc.

162

Cardsharp Framework Logic Manual

ii_packetizer_top

Source file: ii_packertizer top.vhd, ii_packertizer regs.vhd, ii_packertizer.vhd
Description:

The packetizer component places data streams into Velocia packets by attaching a header to a bundle of data. The primary
use of these packets is to transfer data to the host using the Velocia packet system. Each data packet has a four double word
header, 32-bits each, preceding the data. The packets are programmable in size and for their other routing information.

The packetizer logic is comprised of 3 components: ii_packetizer; the component that constructs Velocia packets from data
received from various sources. ii_packetizer regs; is a wishbone slave that provides access to registers that set the parameters
for the ii_ packetizer module, and finally ii_packetizer top; which is a wrapper around the two components mentioned
earlier.

During operation, the packetizer scans the number of input channels in a round robin order and creates packets for the
channels that are ready. Each channel has its packets built with the header information for that channel and the data payload
attached to the header. The packet is transmitted as it is built to the destination; there is no data storage in the ii_packetizer
component.

clk ———» Setup Info
number of channels
packet sizes

source_ready l

Data Source
Facketizing
@ State Machine dest reagy
Y
Data
Data in FPipelne [L—m Data out

Figure 31. ii_packetizer Block Diagram

Innovative Integration Inc. 163

Cardsharp Framework Logic Manual

The component reads data from num_pkt ch (defined in k7-pkg) of data sources for a max of ch_pkt size points and gives

out a packet with a header. If the amount of data available from a data source is less than the configured channel packet size
programmed in the ch_pkt size register for that channel, a packet is constructed with only the available size of data. The data

width is 128; input and output are identical in size. The data sources provide data with valid after each src_rden(). Data

destination must sink data continuously when dest_wren is true. The status of the source and destination devices is required
by the src_data_cnt(), src_aempty(), src_empty(), and dest rdy. No movement occurs if the destination does not have room.

Format of the packet is a four dword header, followed by a data payload. The header format is

bits[23:0] = packet size including header in dwords
bits[31:24] = peripheral device number

bits[63:32] = Auxiliary header (aux_hdr2)
bits[95:64] = Reserved (all zeros)

bits[127:96] = Reserved (all zeros)

dword = 32 bit word

srst

sys_clk

ch_en — >
ch_pkt_size ——p»|
pd_addr —.

aux_hdrz @ g Packetizing

src_data_cnt———
src_aempty —— g
src_empty g
dest_rdy >

State Machine

—— sic_rden

i

src_clata_vld

: —>
data_in

Ciata

Fipeline

dest_wren
data_out

Figure 32. ii_packetizer Component

Innovative Integration Inc.

164

Cardsharp Framework Logic Manual

Generic Default

Function

offset

Packetizer wishbone slave address offset

Table 268. ii_packetizer_top Generic Ports

Port Direction |Function

wb_rst i In WB synchronous active high reset
wb_clk i In WB clock

wb_adr i In WB address in

wb_dat i In WB data in

wb_we_i In WB write enable

wb_stb i In WB strobe from master

wb_ack o Out WB acknowledge out

wb_dat o Out WB data out

srst In Synchronous reset

sys_clk In System clock

src_data_cnt(num_pkt ch-1:0)(21:0) In Source channel FIFO word count
src_aempty(num_pkt ch-1:0) In Source channel FIFO almost empty
src_empty(num_pkt ch-1:0) In Source channel FIFO empty
src_rden(num_pkt ch-1:0) Out Source channel FIFO read enables
src_data_vld(num_pkt ch-1:0) In Source channel data is valid
data_in(num_pkt ch-1:0)(127:0) In Source channel data in array

dest rdy In Destination is ready

dest_wren Out Destination write enable
data_out(127:0) Out Packetized data output bus

Table 269. ii_packetizer_top Component Ports

Innovative Integration Inc.

165

Cardsharp Framework Logic Manual

ii_regs master

Source file: ii_regs master.vhd
Description:

This component is a bridge between the PCIE register control interface and the application logic connected to Wishbone
system bus. The wishbone master side is connected to all the slaves in the design. Crossing clock domains from/to PCle
clock to/from Wishbone clock is handled in this component.

