
CARDSHARP

User’s Manual

The Cardsharp User's Manual was prepared by the technical staff of Innovative
Integration on June 10, 2016.
For further assistance contact:

Innovative Integration
741 Flynn Road
Camarillo, CA 93012

PH: (805) 383-8994
FAX: (805) 482-8470

email: techsprt@innovative-dsp.com
Website: www.innovative-dsp.com

This document is copyright 2016 by Innovative Integration. All rights are reserved.
VSS \ Distributions \ Cardsharp \ Documentation \ Manual \ Cardsharp.odm
Rev A

mailto:techsprt@innovative-dsp.com

Table of Contents
Chapter 1: Introduction..9

Real Time Solutions!...9
Terminology..9

What is the Cardsharp?..9
What is Vivado?...9
What kinds of applications are possible with Cardsharp hardware?...9
What is Malibu?...10
Finding detailed information on Malibu..10
Online Help..10
Innovative Integration Technical Support..10
Innovative Integration Web Site...11

Chapter 2: Installation..12
Malibu for PetaLinux..12

Preparing Workspace Preferences..12
Importing Malibu Projects...17

Xilinx SDK Standalone AMP Projects ...22
Importing Standalone AMP Projects..22

Chapter 3: Detailed Host-Target Communication..26
Ethernet Communication...26

System Logs...27
File Transfers..28
User Interface Protocols...28

JTAG Communication...29
Chapter 4: An Example Debugging Session..31

Debugging PetaLinux Applications...31
Downloading a Bitstream...31
Configuring the Debug Profile...31
Debug Perspective..32

Debugging Standalone Applications...32
Downloading a Bitstream...33
Configuring the Debug Profile...33

Profiling Applications..34
Chapter 5: Servo Mode..35

Data Acquisition Applications...35
Servo Applications. ...35
Servoing on Cardsharp ..35

Servo Timing...36
Servo Example..37

Tools and Platform Requirements..37
Malibu Application Program Layout and Design...37
Standalone Application Program Layout and Design...38

Usage Procedure..38
PetaLinux Application Organization...45

ApplicationIo..45
Packet Processing...45

Inter-processor Communication..47
Standalone Application Organization..48

Chapter 6: The CardSharp Board Object...49
Introduction...49
Cardsharp Interface...49

Initialization sequence..53
Chapter 7: The FmcServo Module Object...54

Introduction...54
FMCServo Operations...54

Object Attachment..54
Shared Base Class Operations..54
The Input() Device..55

Input.GainRange()...55
Input().Info()..55
Input() Channel Enable Methods...56
Input().Cal()...56
Input().Trigger()...57
Input().Pulse()..57
Input.SoftwareTrigger()...58
Input.Decimation()...58
Miscellaneous Input() methods..58

The Output() Device...58
Output.DacClockMode()...59
Output().Info()...59
Output() Channel Enable Methods..59
Output().Cal()...60
Output().Trigger()..60
Output().Pulse()...61
Output.SoftwareTrigger()..61
Output.Decimation()..61
Miscellaneous Output() methods...62

The Clock() Device...62
Clock().Adc() and Clock.Dac()..63

FmcServo FIFO Configuration Devices...64
Chapter 8: Aspects of Malibu for Cardsharp..65

Buffers and Buffer Access Classes..65
Introduction..65

Buffer Data Access ..65
Buffer Classes...66

Buffer Class Types...66
Buffer Utility Classes ..66

Holding Template...66
CouldHold Template..67
Convert Template...67
ConvertData Template...67
MessageDatagram..67
Header Access Datagrams..67

Access Datagrams ..68
Template AccessDatagram<T> ...68

Template Class DatagramIterator ..70
Interface Class IDatagrammable ...71
Interface Class IIteratable ...71
Predefined Access Datagram Classes..72

Hardware Access and Bit Control...72
Memory Spaces and Register Classes..72

Addressing Space Classes..72
BaseboardExtension Template...74
Register Class Types..74
Register Bits and Fields...74

Bit Manipulation Classes..75
MultiChannel Data Streaming Support Classes...75

Buffer Classes – McBuffer and McHeaderDatagram..75
Data Image Classes – McImage...76
Streaming Alerts: McAlert..76
Streaming External Interrupts: McExternalInt..76
Image Mode Transmit Hints: McHintPack...77

Chapter 9: Cardsharp Hardware...78
Introduction...78
QSPI..86
eMMC...86
PS DDR3 Memory..86
PL DDR3 Memory..87
USB 2.0 Port..89
Gigabit Ethernet Port...90
Power Subsystem ...91

External Power Supply...95
Power Consumption...97

System Thermal Design ...97
External Fan Connector J9..98

GPS/IEEE-1588 Interface...99
JTAG..101
On-Board LED Indicators...103
Ground Loops..104
FMC Module Site..104

FMC Module Site Connectivity..105
XMC Connectors P15 and P16...113

List of Tables
Table 1. Windows SDK Workspace Build Variables...16
Table 2. Linux SDK Workspace Build Variables..17
Table 3. Servo Time Measurements..36
Table 4. Development Tools..37
Table 5. Malibu Application Source Files...37
Table 6. Standalone Application Source Files...38
Table 7. Zynq SoC Main Features...86
Table 8. Reset Header J6 Information...88
Table 9. Reset Header J6 Pinout..88

Table 10. USB Connector J3 Information...89
Table 11. USB Connector J3 Pinout..89
Table 12. Gigabit Ethernet LED Functions...90
Table 13. Gigabit Ethernet Connector J7 Information..90
Table 14. Gigabit Ethernet Jack J7 Pinout...91
Table 15. J4 Header Pinout..92
Table 16. J4 Header Information..92
Table 17. Cardsharp Power Supplies..95
Table 18. External Power Supply 80200-9 Specifications..96
Table 19. External Power Connector J5 Information..96
Table 20. External Power Connectors J5 Pinout...97
Table 21. Cardsharp System Typical Power Consumption...97
Table 22. External Fan Connector J9 Information..98
Table 23. External Fan Connector J9 Pinout...98
Table 24. Cardsharp Environmental Limits...99
Table 25. GPS / IEEE-1588 Interface Connector J2 Signals ..100
Table 26. GPS / IEEE-1588 Interface Connector J2 Information...101
Table 28. JTAG Connector J8 Information...103
Table 29. Cardsharp LED Indicator Functions..103
Table 30. Cardsharp FMC Site Features..105
Table 31. FMC Site LA Signal Group Connectivity Details...107
Table 32. FMC Site HA Signal Group Connectivity Details...107
Table 33. FMC Site HB Signal Group Connectivity Details...108
Table 34. FMC Site High Speed Data Pair (DP) RX Signal Group Connectivity Details................109
Table 35. FMC Site High Speed Data Pair (DP) TX Signal Group Connectivity Details................109
Table 36. FMC Site Clock Signal Connectivity Details..110
Table 37. FMC Site Miscellaneous Signal Connectivity Details..111
Table 38. FMC Connector J1 Information...111
Table 39. Cardsharp XMC Carrier Connectivity Details..112
Table 40. Cardsharp XMC P15 Connector Pinout..113
Table 41. P15 Connector Signal Descriptions...114
Table 42. Cardsharp XMC Secondary Connector P16 Pinout...115
Table 43. P16 Connector Signal Descriptions...117
Table 44. XMC Connectors P15 and P16 Information..117
Table 45. Dimensional Information for some common Cardsharp system configurations...............123

List of Figures
Figure 1. Importing SDK Workspace Preferences..12
Figure 2. Selecting SDK Workspace Preferences File..13
Figure 3. SDK Workspace Linked Resources...14
Figure 4. SDK Workspace Environment...15
Figure 5. Windows SDK Workspace Build Variables...16
Figure 6. Linux SDK Workspace Build Variables...17
Figure 7. Importing Existing SDK Projects into Workspace...18
Figure 8. Selecting an Existing Windows SDK Project Folder...19
Figure 9. Selecting an Existing Linux SDK Project Folder..20
Figure 10. Selecting Existing SDK Projects...21
Figure 11. SDK Project Explorer View...22
Figure 12. Importing Standalone SDK Projects into Workspace..23
Figure 13. Selecting Standalone SDK Projects...24
Figure 14. SDK Project Explorer View of Standalone Projects..24
Figure 15. QSPI Boot Switch Setting..26
Figure 16. Putty Ethernet Configuration for Cardsharp..27
Figure 17. WinSCP Configuration for Cardsharp...28
Figure 18. PuTTY Configuration for Ncurses...29
Figure 19. JTAG Boot Switch Setting...30
Figure 20. Debug Perspective...32
Figure 21. Program FPGA Dialog...33
Figure 22. Cardsharp board view from the XMC connectors side..80
Figure 23. Cardsharp board view from the XMC connectors side..80
Figure 24. Cardsharp standalone system with FMC-Servo module installed.....................................81
Figure 25. Cardsharp / SBC-Nano system with FMC-Servo module installed...................................81
Figure 26. Simplified Block Diagram of the Cardsharp System...83
Figure 27. Zynq SoC block diagram...84
Figure 28. Reset Header J6 Pin Arrangement...88
Figure 29. USB Connector J3 Pin Arrangement...90
Figure 30. Gigabit Ethernet Connector J7 Pin Arrangement...91
Figure 31. J4 Header Pin Arrangement...92
Figure 32. Cardsharp Power Block Diagram..94
Figure 33. External Power Connectors J5 Pin Arrangement...97
Figure 34. External Fan Connector J9 Pin Arrangement...98
Figure 35. GPS / IEEE-1588 Interface Connector J2 Pin Arrangement...101
Figure 36. Cardsharp Board JTAG Chain...102
Figure 37. JTAG Connector J8 Pin Arrangement..103
Figure 38. Cardsharp Boot Mode Switch Sw1 with the slider in JTAG Boot Mode position..........104
Figure 39. FMC Connector J1 Pin Arrangement...111
Figure 40. XMC Connectors P15 and P16 Pin Arrangement..117
Figure 41. Cardsharp Board – FMC Connector Side View...118
Figure 42. Cardsharp Board – XMC Connectors Side View...119
Figure 43. Standalone Cardsharp System with FMC-Servo Module installed – Front View...........120
Figure 44. Standalone Cardsharp System – Rear View..121
Figure 45. Cardsharp / SBC-Nano system with FMC-1000 module installed – Front View............122
Figure 46. Cardsharp / SBC-Nano system – Rear View..123

Introduction

Chapter 1: Introduction

Real Time Solutions!

Thank you for choosing Innovative Integration, we appreciate your business! Since 1988, Innovative Integration has grown
to become one of the world's leading suppliers of DSP and data acquisition solutions. Innovative offers a product portfolio
unrivaled in its depth and its range of performance and I/O capabilities .

Whether you are seeking a simple DSP development platform or a complex, multiprocessor, multichannel data acquisition
system, Innovative Integration has the solution. To enhance your productivity, our hardware products are supported by
comprehensive software libraries and device drivers providing optimal performance and maximum portability.

Innovative Integration's products employ the latest digital signal processor technology thereby providing you the competitive
edge so critical in today's global markets. Using our powerful data acquisition and DSP products allows you to incorporate
leading-edge technology into your system without the risk normally associated with advanced product development. Your
efforts are channeled into the area you know best ... your application.

Terminology

What is the Cardsharp?

Cardsharp is a user-customizable, turnkey embedded instrument that includes two A9 CPU cores. Linux runs in core 0 to
provide Ethernet, USB and disk connectivity while core 1 runs real-time stand-alone applications. Cardsharp is compatible
with Innovative's wide assortment of ultimate-performance FMC modules. With its modular IO, scalable performance and
easy to use CPU core architecture, the Cardsharp reduces time-to-market while providing the performance you need.

What is Vivado?

Vivado Design Suite is a software suite produced by Xilinx for synthesis and analysis of HDL designs, superseding Xilinx
ISE with additional features for system on a chip development and high-level synthesis

What kinds of applications are possible with Cardsharp hardware?

Data acquisition, data logging, Distributed Data Acquisition, stimulus-response and signal processing jobs are easily solved

Cardsharp User's Manual 9

https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Xilinx_ISE
https://en.wikipedia.org/wiki/Xilinx_ISE
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Xilinx
http://www.innovative-dsp.com/by.php?cat=Family&type=15&sort=Type

Introduction

with Innovative Integration baseboards using the Malibu software. There are a wide selection of peripheral devices available
in the Innovative product family, for all types of signals from DC to RF frequency applications, video or audio processing.
Additionally, multiple Innovative Integration baseboards can be used for a large channel or mixed requirement systems and
data acquisition cards from Innovative can be integrated with Innovative's other DSP or data acquisition baseboards for high
performance-signal processing.

Distributed Data Acquisition – Put the Cardsharp at the data source and reduce system errors and complexity. Available
IEEE 1588 network or GPS-synchronized timing, triggering and sample control is available for remote IO. Limitless
expansion via multiple nodes.

What is Malibu?

Malibu is the Innovative Integration-authored component suite, which combines with the Microsoft or Embarcadero
(Windows) and GNU C++ compilers (Windows/Linux) and the MS Visual Studio and QtCreator IDEs to support
programming of Innovative hardware products under Windows and Linux. Malibu supports both high-speed data streaming
plus asynchronous mailbox communications between the DSP and the Host PC, plus a wealth of host functions to visualize
and post-process data interchanged with the target DSP.
See the Malibu User's Guide for detailed information on this comprehensive library.

Finding detailed information on Malibu

Information on Malibu is available in a variety of forms:
• Data Sheet (http://www.innovative-dsp.com/products/malibu.htm)
• On-line Help
• Innovative Integration Technical Support
• Innovative Integration Web Site (www.innovative-dsp.com)

Online Help
The online help system for Malibu is fully integrated into the excellent OpenHelp system provided with Builder. Help for
Malibu is provided in a single file, Malibu.hlp which is installed beneath the main Builder C++ directory tree during the
default installation. It provides detailed information about the components contained in Malibu - their Properties, Methods,
Events, and usage examples. An

Innovative Integration Technical Support
Innovative includes a variety of technical support facilities as part of the Malibu toolset. Telephone hotline supported is
available via
Hotline (805) 578-4260 8:00AM-5:00 PM PST.
Alternately, you may e-mail your technical questions at any time to:
techsprt@innovative-dsp.com.

Cardsharp User's Manual 10

http://www.innovative-dsp.com/
http://www.innovative-dsp.com/products/malibu.htm
http://www.innovative-dsp.com/cgi-bin/dlDocs.cgi?product=Malibu

Introduction

Innovative Integration Web Site
Additional information on Innovative Integration hardware and the Malibu Toolset is available via the Innovative Integration
website at www.innovative-dsp.com

Cardsharp User's Manual 11

Installation

Chapter 2: Installation

Malibu for PetaLinux

This is a procedure to install the Malibu for PetaLinux software library on a development host PC running either 64-bit
Windows or Linux. This procedure presumes that the Xilinx Software Development Kit (SDK) has been installed on the host.
Xilinx project files are included with the library to automate building the library and its example applications for execution
on a Innovative Integration Cardsharp target system running Xilinx PetaLinux. The procedure is nearly identically for
Windows and Linux hosts.

Preparing Workspace Preferences

Run the Malibu PetaLinux software installer on the development host. In the installation folder, find and extract the
PetaLinuxProject.zip archive into a folder, henceforth assumed to be called “PetaLinuxProject” (although the name and
location can be chosen freely). Start the Xilinx SDK program and select an existing or new workspace in the “Workspace
Launcher” dialog. When the program's workbench IDE has opened, select the File menu from the top menu bar and then
select Import from the File dropdown menu. In the Import wizard, open the General list, left-click Preferences and then
click the Next button.

Figure 1. Importing SDK Workspace Preferences

Cardsharp User's Manual 12

Installation

Left-click the Browse... button. In the file explorer dialog that opens, navigate to the installation folder and, if on a Linux
host, find and select the “LinuxMalibuPreferences.epf” file or otherwise select the “WindowsMalibuPreferences.epf” file,
and click the Open button. Back in the Import wizard, ensure that the Import all checkbox is checked and click the Finish
button.

Figure 2. Selecting SDK Workspace Preferences File

If a version of Xilinx SDK other than 2015.4 reports an error reading in the file, the preferences can be created manually but,
in any case, some values must be adjusted to match the location of the installation folder. Select the Window menu from the
workbench top menu bar and then select Preferences from the bottom end of the Window dropdown menu. In the
Preferences dialog, open the General list in the left pane, then in that list open the Workspace list, and finally, select Linked
Resources.

Cardsharp User's Manual 13

Installation

Figure 3. SDK Workspace Linked Resources

If the “InnovativeCommon” path variable does not exist, press the New button to create it or otherwise press the Edit button.
In either case, ensure that its value is the path of the installed “Innovative” folder.

Next, in the left pane of the Preferences dialog, open the C/C++ list and, in that list, open the Build list. From that list, select
Environment. The following figure depicts the “SDK Preferences” dialog that appears:

Cardsharp User's Manual 14

Installation

Figure 4. SDK Workspace Environment

If the “INNOVATIVECOMMON” path variable does not exist, press the Add button to create it or otherwise press the Edit
button. In either case, ensure that its value is the path of the installed “Innovative” folder. The value of the
“PETALINUXPROJECT” environment variable must be set to the path of the “PetaLinuxProject” folder. Press the Apply
button.

Back in the left pane of the Preferences dialog, from the C/C++ Build list, select Build Variables. On a Windows host, the
build variables must have the names, values, and types shown below:

Cardsharp User's Manual 15

Installation

Figure 5. Windows SDK Workspace Build Variables

If the variables must be created, use the information in the table below:

Name Type Value
DEBUG_POST_BUILD_STEP String copy /y *.a ${LIB_DEBUG_DIR}
DEBUG_PRE_BUILD_STEP String if not exist ${LIB_DEBUG_DIR} mkdir ${LIB_DEBUG_DIR}
LIB_DEBUG_DIR Path $(INNOVATIVECOMMON)\Lib\XSDK\Debug
LIB_RELEASE_DIR Path $(INNOVATIVECOMMON)\Lib\XSDK\Release
RELEASE_POST_BUILD_STEP String copy /y *.a ${LIB_RELEASE_DIR}
RELEASE_PRE_BUILD_STEP String if not exist ${LIB_RELEASE_DIR} mkdir ${LIB_RELEASE_DIR}

Table 1. Windows SDK Workspace Build Variables

On a Linux host, the build variables must instead have these values:

Cardsharp User's Manual 16

Installation

Figure 6. Linux SDK Workspace Build Variables

If the variables must be created, use the information in this table:

Name Type Value
DEBUG_POST_BUILD_STEP String cp -f *.a ${LIB_DEBUG_DIR};
DEBUG_PRE_BUILD_STEP String test -d ${LIB_DEBUG_DIR} || mkdir -p ${LIB_DEBUG_DIR};
LIB_DEBUG_DIR Path $(INNOVATIVECOMMON)/Lib/XSDK/Debug
LIB_RELEASE_DIR Path $(INNOVATIVECOMMON)/Lib/XSDK/Release
RELEASE_POST_BUILD_STEP String cp -f *.a ${LIB_RELEASE_DIR};
RELEASE_PRE_BUILD_STEP String test -d ${LIB_RELEASE_DIR} || mkdir -p ${LIB_RELEASE _DIR};

Table 2. Linux SDK Workspace Build Variables
When finished, press the OK button in the Preferences dialog.

Importing Malibu Projects

Select the File menu from the workbench top menu bar and then select Import from the File dropdown menu. In the Import
wizard, open the General list, left-click Existing Projects into Workspace and then click the Next button.

Cardsharp User's Manual 17

Installation

Figure 7. Importing Existing SDK Projects into Workspace

Press the Select root directory radio button and left-click the Browse... button. In the file explorer dialog that opens,
navigate to the installed “Innovative” folder, then into the “Malibu” subfolder there, select the “XSDK” subfolder inside, and
click the OK button. On a Windows host, the selection appears as below:

Cardsharp User's Manual 18

Installation

Figure 8. Selecting an Existing Windows SDK Project Folder

On a Linux host, the selection appears as below:

Cardsharp User's Manual 19

Installation

Figure 9. Selecting an Existing Linux SDK Project Folder

In either case, once the “XSDK” subfolder has been selected as shown, press OK. Back in the Import wizard, note that the
presence of a “RemoteSystemsTempFiles” folder may trigger the informational message, “Some projects cannot be imported
because they already exist in the workspace”, but all other projects should be checked automatically. Click the Finish button.

Cardsharp User's Manual 20

Installation

Figure 10. Selecting Existing SDK Projects

 Back in the workspace, the Project Explorer view now should show the imported projects:

Figure 11. SDK Project Explorer View

Cardsharp User's Manual 21

Installation

Xilinx SDK Standalone AMP Projects

This is a procedure to install Xilinx SDK standalone asymmetric multi-processing (AMP) application projects on a
development host PC running either 64-bit Windows or Linux. This procedure presumes that the Xilinx Software
Development Kit (SDK) has been installed on the host.

Importing Standalone AMP Projects

The “app_cpu1_sdk_project_export.zip” file in the installed “FMCServo_AMP” example is a Xilinx SDK project archive
into which a hardware platform specification, a board support package, and the standalone servo application have been
exported. These support development of the standalone AMP application for CPU1 of the Zynq PS compatible with
PetaLinux running on CPU0.

Select the File menu from the workbench top menu bar and then select Import from the File dropdown menu. In the Import
wizard, open the General list, left-click Existing Projects into Workspace and then click the Next button.

Cardsharp User's Manual 22

Installation

Figure 12. Importing Standalone SDK Projects into Workspace

Select the radio button for Select archive file. Browse to, select, and open
“app_cpu1_sdk_project_export.zip”. If any of the projects isn’t checked on, click the Select All button.
Click Finish.

Cardsharp User's Manual 23

Installation

Figure 13. Selecting Standalone SDK Projects

The three projects should now be restored in Project Explorer, as shown:

Figure 14. SDK Project Explorer View of Standalone Projects

When done, messages in the SDK console window should show that the “app_cpu1” application was built successfully.