Connecting to the Wishbone System Bus

When a new module with a Wishbone slave component in it is added to an K7 design, an offset address is assigned to that
slave. When a Wishbone slave detects a transaction on the Wishbone system bus with an address offset matching its address
offset, the Wishbone slave recognizes that the transaction is intended for it and it responds to it accordingly. It is the
responsibility of the Wishbone slaves to signal the master when each transfer is complete. Transfers are limited to 16 cycles
maximum. If longer cycles are required, then wait states should not be used. An alternate method such as a two-step write
process should be considered if longer access times are required than 64 clocks. If the slave does not respond within 64
cycles then the master will terminate the access and return null data.

By having a Wishbone slave component in each module that needs to be configured or monitored by the software, that
module can be decoupled from the overall system design for both code changes and physical layout requirements, leading to
simplifying the design.

Application logic can connect to the Wishbone interface by decoding the Wishbone controls signals, use the read and write
strobes or use the arrays of registers for IO. The array of registers for control and status are 32-bit each. If a register is not
suitable, then read/write strobes are memory decodes for the slave memory region. Full access to the bus signals are also
provided for logic devices that require multiple memory addresses or unusual decoding requirements.

Innovative Integration Inc. 166

Cardsharp Framework Logic Manual

Port Direction | Function

st In Active high reset on pcie_clk domain
pcie_clk In PCle clock

ctrl_addr In PCle control address

ctrl_din In PCle control data in

ctrl_rd In PCle control read strobe

ctrl_wr In PCle control write strobe

ctrl_vld Out PCle control data out valid

ctrl_dout Out PCle control data out

wb_rst i In Active high reset on system clock domain
wb_clk i In system clock

wb_adr o Out WB address out (to slaves)

wb_dat o Out WB data out (to slaves)

wb_we o Out WB write enable (to slaves)
wb_stb_o Out WB strobe (to slaves)

wb_cyc o Out WB cycle=strobe (to slaves)

wb_ack i In WB acknowledge in (from slaves)
wb_dat i In WB data in (from slaves)

Table 270. ii_regs_master Component Ports

Innovative Integration Inc.

167

Cardsharp Framework Logic Manual

ii_stacker

Source file: ii_stacker.vhd

Description:

This component generates an obw-bit word output by stacking up n ibw-bit word input data points, where n = obw/ibn (ratio).
This ratio must be an integer number.

The first input word goes to the low location of the output word and subsequent words go to the higher locations. ie. little

endian. An output valid is generated after receiving every n input points.

Generic Default Function

ibw Input bit width
obw Output bit width

Table 271. ii_stacker Generic Ports

Port Direction Function

srst In Synchronous active high reset
clk In Clock

din_rdy In Input data is ready.
din(ibw-1:0) In Data bus input
dout_vld Out Data out is valid
dout(obw-1:0) Out Data bus output

Table 272. ii_stacker Component Ports

Innovative Integration Inc.

168

Cardsharp Framework Logic Manual

ii_timestamp

Source Files: ii_timestamp.vhd

Description:

The ii_timestamp component is a simple 32-bit counter used in conjunction with ii_alert to record the time of each alert.

The clock to the timestamp is usually either the sample clock or a reference clock so that the timestamp reports either the
sample number or actual system time. This allows the system to parse the data stream and correlate alerts to the data
samples. The CE (clock enable) input is used to gate the clock so that the counter increments only when CE and

TIMESTAMP_RUN are true.

The output TIMESTAMP_TIMER is on CLK domain. When the counter rolls over from X”FFFFFFFF” to X”00000000”,

the TIMESTAMP_ ROLLOVER output is true. TIMESTAMP ROLLOVER is true for one CLK period and is also on the
CLK domain. In K7 products, the TIMESTAMP ROLLOVER is connected to an alert so that the software receives
notification of the rollover. For a 100 MHz clock, this rollover occurs every 42.9 seconds.

ce

clk

¥

32-bit

timestamp_run —™ ounter

Figure 33. ii_timestamp Component

I timestamp_timer[31:0]

L timestamp_rollover

Port Direction Function

clk In clock

ce In Clock enable

timestamp_run In Time stamp run enable. The time stamp is reset to 0 when false.
timestamp_timer[31:0] Out Time stamp output.

timestamp_rollover Out The timestamp counter rolled over. Used for software extending the counter.

Table 273. ii_timestamp Component Ports

Innovative Integration Inc.