Cardsharp User's Manual 24

Installation

References
http://www.xilinx.com/support/documentation/application_notes/xapp1079-amp-
bare-metal-cortex-a9.pdf
http://www.wiki.xilinx.com/XAPP1079+Latest+Information
http://www.xilinx.com/support/documentation/application_notes/xapp1078-amp-
linux-bare-metal.pdf

Cardsharp User's Manual 25

http://www.xilinx.com/support/documentation/application_notes/xapp1078-amp-linux-bare-metal.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1078-amp-linux-bare-metal.pdf
http://www.wiki.xilinx.com/XAPP1079+Latest+Information
http://www.xilinx.com/support/documentation/application_notes/xapp1079-amp-bare-metal-cortex-a9.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1079-amp-bare-metal-cortex-a9.pdf

Detailed Host-Target Communication

Chapter 3: Detailed Host-Target
Communication

Ethernet Communication

With the Cardsharp board powered off, ensure that the boot mode of the board has been set to QSPI boot by setting SW1
away from the near edge of the board, as shown:

Figure 15. QSPI Boot Switch Setting

Power-on the board. After the board successfully boots PetaLinux, establish an Ethernet connection with the target Cardsharp
using a SSH or Telnet client program (e.g., “PuTTY”, available from http://www.chiark.greenend.org.uk/~sgtatham/putty/)
configured to connect with address 192.168.0.10. A PuTTY configuration screen is shown below:

Cardsharp User's Manual 26

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Detailed Host-Target Communication

Figure 16. Putty Ethernet Configuration for Cardsharp

Then, enter user name “root” and password “root” to log into the PetaLinux system.

System Logs

Linux kernel serial console logging is disabled because it prevents booting if no UART terminal is connected. Instead, a UDP
network console is enabled by a boot argument (see https://www.kernel.org/doc/Documentation/networking/netconsole.txt).
The boot argument configures PetaLinux to log to port 6666 at 192.168.0.2. Besides the Linux programs mentioned in that
document, on Windows the Cygwin (https://www.cygwin.com/) nc6 package can be used, with the following command line:

nc6 -u -l -p 6666 192.168.0.10

The U-boot network console has not been enabled because it prevents booting unless an Ethernet connection to the specified
IP address is present. After logging in to PetaLinux, a log of device driver output can be viewed with the “dmesg” command.
The startup process logs userspace messages to the “/var/log/boot” file.

Cardsharp User's Manual 27

https://www.cygwin.com/
https://www.kernel.org/doc/Documentation/networking/netconsole.txt

Detailed Host-Target Communication

File Transfers

File transfers between a development host and the Cardsharp are enabled by a SFTP server running on PetaLinux. FTP file
transfers are limited to the /var/ftp directory on Cardsharp while SFTP can access the entire filesystem. “WinSCP” (available
from http://winscp.net/) is an open source free SFTP/FTP/SCP client for Windows that provides file transfer capability, basic
file manager functionality, and scripting. A WinSCP configuration screen is shown below:

Figure 17. WinSCP Configuration for Cardsharp

User Interface Protocols

Cardsharp PetaLinux has been configured with the Ncurses library (see, e.g., http://invisible-island.net/ncurses/) and with the
Busybox httpd server (see https://wiki.openwrt.org/doc/howto/http.httpd). The following figure illustrates proper PuTTY
configuration for viewing Ncurses applications:

Cardsharp User's Manual 28

https://wiki.openwrt.org/doc/howto/http.httpd
http://invisible-island.net/ncurses/
http://winscp.net/

Detailed Host-Target Communication

Figure 18. PuTTY Configuration for Ncurses

JTAG Communication

With the Cardsharp powered off, connect a “Xilinx Platform Cable USB II” ” (http://www.xilinx.com/products/boards-and-
kits/hw-usb-ii-g.html or http://products.avnet.com/shop/en/ema/development-tools/3074457345629474182) or the
compatible “Digilent XUP-USB” (https://www.digilentinc.com/Products/Detail.cfm?Prod=XUP-USB-JTAG) to the
Cardsharp using the provided cable and to a USB port of the host development PC. The necessary drivers were installed
during the Xilinx tool installation. When downloading standalone software to Cardsharp DDR-RAM or on-chip memory
(OCM) via JTAG and it is desired to prevent PetaLinux from booting, set the boot mode of the board to JTAG boot by setting
SW1 toward the near edge of the board, as shown:

Cardsharp User's Manual 29

https://www.digilentinc.com/Products/Detail.cfm?Prod=XUP-USB-JTAG
http://products.avnet.com/shop/en/ema/development-tools/3074457345629474182
http://www.xilinx.com/products/boards-and-kits/hw-usb-ii-g.html
http://www.xilinx.com/products/boards-and-kits/hw-usb-ii-g.html

Detailed Host-Target Communication

Figure 19. JTAG Boot Switch Setting

Cardsharp User's Manual 30

An Example Debugging Session

Chapter 4: An Example Debugging Session

Debugging PetaLinux Applications

This is a procedure to debug a PetaLinux application developed using the Xilinx Software Development Kit (SDK) on a
development host PC running either 64-bit Windows or Linux. It is presumed that a Xilinx SDK project has been created and
that a Debug configuration of the project software had been built successfully. An Innovative Integration Cardsharp target
system running Xilinx PetaLinux with an Ethernet connection to the host PC is needed.

Downloading a Bitstream

If the application requires a PL bitstream to be downloaded, this can be done from the PetaLinux command line as so:

cat your_PL_filename.bit > /dev/xdevcfg

Afterwards, the “prog_done” file should indicate that the programming was successful:

cat /sys/devices/soc0/amba/f8007000.devcfg/prog_done
1

Configuring the Debug Profile

See the “Example Design: Debugging the Linux Application Using SDK” section of chapter 6, “Linux Booting and Debug in
SDK” of the Xilinx UG1165 manual, Zynq-7000 All Programmable SoC: Embedded Design Tutorial (step 5, page 78 of the
v2015.4, November 18, 2015, edition). See also “Linux Application Debugging with System Debugger” in the Xilinx SDK
Help (UG782),
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_tasks/sdk_t_linux_application_de
bugging_system_debugger.html .

For the target connection's “Host” address, always use 192.168.0.10 . When the debug configuration is complete, press
the Debug button.

Cardsharp User's Manual 31

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_tasks/sdk_t_linux_application_debugging_system_debugger.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_tasks/sdk_t_linux_application_debugging_system_debugger.html

An Example Debugging Session

Debug Perspective

Figure 20. Debug Perspective

For help on the views in the Debug perspective, select Search from the SDK Help menu and search for “debug views”.
Alternately, place the mouse cursor in any view by left-clicking and then press the F1 key. When using a SDK hotkey, ensure
that the cursor is in the appropriate view for that hotkey. For example, F5 in the Debug view will by default single-step into a
function while, in a source code window, F5 will refresh the file view.

Debugging Standalone Applications

This is a procedure to debug a standalone “bare-metal” application developed using the Xilinx Software Development Kit
(SDK) on a development host PC running either 64-bit Windows or Linux. It is presumed that a Xilinx SDK project has been

Cardsharp User's Manual 32

An Example Debugging Session

created and that a Debug configuration of the project software had been built successfully. An Innovative Integration
Cardsharp target system with a JTAG connection to the host PC is needed.

Downloading a Bitstream

If the application requires a PL bitstream to be downloaded, this can be done from the SDK by selecting the Xilinx Tools
menu from the workbench top menu bar and then selecting Program FPGA from the Xilinx Tools dropdown menu. In the
Program FPGA dialog, either select the appropriate Hardware Platform from the dropdown list, press the Search... button,
select the desired file from the popup list dialog, and press OK, or press the Browse.. button, navigate to any directory
containing a desired bitstream file, select the file, and press Open. Then, upon returning to the Program FPGA dialog, press
the Program button.

Figure 21. Program FPGA Dialog

Configuring the Debug Profile

See “Launch Configurations” under “Working with Xilinx System Debugger” in the Xilinx SDK Help,
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_concepts/sdk_c_debug_run_confi
guration.html.

If the standalone application will be running in AMP mode, i.e., PetaLinux will be running on the other ARM CPU, then the
Reset entire system, Program FPGA, Run ps7_init, Run ps7_post_config, and Enable Cross-Triggering check boxes of
the debug configuration's Target Setup tab must be cleared. However, the Reset processor check box for the application's
CPU on the Application tab should be checked. Also, before the standalone application can be loaded and run by the

Cardsharp User's Manual 33

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_concepts/sdk_c_debug_run_configuration.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_concepts/sdk_c_debug_run_configuration.html

An Example Debugging Session

debugger, PetaLinux must vacate CPU1, so the “zynq_remoteproc” device driver must be installed first (see usage procedure
for zynq_remoteproc).

Profiling Applications

See chapter 8, “Software Profiling Using SDK” of the Xilinx UG1165 manual, Zynq-7000 All Programmable SoC:
Embedded Design Tutorial. See also “TCF Profiling”,
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_tasks/sdk_t_tcf_profiling_with_tc
f_debugger.html , and “Profiling Linux Applications with System Debugger”,
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_tasks/sdk_profiling_linux_apps_w
ith_sysdbg.html, in the Xilinx SDK Help.

Either PetaLinux or standalone applications can be profiled. All caveats regarding debugging standalone AMP applications
also apply to profiling them.

Cardsharp User's Manual 34

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_tasks/sdk_profiling_linux_apps_with_sysdbg.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_tasks/sdk_profiling_linux_apps_with_sysdbg.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_tasks/sdk_t_tcf_profiling_with_tcf_debugger.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/SDK_Doc/SDK_tasks/sdk_t_tcf_profiling_with_tcf_debugger.html

Servo Mode

Chapter 5: Servo Mode

Cardsharp applications can be broadly divided into two categories: data acquisition/playback vs real-time processing
applications. These two types of applications require very different methods of behavior by the system that cannot easily be
reconciled into a single ‘one size fits all’ system. Yet the Malibu library needs to support both styles of program in a simple
and natural way.

Data Acquisition Applications.
Acquisition applications need to acquire large quantities of data, but do not need to process the data immediately. In order to
support higher rates, these applications use large buffers, and large chains of these buffers to allow data to be moved from the
hardware into memory without CPU intervention. Thus, data can be acquired at high rates, but the system only needs to be
involved at relatively rare intervals to process a block of data.

These applications are very natural for bus-mastering, and often this form of DMA is used to move this data into host
memory. In addition, these buffers and the FIFOs in the hardware allow some ‘slack’ in the system so that the application can
fall behind for a short time if it is busy performing some other service. After the completion of this task the system can
process the buffers in the queues and in the hardware FIFOs and catch up. As long as enough slack is built into the system, no
data loss will result.

Servo Applications.
In a Servo application, the requirements are polar opposites from the Data Acquisition application. In this case, each event
needs to be processed at once, with no delay. This data is analyzed to produce an output update event that is output to the
DACs in the system at once. It is therefore vital that data is read into the system and processed without any buffering.
Hardware FIFOs are only useful at the single event level; if you fall behind by even a single event your servo is failing.

Since the amount of data moved from the hardware is so small, bus mastering or DMA is much less useful in this case than it
is for the Data Acquisition case.

Servoing on Cardsharp
For Data Acquisition applications, Malibu on PetaLinux uses interrupts to provide a simple means of notifying an application
to process buffers of data to and from analog hardware. This driver model is used for all of the streamed hardware provided
on the baseboard. Despite the strength of this model for the continuously-streaming applications, it fails to properly servo in
any efficient manner. Closed-loop servo control software typically require real-time processing of ADC samples and generate
feedback signals thru the DAC. The servo application example utilizing the Malibu library is intended to demonstrate the
consistent, low latency responses required by a control loop system.

Cardsharp User's Manual 35

Servo Mode

Servo Timing

Table 3. Servo Time Measurements

Interval Purpose Typical FMC-Servo Timing (PetaLinux)

t1 Adc Analog Delay 8 µs

t2 Adc Conversion 4 µs

t3 Logic + Poll/Detect 2 µs

t4 t2 + t3 6 µs

t5 A/D Read Time 4.8 µs (8 pairs)

2.3 µs (4 pairs)

t6 Servo Calculation Time ~24 µs

t7 D/A Write and Update 2.4 µs (8 pairs)

1.2 µs (4 pairs)

t8 Minimum Dac Delay Time ~10-13 µs.

t9 Dac Analog Delay 2.5 µs.

t10 Total Servo Time ~46 µs.

The analog delay inserts a fixed skew between input and output and does not affect the update rate directly.

Cardsharp User's Manual 36

Servo Mode

Servo Example

The Servo application consists of a Malibu application on PetaLinux and a separate standalone application that runs on the
second ARM processor of the Xilinx Zynq. The Malibu application sets up the hardware, reports status, and saves logged
data upon program completion. Aided by firmware logic, the standalone application reads the A/D converters, performs the
real-time servo calculations, and writes the results of those to the D/A converters.

Tools and Platform Requirements

In general, writing applications for an FMC module requires the development of host program. This requires a development
environment, a debugger, and a set of support libraries from Innovative.

Processor Development Environment Innovative
Tool set

Project Directory

Host PC
(Windows or
Linux)

Xilinx Software Development
Kit (SDK)

Cardsharp
Malibu

Examples\Servo

Table 4. Development Tools
The Malibu library is source code compatible with the both environments listed in Table 4. .

Malibu Application Program Layout and Design

The example Malibu application is located in Examples\FMCServo_AMP. Table 5. list the source files.

Table 5. Malibu Application Source Files.

Examples\FMCServo_AMP\PetaLinux

main.cpp

ApplicationIo.h, .cpp

ConsoleIo.h, .cpp

MainConsole.h, .cpp

ModuleIo.h, .cpp

RemoteAppControl.h, .cpp

RemoteInterfaceImpl.h

QueueT.h

Semaphore.h

The application begin its execution with the main() function of main.cpp. Custom console functions can be added to
MainConsole.h and .cpp. ConsoleIO.h and .cpp implement non-blocking terminal input. Application specific I/O functions
are defined in ApplicationIo.h and .cpp. All other hardware and firmware specific module interface code is defined in
ModuleIo.h and .cpp. RemoteAppControl.h, .cpp, RemoteInterfaceImpl.h, QueueT.h, and Semaphore.h interface to the
standalone application through a shared uncached area of the Zynq's On-Chip Memory (OCM).

Cardsharp User's Manual 37

Servo Mode

The Examples\FMCServo_AMP\XSDK subdirectory contains the Xilinx XSDK Servo project files for the Malibu
application.

Standalone Application Program Layout and Design

The standalone application source files are listed in Table 6. .

Table 6. Standalone Application Source Files

Examples\FMCServo_AMP\app_cpu1_sdk_project_export.zip

main.cpp

ResourceTable.c

QueueT.h

RemoteInterfaceImpl.h

Semaphore.h

ServoTask.h, .cpp

Support.h, .cpp

ProcessPacket.cpp

lscript.ld

The application begin its execution with the main() function of main.cpp. ResourceTable.c contains information needed by
PetaLinux to load the app into memory for execution by the standalone CPU. RemoteInterfaceImpl.h, QueueT.h, and
Semaphore.h interface to the Malibu application on PetaLinux through the shared area of OCM. Firmware interface code is
defined in ServoTask.h, .cpp, and Support.h. The lscript.ld file is the linker script, usually managed by the Xilinx SDK. The
ProcessPacket.cpp file must be updated with code implementing the servo algorithm.

Usage Procedure

To program the Zynq PL with the servo firmware, enter a command like the following, referencing the binary bitstream file's
name:

root@Cardsharp2015:~# cat /mnt/cs_servo_top.bit.bin > /dev/xdevcfg

The Petalinux “lscpu” command initially states: “On-line CPU(s) list: 0,1”. Executing the following command will install
/lib/firmware/app_cpu1 by default:

root@Cardsharp2015:~# modprobe zynq_remoteproc

Currently, the required starting address (0x00200000) and the maximum length (0x00100000 bytes) of app_cpu1 are hard-
coded in zynq_remoteproc. To see feedback that the modprobe command was successful, enter the following command:

root@Cardsharp2015:~# dmesg | tail

The result should include these messages (with perhaps a different image size):

Cardsharp User's Manual 38

Servo Mode

Probing II zynq_remoteproc_driver
CPU1: shutdown
 remoteproc0: 200000.remoteproc-II is available
 remoteproc0: Note: remoteproc is still under development and considered experimental.
 remoteproc0: THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet
guaranteed.
 remoteproc0: firmware_loading_complete
 remoteproc0: powering up 200000.remoteproc-II
 remoteproc0: Booting fw image app_cpu1, size 364275
 remoteproc0: remote processor 200000.remoteproc-II is now up
 remoteproc0: stopped remote processor 200000.remoteproc-II

The insertion of the zynq_remoteproc module may be verified with the PetaLinux command “lsmod”. At this point, the
“lscpu” command reports, “On-line CPU(s) list: 0” and “Off-line CPU(s) list: 1”, and the standalone application is running
on CPU 1.

A Settings.ini file should be prepared with the desired settings for the PetaLinux servo application,
FMCServo_Boeing_AMP.elf, and placed in the user's current directory. If both files are present in the same directory,
/mnt/Servo, for example, then enter the following commands to execute the servo application:

root@Cardsharp2015:~# cd /mnt/Servo
root@Cardsharp2015:/mnt/Servo# ./FMCServo_Boeing_AMP.elf

For Rx.SampleRate=0.006 and Tx.SampleRate=0.006 (6 KHz.), typical output begins:

 Log ==> Module Device Opened Successfully...
 Log ==> Logic Version: 5, Hdw Variant: 0, Revision: 0, Subrevision: 0
 Log ==> Board Family: 0, Type: 3, Board Revision: 0, Chip: 0
 Log ==> Requested PLL Frequencies: [ADC] 6000 [DAC] 6000
 Log ==> Actual PLL Frequencies: [ADC] 6000 [DAC] 6000
 Log ==> Servo processor started
 Log ==> Analog I/O started
 Log ==> Stream Mode started
 Log ==> Duo "Clock" output data
 Log ==> Out # 0: Divider: 0, Out Freq: 6000, Actual: 6000
Sample Count: 0
Rate (KSPS): 0
PLL Locked: +
 Log ==> Out # 1: Divider: 0, Out Freq: 6000, Actual: 6000
 Log ==> Out # 2: Divider: 0, Out Freq: 6000, Actual: 6000
 Log ==> Out # 3: Divider: 0, Out Freq: 6000, Actual: 6000
 Log ==> Ad9510 PLL output data
 Log ==> Out # 0: Divider: 0, Out Freq: 0, Actual: 0
 Log ==> Out # 1: Divider: 0, Out Freq: 0, Actual: 0
 Log ==> Out # 2: Divider: 0, Out Freq: 0, Actual: 0
 Log ==> Out # 3: Divider: 0, Out Freq: 0, Actual: 0
 Log ==> Out # 4: Divider: 0, Out Freq: 0, Actual: 0
 Log ==> Out # 5: Divider: 20, Out Freq: 6000, Actual: 6.12e+06
 Log ==> Out # 6: Divider: 0, Out Freq: 0, Actual: 0
 Log ==> Out # 7: Divider: 0, Out Freq: 0, Actual: 0

Cardsharp User's Manual 39

Servo Mode

 Log ==> Ad9508 Divider output data
 Log ==> Out # 0: Divider: 1020, Out Freq: 6000, Actual: 6000
 Log ==> Out # 1: Divider: 1020, Out Freq: 6000, Actual: 6000
 Log ==> Out # 2: Divider: 1020, Out Freq: 6000, Actual: 6000
 Log ==> Out # 3: Divider: 1020, Out Freq: 6000, Actual: 6000
Press any key to end:
Sample Count: 48008
Rate (KSPS): 0
PLL Locked: +
Sample Count: 96080
Rate (KSPS): 0
PLL Locked: +
Sample Count: 144160
Rate (KSPS): 0
PLL Locked: +
Sample Count: 192240
Rate (KSPS): 0
PLL Locked: +
Sample Count: 240320
Rate (KSPS): 39.9884
PLL Locked: +
Sample Count: 288400
Rate (KSPS): 47.9884
PLL Locked: +
Sample Count: 336480
Rate (KSPS): 47.9993
PLL Locked: +

Sampling status obtained from the standalone application will continue to be reported each second. Servo processing, status
reports, and the execution of the PetaLinux servo application will end when any keystroke is sent to the Cardsharp.

To remove the standalone servo application and the zynq_remoteproc module, send the following command to the target
board:

root@Cardsharp2015:~# modprobe -r virtio_rpmsg_bus
root@Cardsharp2015:~# modprobe -r zynq_remoteproc

Confirmation of the removal can be seen with the “dmesg | tail” command line:

zynq_remoteproc 200000.remoteproc-II: zynq_remoteproc_remove
zynq_remoteproc 200000.remoteproc-II: Deleting the irq_list
 remoteproc0: releasing 200000.remoteproc-II

The removal of the zynq_remoteproc module may be verified with the PetaLinux lsmod command. The lscpu command
should once again indicate that both CPUs are available to PetaLinux.

If desired, a different standalone application could be copied to /lib/firmware on the target, replacing the app_cpu1 file there.
This could be accomplished via FTP or SFTP over Ethernet, using a Windows application such as WinSCP, for instance.
Then, the new application could be loaded and run by reinserting the zynq_remoteproc module (i.e., “modprobe

Cardsharp User's Manual 40

Servo Mode

zynq_remoteproc”). The procedure for inserting and removing that module can be repeated as often as needed to change the
applications running on CPU1.

The zynq_remoteproc module accepts an optional “firmware” parameter, specifying a path to a standalone application file
relative to /lib/firmware. For instance, to specify a file named “adaptive.elf” in the /lib/firmware/servo directory, enter this
command:

root@Cardsharp2015:~# modprobe zynq_remoteproc firmware=”servo/adaptive.elf”

Configuration File

The “Settings.ini” file in the current directory when the application is started holds parameters for data acquisition including
the on-board timebase, analog channel selection, range and triggering, etc. Each of these parameters is described below. Each
line of the file must set a parameter by following one of the quoted names with an equals sign (=) and a string or numeric
value, as appropriate.