169

Cardsharp Framework Logic Manual

ii_trigger

Source file: ii_trigger.vhd

Description:

This component provides a trigger for data capture. Two trigger modes are supported : unframed and framed. In unframed

mode, the trigger output is true whenever the selected trigger source is true. In framed mode, the trigger output is true after a

rising edge on the selected trigger source until the frame count number of sample clocks are counted. A point is counted on
each rising edge of the sample clock input. The trigger mode is selected with trig_mode input to be either framed or

unframed, software or external trigger, positive edge or level.

The trigger sources are either external or software. The external trigger must be enabled to be used, however, the software
trigger is always OR'd with the external trigger to allow it to be used anytime. In unframed mode, the mode can be positive

edge or level. In the positive edge mode, the source trigger posedge enables the output, ignoring any subsequent changes. In
Level mode, the output follows the source trigger.

Generic

Default Function

SAMPLES PER_CLK

1

Parallel samples per sample clock

Table 274. ii_trigger Generic Ports

Port Direction Function
reset In Asynchronous active high reset
clk In Clock
ce In Clock enable
ext_sync In External sync (trigger) input
sw_trig In Software trigger input
trig_mode In Select the trigger mode
bit 0: 1 = posedge, 0 =level
bit 1: 1 = framed, 0= unframed
bit 2: 1 = external, 0 = SW trigger
frame_size In Number of points in a frame count
decimation_coeff In Number of gaps between output triggers
decimation_en Out Set when (decimation_coeft /= 0)
trigger Out Trigger
trigger en Out Trigger window (frame) is enabled

Table 275. ii_trigger Component Ports

Innovative Integration Inc.

170

Cardsharp Framework Logic Manual

ii_trigger pri

Source file: ii_trigger pri.vhd

Description:

This component when connected to the ii_trigger component periodically generates a series of trigger pulses of
programmable width and delay. It only requires a single trigger (external or software) to start its operation in generating
frames of programmable length. Up to 32 triggers can be generated in a frame.

This component generates single clock cycle wide train of trigger pulses at repeated intervals defined by the (pri) input
parameter once a rising edge is detected on the (trig_in) input until a stop is requested by the software. A start of frame (sof)
signal is generated every (pri) number of clock cycles. Each output trigger pulse within a frame is generated after
(trig_cycle del) number of clock cycles from (sof). For each trigger pulse output, its corresponding width parameter is also
generated at the (dig_trig_width) port. This width parameter and trigger pulse are connected to ii_trigger's (frame_size) and
(ext_sync) ports to generate trigger outputs of the desired width.

Since multiple and variable number of output triggers are needed per frame, their corresponding parameters (trig_cycle del
and trig_width) are loaded by the software and stored in a circular fifo. After a point is read from this fifo and used to
generate a trigger pulse, the same point is written back into the fifo to be used during the next frame.

Innovative Integration Inc. 171

Cardsharp Framework Logic Manual

Port Direction Function

srst In Synchronous active high reset

clk In Clock

en_pri_trig In enable pri trigger mode

trig_in In external sync or sw trigger input
stop_pri In stop PRI triggering

pri_busy Out PRI trigger is running

pri In PRI (pulse repetition interval)
trig_fifo rst In reset the pri trigger parameters' fifo
trig_fifo wr In write to the pri trigger parameters' fifo
trig_cycle del In delay between the trigger and sof
trig_width In trigger width

dig_trig_pls Out trigger pulse

dig_trig_idx Out trigger index

dig_trig width Out trigger width

pri_idx Out pri index

pri_sof Out pri start-of-frame

Table 276. ii_trigger pri Component Ports

Innovative Integration Inc.

172

Cardsharp Framework Logic Manual

ii_unsign_sat

Source file: ii_unsign sat.vhd

Description:

This component saturates an unsigned input to obw bits. Saturation is done combinatorially, by comparing the MSBs of the

input.
Generic Default Function
ibw input bit width
obw output bit width
Table 277. ii_unsign_sat Generic Ports

Port Direction Function

i In data in

o Out saturated data out

Table 278. ii_unsign_sat Component Ports

Innovative Integration Inc.

173

Cardsharp Framework Logic Manual

ii_vita_deframer

Source Files: ii_vita_deframer.vhd

Description:

This component reads data from a source FIFO in “drip” and “bleed” modes when a destination logic is ready and can accept

data, it strips off the VITA-49 packet header and trailer, and produces the payload data with a valid per byte on its output.

For details on the VITA-49 packet header and trailer, please refer to the subpacketizer section.