Clock Group. The module features an on-board AD9510 PLL which may be used as a sample clock during analog
acquisition. Alternately, an external sample clock may be used. If “SampleClockSource” is 0, the external clock is used as the
analog sample clock; if it is 1, the internal PLL is selected and is programmed to generate the sample rate of
“Rx.SampleRate” or (Tx) “SampleRate” MHz during acquisition. If an external clock source is selected, then
“Rx.SampleRate” or “SampleRate” is used to inform the program of your intended (external) sample rate. In that case, you
are expected to supply a clock running at the specified rate to the external clock input connector on the module.
“ExtClockSrcSelection” selects an external clock from either the FMC Servo front panel (0) or the GPS 10 MHz reference
clock on Cardsharp (1).

void ApplicationIo::StreamPreconfigure()
{
…
 // Route ext clock source
 IX6ClockIo::IIClockSelect cks[] = { IX6ClockIo::cslFrontPanel, IX6ClockIo::cslCarrier };

Module.Fmc().Clock().ExternalClkSelect(cks[Settings.ExtClockSrcSelection]);

 if(cks[Settings.ExtClockSrcSelection] == IX6ClockIo::cslCarrier)
 {
 Module.Fmc().FmcInfo().FmcClock2_3_Enable(true);
 Module.Fmc().FmcInfo().FmcClock2_IsSingleEnded(true);
 Module.Fmc().FmcInfo().FmcClock3_IsSingleEnded(true);
 }
 else
 {
 Module.Fmc().FmcInfo().FmcClock2_3_Enable(false);
 Module.Fmc().FmcInfo().FmcClock2_IsSingleEnded(true);
 Module.Fmc().FmcInfo().FmcClock3_IsSingleEnded(true);
 }

…
 // Route clock
 IX6ClockIo::IIClockSource src[] = { IX6ClockIo::csExternal, IX6ClockIo::csInternal };
 Module.Fmc().Clock().Source(src[Settings.SampleClockSource]);
 Module.Fmc().Clock().Adc().Frequency(Settings.Rx.SampleRate * 1e6);
 Module.Fmc().Clock().Dac().Frequency(Settings.Tx.SampleRate * 1e6);
 {
 std::stringstream msg;
 msg << "Requested PLL Frequencies: [ADC] " << Settings.Rx.SampleRate * 1e6
 << " [DAC] " << Settings.Tx.SampleRate * 1e6;
 Log(msg.str());
 }

Cardsharp User's Manual 41

Active Channels Group. The FMC module supports simultaneous acquisition up to the maximum number of channels. Each
Rx channel 0-7 is enabled if the corresponding entry “ChN” in the “Rx.ActiveChannels” group is nonzero. The number of
enabled Rx channels must be even, and the value of “Poller.AdcAF” must be set to half that number. Similarly, each Tx
channel 0-7 is enabled if the corresponding entry “ChN” in the “ActiveChannels” group is nonzero, and the number of
enabled Tx channels must be even.

void ApplicationIo::StreamPreconfigure()
{
…
 //
 // Set Channel Enables
 Module.Fmc().Output().ChannelDisableAll();
 for (unsigned int i = 0; i < Module.Fmc().Output().Channels(); ++i)
 {
 bool active = Settings.Tx.ActiveChannels[i] ? true : false;
 if (active==true)
 Module.Fmc().Output().ChannelEnabled(i, true);
 }
 // Channel Enables
 Module.Fmc().Input().ChannelDisableAll();
 for (unsigned int i = 0; i < Module.Fmc().Input().Channels(); ++i)
 {
 bool active = Settings.Rx.ActiveChannels[i] ? true : false;
 if (active==true)
 Module.Fmc().Input().ChannelEnabled(i, true);
 }
…
}
…
bool ApplicationIo::StartStreaming()
{
…
 Module.Fmc().AdcFifo()->AlmostFullLevel(Settings.Poller.AdcAF);

Trigger Group. Acquisition may be triggered using an external signal or via software. “Rx.ExternalTrigger” and (Tx)
“ExternalTrigger” provide the means of selection, hardware if nonzero, software otherwise. Triggers act as a gate on data
flow - no data flows until a trigger has been received. If software, the application program issues a command following
configuration to initiate data flow. If hardware, a signal applied to the external trigger connector controls data flow. In either
case, the initiation of triggering is delayed by “Trigger Delay” seconds. “ExtTriggerSrcSelection” selects either the front
panel (0) or FMC (1) external trigger source.

In Unframed mode (“Rx.Framed” or “Tx.Framed” is 0), triggers are either rising edge (Rx.EdgeTrigger or EdgeTrigger is 1)
or level sensitive (Rx.EdgeTrigger or EdgeTrigger is 0). In the latter case, data flow proceeds while the trigger is in the high
(active) state and stops while the trigger is in the low (inactive) state. This mode is ideal for conventional data acquisition
applications. In Framed mode (“Rx.Framed” or “Tx.Framed” is 1), triggers are always rising edge sensitive. Upon detection
of each edge, “Rx.FrameSize”/”Tx.FrameSize” samples are acquired from all active channels, then acquisition terminates
until the next trigger edge is detected.

bool ApplicationIo::StartStreaming()
{
…
 if (Settings.Tx.Framed)
 {
 // Granularity is firmware limitation
 int framesize = Module.Fmc().Output().Info().TriggerFrameGranularity();

 if (Settings.Tx.FrameSize % framesize)

Cardsharp User's Manual 42

Servo Mode

 {
 std::stringstream msg;
 msg << "Error: Ouput frame count must be a multiple of " << framesize;
 Log(msg.str());

 return false;
 }
 }
 if (Settings.Rx.Framed)
 {
 // Granularity is firmware limitation
 int framesize = Module.Fmc().Input().Info().TriggerFrameGranularity();

 if (Settings.Rx.FrameSize % framesize)
 {
 std::stringstream msg;
 msg << "Error: Input frame count must be a multiple of " << framesize;
 Log(msg.str());

 return false;
 }
 }

…
 Trig.DelayedTriggerPeriod(Settings.Tx.TriggerDelayPeriod);
 Trig.ExternalTrigger(Settings.Rx.ExternalTrigger ? true : false ||
 Settings.Tx.ExternalTrigger ? true : false);
…
 //
 // Trigger Configuration
 // Frame Triggering
 Module.Fmc().Output().Trigger().FramedMode((Settings.Tx.Framed)? true : false);
 Module.Fmc().Output().Trigger().Edge((Settings.Tx.EdgeTrigger)? true : false);
 Module.Fmc().Output().Trigger().FrameSize(Settings.Tx.FrameSize);

 Module.Fmc().Input().Trigger().FramedMode((Settings.Rx.Framed)? true : false);
 Module.Fmc().Input().Trigger().Edge((Settings.Rx.EdgeTrigger)? true : false);
 Module.Fmc().Input().Trigger().FrameSize(Settings.Rx.FrameSize);

 // Route External Trigger source
 IFmcIoDevice::AfeExtSyncOptions syncsel[] = {IFmcIoDevice::essFrontPanel,

IFmcIoDevice::essP16};
 Module.Fmc().Output().Trigger().ExternalSyncSource(syncsel[Settings.ExtTriggerSrcSelection]);
 Module.Fmc().Input().Trigger().ExternalSyncSource(syncsel[Settings.ExtTriggerSrcSelection]);

 // if clock is carrier, settings are already done in preconfigure
 IFmcClockIo::IIClockSelect cks[] = { IFmcClockIo::cslFrontPanel, IFmcClockIo::cslCarrier };
 if(cks[Settings.ExtClockSrcSelection] != IFmcClockIo::cslCarrier)
 {
 if(syncsel[Settings.ExtTriggerSrcSelection] == IFmcIoDevice::essP16)
 {
 Module.Fmc().FmcInfo().FmcClock2_3_Enable(true);
 Module.Fmc().FmcInfo().FmcClock2_IsSingleEnded(true);
 Module.Fmc().FmcInfo().FmcClock3_IsSingleEnded(true);
 }
 else
 {
 Module.Fmc().FmcInfo().FmcClock2_3_Enable(false);
 Module.Fmc().FmcInfo().FmcClock2_IsSingleEnded(true);
 Module.Fmc().FmcInfo().FmcClock3_IsSingleEnded(true);
 }
 }

Cardsharp User's Manual 43

Servo Mode

Data Logging Group. These controls govern the size of data files created by the application containing packet data received
from the module during real-time streaming. The value of “Rx.SamplesToLog” sets the upper-bound on the number of stored
events (total samples from all channels). If the “Rx.AutoStop” is set to 1, streaming will automatically terminate once the
specified number of events have been processed.

bool ApplicationIo::StartStreaming()
{
…
 int SamplesPerWord = Module.Fmc().Input().Info().SamplesPerWord();
 WordsToLog = Settings.Rx.SamplesToLog / SamplesPerWord;
…
bool ApplicationIo::IsDataLoggingCompleted()
{
 if (!WordsToLog)
 return false;
 else
 return SampleCount >= WordsToLog;
}
…
void ApplicationIo::CheckDataLimit()
{
 //
 //
 if (Settings.Rx.AutoStop && IsDataLoggingCompleted() && !Stopped)
 {
 // Stop counter and display it
 double elapsed = RunTimeSW.Stop();

 StopStreaming();
 Log("Stream Mode stopped automatically.");
 Log(std::string("Elapsed (sec.): ") + FloatToString(elapsed));
 }
}

Test Counter Group. Use these control to enable a logic-specific test mode if you are developing custom FPGA logic. If you
are using the stock factory-supplied logic, a nonzero value for “Rx.TestGenEnable” enables test data to replace A/D data
from each channel. In that case, “Rx.TestGenMode” selects the test mode, unpaced sawtooth (0) or paced sawtooth (1). A
nonzero value for “TestGenEnable” enables test data to replace D/A data for each channel. In that case, “TestGenMode”
selects the test mode, ramp (0), sine wave (1), DAC test pattern (2), zeros (3), max positive (4), max negative (5), alternating
1's and 0's (6), or alternating two 1's and two 0's (7).

bool ApplicationIo::StartStreaming()
{
…
 // Output Test Generator Setup
 Module.SetOutputTestConfiguration(Settings.Tx.TestGenEnable, Settings.Tx.TestGenMode);
 Module.SetInputTestConfiguration(Settings.Rx.TestGenEnable, Settings.Rx.TestGenMode);

Decimation Group. These controls govern the behavior enable the decimation logic. When “Rx.DecimationEnable”is
nonzero, only one of every “Rx.DecimationFactor” samples of each Rx channel's acquired data is retained within the internal
ADC FIFO. When “Tx.DecimationEnable”is nonzero, only one of every “Tx.DecimationFactor” samples of each Tx
channel's data read from the DAC FIFO is output to the DACs.

bool ApplicationIo::StartStreaming()
{
…
 // Set Decimation Factor
 int factor = Settings.Tx.DecimationEnable ? Settings.Tx.DecimationFactor : 0;
 Module.Fmc().Output().Decimation(factor);

Cardsharp User's Manual 44

Servo Mode

 factor = Settings.Rx.DecimationEnable ? Settings.Rx.DecimationFactor : 0;
 Module.Fmc().Input().Decimation(factor);

Data Streaming. During data flow, the number of received data packets, data transfer rate, and the PLL lock status are shown
in real time. Data collection terminates when any key is pressed or when the amount of data specified by
“Rx.SamplesToLog” is accumulated. “Rx.OverwriteBdd” controls whether a new BinView binary data descriptor file should
be created as streaming terminates. Normally, this should be enabled (1) so that a valid BDD is available for use by BinView
when it is opened to view acquired data. But under some circumstances, such as when comments are added to the BDD file,
it may be desirable to avoid re-creating the file each run by setting the value to 0.

void ApplicationIo::InitBddFile(BinView & graph)
{
 // Optionally skip update.
 PathSpec spec(graph.BinFile());
 spec.Ext(".bdd");
 if (FileExists(spec.Full()) && !Settings.Rx.OverwriteBdd)
 return;

PetaLinux Application Organization

The main form of the application creates an ApplicationIo to perform the work of the example. The UI can call the methods
of the ApplicationIo to perform the work when, for example, a button is pressed or a control changed.

Sometimes, however, the ApplicationIo object needs to 'call back into' the UI. To decouple the ApplicationIo from the user
interface, an Interface class is used to hide the implementation. An interface class is an abstract class that defines a set of
methods that can be called by a client class (here, ApplicationIo). The other class produces an implementation of the Interface
by either multiple inheriting from the interface, or by creating a separate helper class object that derives from the interface. In
either case the implementing class forwards the call to the UI form class to perform the action. ApplicationIo only has to
know how to deal with a pointer to a class that implements the interface, and all UI dependencies are hidden.

The predefined IUserInterface interface class is defined in ApplicationIo.h. The constructor of ApplicationIo requires a
pointer to the interface, which is saved and used to perform the actual updates to the UI inside of ApplicationIo's methods.

ApplicationIo

For information on board access and data handling in ApplicationIo, see the Malibu Library User's Manual chapter on the
Snap example. The section below details the code required to perform real-time packet polling and processing.

Packet Processing
In order to process packets via the standalone application, the Malibu application must create the following object:

 RemoteAppControl *RemoteAppInterface;

The RemoteAppControl class accesses the memory region shared with the standalone application to command it, and to
obtain status and sampled data from it. After setting up all of the software, firmware, and hardware, but just prior to enabling
triggers, the following code informs the standalone application of the number of receive and transmit channels and signals it
to begin servo processing:

Cardsharp User's Manual 45

Servo Mode

bool ApplicationIo::StartStreaming()
{
…

 RemoteAppInterface->Start(LVDTChannels(), Module.Fmc().Output().ActiveChannels());
 Log("Servo processor started");
…
}

The PetaLinux application can periodically report status as show below:

//---
// ApplicationIo::HandleTimer() -- Per-second status timer event
//---

void ApplicationIo::HandleTimer(OpenWire::NotifyEvent & /*Event*/)
{
 double sample_rate = Module.Fmc().Clock().Adc().FrequencyActual();

 for (int i=0; i<4; i++)
 {
 // Get Info
 Module.LVDT_Demod_GetChannelStatus(i, sample_rate, Settings.LVDT.InitDone[i],
Settings.LVDT.DeltaPhase[i],
 Settings.LVDT.RefFreq[i], Settings.LVDT.Position[i]);

 // Update SampleCount and display status:
 SampleReport();
 // Check SampleCount against data limit:
 CheckDataLimit();

 Trig.AtTimerTick();
}

//--
// ApplicationIo::SampleReport() -- Returns count of remotely processed samples.
//--

void ApplicationIo::SampleReport()
{
 double FSampleCount;
 double FSampleRate;

 // Calculate transfer rate in SPS:
 double Period = ReportTime.Differential();
 unsigned int SamplesDiff = RemoteAppInterface->SampleCountDiff();
 SampleCount += SamplesDiff;
 FSampleCount = static_cast<double>(SampleCount);
 double LastRate = (0.0 != Period) ? static_cast<double>(SamplesDiff) / Period : 0.0;
 FSampleRate = ReportRate.Process(LastRate);
 UI->PeriodicStatus(FSampleCount, FSampleRate, PllLocked());
}

Stop the remote servo loop when data streaming stops, after triggering is disabled.

void ApplicationIo::DoStopStreaming()
{
…

 // Since triggering is stopped, the ADC FIFO should be cleared by now:
 RemoteAppInterface->Stop();
…

}

Cardsharp User's Manual 46

Servo Mode

The last sampled data packets are left in a circular buffer in shared memory by the standalone application and can be logged
to the Data.bin file in the current directory by implementing the abstract RemoteAppControl::ILogger class using
ApplicationIo's member Logger:

class RemoteDataLogger : public RemoteAppControl::ILogger
 {
 public:
 RemoteDataLogger(Innovative::DataLogger *Logger) : DataLogger(Logger) {};
 virtual bool Log(const int * data, unsigned int size_in_ints)
 {
 return DataLogger->Log(data, size_in_ints);
 }
 private:
 Innovative::DataLogger *DataLogger;
 };

//---
// ApplicationIo::HandleAfterStop() -- Post stream termination event
//---

void ApplicationIo::HandleAfterStop()
{
…

 // Log remotely collected data:
 RemoteDataLogger RemoteLogger(&Logger);
 RemoteAppInterface->Log(&RemoteLogger);
…

}

Inter-processor Communication

A single structure located in the Zynq On-Chip Memory (OCM) holds all of the data that is shared between the two servo
applications running on the two ARM processors:

// Located at SHARED_OCM_MEMORY_BASE:
struct RemoteInterface
 {
 unsigned int CommandQSem; // CPU0 => CPU1: indicates queued command
 CommandQTemplate::Queue CommandQ; // CPU0 => CPU1
 unsigned int StatusQSem; // CPU1 => CPU0: indicates queued status
 StatusQTemplate::Queue StatusQ; // CPU1 => CPU0: responses to commands
 DataQTemplate::Queue DataQ; // CPU1 => CPU0: latest samples of current run
 unsigned int SampleCount; // CPU1 => CPU0: total samples taken during current
run (can overflow)
 StatusMachine State; // CPU1 => CPU0: current state
 };
const unsigned int SHARED_OCM_MEMORY_BASE = 0xFFFF0000; // requires sizeof(RemoteInterface) <=
0x10000

The two semaphores, CommandQSem and StatusQSem, are managed by a Semaphore class implemented identically in the
two applications. Similarly, the two queues that the semaphores guard, CommandQ and StatusQ, are implemented as circular
buffers by the same template class, QueueT, in the two applications. The commands enqueued in CommandQ are:

enum StatusMachine { mWaitForWork, mStartWork, mDoWork, mComplete, mError};
struct Command
 {
 StatusMachine NewState;

Cardsharp User's Manual 47

Servo Mode

 unsigned int RunNumber;
 unsigned int RxChannelCount; // number of active Rx channels
 unsigned int TxChannelCount; // number of active Tx channels
 };

After enqueueing a command and setting CommandQSem, the PetaLinux application waits for the standalone application to
enqueue a Status in StatusQ and set StatusQSem in response. If NewState is mStartWork, the standalone application
acknowledges the command, saves RxChannelCount and TxChannelCount in a singleton instance of the ServoTask class,
and begins packet processing. While in this state, data read from the ADCs is copied to DataQ, and SampleCount is
incremented for each sample. When the standalone application subsequently receives a Command with NewState set to
mComplete, it ceases packet processing.

Standalone Application Organization

The standalone application, after it is loaded into memory and the standalone CPU (CPU1) begins to execute it, waits in a
loop in main() for a command from the PetaLinux servo application to signal that it should begin processing servo packets.
Once that command is received and acknowledged, main passes RxChannelCount and TxChannelCount to ServoTask and
then begins alternately calling a local function, servo_work, and polling CommandQSem. The servo_work function polls
for a single sample by calling ServoTask::ProcessSingleSample() and, if one is returned, updates DataQ and
SampleCount. Access to the RemoteInterface is limited to the code in main.cpp (and the QueueT and Semaphore classes, as
discussed).

When ProcessSingleSample has read RxChannelCount number of samples from the ADC FIFO, it calls
ServoTask::ProcessPacket(). This code, located in the ProcessPacket.cpp file, must be customized by the user to
implement the desired servo algorithm, processing RxChCount elements of input member RxPacketData and storing
results into TxChCount elements into output member TxPacketData. ProcessSingleSample then writes those values
to the ADC FIFO.

Cardsharp User's Manual 48

The CardSharp Board Object

Chapter 6: The CardSharp Board Object

Introduction

The CardSharp Board class is used to control the CardSharp hardware. The class contains a reference to device map object
which maps registers required to initialize and run the CardSharp hardware. The CardSharp Board object can be thought as a
shell that contains the device map and it relays function calls to its member device map.

Cardsharp Interface

 // Informational Methods
 std::string Name() const
 { return Device.Name(); }
 std::string Revision() const
 { return Device.Revision(); }
 // Control Methods
 int Target();
 void Target(int value);
 virtual void Open();
 virtual void Close();
 virtual void Reset();
 virtual void Start();
 virtual void Stop();
 void Preconfig();
 ii32 PeekLogic(int offset);
 void PokeLogic(int offset, ii32 value);
 ii32 PeekPort(int offset);
 void PokePort(int offset, ii32 value);
 // SubDevices
 const IX6LogicVersionInfo & Info() const;
 const IMulticharUart & Gps() const;
 IX6_GpsIo & GpsCtrl();
 BabushkaIeee1588 & Babushka()
 { return Device.Babushka(); }
 void SelectGps(size_t idx)
 { Device.Gps_Sdev.SelectGps(idx); }
 // Fmc connect interface
 bool ConnectTo(IFmcDaughterCard * daughter, unsigned int slot=0);
 void DisconnectFrom(unsigned int slot);

1. Target(int value)

Selects the target in case there are more than one board plugged in.

Cardsharp User's Manual 49

The CardSharp Board Object

2. Open()

Opens the device driver for the CardSharp and establishes the memory mapping of the register interface for the
logic.

3. Close()

Closes the device driver and unmaps the memory.

4. Reset()

Asserts the logic reset bit.

5. Start()

“Starts” the board. This is application specific, this may mean different things for different applications.

6. Stop()

“Stops” the board. This is application specific, this may mean different things for different applications.

7. Preconfig()

Initializes registers and fire events that needs to be done at the Preconfig time.

8. ii32 PeekLogic(int offset)

Read from logic space at a given offset.

9. ii32 PeekLogic(int offset, ii32 value)

Write to given value to logic space at a given offset.

10. ii32 PokePort(int offset)

Read from port space at a given offset.

11. ii32 PokePort(int offset, ii32 value)

Write to given value to port space at a given offset.

12. Info()

The Info method returns a reference to Version information interface.

class IX6LogicVersionInfo
{
public:
 //
 // Interface Functions
 virtual short PciLogicRevision() const = 0;
 virtual short PciLogicFamily() const = 0;
 virtual short FpgaLogicVersion() const = 0;
 virtual short FpgaHardwareVariant() const = 0;
 virtual short PciLogicPcb() const = 0; // Board Revision
 virtual short PciLogicType() const = 0; // Board Type
 virtual short FpgaChipType() const = 0;
 virtual short FpgaLogicSubrevision() const = 0;
 virtual short BoardRevisionBuiltFor() const = 0;
 virtual unsigned int PciLogicRawValue() const = 0;
 virtual unsigned int FpgaInformationRawValue() const = 0;
 virtual unsigned int FpgaSubRevRawValue() const = 0;
 unsigned int K7_FpgaTempGrade() const
 { return PciLogicPcb() & 0x3; }

Cardsharp User's Manual 50

The CardSharp Board Object

 unsigned int K7_FpgaSpeedGrade() const
 { return (PciLogicPcb() & 0xc) >> 2; }
 virtual ~IX6LogicVersionInfo() {}
};

13. Gps()

The Info method returns a reference to GPS interface interface.

class IMulticharUart
{
public:
 virtual ~IMulticharUart() {};
 virtual void SetBaud(unsigned int rate) = 0;
 virtual unsigned int GetBaud() = 0;
 virtual void Port(unsigned char ch) = 0;
 virtual unsigned char Port() = 0;
 virtual void PutString(const std::string & data) = 0;
 virtual void GetString(std::string & data) = 0;
 virtual void GetFixedString(std::string & data, size_t chars) = 0;
 virtual bool FrameError() = 0;
 virtual void ClearFrameError() = 0;
};

In order to make use of the GPS device, an application needs to enable the device and register an Event handler with which to
receive Epoch Events. The code below demonstrates a typical use case:

void ApplicationIo::GpsEnable(bool state)
{
 UI->GetSettings();

 Settings.GpsStat.EpochTally = 0;
 GpsInitTally = 0;

 Module.Ref().GpsCtrl().GpsEnabled(state);
 if (state)
 {
 Log("Initializing GPS, this might take a while...");
 }

 GpsInitTimer.Enabled(state);

}

void ApplicationIo::Open()
{
 UI->GetSettings();

 // Gps
 Module.Ref().SelectGps(Settings.WhichGps); // Hook GPS handlers after you select which
 // will be used...
 Module.Ref().GpsCtrl().Gps().OnEpoch.SetEvent(this, &ApplicationIo::HandleOnEpoch);
 // Blah blah ...

}

Cardsharp User's Manual 51

The CardSharp Board Object

void ApplicationIo::HandleOnEpoch(Innovative::GpsEpochEvent & Event)
{
 {
 stringstream msg;
 msg.precision(4);
 msg << "Epochs: " << ++Settings.GpsStat.EpochTally;
 }

 {
 stringstream msg;
 time_t currentTime = Module.Ref().GpsCtrl().Gps().Time();
 msg << "UTC: " << Innovative::Trim(asctime(localtime(¤tTime)));
 Settings.GpsStat.UtcTime = msg.str();
 }

 {
 stringstream msg;
 GpsCoordinate Lat = Module.Ref().GpsCtrl().Gps().Latitude();
 msg << "Latitude: " << Lat.Print();
 Settings.GpsStat.Latitude = msg.str();
 }

 {
 stringstream msg;
 GpsCoordinate Long = Module.Ref().GpsCtrl().Gps().Longitude();
 msg << "Longitude: " << Long.Print();
 Settings.GpsStat.Longitude = msg.str();
 }

 {
 stringstream msg;
 msg << "Quality: " << Module.Ref().GpsCtrl().Gps().Fix();
 Settings.GpsStat.Quality = msg.str();
 }

 {
 stringstream msg;
 msg << "Satellites: " << Module.Ref().GpsCtrl().Gps().Satellites();
 Settings.GpsStat.Satellites = msg.str();
 }

 {
 stringstream msg;
 msg << "Lock: " <<Module.Ref().GpsCtrl().Gps().IsLocked();
 Settings.GpsStat.Lock = msg.str();
 }

 if (!Settings.DebugGps)
 return;

 for (GpsMessageList::iterator i = Event.List.begin(); i != Event.List.end(); ++i)
 DumpGpsMessage(*i);
}

Cardsharp User's Manual 52

The CardSharp Board Object

Initialization sequence

A typical application uses the board object as follows. The Console object contains the board object and evokes methods with
the same names. The object is initialized by the constructor. The board is opened by the open call. The Start method
initializes registers to appropriate values for the Start operation. The reason this sounds vague is that for a given application
the Start may mean different things. For example, a Stream type of application uses Start method to initialize a Run register
which start DMA operation. In a Servo application, which does not involve DMA, Start means something different.

int main()
{

Console c;

c.Open();
c.Start();
getchar(); // Wait
c.Stop();
c.Close();

}

Cardsharp User's Manual 53

The FmcServo Module Object

Chapter 7: The FmcServo Module Object

Introduction

The Malibu Library provides interface software that allows applications to control the operation of the Cardsharp and
FMCServo hardware. These two boards are managed by a combined logic, but for the purposes of the software reuse it is
best to divide the control code into functions that are common to all modules and for the remainder to fall into a separate
class object that is logically “attached” to the Cardsharp baseboard object and used thereafter. Thus the operations common
to all boards need only be written once, and the board specific ones devised when needed.

The FMC module contains the analog I/O system required for the combined configuration. So the FMC object will contain
objects and interfaces used to control the PLLs, ADCs, and DAC systems on the FMC board, if any. Most of the methods
the user need concern themselves with deal with initialization of the hardware prior to data-taking. Other methods not
described are the interface to the carrier board itself.

FMCServo Operations

The FMCServo has both analog in and analog out devices, which in the library means that it is a bidirectional board. The
class family defined for FMC card adds internal “SubDevice” objects that control parts of the logic dedicated for a particular
function. For the user, these objects are black boxes that do not need to be interacted with.

Object Attachment

Before the boards are opened, the FMC board needs to be connected to its baseboard carrier object. Once connected, the
carrier will call methods in the FMC board to properly initialize the hardware at critical times like baseboard Open and Close,
and during analog configuration for Servo and Streaming mode. This also allows the FMC board to access the carrier's
memory spaces properly when the board is opened.

 Innovative::FmcServo Fmc;
 Innovative::Cardsharp CS; // an FMC carrier

 CS.ConnectTo(&Fmc);

Shared Base Class Operations

Cardsharp User's Manual 54

The FmcServo Module Object

There are some common interfaces in the ultimate base class FmcBoard, located in FmcSupport_Mb.h. These should not be
manipulated by the user. These are internally used, or debug interfaces, or in the case of the Vita interfaces only for use on
other carrier boards.

 FmcStandardRomInfo & RomInfo();
 IFmcInformation & FmcInfo();
 IVitaPacketizer & VitaIn();
 IVitaTimestamp & VitaIn_TS();
 IVitaDepacketizer & VitaOut();
 IX6Aurora & Aurora(unsigned int idx);

The Input() Device

 class FmcServoInputDevice & Input();

FMC Cards have a specific device to hold configuration methods for Analog Input. This allows the often virtually identical
methods needed to configure Analog Output features to be expressed in a common language, easing the learning path for
users.

Input.GainRange()

size_t GainRange(int ch);
void GainRange(int ch, size_t gain_range);

This method pair allows the setting and reading back of the gain range setting for each channel.

Input().Info()

virtual IX6AnalogIoInfo & Info();

This method returns an interface that contains information about the analog on the board. This can be queried by the
application to test its inputs against what the hardware can support. The following methods are in the interface:

 virtual float MaxRate() const;
 virtual float MinRate() const;
 virtual SpanInfo Span() const;
 virtual unsigned int Bits() const;
 virtual unsigned int SamplesPerWord() const;
 virtual unsigned int TriggerFrameGranularity() const;
 virtual size_t GainRanges() const;
 virtual SpanInfo Span(size_t /*gain_range*/) const;

MinRate() and MaxRate() are the ADC clock rates supported by the hardware. The Span() functions give the voltage range
of the board in mV. GainRanges() gives the total number of gain ranges supported. Since the FMCServo supports multiple
gain ranges, the second method should be used to give the span for that gain range. Bits() and SamplesPerWord() tell the
data size provided by the ADC. TriggerFrameGranularity() is how coarse framed trigger settings are internally. If greater
than 1, then widths not evenly divisible by this number will be truncated.

Cardsharp User's Manual 55

The FmcServo Module Object

Input() Channel Enable Methods

 virtual unsigned int Devices();
 virtual unsigned int ChannelsPerDevice();
 virtual unsigned int Channels();
 virtual void DeviceDisableAll() { ChannelDisableAll(); };
 virtual void DeviceEnabled(int dev, bool state);
 virtual bool DeviceEnabled(int dev) const;
 virtual void DevicePowered(int dev, bool state);
 virtual bool DevicePowered(int dev) const;
 virtual unsigned int ActiveDevices();
 virtual void ChannelDisableAll();
 virtual void ChannelEnabled(int ch, bool state);
 virtual bool ChannelEnabled(int ch) const;
 virtual void ChannelPowered(int ch, bool state);
 virtual bool ChannelPowered(int ch) const;
 virtual unsigned int ActiveChannels();

Input Devices have a number of methods to control the enabling or disabling of channels in an application. By default any
inactive channel is powered down. Normally, an application only needs to do a simple loop to configure the board according
to a saved Settings of channels:

 // Channel Enables
 Module.Fmc().Input().ChannelDisableAll();
 for (unsigned int i = 0; i < Module.Fmc().Input().Channels(); ++i)
 {
 bool active = Settings.Rx.ActiveChannels[i] ? true : false;
 if (active==true)
 Module.Fmc().Input().ChannelEnabled(i, true);
 }

The method ActiveChannels() counts the number of channels enabled at any time.

Input().Cal()

 virtual GeneralRangedCalibrationSection & Cal();

The Cal() object controls Input calibration of the analog channels. Each gain range has its own calibration. The interface has
these methods:

 bool Calibrated(size_t gain_range) const;
 void Calibrated(size_t gain_range, bool state)

 float Offset(size_t gain_range, int ch) const;
 void Offset(size_t gain_range, int ch, float value);

 float Gain(size_t gain_range, int ch) const;
 void Gain(size_t gain_range, int ch, float value);

 void LoadFromRom();
 void StoreToRom();

Offsets and Gains are set by the appropriate method. The Calibrated() function tells the library to use the loaded settings. If
this bit is off, a default setting of Gain=1 and Offset=0 is used. LoadFromRom() and StoreToRom() save, and recover the
data from the FMC Rom.

The following code shows using Cal() to save a new set of calibration data to ROM.

Cardsharp User's Manual 56

The FmcServo Module Object

 for (unsigned int range = 0; range < AnalogInGainRanges(); ++range)
 {
 for (unsigned int ch = 0; ch < InputChannels(); ++ch)
 {
 Module.Fmc().Input().Cal().Gain(range, ch, Settings.Rx.Gain[range][ch]);
 Module.Fmc().Input().Cal().Offset(range, ch, Settings.Rx.Offset[range][ch]);
 }
 Module.Fmc().Input().Cal().Calibrated(range, Settings.Rx.Calibrated[range]);
 }
 Module.Fmc().Input().Cal().StoreToRom();

Input().Trigger()

virtual ITriggerCfg & Trigger();

This method returns the interface class to configure the Incoming Trigger logic. These are common parameters across
boards:

 virtual void FramedMode(bool state);
 virtual bool FramedMode() const;
 virtual void Edge(bool state);
 virtual bool Edge() const;
 virtual void External(bool state);
 virtual bool External() const;
 virtual void FrameSize(unsigned int samples);
 virtual unsigned int FrameSize() const;
 virtual void ExternalSyncSource(AfeExtSyncOptions src);
 virtual AfeExtSyncOptions ExternalSyncSource() const;

If FramedMode() is set false, triggering works normally: Data starts on first trigger, and runs forever until stopped. If
FramedMode() is true, then the system will take FrameSize() samples then stop, until a new trigger arrives to start a
subsequent frame.

If External() is false, the system will start only on SoftwareTrigger(). If External() is true, then an external signal can trigger
in addition to SoftwareTrigger(). Edge() sets the external trigger to be edge sensitive. ExternalSyncSource() sets any logic or
hardware multiplexer switching which external signal will act as a trigger.

Input().Pulse()

virtual IPulseRepetitionIntervalIntf & Pulse();

This method returns the interface class to configure the Incoming PRI trigger logic. This mode adds an even more
complicated type of framed mode, where you can program a set of start offsets and widths inside a larger frame, that will take
data inside each 'pulse' and not take data. These can be repeated forever, or for a certain timeframe. The interface:

 virtual void Reset();
 virtual void AddEvent(unsigned int period,
 unsigned int delay,
 unsigned int width);

 virtual void Enabled(bool state);
 virtual bool Enabled() const;
 virtual void FiniteFrames(bool state);
 virtual bool FiniteFrames();
 virtual void FiniteFrameRearm(bool state);
 virtual bool FiniteFrameRearm() const;

Cardsharp User's Manual 57

The FmcServo Module Object

 virtual void FiniteFrameCount(unsigned short count);
 virtual unsigned short FiniteFrameCount() const;

The first two methods are used to define the period of the pulse cycle and each pulse's delay from the start and width in
clocks. Reset() cleans the internal store to give a fresh start. If Enabled() is set true, this data will be loaded and the PRI
mode used at start of data-taking.

The remaining methods define how the framing works. If FiniteFrames() is set true, the cycle will repeat FiniteFrameCount()
times before stopping. If FiniteFrameRearm() is true, additional triggers will restart the PRI cycle again.

Input.SoftwareTrigger()

virtual void SoftwareTrigger(bool state);
virtual void SoftwareTrigger(AfeDirection which, bool state);

These methods allow the sending of the software trigger either to the Input trigger alone, or to both together if using the
direction tInputOutput in the second method.

Input.Decimation()

 virtual void Decimation(unsigned int samples);
 virtual unsigned int Decimation() const;

Decimation greater than 0 means to skip that many samples between samples allowed through. For example, 1 means to
allow one, skip one. A factor of 2 means to allow one, then skip 2.

Miscellaneous Input() methods

virtual void TestModeEnabled(bool state, unsigned int mode);
virtual void TestFrequency(double /*frequency_hz*/);
virtual double TestFrequency();
void AdcDeviceTestMode(bool enabled, unsigned int test_mode,
 std::vector<unsigned int> test_pattern);

virtual void Spi(unsigned int device, unsigned int address, unsigned int data);
virtual unsigned int Spi(unsigned int device, unsigned int address);

These methods configure the FMC specific input test parameters to the logic. The Spi() method pair allows access to the
analog device SPI interface, if any. These are debugging methods and are usually not used in applications.

The Output() Device

 class FmcServoOutputDevice & Output();

FMC Cards have a specific device to hold configuration methods for Analog Output (if any). This allows the often virtually
identical methods needed to configure Analog Output features to be expressed in a common language as Input(), easing the
learning path for users.

Cardsharp User's Manual 58

The FmcServo Module Object

Output.DacClockMode()

 enum DacClockModes { dcmServo, dcmAcquisition }; // change mode for how data is taken
 void DacClockMode(DacClockModes state);

This method pair changes the clock setup to optimize for servo operation, or data-taking through the fifo modes.

Output().Info()

virtual IX6AnalogIoInfo & Info();

This method returns an interface that contains information about the analog on the board. This can be queried by the
application to test its inputs against what the hardware can support. The following methods are in the interface:

 virtual float MaxRate() const;
 virtual float MinRate() const;
 virtual SpanInfo Span() const;
 virtual unsigned int Bits() const;
 virtual unsigned int SamplesPerWord() const;
 virtual unsigned int TriggerFrameGranularity() const;
 virtual size_t GainRanges() const;
 virtual SpanInfo Span(size_t /*gain_range*/) const;

MinRate() and MaxRate() are the DAC clock rates supported by the hardware. The Span() functions give the voltage range
of the devuce in mV. GainRanges() gives the total number of gain ranges supported. Output generally only supports one gain
range, so the first method should be used to give the span. Bits() and SamplesPerWord() tell the data size provided by the
DAC. TriggerFrameGranularity() is how coarse framed trigger settings are internally. If greater than 1, then widths not
evenly divisible by this number will be truncated.

Output() Channel Enable Methods

 virtual unsigned int Devices();
 virtual unsigned int ChannelsPerDevice();
 virtual unsigned int Channels();
 virtual void DeviceDisableAll() { ChannelDisableAll(); };
 virtual void DeviceEnabled(int dev, bool state);
 virtual bool DeviceEnabled(int dev) const;
 virtual void DevicePowered(int dev, bool state);
 virtual bool DevicePowered(int dev) const;
 virtual unsigned int ActiveDevices();
 virtual void ChannelDisableAll();
 virtual void ChannelEnabled(int ch, bool state);
 virtual bool ChannelEnabled(int ch) const;
 virtual void ChannelPowered(int ch, bool state);
 virtual bool ChannelPowered(int ch) const;
 virtual unsigned int ActiveChannels();

Output Devices have a number of methods to control the enabling or disabling of channels in an application. By default any
inactive channel is powered down. Normally, an application only needs to do a simple loop to configure the board according
to a saved Settings of channels:

 // Channel Enables
 Module.Fmc().Output().ChannelDisableAll();
 for (unsigned int i = 0; i < Module.Fmc().Output().Channels(); ++i)
 {
 bool active = Settings.Tx.ActiveChannels[i] ? true : false;

Cardsharp User's Manual 59

The FmcServo Module Object

 if (active==true)
 Module.Fmc().Output().ChannelEnabled(i, true);
 }

The method ActiveChannels() counts the number of channels enabled at any time.

Output().Cal()

 virtual GeneralCalibrationSection & Cal();

The Cal() object controls Input calibration of the analog channels. Each gain range has its own calibration. The interface has
these methods:

 bool Calibrated() const;
 void Calibrated(bool state);

 float Offset(int ch) const;
 void Offset(int ch, float value);

 float Gain(int ch) const;
 void Gain(int ch, float value);

 void LoadFromRom();
 void StoreToRom();

Offsets and Gains are set by the appropriate method. The Calibrated() function tells the library to use the loaded settings. If
this bit is off, a default setting of Gain=1 and Offset=0 is used. LoadFromRom() and StoreToRom() save, and recover the
data from the FMC Rom.

The following code shows using Cal() to save a new set of calibration data to ROM.

 for (unsigned int ch = 0; ch < OutputChannels(); ++ch)
 {
 Module.Fmc().Output().Cal().Gain(ch, Settings.Tx.Gain[ch]);
 Module.Fmc().Output().Cal().Offset(ch, Settings.Tx.Offset[ch]);
 }
 Module.Fmc().Output().Cal().Calibrated(Settings.Tx.Calibrated);
 Module.Fmc().Output().Cal().StoreToRom();

Output().Trigger()

virtual ITriggerCfg & Trigger();

This method returns the interface class to configure the Outgoing Trigger logic. These are common parameters across
boards:

 virtual void FramedMode(bool state);
 virtual bool FramedMode() const;
 virtual void Edge(bool state);
 virtual bool Edge() const;
 virtual void External(bool state);
 virtual bool External() const;
 virtual void FrameSize(unsigned int samples);
 virtual unsigned int FrameSize() const;
 virtual void ExternalSyncSource(AfeExtSyncOptions src);
 virtual AfeExtSyncOptions ExternalSyncSource() const;

Cardsharp User's Manual 60

The FmcServo Module Object

If FramedMode() is set false, triggering works normally: Data starts on first trigger, and runs forever until stopped. If
FramedMode() is true, then the system will take FrameSize() samples then stop, until a new trigger arrives to start a
subsequent frame.

If External() is false, the system will start only on SoftwareTrigger(). If External() is true, then an external signal can trigger
in addition to SoftwareTrigger(). Edge() sets the external trigger to be edge sensitive. ExternalSyncSource() sets any logic or
hardware multiplexer switching which external signal will act as a trigger.

Output().Pulse()

virtual IPulseRepetitionIntervalIntf & Pulse();

This method returns the interface class to configure the Outgoing PRI trigger logic. This mode adds an even more
complicated type of framed mode, where you can program a set of start offsets and widths inside a larger frame, that will take
data inside each 'pulse' and not take data. These can be repeated forever, or for a certain timeframe. The interface:

 virtual void Reset();
 virtual void AddEvent(unsigned int period,
 unsigned int delay,
 unsigned int width);

 virtual void Enabled(bool state);
 virtual bool Enabled() const;
 virtual void FiniteFrames(bool state);
 virtual bool FiniteFrames();
 virtual void FiniteFrameRearm(bool state);
 virtual bool FiniteFrameRearm() const;
 virtual void FiniteFrameCount(unsigned short count);
 virtual unsigned short FiniteFrameCount() const;

The first two methods are used to define the period of the pulse cycle and each pulse's delay from the start and width in
clocks. Reset() cleans the internal store to give a fresh start. If Enabled() is set true, this data will be loaded and the PRI
mode used at start of data-taking.

The remaining methods define how the framing works. If FiniteFrames() is set true, the cycle will repeat FiniteFrameCount()
times before stopping. If FiniteFrameRearm() is true, additional triggers will restart the PRI cycle again.

Output.SoftwareTrigger()

virtual void SoftwareTrigger(bool state);
virtual void SoftwareTrigger(AfeDirection which, bool state);

These methods allow the sending of the software trigger either to the Input trigger alone, or to both together if using the
direction tInputOutput in the second method.

Output.Decimation()

 virtual void Decimation(unsigned int samples);
 virtual unsigned int Decimation() const;

Decimation greater than 0 means to skip that many samples between samples allowed through. For example, 1 means to
allow one, skip one. A factor of 2 means to allow one, then skip 2.

Cardsharp User's Manual 61

The FmcServo Module Object

Miscellaneous Output() methods

void DacReset(bool state);

virtual void TestModeEnabled(bool state, unsigned int mode);
virtual void TestFrequency(double /*frequency_hz*/);
virtual double TestFrequency();

virtual void Spi(unsigned int device, unsigned int address, unsigned int data);
virtual unsigned int Spi(unsigned int device, unsigned int address);

DacReset() will reset the DAC devices. The test methods configure the FMC specific output test parameters to the logic.
The Spi() method pair allows access to the analog device SPI interface, if any. These are debugging methods and are usually
not used in applications.

The Clock() Device

 IX6ClockIo & Clock();
 IAd9510DuoRawClockDevices & RawClockDevice();

The devices used to generate clocks for the ADC/DAC devices and the logic are of great and increasing complexity.
Internally, often multiple clock outputs are needed at different rates. For most purposes, knowing how to program these
devices is of little interest as long as the results are correct. The Clock() interface gives a standard interface to the onboard
timing system while hiding the details.

The RawClockDevices() interfaces gives low level access to the PLL and programmable VCXO objects (if any), mostly for
debugging purposes.