Port Direction |Function

srst In Synchronous active high reset
sys_clk In System clock

src_aempty In Source FIFO almost empty
src_empty In Source FIFO empty

src_rden Out Source FIFO read enables

src_vld In Source FIFO data is valid
src_din[127:0] In Source FIFO data

pkt hdr vid Out Packet header is valid on dst_out
pkt pyld size[13:0] Out Packet payload size in 128-bit words
pkt_idx[3:0] Out Packet index

pkt tsi[1:0] Out Timestamp integer-seconds type

pkt tsf[1:0] Out Timestamp fractional-seconds type
pkt stream_id[31:0] Out Packet stream ID

pkt ts_int_secs[31:0] Out Integer seconds in header

pkt ts frc secs[63:0] Out Fractional time in header

dst rdy In Destination is ready

dst_frame Out Destination write enable. (data frame)
dst_byte vId[15:0] Out Destination per byte data valid
dst_dout[127:0] Out Destination data out

Table 279. ii_vita_deframer Component Ports

Innovative Integration Inc.

174

Cardsharp Framework Logic Manual

ii_vita_framer

Source Files: ii_vita framer.vhd

Description:

This module generates a VITA-49 compliant packet. It stacks the source data to 128-bit wide and writes it to the source
FIFO, then reads data back from the source FIFO once a frame worth of points are available and generates the VITA-49

packets that are written to a destination FIFO.

For details on the VITA-49 packet header and trailer, please refer to the subpacketizer section.

Generic

Default

Function

ibw

8

Input data bit width (8, 16, 32, 64, 128)

Table 280. ii_vita_framer Generic Ports

Innovative Integration Inc.

175

Cardsharp Framework Logic Manual

Port Direction |Function

srst In Synchronous active high reset
sys_clk In System clock

fs_clk In Sample clock

frame_size In Frame size in words Word size specified by ge
stream_id In Unique stream identification (ie. PDN)
packet_type In VITA-49 packet type (4 bits)
ts_int_secs In Timestamp integer-seconds
ts_frc_secs In Timestamp fractional-seconds

tsi In Timestamp integer-seconds type

tsf In Timestamp fractional-seconds type
din_frame In frame data enable (on fs_clk)

din_vld In input data is valid

din In input data

src_fifo_afull In source FIFO is almost full

src_fifo wren Out Write enable to source FIFO (stacked)
src_fifo_din Out Write data to source FIFO (stacked)
src_fifo_empty In Source FIFO empty flag

src_fifo rden Out Read enable to source FIFO

src_fifo vld In Data valid from source FIFO
src_fifo_dout In Data from source FIFO
dst_fifo_empty Out Destination FIFO empty flag

dst_fifo aempty Out Destination FIFO almost empty flag
dst_fifo rden In Destination FIFO read enable

dst_fifo vid Out Destination FIFO valid data output
dst_fifo dout Out Destination FIFO data output

Table 281. ii_vita_framer Component Ports

Innovative Integration Inc.

176

Cardsharp Framework Logic Manual

ii_vita_mover

Source Files: ii_vita mover.vhd

Description:

This component routes VITA-49 format data packets, from one of num_src_ch source FIFOs into as many destination FIFOs

as specified in the packet header. This component is used by the VITA router to serve one of the input channels at a time.

Generic Default Function

num_src_ch 4 Number of source channels
log2 num src_ch 2 log2(num_src_ch)

num_dst _ch 3 Number of destination channels

Table 282. ii_vita_mover Generic Ports

Port Direction |Function

srst In Synchronous active high reset
sys_clk In System clock

en_strb In Enable data mover strobe
src_ch_sel(log2 num_src ch-1:0) In Source channel select
src_ch_hdr(127:0) In Source channel header

mvr_busy Out Mover is busy

dst wip(num_dst_ch-1:0) Out Destination write in progress
src_rd done(num_src_ch-1:0) Out Source channel read is done
src_aempty(num_src_ch-1:0) In Source channel FIFO almost empty
src_empty(num_src_ch-1:0) In Source channel FIFO empty
src_rden(num_src_ch-1:0) Out Source channel FIFO read enables
src_vld(num_src_ch-1:0) In Source channel FIFO data is valid
src_data(128*num_src_ch-1:0) In Source channel FIFO data

dst rdy(num_dst ch-1:0) In Destination FIFO ready

dst_wren Out Destination FIFO write
dst_data(127:0) Out Destination FIFO data

Table 283. ii_vita_mover Component Ports

Innovative Integration Inc.

177

Cardsharp Framework Logic Manual

ii_vita_router

Source Files: ii_vita_router.vhd

Description:

This component routes VITA-49 format data packets, from num_src_ch source FIFOs into up to num_dst_ch local distributed

FIFOs as specified in the packet header. If more than one destination is selected in the packet header, then the packet is
moved only when both destinations are available and ready for data. This mode is known as “multi-cast” packet.

Generic Default Function
num_src_ch 4 Number of source channels
num_dst_ch 3 Number of destination channels

Table 284. ii_vita_router Generic Ports

Port Direction |Function
srst In Synchronous active high reset
sys_clk In System clock
src_aempty(num_src_ch-1:0) In Source channel FIFO almost empty
src_empty(num_src_ch-1:0) In Source channel FIFO empty
src_rden(num_src_ch-1:0) Out Source channel FIFO read enables
src_vld(num_src_ch-1:0) In Source channel FIFO data is valid
src_data(128*num_src_ch-1:0) In Source channel FIFO data
dst rdy(num_dst ch-1:0) In Destination channel ready
dst wren(num_dst ch-1:0) Out Destination channel write
dst_data(128*num_dst ch-1:0) Out Destination channel data

Table 285. ii_vita_router Component Ports

Innovative Integration Inc.

178

Cardsharp Framework Logic Manual

ii_vita_ts

Source Files: ii_vita_ts.vhd

Description:

This module generates a VITA-49 compliant timestamp upon request. It sets the initial timestamp value by software, which

then can be enabled through the 'arm' input, or by the PPS pulse input.

The integer-seconds timestamp counts in the system clock domain at 200MHz by keeping track of time as close as possible,

or by the PPS pulse coming from a GPS input.

When the integer-seconds timestamp increments, it generates a pulseto the fractional-seconds counter (running on fs clock) to

reset it.
Generic Default Function
G_SIM True in simulation mode
Table 286. ii_vita_ts Generic Ports

Port Direction |Function
srst In Synchronous active high reset
sys_clk In System clock
fs_clk In Sample clock

ts_initial In Initial timestamp integer-seconds value
ts_load In Load initial value

ts_arm In Start timestamp counter

pps_pls In PPS pulse input from ie. GPS (on sys_clk)
pps_mode In PPS mode enabled or internal seconds
tsf In TSF mode
ts_int_secs Out Timestamp integer-seconds value
ts_int_secs Out Timestamp fractional-seconds value

Table 287. ii_vita_ts Component Ports

Innovative Integration Inc.

179

Cardsharp Framework Logic Manual

ii_vita velo pad

Source Files: ii_vita_velo pad.vhd

Description:

This component aligns VITA-49 format data packets into a Velocia packet, making sure an integer number of VITA packets
fit in the requested Velocia packet size. If this is not possible, an extra VITA packet will be generated as a filler to complete
the requested size. The component reads data from one data source. The data width is 128; input and output are identical in

size. The data sources provide data with valid after each src_rden(). The input data is briefly stored in a 512 deep dual-quad-
word FIFOwaiting to be drained by packetizer.

Port Direction |Function
srst In Synchronous active high reset
sys_clk In System clock
ch_pkt size[23:0] In Requested Velocia packet size in number of words.
force pkt size In Force Velocia size to be ch_pkt size number of words.
bypass Out Bypass padding.
src_wrd_cnt[21:0] In Source channel word count
src_aempty In Source channel FIFO almost empty
src_empty In Source channel FIFO empty
src_rden Out Source channel FIFO read enable
src_vld In Source channel FIFO data is valid
src_data[127:0] In Source channel FIFO data
dst_ wrd cnt[21:0] Out Destination channel word count
dst_aempty Out Destination channel FIFO almost empty
dst_empty Out Destination channel FIFO empty
dst_rden In Destination channel FIFO read enable
dst_vld Out Destination channel FIFO data is valid
dst data[127:0] Out Destination channel FIFO data

Table 288. ii_vita_velo_pad Component Ports

Innovative Integration Inc.

180

Cardsharp Framework Logic Manual

ii_vita2dma

Source file: ii_vita2dma.vhd

Description:

This component reads a VITA-49 stream from a source and converts it into a AXI4-Stream, optionally stripping its VITA
headers & trailer. The Streamld field in the header is used to produce the AXI TDEST output used to route the stream to the
proper DMA channel. Additionally, this field is used to decide whether to remove the VITA information.