Clock()'s interface is more useful:

// IX6ClockIo
 enum IIClockSource { csExternal, csInternal };
 enum IIReferenceSource { rsExternal, rsInternal };
 enum IIClockSelect { cslFrontPanel, cslP16, cslCarrier=cslP16 };

 virtual ITimebaseRate & Adc();
 virtual ITimebaseRate & Dac();

 virtual void Source(IIClockSource src);
 virtual IIClockSource Source() const;

 virtual void ExternalClkSelect(IIClockSelect src);
 virtual IIClockSelect ExternalClkSelect() const ;

 virtual void Reference(IIReferenceSource /*src*/);
 virtual IIReferenceSource Reference() const;

 virtual void ReferenceFrequency(double /*value*/);
 virtual double ReferenceFrequency() const;

 virtual bool Locked() const;

The Clock system can run in two basic modes – external clock or internal clock. The former uses an external clock input as a
source, which can then be possibly divided down. The latter programs the onboard PLL device to generate a single high rate
clock (the VCO clock) which is then divided down to the desired sampling rate.

Cardsharp User's Manual 62

The FmcServo Module Object

Note that different rates can be set for the Adc() and Dac() clocks. But note that since there is only a single high-rate clock
available, the different rates can only be achieved by dividing this clock down. In most cases this can give odd results if the
two rates are not multiples of each other. The clock programming uses the faster clock to generate the VCO, so this direction
will fit best.

The Source() method pair sets the mode of the clock. The value csExternal selects external clocking. The Reference()
method pair controls if the PLL reference is an onboard crystal or other source, or an external clock.

ReferenceFrequency() is the frequency of the input clock. This is either the PLL reference, in internal mode, or the incoming
clock rate if in external clock mode. If the output sample rate is not the same as the reference rate, dividers will be used if
possible to produce the correct frequency.

ExternalClockSelect() connects to a mux that changes which output signal will provide the external clock input.

Clock().Adc() and Clock.Dac()

virtual ITimebaseRate & Adc();
virtual ITimebaseRate & Dac();

Setting the system frequency seems like a simple concept. However, there are some issues, since in general the limitations of
the PLL may prevent the code from delivering the frequency you wish. In addition, some devices require a higher rate clock
to be delivered to them in order to produce data at a certain rate. Other, more modern devices actually require a lower rate
clock than the actual sample rate. In this case the rate might change based on the system configuration.

The decision made was for the user, in general, to be giving us the sample frequency desired. If you want data at 100 MHz,
then you set the frequency to 100 MHz. The system will figure out what to put on the actual physical clock outputs. This is
the ITimeBaseRate interface:

 virtual void Frequency(double freq);
 virtual double Frequency() const;
 virtual double FrequencyActual() const;

 virtual double EffectiveFrequency() const;
 virtual double EffectiveFrequencyActual() const;

 virtual double MultipliedFrequency() const;
 virtual double MultipliedFrequencyActual() const;

The Frequency() method pair is used to set the desired output rate, and the readback returns your requested rate.
FrequencyActual() returns the actual rate achieved, which presumably matches the request very closely, depending on the
ability of the PLL to match your demand.

The MultipliedFrequency() and MultipliedFrequencyActual() readbacks show the rate on the outputs if the PLL has a defined
clock multiplier – if the device needs an elevated data rate.

The EffectiveFrequency() and EffectiveFrequencyActual() readbacks show the rate on the outputs if the PLL has a defined
clock multiplier – if the device requires a reduced data rate on the physical outputs.

In nearly all cases the Effective and Multiplied Frequencies are the same as the true ones. And aside from curiosity, the
application doesn't need to know these rates.

Cardsharp User's Manual 63

The FmcServo Module Object

FmcServo FIFO Configuration Devices

 IPolledFifo * AdcFifo() { return &AdcFifo_SDev.Fifo(); }
 IPolledFifo * DacFifo() { return &DacFifo_SDev.Fifo(); }

The FMCServo hardware differs from nearly all analog boards in that it does not support data streaming. Instead, there are
FIFOs in the logic that provide the data, and level flags that can be used to poll for data in these FIFOs. This is the interface
to each:

 virtual unsigned int Count();

 virtual bool AlmostEmpty();
 virtual bool Empty();
 virtual bool AlmostFull();
 virtual bool Full();

 virtual void AlmostFullLevel(unsigned int words) ;
 virtual unsigned int AlmostFullLevel() const;

 virtual void AlmostEmptyLevel(unsigned int words);
 virtual unsigned int AlmostEmptyLevel() const;

 virtual void Data(unsigned int value);
 virtual unsigned int Data() const;

 virtual void Delay(unsigned int ticks);
 virtual unsigned int Delay() const;

Use AlmostFullLevel() and AlmostEmptyLevel() to set the depth at which the corresponding flags will be set by the logic.
The units are in two-sample words, so a servo should have at least two channels enabled.

The methods to return the flags for AlmostEmpty(), AlmostFull(), Empty() and Full() are provided. The former are the useful
ones for Servos, as you can set the levels to signal only when a complete incoming event has arrived for processing.

Data() reads or writes to the FIFO. The ADC fifo only reads, the DAC fifo only writes. Again, the data is in pairs of samples
per access.

Delay() only works on the DAC device, and delays the DAC update so that a conversion will wait until the data is read and
processed in a servo application, to reduce latency. Count() reads the FIFO level, but the flags provide a better signal that
data has arrived for processing.

Cardsharp User's Manual 64

Aspects of Malibu for Cardsharp

Chapter 8: Aspects of Malibu for Cardsharp

Buffers and Buffer Access Classes

Introduction

Innovative Boards are required to transport chunks of data to and from the hardware, and to and from mass storage on the
operating system. In this process, the data is not analyzed but just physically moved about. The Buffer classes are made to
facilitate this by allowing you to create and move buffers about in our system without copying data unless required, as
copying large amounts of data will degrade performance.

Since data transfers to the target are done at least in units of 32 bit words, the internal buffer size and pointers are integer
pointers. Even if the data type is shorter, such as a short or byte, the size still must be an integral number of 32-bit words.
PacketStream buffers have an additional requirement that the header and body be an integral number of 64-bit words,
meaning that the size of each in 32-bit words must be an even number.

In addition, the IPP library has some alignment restrictions on were the data buffers must begin for optimal performance. To
insure that buffers are compatible with this library, Malibu ensures suitable buffer alignment.

The buffer class minimizes the cost of copying data by using a handle-body approach. When a buffer is copied, two 'handle'
class instances are created, each pointing to the same header and data body information. This is a faster operation than bulk
copying the large amount of data, especially if the data is only rarely-changed. There are in fact two handles present, one to
the header data and one to the packet data. Both handles manage properly aligned data blocks for use with the IPP library.

If the data body is changed, however, all handles will be affected. This breaks the simplistic logical model. Therefore Malibu
implements a 'copy on write' scheme in which any write to a data region will force the body to be separated from all other
handles and copied. This can be a relatively expensive process. Data access datagrams will properly force this to happen
when used. Using raw pointers to buffer data regions will not, and should therefore be avoided.

A final optimization is that the buffer classes use a shared pool to cache blocks to reduce the time to allocate and free buffer
data blocks. If a buffer of the correct size has been previously freed it will be reused from the cache rather than reallocated.
Provisions are made to pre-allocate buffers of a specified size in order to mitigate allocation time prior to real-time activities.

Buffer Data Access
With data movement covered, now we come to the issue of data access. In general, a buffer may hold data of any type and in
any format. How, then, can we access the data without error prone casting? Access to the data in buffers is performed by a
wrapper class that is linked to the buffer just as access is needed. In most applications, there are two kinds of buffers in
general use:

• “Command” messages, in which the data is a set heterogeneous argument values

Cardsharp User's Manual 65

Aspects of Malibu for Cardsharp

• “Data” packets where the all the data is likely to be of the same, if undetermined, type. For example one buffer
might be all 16 bit short data. Another might be floating point data.

The former type of message is supported by the IDatagram interface and the MessageDatagram class which derives from
it. The latter type is supported by the AccessDatagram template class.

Since the AccessDatagram needs to support many different data types, it is implemented as a template class -
AccessDatagram<T>. It provides typed, random-access iterators, STL-like begin() and end() methods and array
operators. Each instance of a datagram provides a size() method that returns the size of the buffer in units of the data type
accessed. The template assures that any new operations will be available to all data types without cutting and pasting code.
This datagram has no dependencies on the IPP library.

An additional benefit of this design is that the template works on any data type as well as any structure that is defined by the
user. If the buffer contains an array of records, parsing the data is then very simple without adding any code to the library.

Buffer Classes

The Buffer class contains a data block and a header and trailer block. The header block is used to hold parametric information
when a buffer is transmitted by Malibu to board hardware or stored to disk. Other processes may ignore the header, although
it is always present and sized to hold at least 2 words. Buffer uses managed aligned blocks, and is reference counted for fast
copying as long as the data is unchanged.

Buffer Class Types
There are several kinds of buffers, that are differentiated mostly by the size of the header and trailer blocks. This is due to the
requirements of data transport over hardware. Cardsharp streaming uses McBuffer classes.

Buffer Utility Classes

Holding Template
Because the Buffer class is logically typeless, sizing presents a small problem. With STL containers, such as vectors, one can
create a buffer sized to a specified number of elements. For example:

std::vector<int>(1000);

would make a buffer that is 1000, 32-bit words long. But the Buffer class has no notion of the size of the elements that it
contains. For this reason, Malibu includes the Holding template. This template performs the conversion of a size in
elements of a type to a size in integers needed by the Buffer constructor. So in the case above where we need to hold 1000
short integers:

Innovative::Buffer KiloBuf(Holding<int>(1000));

This sizes the Buffer to be large enough to hold the 1000 integer elements that will be accessed later using a datagram class.

Cardsharp User's Manual 66

Aspects of Malibu for Cardsharp

CouldHold Template
The CouldHold Template is the inverse of the Holding Template. Given a buffer size, it will calculate how many elements of
a certain size could be placed into it without resizing.

Buffer CharStore(1000);
int bytes = CouldHold<char>(CharStore.SizeInInts()));

Convert Template
In some instances, you might have a buffer of generic type that needs to be re-typed as a particular buffer type. For example
you might have a buffer with data of a VeloBuffer read from a file but is now just a Buffer. This template creates a properly
typed Buffer class containing all the data, header, and the trailer from the original buffer, which is now destroyed.

ConvertData Template
This template creates a properly typed Buffer class containing the data from the original buffer, which is now destroyed. The
header and trailer data is that of a default buffer, and would need to be initialized afterward.

MessageDatagram
A specialty access datagram class interface has been created to simplify filling packet stream buffers with command
parameters similar to those used in the message packets used on Matador cards and C64x streaming. This interface, called
IDatagram, allows access to the data as a heterogeneous collection of data – for example one argument can be an integer and
the next a float.

Header Access Datagrams
Datagram wrappers like AccessDatagram access the Data portion of a buffer. But sometimes you need to access the Header
section, particularly to format the header for transmission or find the data source on reception of a packet. Each buffer class
has a predefined Header datagram:

Header Access Class Name Buffer Type

PacketBufferHeader Buffer

PmcHeaderDatagram PmcBuffer

VeloHeaderDatagram VeloBuffer

VitaHeaderDatagram VitaBuffer

McHeaderDatagram McBuffer

These classes have predefined methods to read and fill in bit fields in the header that have particular meaning, such as the
packet type code fields and data size fields. In addition, as an AccessDatagram, the array access operator method works to
allow manipulation of any other part of the header in addition to the special methods.

There are also similar classes for the buffer trailer found in VitaBuffers, but this is rarely used.

The example below shows an example of using the header to differentiate between kinds of packets in a data processing
program. This allows the data to be properly managed based on its type.

Cardsharp User's Manual 67

Aspects of Malibu for Cardsharp

void ApplicationIo::HandleDataAvailable(PacketStreamDataEvent & Event)
{
 static Buffer Packet;
 //
 // ...Get the packet from the system
 Event.Sender->Recv(Packet);
 //
 // ...Process the packet
 PacketBufferHeader PktHeader(Packet);

 short PacketType = PktHeader.PeripheralId();
 switch (PacketType)
 {
 case ccLogin:
 UI->Log("Dsp logged in: " + IntToString(++LoginTally));
 UI->OnLoginCommand();
 break;
 // ...continues

Access Datagrams

The data access requirements seem to require contradictory features: Support for many different types of data quickly and
easily is required, but a minimal code base is also desired. Templates solve this problem very cleanly. A template class can
be instantiated for many data types from a single code base. If a feature is added to the template, it is added to them all.

In fact, the template allows the user to apply an applicaton-specific structure to a buffer as easily as any that we provide.

The data access template provides a view of a buffer as an array of same-typed data. So an integer datagram accesses the
buffer as an array of integers, and the size of the datagram avoids walking off the end of the buffer.

Template AccessDatagram<T>
The access datagram uses an interface as its view of the buffer to on which to operate. This decouples the template from the
Buffer class itself and makes the template more general. The buffer class implements the interface by deriving from
IDatagrammable, so all buffers can be accessed by the template easily:

 Buffer A(128);
 AccessDatagram<unsigned int> A_dg(A); // accesses buffer A

 for (int i=0; i<A_dg.size(); i++)
 A_dg[i] = i;

The for-loop in the above code fills the buffer with a ramp. The size() method returns the size of the data in elements. The
datagram array operator accesses the data in the buffer as an array of unsigned int. This version is not range checked. The
at() method performs the same access with range checking.

There are some additional methods for returning sizes. The size() method returns the size in elements.
SizeInElements() is an alias for that method. SizeInInts() returns the size in integers, and SizeInBytes() returns
the size in bytes. ElementSizeBytes() returns the size of the access element in bytes.

The access datagram supports resizing the associated buffer if the buffer class attached to can be resized.

An access datagram can be constructed from any structure. For example:

Cardsharp User's Manual 68

Aspects of Malibu for Cardsharp

 struct FourSamples
 {
 unsigned short sample[4];
 }

 Buffer B(100);
 AccessDatagram<FourSamples> B_4Sample_dg(B); // accesses buffer B

 for (int i=0; i<B_4Sample_dg.size(); i++) // size will return 50 here
 {
 B_4Sample_dg[i].sample[0] = i;

 B_4Sample_dg[i].sample[1] = i + 100;
 B_4Sample_dg[i].sample[2] = i + 200;
 B_4Sample_dg[i].sample[3] = i + 300;

 }

Since the size of the element is 2, 32 bit words, the buffer only fits 50 elements in the 100 words.

AccessDatagram supports an STL iterator over the data. This iterator is a random access iterator. Forward and reverse
iteration is supported using the standard begin(), end(), rbegin(), and rend() methods. Constant versions of iterators
allow read-only access.

 Buffer C(Holding<float>(20));
 AccessDatagram<float> C_dg(C); // accesses buffer C

 // write
 for (AccessDatagram<float>::iterator iter = C_dg.begin(); iter != C_dg.end(); ++iter)
 *iter = i;

 // read – outputs 0.0, 1.0, 2.0...
 for (AccessDatagram<float>::const_iterator iter = C_dg.begin(); iter != C_dg.end(); ++iter)
 Output(*iter);

 // read backward – outputs 19.0, 18.0, 17.0...
 for (AccessDatagram<float>::reverse_iterator iter = C_dg.rbegin(); iter != C_dg.rend(); ++iter)

 Output(*iter);

The availability of these iterators also allows STL algorithm templates to be used on buffers via datagrams. The following
code fills a buffer with 0 using the std::fill algorithm.

 Buffer D(Holding<unsigned int>(20));
 AccessDatagram<unsigned int> D_dg(D);
 std::fill(D_dg.begin(), D_dg.end(), 0);

Note: A datagram object can be made invalid by certain operations on the buffer. Since the datagram cache the information
about the data for speed, if the buffer changes the iterator will no longer point to its assumed buffer, and may point nowhere.
Similarly, any iterators created from a datagram can be invalidated by these operations.

 Buffer E(Holding<unsigned int>(20));
 Buffer F;

 F = E; // F shares E's buffer

 AccessDatagram<unsigned int> F_dg(F);

 F.MakeUnique(); // F_dg now invalid!

In the above code sample, two buffers share the same data block after the assignment. When F is split away via the
MakeUnique() method, F_dg is no longer pointing to F's buffer. (In this case it is probably pointing to E's buffer). Similar
issues can occur with multiple datagrams:

Cardsharp User's Manual 69

Aspects of Malibu for Cardsharp

 Buffer E(Holding<unsigned int>(20));

 AccessDatagram<unsigned int> E_dg(E);
 AccessDatagram<unsigned short> E_short_dg(E);

 E_short_dg.Resize(500); // E_dg now invalid!

In the above code, when the second datagram changes the internal buffer by resizing it, the E_short_dg datagram is updated
to match the new block, but E_dg is not and is invalidated. To mitigate these problems, datagrams should be constructed as
close to the point of use as possible. Also, a datagram can be revalidated with the renew call:

 E_dg.Renew(); // E_dg now valid again.

Renew() does not re-validate any iterators created by the datagram that also were invalidated. These remain invalid.

Template Class DatagramIterator
This template provides the iterator objects for the access datagram. It is a standard random-access iterator supporting
forwards and backwards iteration.

 // Iterator Test
 Log("Iterator Test!");
 Buffer A(100);

 AccessDatagram<int> A_dg(A);

 AccessDatagram<int>::iterator Iter1 = A_dg.begin();
 AccessDatagram<int>::iterator Iter2 = A_dg.begin();

Iterators can be compared with each other.

 Log("Compare equal Iterators");
 {
 std::stringstream msg;
 msg << " ==: " << (Iter1==Iter2) << " !=: " << (Iter1!=Iter2) <<
 " <: " << (Iter1<Iter2) << " <=: " << (Iter1<=Iter2) <<
 " >: " << (Iter1>Iter2) << " >=: " << (Iter1>=Iter2) ;
 Log(msg.str());
 }

Subtracting iterators gives the 'distance' between them in elements.

 Log("Iterator Difference");
 ++Iter1; ++Iter1; ++Iter1;
 int delta = Iter1 – Iter2; // delta is 3
 {
 std::stringstream msg;
 msg << "Pointer Difference " << delta ;
 Log(msg.str());
 }

Iterators can be assigned, pointing them to the same location. They can be offset like pointers

 Log("Iterator Assign");
 AccessDatagram<int>::iterator Iter3 = A_dg.begin() + 10;
 int delta2 = Iter3 – Iter1; // delta2 is 7
 Iter3 = Iter2;
 int delta3 = Iter3 – Iter1; // delta3 is -3
 {

Cardsharp User's Manual 70

Aspects of Malibu for Cardsharp

 std::stringstream msg;
 msg << "Delta2 " << delta2 << " Delta3 " << delta3; ;
 Log(msg.str());
 }

 Log("Compare Unequal Iterators (A>B)");
 {
 std::stringstream msg;
 msg << " ==: " << (Iter1==Iter2) << " !=: " << (Iter1!=Iter2) <<
 " <: " << (Iter1<Iter2) << " <=: " << (Iter1<=Iter2) <<
 " >: " << (Iter1>Iter2) << " >=: " << (Iter1>=Iter2) ;
 Log(msg.str());
 }

Iterators can use the bracket notation just like a pointer or array can. It adjusts the location without moving the iterator.

 for (int i=0; i<100; i++)
 Iter2[i] = i;

Datagram iterators can be bound to any class that supports the IIteratable interface. This allows the code to be reused if
new datagrams are developed.

Interface Class IDatagrammable
This interface allows the access datagram to bind to a buffer class. The buffer class derives from IDatagrammable allowing
access to the data portion of the buffer. Users can implement this interface to allow the access template to work on another
class. There are several examples of this in the library, one being AlignedBlockDatagram which builds an interface for the
AlignedBlock class.

//==
// CLASS IDatagrammable -- Interface required to support datagrams
//==

class IDatagrammable
{
public:
 virtual ~IDatagrammable() {}

 virtual unsigned int DatagramSize() = 0;
 virtual int * DatagramBasePtr() = 0;
 virtual bool MakeWritable() = 0; // returns 'true' if buffer renewed
 virtual void Resize(unsigned int size_in_ints) = 0;
};

Interface Class IIteratable
This interface allows the Datagram Iterator template to bind to a Datagram class. Any class supporting IIteratable can be
iterated-through with a DatagramIterator.

//==
// CLASS IIteratable -- Interface required to support iteration over data
//==

class IIteratable

Cardsharp User's Manual 71

Aspects of Malibu for Cardsharp

{
public:
 virtual char * Base() = 0;
 virtual size_t SizeInBytes() = 0;
};

Predefined Access Datagram Classes
While an access datagram can be simply built up for any data type, there are some data types that are commonly in use. For
simplicity's sake, numerous datagrams have been pre-defined in wrapper classes for these common types in
BufferDatagrams_Mb.cpp. Classes are provided for these data types:

Class Name Data Type

IntegerDG int

UIntegerDG unsigned int

FloatDG float

DoubleDG double

ComplexDG Complex

ShortDG short

UShortDG unsigned short

CharDG char

UCharDG unsigned char

Hardware Access and Bit Control

Memory Spaces and Register Classes

A major part of programming registers to the logic is register declaration and bit manipulation. Since the process of shifting,
masking, and-ing and or-ing is notoriously error prone and hard to decipher afterward, we used classes to encase the methods.
Once these were made and tested, they could be reused over and over.

Addressing Space Classes

 // Memory Spaces
 AddressingSpace PortMemory;
 AddressingSpace LogicMemory;

Innovative boards use memory-mapped areas to use as registers for sending parameters to the physical card and reading
status information back from the card. They are not intended for bulk data transfer, which is done via the streaming engine.

Cardsharp User's Manual 72

Aspects of Malibu for Cardsharp

The CardSharp carrier card implements two such spaces, but only the LogicMemory space will be used outside of the data
streaming engine.

Note that this space gives access to the full memory map, including the carrier card's addresses. This isn't what you want
normally, so our base class creates WishboneBusSpaces to divide up the base region. The only difference is that the
WishboneBusSpace adds its own offset to turn an FMC relative address into the absolute offset needed for the physical
access.

 //
 // Data
 WishboneBusSpace WB_FMC_0;

The point of having memory spaces is that the registers can be defined with space and offset as parameters, allowing them to
be reused effectively. Here is a sample register object:

 //~~~
 // CLASS FmcAFE_AdcCommon::AdcTriggerCfgRegister -- Configure ADC Trigger
 //~~~
 class AdcTriggerCfgRegister : public Register
 {
 typedef Register inherited;

 public:
 RegisterBitGroup AdcFrameSize;
 RegisterBit AdcRisingEdge;
 RegisterBit AdcFramedMode;
 RegisterBit AdcExternalTrigger;

 public:
 AdcTriggerCfgRegister(IAddressingSpace &space, int offset)
 : inherited(space, offset),
 AdcFrameSize(*this, 0, 24), AdcRisingEdge(*this, 29),
 AdcFramedMode(*this, 30), AdcExternalTrigger(*this, 31)
 {
 }
 };

So the bit and bit group locations can be defined here and modified individually without worry that changing one will trash
the others. In the constructor for the object owning the register (here, it is a subdevice class) you can see the space and
register offsets being loaded into each register at construction time.

FmcAFE_AdcCommon::FmcAFE_AdcCommon(IRequires_FmcCommonParts * mdc, IAddressingSpace & space,
MapRegisters & regs)
 : MDC(mdc), Dev(0),
 AdcEnable_Lo_Reg(space, regs.AfeAdcEnable_Lo_Addr),
 AdcEnable_Hi_Reg(space, regs.AfeAdcEnable_Hi_Addr),
 AdcPower_Lo_Reg(space, regs.AfeAdcPower_Lo_Addr),
 AdcPower_Hi_Reg(space, regs.AfeAdcPower_Hi_Addr),
 AdcTriggerCfgReg(space, regs.AfeAdcTriggerCfg_Addr),
 AdcDecimationReg(space, regs.AfeAdcDecimation_Addr),
 FDevices(0), FChannelsPerDevice(0)

{
}

Malibu uses registers heavily to both implement and document the hardware definition of the registers of the carrier card and
FMC card added to it. Ordinarily the user will not define his own registers unless he is developing custom logic.

Cardsharp User's Manual 73

Aspects of Malibu for Cardsharp

BaseboardExtension Template

class NewRegisters : public BaseboardExtension<X5_210M>
{
 NewRegister(X5_210M & board)
 : inherited(board),
 AdcSelectReg(LogicMemory, mmDemodAdcSelect)
 {}

 Register AdcSelectReg;
};

To add registers to an existing class, the BaseboardExtension template is defined. If you derive a class from this template,
with template argument the board type you will use, then the template links itself to the LogicMemory and PortMemory
addressing spaces of the class. Thus your registers will access his memory space.

Register Class Types

Class Description

Register General Register – all reads and writes access the hardware directly

ReadOnlyRegister Register with no write methods.

ShadowRegister Register that does not read the hardware, but caches value in memory.

RefreshableShadowRegister ShadowRegister with a Refresh() method to read the hardware on demand

CachedShadowRegister ShadowRegister that only writes when Apply() method is called. This is useful when you need
to change multiple register fields with a single write access.

Register Bits and Fields

Class Description

RegisterBit Defines a bit using a start bit index.

RegisterBitGroup Defines a field of bits using a start bit and a width.

ReadOnlyRegisterBit Same as RegisterBit, but no write methods.

ReadOnlyRegisterBitGroup Same as RegisterBitGroup, but no write methods.

Registers can have sections defined, both a single bits and mulibit fields using these objects. Changing these objects changes
the register without affecting any other bits in the register. These accesses do a read-modify-write on the register they are
linked to.

Cardsharp User's Manual 74

Aspects of Malibu for Cardsharp

Bit Manipulation Classes

In cases where defining a register and the associated bit and field classes is too overweight, a set of bit manipulation wrappers
was also developed. These all share a common user interface IBitManipulator that allows changing a bit, a field, or the entire
word.

class IBitManipulator
{
public:
 virtual ~IBitManipulator();
 bool Bit(unsigned int bit) const;
 void Bit(unsigned int bit, bool value);
 unsigned int Field(unsigned int bit, unsigned int size) const;
 void Field(unsigned int bit, unsigned int size, unsigned int value);
 void Mask(unsigned int mask);
 unsigned int Value() const;
 void Value(unsigned int value);
};

Class Description

MemoryBitManipulator Manipulates an internal word.

PtrBitManipulator Manipulates an external word via a pointer to it.

RegisterBitManipulator Manipulates a register object's word.

MultiChannel Data Streaming Support Classes

The MultiChannel Stream interface uses several classes to pass data to the application.

Buffer Classes – McBuffer and McHeaderDatagram
The Multichannel Stream has its own dedicated buffer type and its own header datagram to configure the header for each
buffer. When sending data, the header must be configured to direct the data to the appropriate channel. When data is
received, the header gives the source of the data so that it can be directed to the proper analysis code.

McHeaderDatagram has the following methods. ChannelId() is the source or destination channel for the data. PacketSize()
and DataSize() give the size of the packet in 32 bit words. Other buffer classes use PacketSize() to give the total size of the
data including the header, while DataSize() is just the size of the data. In MultiChannel streaming, since the header is not
included in the stream's busmaster region, both these function return the size of the data.

 unsigned short ChannelId() const;
 void ChannelId(unsigned short channel);
 size_t PacketSize() const;
 void PacketSize(size_t size);
 size_t DataSize() const;
 void DataSize(size_t size);

Cardsharp User's Manual 75

Aspects of Malibu for Cardsharp

Data Image Classes – McImage
The Multichannel stream supports “image mode” processing, where an application can be notified directly when data
movement is required without the extra copying that creating and using a McBuffer. In effect, an image is a buffer header
plus a pointer to the exact region of busmaster memory needed to be filled, or processed as input.

While a much simpler class internally, McImage retains the same ability as Buffer classes to have Access Datagrams wrapped
around them for typing the contained data. Header Datagrams also function, accessing the header:

 // The header already gives the channel, and advance distance.
 McHeaderDatagram ImageH(semiImage);
 size_t ring = ImageH.ChannelId();
 size_t sizeInts = ImageH.PacketSize();

A major difference between an image and buffer is that the buffer is permanent – its data will remain intact for as long as the
object exist. A McImage is entirely different: the pointer to the data will become invalid the instant the image is sent to the
stream, or when the stream's callback function returns. An Image should be thought of as a volatile entity.

If needed, an McImage can be “converted” into an equivalent buffer that contains the same information. The CopyTo()
method fills a passed in McBuffer object with the header and data contained in the Image. Note that this might require an
allocation and will copy the entire image. In the other direction, an McImage can be copied into from a McBuffer with the
CopyFrom() method. There is a parameter to allow starting the copy from an offset into the buffer for partial copies in cases
where one buffer needs to be divided into several images.

Streaming Alerts: McAlert
MultiChannel streaming produces four kinds of signals. Two are related to data streaming itself: one for data in, and one for
data out. The third is a system alert, an informational packet to indicate some exceptional condition such as trigger changes,
data overflow and underflow, and so on.

The McAlert has a fixed maximum size for data. This means that creating an object does not dynamically allocate memory.
When an alert arrives, the stream extracts its data, packages it in an McAlert object, and notifies the user by an event. The
McAlert object can also be wrapped by an AccessDatagram for data extraction.

Streaming External Interrupts: McExternalInt
MultiChannel streaming produces four kinds of signals. Two are related to data streaming itself: one for data in, and one for
data out. The third is Alerts and the fourth is sent on the state-changes of external signals. Four external interrupt lines exist
that can be programmed to send a notification when the signal goes from low-to-high, high-to-low, or both.

 bool Flag(int idx);

 bool RisingEdgeFlag(int idx);
 void RisingEdgeFlag(int idx, bool state);

 bool FallingEdgeFlag(int idx);
 void FallingEdgeFlag(int idx, bool state);

 unsigned int RisingMask();
 void RisingMask(unsigned int data);

 unsigned int FallingMask();
 void FallingMask(unsigned int data);

Cardsharp User's Manual 76

Aspects of Malibu for Cardsharp

Flag() returns true if either the Rising or Falling edge is set for that bit. RisingEdgeFlag() and FallingEdgeFlag() return the
appropriate flag: true if the state changed, false if not. RisingMask() and FallingMask() return the entire mask area for the
edge so indicated. This class also can be accessed via an AccessDatagram, although since it is only one word long the
usefulness is limited.

Image Mode Transmit Hints: McHintPack
When in image mode, the stream receives interrupts when data is processed and free for reuse. One interrupt might give back
data on multiple channels, or multiple times on a single channel. When the Stream has adjusted its bookkeeping on free data
in the Busmaster region, it notifies the user with an event, passing a McHintPack giving the channels that have just been
acknowledged.

The McHintpack derived from the DataPack template, a simple template giving a fixed size array that can be logically resized
down to smaller sizes. Its structure means that it also does not allocate memory. It has a member function that implements
an array access operation for reading and writing.

Cardsharp User's Manual 77

Cardsharp Hardware

Chapter 9: Cardsharp Hardware

Introduction

Cardsharp is a powerful embedded instrument which combines Xilinx Zynq system-on-the-chip (SoC) with a full HPC FMC
site in a very compact standalone design. Along with Innovative wide assortment of ultimate performance FMC modules
Cardsharp allows users to quickly build various customized systems with unparalleled flexibility.

Cardsharp is built in a rugged XMC form factor (149 mm x 74 mm) and can be plugged into an XMC carrier such as
Innovative SBC-Nano adding more connectivity choices.

 The Cardsharp system main features are:

● Xilinx XCZ045 Zynq SoC with dual floating point A9 CPU cores and programmable logic block.

● Boots Linux from on-board 32 GB eMMC

● 16 MB QSPI memory

● 256 Mb x 32 DDR3 PS (Processing System) memory

● 256 Mb x 64 DDR3 PL (Programmable Logic) memory

● Self-bootable standalone operation

● JTAG port for FPGA PS and PL programming and debugging

● Single Gigabit Ethernet port

● Single External USB 2.0 port

● 2x Internal Serial ports

● VITA 57 HPC FMC site

● Up to 6GB/s data transfer from FMC site to PS memory

● FMC Vadj in the range of 1.5V to 2.5V (factory preset to 2.5V)

● Supports Innovative full line of FMC modules and third party FMC modules

● UCD9090 power sequencer/supervisor

● System expansion support via XMC site interface

Cardsharp User's Manual 78

Cardsharp Hardware

● Up to 8x Gen2 PCIe lanes supported

● 7 differential/14 single-ended DIOs on XMC P16

● Up to 2x QSFP ports support

● Optional support for IEEE-1588 network or GPS-synchronized timing

● Support for external reference clock, trigger and PPS signals

● 12V +/-5% DC operation

Please note that not all features may be available and/or supported in some configurations.

Cardsharp User's Manual 79

Cardsharp Hardware

Figure 22. Cardsharp board view from the XMC connectors side

Figure 23. Cardsharp board view from the XMC connectors side

Cardsharp User's Manual 80

Cardsharp Hardware

Figure 24. Cardsharp standalone system with FMC-Servo module installed

Figure 25. Cardsharp / SBC-Nano system with FMC-Servo module installed

Cardsharp User's Manual 81

Cardsharp Hardware

The Cardsharp system is packaged in a compact enclosure (165mm x 82mm x 35mm for standalone version). The unit is
powered by external power supply (DC 12V +/-5%). Typical power consumption of the Cardsharp itself is about 12W, the
total system power consumption depends on the used FMC module and the mode of operation.

Please refer to the power supply description section in this manual for further details on the Cardsharp power subsystem
features and operation.

Custom application logic development for the Cardsharp is supported by the FrameWork Logic system from Innovative using
VHDL and/or MATLAB Simulink. Signal processing, data analysis, and application-specific algorithms may be developed
for use in the FMC Module logic and integrated with the hardware using the FrameWork Logic.

Software support for the Cardsharp includes Windows and Linux drivers for on-card peripherals, system integration and test,
data logging and support applets. The Malibu Toolkit provides C++ development tools and examples for peripheral
configuration and use, module interfacing examples and data logging.

Cardsharp User's Manual 82

Cardsharp Hardware

Figure 26. Simplified Block Diagram of the Cardsharp System

Cardsharp User's Manual 83

 PS
 Linux (0),

 Standalone (1)

PL
Logic

Antenna

10/100/1000
GbE

AC-DC
Wall Supply

Output 12V +/-5% DC

Power Control/
Reset Monitor

Cardsharp Block Diagram

System
Power Supplies

GPS Module

 Conduction Cooling

FMC
Control

8 GTX
HA: 23:0
HB: 21:0
LA: 33:0

EMIF

GbE

Included

Optional

PPSUART

FMC Site
HPC

GPIO

Legend

XC7Z045-2FFG900I REF

8x MGT
PCIe/
Aurora

256Mb x 32
DDR3

QSFP
Controls

USB2

SD32 GB
eMMC

2x 2 KB EEPROM

4 MB Data Flash

IEEE-1588 PTP

RJ-45
Softcore

CPU

Spartan 6
FPGA

Soft
Core

1588v2 Module
UART

UART

QSPI

16 MB
Flash

74 mm

150mm

XMC Form-factor

FMC and Cardsharp
Components same
Orientation (cooling)

Standard
FMC

69 mm

76.5 mm

EMIF

256Mb x 64
DDR3

 Mezzanine

JTAG

JTAG

I2C + GPIO

Watchdog

GPIO/
UART

LOCK
PPS
REF

UART
PPS
REF

USB

XMC J15

UCD9090

Trace

XMC J16

Cardsharp Hardware

Figure 27. Zynq SoC block diagram

Cardsharp User's Manual 84

Cardsharp Hardware

Zynq SoC

The Cardsharp system is built around Xilinx Zynq-7000 System-on-the-chip (SoC) with main features summarized in Table 1
below.

Cardsharp Zynq®-7000 All Programmable SoC

Device Name Z-7045

Part Number XC7Z045

Processor Core Dual ARM® Cortex™-A9 MPCore™ with CoreSight™

Processor Extensions NEON™ & Single / Double Precision Floating Point for each processor

Maximum Frequency Up to 1GHz

L1 Cache 32KB Instruction, 32KB Data per processor

L2 Cache 512KB

On-Chip Memory 256KB

External Memory Support DDR3, DDR3L, DDR2, LPDDR2

External Static Memory Support 2x Quad-SPI, NAND, NOR

DMA Channels 8 (4 dedicated to Programmable Logic)

Peripherals 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO

Peripherals w/ built-in DMA 2x USB 2.0 (OTG), 2x Tri-mode Gigabit Ethernet, 2x SD/SDIO

Security (shared with Programmable Logic) RSA Authentication of First Stage Boot Loader,

AES and SHA 256b Decryption and Authentication for Secure Boot

Processing System to

Programmable Logic Interface Ports

(Primary Interfaces & Interrupts Only)

2x AXI 32b Master, 2x AXI 32b Slave

4x AXI 64b/32b Memory

AXI 64b ACP

16 Interrupts

7 Series Programmable Logic Equivalent Kintex-7 FPGA

Logic Cells (Approximate ASIC Gates) 350K (~5.2M)

Look-Up Tables (LUTs) 218,600

Flip-Flops 437,200

Total Block RAM (# 36Kb Blocks) 19.1Mb (545)

Programmable DSP Slices (18x25 MACCs) 900

Peak DSP Performance (Symmetric FIR) 1,334 GMACs

PCI Express® (Root Complex or Endpoint) Gen2 x8

Analog Mixed Signal (AMS) / XADC 2x 12 bit, MSPS ADCs with up to 17 Differential Inputs

Cardsharp User's Manual 85

Cardsharp Hardware

Security (shared with Processing System) AES and SHA 256b Decryption and Authentication for Secure Programmable
Logic Configuration

HR I/O 212

HP I/O 150

PS I/O 128

GTX Transceivers 16

Unique Footprint FFG900

PCB Footprint Dimensions (mm) 31 x 31

Table 7. Zynq SoC Main Features

Note: not all Zynq SoC features are available and/or supported in the Cardsharp system

QSPI

Cypress Semiconductor (formerly Spansion) S25FL128S type 128 Mbit (16 Mbyte) SPI Flash Memory (Quad Serial
Peripheral Interface or QSPI) used for storing the system bootloader and PL configuration files.

eMMC

Micron Technology MTFC32G4M type embedded MultiMediaCard (eMMC) controller/32GB NAND Flash Memory used
for storing PS core OS and other software files required for Cardsharp operation. eMMC function is similar to traditional
SSD-s or HDDs operation in common PC-s. The eMMC on Cardsharp is used in a 4-bit wide data mode.

PS DDR3 Memory

A single 256MB x 32 DDR3L SDRAM type memory bank is attached to Zynq PS cores. The PS memory operates at
800MHz clock speed (DDR3-1600) and consists of two 4Gb (256MB x 16) memory chips (Micron Technology
MT41K256M16HA-125).

Cardsharp User's Manual 86

Cardsharp Hardware

PL DDR3 Memory

A single 256MB x 64 DDR3L SDRAM type memory bank is attached to Zynq Programmable Logic. The PL memory
operates at 800MHz clock speed (DDR3-1600) and consists of four 4Gb (256MB x 16) memory chips (Micron Technology
MT41K256M16HA-125).

Cardsharp User's Manual 87

Cardsharp Hardware

Reset

If a remote reset is needed, Reset header J6 can be used along with a momentary push-button. Shorting J6 contacts will reset
the Zynq ZoC. Reset signal can be also applied from the XMC connector P15 pin C2 (XMC_TRST_N signal). Reset is an
active low signal.

Reset can also be tripped by the watchdog timer and by the UCD9090 system monitor if one or more of the monitored system
voltages fall outside of the allowed range.

Connector Type: 2 Positions Header, Unshrouded Connector 0.100" T/H STR

Number of Connections: 2

Connector Part Number Amphenol FCI 77311-118-02LF

Mating Connector Amphenol FCI 65039-035LF or similar

Table 8. Reset Header J6 Information

Pin Type Signal Note

1 I SW_PS_SRST_B Zynq SoC Reset, Active Low

2 P GND Ground

Table 9. Reset Header J6 Pinout

Figure 28. Reset Header J6 Pin Arrangement

Cardsharp User's Manual 88

Cardsharp Hardware

Watchdog Timer

The Cardsharp has support for the watchdog timer to prevent runaway PS operation. A system reset is issued if the PS fails to
periodically re-trigger the watchdog timer. Please note that the watchdog functionality must be enabled at the OS/software
level to be operational.

USB 2.0 Port

The Cardsharp board has a single USB 2.0 Host Port which utilizes Microchip USB3320 type transceiver. The 5V power at
the USB connector is protected from overcurrent condition (load current > 500mA) by Micrel MIC2025-1 USB Power
switch. This port is accessible via standard USB 2.0 type A connector J3 on the rear panel of the Cardsharp system.

Connector Type: Type A USB 2.0 Shielded I/O Receptacle R/A

Number of Connections: 4

Connector Part Number Molex 67643-0910

Mating Connector USB Type A

Table 10. USB Connector J3 Information

Pin Type Signal

1 P +5V

2 I/O USB D-

3 I/O USB D+

4 P Ground

Table 11. USB Connector J3 Pinout

Cardsharp User's Manual 89

Cardsharp Hardware

Figure 29. USB Connector J3 Pin Arrangement

Gigabit Ethernet Port

The Cardsharp board has a single Gigabit Ethernet Port utilizing Marvell Alaska 88E1518 Integrated 10/100/1000 Mbps
Energy Efficient Ethernet Transceiver. This port is accessible via standard RJ45 Ethernet jack J7 on the rear panel of the
Cardsharp system.

Gigabit Ethernet Connector J7 is located on the back panel of the Cardsharp board. It is an industry standard RJ45 jack with
integrated magnetics and two build-in LED indicators.

LED indicators on the Ethernet port show port current status and configuration.

GbE LED Function

Yellow Gigabit Link Present

Green Link Activity

Table 12. Gigabit Ethernet LED Functions

Connector Type CONN, ETHERNET RJ45, INTEGRATED MAGNETICS FOR 1000
BASE T

Number of Connections 8

Connector Part Number Bel L869-1A1T-32

Mating Cables Modular RJ-45 CAT5/6 cables

Table 13. Gigabit Ethernet Connector J7 Information

Pin Type Signal

Cardsharp User's Manual 90

Cardsharp Hardware

1 I/O TP0+

2 I/O TP0-

3 I/O TP1+

4 I/O TP2+

5 I/O TP2-

6 I/O TP1-

7 I/O TP3+

8 I/O TP3-

Table 14. Gigabit Ethernet Jack J7 Pinout

Figure 30. Gigabit Ethernet Connector J7 Pin Arrangement

Power Subsystem

The Cardsharp power subsystem block diagram is shown on figure 7.

The Cardsharp uses 12V DC as an input voltage to all on-board power supplies. J5 is the external power connector. The 12V
to 3.3V DC-DC converter turns on immediately after the 12V input is applied and provides power to the Texas Instrument
UCD9090 Power Sequencer/Voltage Supervisor IC which controls the Cardsharp power supplies operation. After the initial
pre-programmed delay, the power sequencer starts turning on power supplies according to the Xilinx power sequence
recommendations for the Zynq chip. After the power is fully on, the sequencer continues to monitor a few essential for the
operation power rails. If at any time one or more of the monitored power supply voltages crosses the predetermined safety
threshold, the whole Cardsharp power will be shut down by the UCD9090.

The Texas Instruments USB-TO-GPIO USB Interface Adapter used for the initial UCD9090 programming via Cardsharp 10-
pin header J4. The J4 header pin functions are provided in table 9 below. Please note that few of the J4 header pins are
reserved for the Cardsharp on-board JTAG chain access.

Note Input /
Output

Signal Name J4 J4 Signal Name Input /
Output

Note

Cardsharp User's Manual 91

Cardsharp Hardware

pin # pin #

ON-
BOARD

JTAG TDO

O CON_JTDO 1 2 CON_JTMS I ON-
BOARD

JTAG TMS

ON-
BOARD

JTAG TCK

I CON_JTCK 3 4 CON_JTDI I ON-
BOARD

JTAG TDI

3.3V
POWER

O 3P3V_UCD 5 6 GROUND N/A GROUND

UCD9090
CONTROL

I UCD9090_CNT
RL

7 8 UCD9090_ALER
T

O UCD9090
ALERT

UCD9090
CLOCK

I UCD9090_CLK 9 10 UCD9090_DATA I/O UCD9090
DATA

Table 15. J4 Header Pinout

Connector Type CONN HEADER 10POS 0.100” (2.54MM) VERT T/H

Number of Connections 2 x 5

Connector Part Number Amphenol FCI 67997-410HLF

Mating Connector Amphenol FCI 87606-305LF or similar

Table 16. J4 Header Information

Figure 31. J4 Header Pin Arrangement

Cardsharp User's Manual 92

Pin 1

Pin 2

Cardsharp Hardware

Most power supply circuitry on the board have DC-DC buck topology for the high efficiency operation along with a few
LDO regulators. All on-board power supplies have overcurrent, overvoltage and overheating protection.