Port Direction |Function

srst In Synchronous active high reset
sys_clk In System clock

src_aempty In Source channel FIFO almost empty
src_empty In Source channel FIFO empty
src_rden Out Source channel FIFO read enable
src_vld In Source channel FIFO data is valid
src_din[127:0] In Source channel FIFO data
m_axis_tvalid Out AXI-Stream TVALID
m_axis_tready In AXI-Stream TREADY input
m_axis_tdest Out AXI-Stream TDEST carrying channel information
m_axis_tdata Out AXI-Stream TDATA

m_axis_tstrb Out AXI-Stream TSTRB

m_axis_tlast Out AXI-Stream TLAST

Table 289. ii_vita2dma Component Ports

Innovative Integration Inc.

181

Cardsharp Framework Logic Manual

ii_ xdom_pulse

Source Files: ii_ xdom_pulse.vhd
Description:

The ii_xdom_pulse component makes a pulse from one clock domain to another clock domain. The input pulse must be one
SRC_CLK wide and the output pulse will be one DST CLK wide.

Upon detecting an input pulse, a latch is toggled to convert it into a level change on the source clock doamin. The latched
signal is then re-sampled on the destination clock domain and a pulse is generated whenever a level change is detected on the
destination clock domain.

i ~

Bl Bl e Bl Bl = XOR D C— pls o
src_clk —cE
pls_iJ
dst_clk

Figure 34. ii_xdom_pulse Component

Port Direction |Function

src_clk In Source clock

pls_i In Input pulse on source clock domain
dest_clk Out Destination clock

pls o Out Output pulse on destination clock domain

Table 290. ii_xdom_pulse Component Ports

Innovative Integration Inc. 182

	Table of Contents
	Introduction 8
	Getting Started 9
	Logic Development Process 15
	Cardsharp Top Level 35
	Cardsharp PL Memory Map 47
	FMC Memory Map 62
	K7 Logic Library 74

	Introduction
	Real Time Solutions!
	Scope of this User Guide

	Getting Started
	Prerequisite Experience and Required Tools
	Installing the FrameWork Logic
	Logic Directories and Files Organization
	Logic Component Naming Conventions
	Organization of this Manual
	Where to Get Help

	FMC Memory Map
	Logic Development Process
	Developing Using VHDL
	Using Vivado
	Using the FrameWork Library
	Simulation
	Logic Development using MATLAB Simulink
	Making the Logic
	Loading Logic
	Debugging

	FMC Memory Map
	Cardsharp Top Level
	Overview
	Block Diagram
	Logic Hierarchy
	Simulation

	FMC Memory Map
	Cardsharp PL Memory Map
	Peripheral Registers (WB Device 0)
	Packetizer Registers (WB Device 3)
	P16 DIO Registers
	P15 Aurora 0 Registers (WB Device 18)
	P15 Aurora 1 Registers (WB Device 19)
	Application logic Interface registers (WB Device 21)
	FMC Memory Map
	FMC status and configuration Registers (WB Device 12)
	FMC DIO Registers
	FMC Aurora 0 Registers (WB Device 16)
	FMC Aurora 1 Registers (WB Device 17)
	Revision History
	FMC Memory Map
	FMC DIO Registers
	FMC AFE
	FMC2 AFE
	K7 Logic Library
	ii_4ch_fifo_drainer
	ii_ad9516_spi
	ii_alert_gen
	ii_alerts_top
	ii_alerts_axis
	ii_bin2gray
	ii_cdce18005_spi
	ii_cdce72010_spi
	ii_circ_buffer
	ii_crm
	ii_decimate_x2
	ii_deframer
	ii_destacker
	ii_dio_top
	ii_drainer_destacker
	ii_ext_sync_iddr
	ii_ext_sync_s1p4
	ii_fifo_drainer
	ii_flash_intf_top
	ii_gray2bin
	ii_offgain
	ii_packetizer_top
	ii_regs_master
	ii_stacker
	ii_timestamp
	ii_trigger
	ii_trigger_pri
	ii_unsign_sat
	ii_vita_deframer
	ii_vita_framer
	ii_vita_mover
	ii_vita_router
	ii_vita_ts
	ii_vita_velo_pad
	ii_vita2dma
	ii_xdom_pulse