Please note that the Cardsharp itself can operate with a wide input voltage range - from 6V to 14V. The 12V +/-5%
requirement for the system input voltage comes from the VITA 57.1 standard for the FMC modules since the Cardsharp
simply passes the input 12V to the FMC module. However, most Innovative FMC modules can operate in in much wider
range on the 12V input and hence allow usage of the wider system input voltage; please consult factory for further
information.

The Cardsharp generates on-board 3.3V and Vadj voltage rails required for the FMC module operation. Vadj is preset at the
factory to 2.5V, but it can be set in the range of 1.5V to 2.5V. Please contact factory if a Vadj option other than 2.5V is
needed.

The Cardsharp has a circuitry to monitor Zynq’s 1.0V rail’s current and also the entire board current from the the 12V
external power supply. This makes it possible to measure power consumption of the Cardsharp system in real time, which can
be very useful in the battery powered systems.

Table 11 provides additional information on the Cardsharp power supplies.

Cardsharp User's Manual 93

Cardsharp Hardware

Figure 32. Cardsharp Power Block Diagram

Cardsharp User's Manual 94

VCCPINT / VCCINT / VCCBRAM

VCCPAUX / VCCO_MIO_500 / VCCO_MIO_501 / VCCAUX / LOGIC

VADJ

VCC_DDR_502 /VCCO_33 / VCCO_34 / VCCO_35

VTT_DDR3_PS

1

2

LOGIC (600mA)

TPS53318

TPS51200

12P0V

Delay PU after AVCC

No PU constraints

TPS74401

VMGTAVCC / MVGTAVTTRCAL

VMGTAVTT

VMGTVCCAUX

+/- 3%

VCCPLL

VCCAUX_IO

VCCINT
1.0V @ 10A

TPS53319

+/- 3%VCCAUX
1.8V @ 5A

VMGTAVTT
1.2V @ 3A

FB

+/- 2.5%

VMGTAVCC
1.0V @ 3.5A

TPS54625
2

1P5V_DDR
1.5V @ 3A

TPS563209
3

VTT_DDR3_PS
0.75V @ 3A

+/- 3%

+/- 3%

TPS51200
+/- 2.5%

VTT_DDR3_PL
0.75V @ 3A

TPS51200
VTT_DDR3_PL+/- 2.5%

VCCAUX_IO
1.8V / 2.0V @ 3A

3 +/- 3%
TPS563209

VADJ
1.5V / 2.5V @ 6A

4 +/- 3%
TPS53318

3P3V
3.3V @ 3A

5 +/- 3%
TPS563209

TPS74401

VMGTVCCAUX
1.8V @ 3A

+/- 2.5%

3P3V_UCD (UCD9090)+/- 3%3P3V_UCD
3.3V @ 0.5A

TPS62172

5P0V_USB+/- 3%
TPS563209

5P0V_USB
5.0V @ 3A

Cardsharp Hardware

Power Rail Nominal
Voltage
(V)

Maximum
Available
Current (A)

Purpose Type Rank in
Power
sequence

UCD9090
Monitored

12P0V 12.0 8* Input Power Varies N/A yes

3P3V_UCD 3.3 1.0 UCD9090 power DC-DC Always on no

5P0V_USB 5.0 1.0 (limited to
0.5A at the
USB port
connector)

USB 2.0 Port Power DC-DC Controlled
by
USB3320

no

1P0V 1.0 10.0 Zynq VCCINT / VCCPINT DC-DC 1 yes

VCCAUX 1.8 5.0 Zynq VCCAUX / LOGIC DC-DC 2 no

VMGTAVCC 1.0 3.5 Zynq VMGTAVCC DC-DC 2 yes

VMGTAVTT 1.2 3.0 Zynq VMGTAVTT LDO 2 yes

1P5V_DDR 1.5 3.0 Zynq DDR Inteface / DDR3
Memory

DC-DC 3 yes

VTT_DDR3_PS 0.75 3.0 PS DDR3 Memory
Termination Voltage

LDO 3 no

VTT_DDR3_PS 0.75 3.0 PS DDR3 Memory
Termination Voltage

LDO 3 no

VCCAUX_IO 2.0 3.0 Zynq VCCAUX_IO DC-DC 3 yes

VADJ 2.5* 6.0 Zynq FMC Interface / FMC
Vadj

DC-DC 4 yes

3P3V 3.3 3.0 Zynq Bank 0 / Logic DC-DC 5 no

VMGTVCCAUX 1.8 3.0 Zynq VMGTVCCAUX LDO 5 yes

Table 17. Cardsharp Power Supplies

Notes:

1. The maximum available current value for the 12P0V rail is shown for the Innovative supplied external power supply
P/N 80200-9.

2. Vadj is preset at the factory to 2.5V, but can be set in the range of 1.5V to 2.5V; consult factory for details.

External Power Supply

Innovative offers a 12V DC 100W laptop style power supply (Innovative P/N 80200-9) as the external power source.

Cardsharp User's Manual 95

Cardsharp Hardware

Specifications

Input Range AC 90 to 264V, 50-60 Hz

Output Voltage 12V DC

Maximum Current 8.33A

Output Power 100W

Safety CE/FCC/IEC/UL

Dimensions 136mm x 58.5mm x 33.7mm

5.35” x 2.30” x 1.37”

Weight (with Power Cord) Approx. 0.375 kg (0.83 lb)

Power Cord * IEC 320 C13

Table 18. External Power Supply 80200-9 Specifications

Note: Power cord specified is for US/Japan orders only. Contact Innovative for other power cord options.

IMPORTANT! Power is NEVER completely off unless the 12V input is removed. To avoid board damage make sure
the external power is disconnected before inserting or removing an FMC Module and/or inserting the Cardsharp
board into an XMC Carrier.

When working with Cardsharp on an XMC Carrier (such as Innovative SBC-Nano) the external power must be
disconnected from the Cardsharp input to avoid electrical damage since in this case power to the Cardsharp is being
supplied by the XMC Carrier via the P15 connector.

The external power to the Cardsharp standalone system is provided via the J5connector on the rear panel. This connector is
mounted on the Cardsharp board.

Connector Type: DC Power Jack Connector 2.5 mm Center Pin, 5 A, Right Angle, Through Hole,
Shielded

Number of Pins: 2

Connector Part Number CUI PJ-051BH

Mating Connector CUI PP3-002B or similar 2.5mm Power Plug

Table 19. External Power Connector J5 Information

Cardsharp User's Manual 96

Cardsharp Hardware

Pin Function

1 (center) + POWER

2 (case) - POWER (GROUND)

Table 20. External Power Connectors J5 Pinout

Figure 33. External Power Connectors J5 Pin Arrangement

Power Consumption

The Cardsharp power consumption varies with the system configuration, type of the used FMC module and the application
software.

Voltage Typical Current Required (A) Typical Power (W)

12V 0.85 (Mixed Activity, no FMC module)

2.5 (Streaming with FMC module)

10

30

Table 21. Cardsharp System Typical Power Consumption

System Thermal Design

The Cardsharp system has been designed to use conduction cooling to facilitate effective heat dissipation from installed FMC
module, Zynq SoC and other heat generating parts in the system. The Cardsharp chassis can dissipate 10W to 30W depending
on the FMC module installed and mode of operation. In typical usage case the system will be attached to a large cold plate to
ensure adequate cooling. If no cold plate is available, or if it is not sufficient for the adequate system cooling, an external fan
option is available.

Cardsharp User's Manual 97

Pin 1

Cardsharp Hardware

External Fan Connector J9

The two-pin header J9 provides power for an external cooling fan if needed.

Connector Type CONN HDR 2POS 1.25MM STR TIN

Number of Connections 2

Connector Part Number Hirose DF13-2P-1.25DSA(20)

Mating Connector Hirose DF13-2S-1.25C 2POS HOUSING; Hirose DF13G-2630SCF CRIMP
CONTACT (x 2)

Table 22. External Fan Connector J9 Information

Pin Type Signal Note

1 I/O XMC_FAN_PWR 12V Power for External Fan

2 I/O GND Ground

Table 23. External Fan Connector J9 Pinout

Figure 34. External Fan Connector J9 Pin Arrangement

Cardsharp User's Manual 98

Cardsharp Hardware

Environmental Limits

Condition Limits

Operating Ambient Temperature 0 to 50 C

Humidity 5 to 95 %, non condensing

Storage Temperature 0 to 100 C

Forced Air Cooling Dependent on application

Vibration 2g, 9-200 Hz, Class 3.3 per ETSI EN 300

019-1-3 V2.1.2 (2003-04)

Shock 4g peak, Class 3.3 per ETSI EN 300 019-1-3
V2.1.2 (2003-04)

Table 24. Cardsharp Environmental Limits

GPS/IEEE-1588 Interface

The Cardsharp has built-in support for Innovative GPS and IEEE-1588 timing and synchronization modules. Only one of the
two optional units can be used – it is either GPS or IEEE-1588. GPS/IEEE-1588 interface signals are available on the internal
connector J2 (Hirose DF13-20DP-1.25V(55)). Connector pinout and the pin functions are given in the table 4 below.

The GPS unit provides GPS disciplined 10 MHz reference clock and also 1 PPS (pulse per second) signal for the Cardsharp
system. These signals are typically used for the FMC module synchronization and data time-stamping.

Similarly, the IEEE-1588 unit, when plugged into a IEEE-1588 network, generates 10 MHz reference clock and 1 PPS signal
synchronized with network’s Grandmaster signals.

Cardsharp User's Manual 99

Cardsharp Hardware

Note Input /
Output

Signal Name J2

pin #

J2

pin #

Signal Name Input /
Output

Note

LVDS (P) I GPS_10MHZ_P 1 2 GPS_10MHZ_
N

I LVDS (N)

GROUND N/A GROUND 3 4 GROUND N/A GROUND

LVDS (P) I GPS_PPS_P 5 6 GPS_PPS_N I LVDS (N)

GROUND N/A GROUND 7 8 GROUND N/A GROUND

SERIAL
TRANSMI

T, 3.3V
LVCMOS

O GPS_TXD 9 10 GPS_RXD I SERIAL
RECEIVE

3.3V
LVCMOS

SERIAL 1
RECEIVE

3.3V
LVCMOS

I GPS_RX1 11 12 GPS_RESET_N O GPS
RESET

3.3V
LVCMOS

3.3V O 3P3V 13 14 3P3V O 3.3V

12V O 12P0V 15 16 12P0V O 12V

N/A N/A N/C 17 18 N/C N/A N/A

N/A N/A N/C 19 20 N/C N/A N/A

Table 25. GPS / IEEE-1588 Interface Connector J2 Signals

Connector Type CONN HDR 20POS 1.25MM STR TIN

Number of Connections 20

Connector Part Number Hirose DF13-20DP-1.25V(55)

Mating Connector Hirose DF13-20S-1.25C 20POS HOUSING; Hirose DF13G-2630SCF CRIMP
CONTACT (x 20)

Cardsharp User's Manual 100

Cardsharp Hardware

Table 26. GPS / IEEE-1588 Interface Connector J2 Information

Figure 35. GPS / IEEE-1588 Interface Connector J2 Pin Arrangement

JTAG

The Cardsharp on-board JTAG chain (Zynq + FMC) can be accessed for programming and debugging purposes via connector
J8. JTAG signals are also available on the P15 XMC connector allowing Cardsharp to be programmed from the XMC carrier
board with built-in JTAG interface (such as Innovative SBC-Nano) without an external JTAG programmer. Figure 8 shows
the Cardsharp board JTAG chain diagram. As mentioned above, JTAG signals can also be accessed on the header J4. If no
FMC module is present in the system, the FMC module JTAG chain is simply bypassed. This is done without any user’s
interaction – the bypass mux uses the “FMC Present” signal to determine the mode of operation.

In the Cardsharp system JTAG signals are accessible via the 14-pin JTAG connector on the rear side of the case. This
connector has a standard Xilinx Platform Cable USB II compatible pinout.

Table 20 below shows signal pinouts for the J8, J4 and P15 Cardsharp board connectors and also the 14-pin JTAG connector
on the rear side of the Cardsharp system case.

Cardsharp User's Manual 101

Cardsharp Hardware

Figure 36. Cardsharp Board JTAG Chain

Signal Name Purpose J8 pin # J4 pin # P15 Backplane
JTAG

Connector

Input /
Output

3.3V 3.3V for JTAG
Programmer

1 5 N/A 2 O

TMS JTAG TMS Signal 2 2 C6 4 I

TCK JTAG TCK Signal 3 3 C4 6 I

TDO JTAG TDO Signal 4 1 C10 8 O

TDI JTAG TDI Signal 5 4 C8 10 I

GROUND Board Ground 6 6 Multiple pins
(A2, A4, A6

etc.)

3, 5, 7, 9, 11 N/A

TRST_N* JTAG RESET/HALT N/A N/A C2 14 I

Table 27. Cardsharp JTAG Signals.

Cardsharp User's Manual 102

Cardsharp Hardware

Note: JTAG RESET/HALT signal is not used by Xilinx for FPGA programming. However, in Cardsharp system it can be
used to reset the Zynq SoC.

Connector Type CONN HDR 6POS 1.25MM STR TIN

Number of Connections 6

Connector Part Number Hirose DF13-6P-1.25DSA(20)

Mating Connector Hirose DF13-6S-1.25C 6POS HOUSING; Hirose DF13G-2630SCF CRIMP
CONTACT (x 6)

Table 28. JTAG Connector J8 Information

Figure 37. JTAG Connector J8 Pin Arrangement

On-Board LED Indicators

There are three green LED indicators located on the edge of the on the Cardsharp board.

LED

Function

Reference

Designator

Note

DONE D7 Indicates that Zynq SoC PL configuration is completed

LED 0 D8 Function is defined in PL firmware

LED 1 D6 Function is defined in PL firmware

Table 29. Cardsharp LED Indicator Functions

Cardsharp User's Manual 103

Cardsharp Hardware

BOOT MODE SWITCH

The miniature slide switch SW1 on the board used to set the board’s boot mode – either JTAG or QSPI.

Figure 38. Cardsharp Boot Mode Switch Sw1 with the slider in JTAG Boot Mode position

Ground Loops

Four ground loops (W1..W4; two on each side of the board) are provided for debugging convenience. They can be used for
attaching scope probe or multimeter ground. Note that the gold plated strips on the sides of the board are not electrically
connected to the board ground, so they can’t be used as a reference for making measurements on the board; their purpose is to
conduct heat from the board to the system chassis ground.

FMC Module Site

The Cardsharp has a single industry-standard VITA 57 FMC (FPGA Mezzanine Card) module site. A large variety of FMC
modules are available for signal processing, analog and digital IO, and communications from Innovative and other vendors.
Please refer to VITA 57 standard for general FMC electrical and mechanical specifications and the FMC module
documentation for information about specific modules.

The FMC module site provides high performance IO expansion for the Cardsharp. FMC site is VITA 57 High Pin Count
(HPC) site.

Make sure that the Zynq SoC has the appropriate configuration file for the used FMC module before inserting the
FMC module and powering up the system! Using the wrong Zynq configuration file may cause serious damage to the
Cardsharp and the FMC module!

Cardsharp User's Manual 104

Cardsharp Hardware

FMC Module Site

Site Single

Specification Compliance VITA 57 FMC, HPC (High Pin Count)

High Speed Pairs 8 lanes (Tx/Rx pairs) connected to Zynq SoC PL; up to 6.5 Gbps max rate

Signal Pairs 80 diff pairs total

LA: 34 diff pairs

HA: 24 diff pairs

HB: 22 diff pairs

IO Standards LA, HA, HB; all Zynq-7 PL HR (High Range) IO standards supported

Power 3.3V @ 3A

12V @ 1A

3.3V AUX @ 0.5A

Vadj = 2.5V @ 4A

Note: Vadj voltage is preset at the factory to 2.5V, but optionally can be set any voltage in
1.5V to 2.5.V range. Contact factory for additional information.

Table 30. Cardsharp FMC Site Features

Note: Features listed are supported by the Cardsharp carrier board. System features are FMC module dependent.

FMC Module Site Connectivity

The FMC Module site (High Pin Count or HPC per VITA 57) is connected to the Zynq ZoC; that includes 8 High-Speed Data
Pairs (DP; RX/TX). Vadj for the FMC Site is factory preset to 2.5V. Consult factory if other Vadj voltage value is required by
the OEM application. J1 is the FMC Site connector.

Tables below provide FMC site connectivity details. All high-speed signal routing to FMC module is done with differential
100 Ohm pairs. The trace lengths are tightly matched in each signal group. The Zynq SoC package internal signal delays are
also taken into account for the best possible delay matching in signal groups. Typically all high-speed signals are LVDS type.

The Cardsharp JTAG signals are provided to the FMC site. However, since there is usually no need for JTAG
programmability on most FMC modules, typically TDI and TDO signals simply shorted on these FMC modules.

For Ground and Power pin connections refer to the VITA 57 signal table provided elsewhere in this document. Please note
that the Cardsharp FMC signal nomenclature used in this chapter may not exactly match the VITA 57 standard signal naming.

Most FMC high-speed signals are connected directly to the Zynq SoC, so for safe operation it is very important to ensure that
no signal ever exceeds the maximum allowed by the Zynq SoC specification for input voltage levels.

Signal Name J1 pin Zynq SoC pin Signal Name J1 pin Zynq SoC pin

Cardsharp User's Manual 105

Cardsharp Hardware

FMC_LA_0_N G7 AH21 FMC_LA_P0 G6 AG21

FMC_LA_1_N D9 AG20 FMC_LA_P1 D8 AF20

FMC_LA_2_N H8 AK20 FMC_LA_P2 H7 AJ20

FMC_LA_3_N G10 AK18 FMC_LA_P3 G9 AK17

FMC_LA_4_N H11 AJ19 FMC_LA_P4 H10 AH19

FMC_LA_5_N D12 AG19 FMC_LA_P5 D11 AF19

FMC_LA_6_N C11 Y21 FMC_LA_P6 C10 W21

FMC_LA_7_N H14 Y23 FMC_LA_P7 H13 Y22

FMC_LA_8_N G13 AB24 FMC_LA_P8 G12 AA24

FMC_LA_9_N D15 AA23 FMC_LA_P9 D14 AA22

FMC_LA_10_N C15 AC23 FMC_LA_P10 C14 AC22

FMC_LA_11_N H17 AE21 FMC_LA_P11 H16 AD21

FMC_LA_12_N G16 AF24 FMC_LA_P12 G15 AF23

FMC_LA_13_N D18 AG25 FMC_LA_P13 D17 AG24

FMC_LA_14_N C19 AD24 FMC_LA_P14 C18 AC24

FMC_LA_15_N H20 AH24 FMC_LA_P15 H19 AH23

FMC_LA_16_N G19 AJ24 FMC_LA_P16 G18 AJ23

FMC_LA_17_N D21 AF22 FMC_LA_P17 D20 AE22

FMC_LA_18_N C23 AE23 FMC_LA_P18 C22 AD23

FMC_LA_19_N H23 AK21 FMC_LA_P19 H22 AJ21

FMC_LA_20_N G22 AK23 FMC_LA_P20 G21 AK22

FMC_LA_21_N H26 AK25 FMC_LA_P21 H25 AJ25

FMC_LA_22_N G25 AK26 FMC_LA_P22 G24 AJ26

FMC_LA_23_N D24 AH27 FMC_LA_P23 D23 AH26

FMC_LA_24_N H29 AK28 FMC_LA_P24 H28 AK27

FMC_LA_25_N G28 AJ29 FMC_LA_P25 G27 AJ28

FMC_LA_26_N D27 AK30 FMC_LA_P26 D26 AJ30

FMC_LA_27_N C27 AF25 FMC_LA_P27 C26 AE25

FMC_LA_28_N H32 AG27 FMC_LA_P28 H31 AG26

FMC_LA_29_N G31 AG30 FMC_LA_P29 G30 AF30

FMC_LA_30_N H35 AG29 FMC_LA_P30 H34 AF29

FMC_LA_31_N G34 AF27 FMC_LA_P31 G33 AE27

FMC_LA_32_N H38 AC27 FMC_LA_P32 H37 AB27

FMC_LA_33_N G37 AE26 FMC_LA_P33 G36 AD25

Cardsharp User's Manual 106

Cardsharp Hardware

Table 31. FMC Site LA Signal Group Connectivity Details

Note: Each differential signal pair matched to +/-1 psec; signals in the group matched to +/-10 psec.

Signal Name J1 pin Zynq SoC pin Signal Name J1 pin Zynq SoC pin

FMC_HA_N_0 F5 AF14 FMC_HA_P_0 F4 AG14

FMC_HA_N_1 E3 AE13 FMC_HA_P_1 E2 AF13

FMC_HA_N_2 K8 AG12 FMC_HA_P_2 Zynq SoC AH12

FMC_HA_N_3 J7 AD14 FMC_HA_P_3 J6 AD13

FMC_HA_N_4 F8 AH14 FMC_HA_P_4 F7 AH13

FMC_HA_N_5 E7 AE12 FMC_HA_P_5 E6 AF12

FMC_HA_N_6 K11 AJ15 FMC_HA_P_6 K10 AK15

FMC_HA_N_7 J10 AJ16 FMC_HA_P_7 J9 AK16

FMC_HA_N_8 F11 AJ14 FMC_HA_P_8 F10 AJ13

FMC_HA_N_9 E10 AH18 FMC_HA_P_9 E9 AJ18

FMC_HA_N_10 K14 AK13 FMC_HA_P_10 K13 AK12

FMC_HA_N_11 J13 AF15 FMC_HA_P_11 J12 AG15

FMC_HA_N_12 F14 AF18 FMC_HA_P_12 F13 AF17

FMC_HA_N_13 E13 AE16 FMC_HA_P_13 E12 AE15

FMC_HA_N_14 J16 AE18 FMC_HA_P_14 J15 AE17

FMC_HA_N_15 F17 AD16 FMC_HA_P_15 F16 AD15

FMC_HA_N_16 E16 AA15 FMC_HA_P_16 E15 AA14

FMC_HA_N_17 K17 AG17 FMC_HA_P_17 K16 AG16

FMC_HA_N_18 J19 AB12 FMC_HA_P_18 J18 AC12

FMC_HA_N_19 F20 AB15 FMC_HA_P_19 F19 AB14

FMC_HA_N_20 E19 AC17 FMC_HA_P_20 E18 AC16

FMC_HA_N_21 K20 AB17 FMC_HA_P_21 K19 AB16

FMC_HA_N_22 J22 AC18 FMC_HA_P_22 J21 AC19

FMC_HA_N_23 K23 AB19 FMC_HA_P_23 K22 AB20

Table 32. FMC Site HA Signal Group Connectivity Details

Note: Each differential signal pair matched to +/-1 psec; signals in the group matched to +/-10 psec.

Cardsharp User's Manual 107

Cardsharp Hardware

Signal Name J1 pin Zynq SoC pin Signal Name J1 pin Zynq SoC pin

FMC_HB_N_0 K26 R26 FMC_HB_P_0 K25 R25

FMC_HB_N_1 J25 W24 FMC_HB_P_1 J24 V23

FMC_HB_N_2 F23 V24 FMC_HB_P_2 F22 U24

FMC_HB_N_3 E22 V22 FMC_HB_P_3 E21 U22

FMC_HB_N_4 F26 R23 FMC_HB_P_4 F25 R22

FMC_HB_N_5 E25 T23 FMC_HB_P_5 E24 T22

FMC_HB_N_6 K29 V26 FMC_HB_P_6 K28 U25

FMC_HB_N_7 J28 P24 FMC_HB_P_7 J27 P23

FMC_HB_N_8 F29 T25 FMC_HB_P_8 F28 T24

FMC_HB_N_9 E28 P26 FMC_HB_P_9 E27 P25

FMC_HB_N_10 K32 N27 FMC_HB_P_10 K31 N26

FMC_HB_N_11 J31 T27 FMC_HB_P_11 J30 R27

FMC_HB_N_12 F32 W26 FMC_HB_P_12 F31 W25

FMC_HB_N_13 E31 W28 FMC_HB_P_13 E30 V27

FMC_HB_N_14 K35 W30 FMC_HB_P_14 K34 W29

FMC_HB_N_15 J34 V29 FMC_HB_P_15 J33 V28

FMC_HB_N_16 F35 U29 FMC_HB_P_16 F34 T29

FMC_HB_N_17 K38 U27 FMC_HB_P_17 K37 U26

FMC_HB_N_18 J37 P29 FMC_HB_P_18 J36 N29

FMC_HB_N_19 E34 P28 FMC_HB_P_19 E33 N28

FMC_HB_N_20 F38 U30 FMC_HB_P_20 F37 T30

FMC_HB_N_21 E37 R30 FMC_HB_P_21 E36 P30

Table 33. FMC Site HB Signal Group Connectivity Details

Note: Each differential signal pair matched to +/-1 psec; signals in the group matched to +/-10 psec.

Signal Name J1 pin Zynq SoC pin Signal Name J1 pin Zynq SoC pin

FMC_RX_N_0 C7 AE7 FMC_RX_P_0 C6 AE8

FMC_RX_N_1 A3 AG7 FMC_RX_P_1 A2 AG8

FMC_RX_N_2 A7 AJ7 FMC_RX_P_2 A6 AJ8

FMC_RX_N_3 A11 AH9 FMC_RX_P_3 A10 AH10

FMC_RX_N_4 A15 AD5 FMC_RX_P_4 A14 AD6

FMC_RX_N_5 A19 AF5 FMC_RX_P_5 A18 AF6

FMC_RX_N_6 B17 AG3 FMC_RX_P_6 B16 AG4

FMC_RX_N_7 B13 AH5 FMC_RX_P_7 B12 AH6

Cardsharp User's Manual 108

Cardsharp Hardware

Table 34. FMC Site High Speed Data Pair (DP) RX Signal Group Connectivity Details

Note: These are multi-gigabit transceiver data pairs (DP). Each differential signal pair matched to +/-1 psec; no group
matching is required.

Signal Name J1 pin Zynq SoC pin Signal Name J1 pin Zynq SoC pin

FMC_TX_N_0 C3 AK1 FMC_TX_P_0 C2 AK2

FMC_TX_N_1 A23 AJ3 FMC_TX_P_1 A22 AJ4

FMC_TX_N_2 A27 AK5 FMC_TX_P_2 A26 AK6

FMC_TX_N_3 A31 AK9 FMC_TX_P_3 A30 AK10

FMC_TX_N_4 A35 AD1 FMC_TX_P_4 A34 AD2

FMC_TX_N_5 A39 AE3 FMC_TX_P_5 A38 AE4

FMC_TX_N_6 B37 AF1 FMC_TX_P_6 B36 AF2

FMC_TX_N_7 B33 AH1 FMC_TX_P_7 B32 AH2

Table 35. FMC Site High Speed Data Pair (DP) TX Signal Group Connectivity Details

Note: These are multi-gigabit transceiver data pairs (DP). Each differential signal pair matched to +/-1 psec; no group
matching is required.

Cardsharp User's Manual 109

Cardsharp Hardware

Signal Name J1 pin Zynq SoC
pin

Comment

FMC_GBTCLK0_P D4 AD10* FMC module generated high speed group data pair (DP) reference clock 0. Provides clock
for the FMC_RX_N/P 0...3 and FMC_TX_N/P 0...3 signal pairs. A blocking 0.1uF
capacitor used in the signal path on the Cardsharp carrier board. FMC_GBTCLK0_N D5 AD9*

FMC_GBTCLK1_P B20 AA8* FMC module generated high speed group data pair (DP) reference clock 1. Provides clock
for the FMC_RX_N/P 4...7 and FMC_TX_N/P 4...7 signal pairs. A blocking 0.1uF
capacitor used in the signal path on the Cardsharp carrier board. FMC_GBTCLK1_N B21 AA7*

FMC_CLK0_M2C_P H4 AD18
FMC module generated clock 0.

FMC_CLK0_M2C_N H5 AD19

FMC_CLK1_M2C_P G2 AA18
FMC module generated clock 1.

FMC_CLK1_M2C_N G3 AA19

FMC_CLK2_BIDIR_P K4 R28* Connected to the Zynq SoC when the FMC_CLK_DIR signal is High; connected to the
Cardsharp external Reference Clock (usually 10MHz) otherwise. In typical application the
reference clock is provided by the Cardsharp board to the FMC module. FMC_CLK2_BIDIR_N K5 T28*

FMC_CLK3_BIDIR_P J2 T25 FMC module or Cardsharp generated clock. Direction is dependent on the FMC module
used.FMC_CLK3_BIDIR_N J3 U25

Table 36. FMC Site Clock Signal Connectivity Details.

Notes: Each clock differential pair matched to +/-1 psec.

* Not a direct connection.

Signal Name J1 pin Zynq SoC
Pin/ Direction

Comment

FMC_PRSNT_M2C_L H2 Y20 / In FMC module present (active low). Must be connected to ground on the FMC module.

FMC_CLK_DIR B1 AD20* / In

FMC module signal; on the Cardsharp carrier board controls direction of the
FMC_CLK2_BIDIR clock. 3.3V CMOS levels. High level sends the reference clock
from Cardsharp to the FMC module. Low level sends the FMC module originated
clock signal from the FMC module to the Zynq SoC.

FMC_SCL C30 AC14* / Out FMC System Management I2C serial clock. 3.3V CMOS levels.

FMC_CDA C31 AH17* / Out FMC System Management I2C serial data. 3.3V CMOS levels.

FMC_GA0 C34 N/A / In FMC Geographical Address 0. Connected to ground on the Cardsharp carrier board.

FMC_GA1 D35 N/A / In FMC Geographical Address 1. Connected to ground on the Cardsharp carrier board.

FMC_PG_C2M D1 AA13* / Out
Power Good from the Cardsharp carrier board. 3.3V CMOS levels. High when 12V,
3.3V and Vadj are within tolerance.

FMC_PG_M2C F1 AA17* / In
Power Good from the FMC module. 3.3V CMOS levels. High when when the FMC
power supplies, including VIO_B_M2C, VREF_A_M2C, VREF_B_M2C, are within
tolerance.

TCK D29 N/A / Out JTAG Clock. 3.3V CMOS levels.

TDI D30 N/A / Out JTAG Data In. 3.3V CMOS levels.

FMC_TDO D31 N/A / In FMC module JTAG Data Out. 3.3V CMOS levels.

TMS D33 N/A / Out JTAG Mode Select. 3.3V CMOS levels.

Cardsharp User's Manual 110

Cardsharp Hardware

TRST_N D34 N/A / Out JTAG Reset (active low). 3.3V CMOS levels. Not used in Cadsharp system.

FMC_VREF_A_M2C H1

Zynq SoC
Banks 9, 10,
11, 12
Reference
Voltage / In

FMC reference voltage associated with the signaling standard used by the Bank A
(Zynq SoC Banks 9, 10, 11 and 12) data pins. Note that Zynq SoC Banks 9, 10, 11 and
12 are powered by the Vadj power supply.

FMC_VREF_B_M2C K1

Zynq SoC
Bank 13
Reference
Voltage / In

FMC reference voltage associated with the signaling standard used by the Bank B
(Zynq SoC bank 13) data pins. Note that Zynq SoC Bank 13 is powered by the
FMC_VIO_B_M2C power supply.

FMC_VIO_B_M2C
J39,
K40

Zynq SoC
Bank 13
Power / In

Voltage generated by the FMC module to power bank B (Zynq SoC Bank 13) data
pins.

Table 37. FMC Site Miscellaneous Signal Connectivity Details.

* Not a direct connection. A signal level shifter used on the Cardsharp carrier board.

Connector Type VITA 57 FMC CC-HPC-10 0.050 PITCH SOCKET ARRAY ASSEMBLY

Number of Connections 400, arranged in a 40 x 10 configuration

Connector Part Number Samtec ASP-134486-01

Mating Connector Samtec ASP-134488-01

Table 38. FMC Connector J1 Information

Figure 39. FMC Connector J1 Pin Arrangement

Cardsharp User's Manual 111

Cardsharp Hardware

Operation with an XMC Carrier

While the primary function of Cardsharp is to work as an FMC carrierwith variety of FMC modules, it can also be plugged
into an XMC carrier (such as Innovative SBC-Nano or SBC-Duo) and can be used as an XMC module itself.

Cardsharp XMC Carrier Connectivity Details

Specification Compliance* VITA 42.3 - XMC Modules for PCI Express

VITA 20 – Conduction Cooled PMC

PCISIG PCI Express Gen2

Size 74 mm x 150 mm

Mounting Height (with FMC module) 25 mm

VPWR 12V +/-5%

3.3V; 3.3V AUX; +12V; -12V Not Used

Max Power Up to 40 W

Cooling Conduction per VITA 20

Processor Interface PCI Express Gen2 (5.0 Gbps); 8 lanes max, 1 lane minimum

Secondary Interfaces 7 differential or 14 single-ended digital IO lines;

JTAG for in-system programmability

4-pin Trace interface for debugging

QSFP controls (up to 2 cages supported; a special carrier is required)

Table 39. Cardsharp XMC Carrier Connectivity Details

Note: Mechanically Cardsharp is not fully compatible with VITA 42.3 specification.

Cardsharp User's Manual 112

Cardsharp Hardware

XMC Connectors P15 and P16

Column

Row A B C D E F

1 PET0p0 PET0n0 3.3V (NC) PET0p1 PET0n1 VPWR

2 DGND DGND TRST# DGND DGND MRSTI#

3 PET0p2 PET0n2 3.3V (NC) PET0p3 PET0n3 VPWR

4 DGND DGND TCK DGND DGND MRSTO# (NC)

5 PET0p4 PET0n4 3.3V (NC) PET0p5 PET0n5 VPWR

6 DGND DGND TMS DGND DGND +12V (NC)

7 PET0p6 PET0n6 3.3V (NC) PET0p7 PET0n7 VPWR

8 DGND DGND TDI DGND DGND -12V (NC)

9 RFU (NC) RFU (NC) RFU (NC) RFU (NC) RFU (NC) VPWR

10 DGND DGND TDO DGND DGND GA0 (NC)

11 PER0p0 PER0n0 MBIST# (NC) PER0p1 PER0n1 VPWR

12 DGND DGND GA1 (NC) DGND DGND MPRESENT#

13 PER0p2 PER0n2 3.3VAUX (NC) PER0p3 PER0n3 VPWR

14 DGND DGND GA2 (NC) DGND DGND MSDA (NC)

15 PER0p4 PER0n4 RFU (NC) PER0p5 PER0n5 VPWR

16 DGND DGND MVMRO (NC) DGND DGND MSCL (NC)

17 PER0p6 PER0n6 RFU (NC) PER0p7 PER0n7 XMC_RFU12

18 DGND DGND RFU (NC) DGND DGND RFU (NC)

19 PEX REFCLK+ PEX REFCLK- RFU (NC) WAKE# (NC) ROOT# (NC) RFU (NC)

Table 40. Cardsharp XMC P15 Connector Pinout

Notes:

1. PET and PER groups (8 differential signal pairs each) are the PCIe Transceivers and PCIe Receivers respectively
(signal direction is from the Cardsharp board). Along with the PEX REFCLK+/- pair they comprise the PCIe
interface for the Cardsharp system when it is plugged into an XMC carrier; it can accommodate up to 8 lanes at
PCIe Gen2 (5 Gbps) speed. Alternatively these signals can be used for a high speed QSFP interface (up to 2 cages);
a special carrier, like the Innovative Cardsharp QSFP Extension board is required.

Cardsharp User's Manual 113

Cardsharp Hardware

2. VPWR for Cardsharp must be 12V +/-5%. When Cardsharp is plugged into an XMC carrier, the power is
provided from the P15 connector and the external Cardsharp power must be disconnected from the
Cardsharp J5 power connector to avoid system damage.

3. 3.3V; 3.3V_AUX; +12V and -12V are not used in the Cardsharp system. All on-board power is generated from the
input VPWR (12V).

4. All RFU pins are reserved per VITA42 and VITA42.3 specifications. The only exception is the RFU12 pin (F17),
which can be used as an optional reset signal with some XMC carriers.

5. DGND is the system ground.

XMC P15 Signal Direction

(relative to
Cardsharp)

Description Cardsharp Usage

PET0px/PET0nx O PCI Express Tx +/- PCIe or QSFP Transmitters

PER0px/PER0nx I PCI Express Rx +/- PCIe or QSFP receivers

PEX REFCLK+/- I PCI Express reference clock, 100 MHz +/- PCIe or QSFP reference clock

MRSTI# I Master Reset Input, active low PCIe Reset

MRSTO# O Master Reset Output, active low Not Used

GA0 I Geographic Address 0 Not Used

GA1 I Geographic Address 1 Not Used

GA2 I Geographic Address 2 Not Used

MBIST# O Built-in Self Test in progress, active low Not Used

MPRESENT# O Module Present, active low when present Tied to ground

MSDA I/O PCI Express Serial ROM data Not Used

MSCL I PCI Express Serial ROM clock Not Used

MVMRO I PCI Express Serial ROM Read Only Not Used

WAKE# O Wake indicator to upstream device, active
low

Not Used

ROOT# I Root device, active low Not Used

Table 41. P15 Connector Signal Descriptions

Cardsharp User's Manual 114

Cardsharp Hardware

Column

Row A B C D E F

1 (NC) (NC) DIO_P0 (NC) (NC) DIO_P1

2 DGND DGND DIO_N0 DGND DGND DIO_N1

3 (NC) (NC) DIO_P2 (NC) (NC) DIO_P3

4 DGND DGND DIO_N2 DGND DGND DIO_N3

5 (NC) (NC) DIO_P4 (NC) (NC) DIO_P5

6 DGND DGND DIO_N4 DGND DGND DIO_N5

7 (NC) (NC) DIO_P6 (NC) (NC) QSFP_XL_SCL

8 DGND DGND DIO_N6 DGND DGND QSFP_XL_SDA

9 (NC) (NC) TRACE_CLK (NC) (NC) TRACE_D_0

10 DGND DGND TRACE_CTL DGND DGND TRACE_D_1

11 (NC) (NC) QSFP0_CLK_P (NC) (NC) QSFP1_CLK_P

12 DGND DGND QSFP0_CLK_N DGND DGND QSFP1_CLK_N

13 (NC) (NC) QSFP0_MODPRES_N (NC) (NC) QSFP1_MODPRES_N

14 DGND DGND QSFP0_INT_N DGND DGND QSFP1_INT_N

15 (NC) (NC) QSFP0_LPMODE (NC) (NC) QSFP1_LPMODE

16 DGND DGND QSFP0_MODESEL_N DGND DGND QSFP1_MODESEL_N

17 (NC) (NC) QSFP0_RESET_N (NC) (NC) QSFP1_RESET_N

18 DGND DGND QSFP0_SCL DGND DGND QSFP1_SCL

19 (NC) (NC) QSFP0_SDA (NC) (NC) QSFP1_SDA

Table 42. Cardsharp XMC Secondary Connector P16 Pinout

Cardsharp User's Manual 115

Cardsharp Hardware

XMC P16 Signals Used
in Cardsharp System

Direction

(relative to
Cardsharp)

Description

DIO_P0..6 / DIO_N0..6 I/O Digital IO, 7 differential pairs or 14 single ended.

These signals originated in Zynq SoC bank 12 which is powered by Vadj.
Output signal levels are determied by Vadj value and the type of logic cell
used as an input and/or output. For example, if Vadj =2.5V and DIOs are
configured as 14 single-ended signals, then the output cell type would be
LVCMOS25 with corresponding logic levels. When driven from the outside,
the signals must be within the LVCMOS25 signal levels spec. Exceeding
maximum allowed input voltage for the given Vadj and the used logic
type may permanently damage the Zynq SoC and render the system
non-operational.

QSFP_XL_SCL O QSFP Oscillator I2C Bus Serial Clock

QSFP_XL_SDA I/O QSFP Oscillator I2C Bus Serial Data

TRACE_CLK I/O Trace Debug Bus Clock

TRACE_CTL I/O Trace Debug Bus Control

TRACE_D_0 I/O Trace Debug Bus DATA 0

TRACE_D_1 I/O Trace Debug Bus DATA 1

QSFP0_CLK_P O QSFP0 Clock +

QSFP0_CLK_N O QSFP0 Clock -

QSFP0_MODPRES_N I QSFP0 Module Present (Active Low)

QSFP0_INT_N I QSFP0 Interrupt (Active Low)

QSFP0_LPMODE O QSFP0 Low Power Mode

QSFP0_MODESEL_N O QSFP0 Mode Select (Active Low)

QSFP0_RESET_N O QSFP0 Reset (Active Low)

QSFP0_SCL O QSFP0 Serial Interface Clock

QSFP0_SDA I/O QSFP0 Serial Interface Data

QSFP1_CLK_P O QSFP1 Clock +

QSFP1_CLK_N O QSFP1 Clock -

QSFP1_MODPRES_N I QSFP1 Module Present (Active Low)

QSFP1_INT_N I QSFP1 Interrupt (Active Low)

QSFP1_LPMODE O QSFP1 Low Power Mode

QSFP1_MODESEL_N O QSFP1 Mode Select (Active Low)

QSFP1_RESET_N O QSFP1 Reset (Active Low)

Cardsharp User's Manual 116

Cardsharp Hardware

XMC P16 Signals Used
in Cardsharp System

Direction

(relative to
Cardsharp)

Description

QSFP1_SCL O QSFP1 Serial Interface Clock

QSFP1_SDA I/O QSFP1 Serial Interface Data

Table 43. P16 Connector Signal Descriptions

Connector Type Xmc Pin Header, 0.05 In Pin Spacing, Vertical Mount

Number of Connections 114, Arranged As 6 Rows Of 19 Pins Each

Connector Part Number Samtec ASP-103614-04

Mating Connector Samtec ASP-103612-04

Table 44. XMC Connectors P15 and P16 Information

Figure 40. XMC Connectors P15 and P16 Pin Arrangement

Cardsharp User's Manual 117

Cardsharp Hardware

Mechanicals

Solidworks 3D models of the Cardsharp and related products are available upon request.

Detailed drawings for mechanical design work are available through technical support.

Figure 41. Cardsharp Board – FMC Connector Side View

Cardsharp User's Manual 118

Cardsharp Hardware

Figure 42. Cardsharp Board – XMC Connectors Side View

Cardsharp User's Manual 119

Cardsharp Hardware

Figure 43. Standalone Cardsharp System with FMC-Servo Module installed – Front View

Cardsharp User's Manual 120

Cardsharp Hardware

Figure 44. Standalone Cardsharp System – Rear View

Cardsharp User's Manual 121

Cardsharp Hardware

Figure 45. Cardsharp / SBC-Nano system with FMC-1000 module installed – Front View

Cardsharp User's Manual 122

Cardsharp Hardware

Figure 46. Cardsharp / SBC-Nano system – Rear View

Cardsharp User's Manual 123

Cardsharp Hardware

System Dimensions in mm Dimensions in inches

Standalone Cardsharp System, no Fan option 165 x 82 x 32 6.5” x 3.3” x 1.26”

Standalone Cardsharp System, with Fan option 165 x 82 x 55 6.5” x 3.3” x 2.2”

Cardsharp/SBC-Nano System, no Fan option 165 x 82 x 52 6.5” x 3.3” x 2.05”

Cardsharp/SBC-Nano System, with Fan option 165 x 82 x 72 6.5” x 3.3” x 2.85”

Table 45. Dimensional Information for some common Cardsharp system configurations.

Cardsharp User's Manual 124

	Chapter 1: Introduction
	Real Time Solutions!
	Terminology
	What is the Cardsharp?
	What is Vivado?
	What kinds of applications are possible with Cardsharp hardware?
	What is Malibu?
	Finding detailed information on Malibu
	Online Help
	Innovative Integration Technical Support
	Innovative Integration Web Site

	Chapter 2: Installation
	Malibu for PetaLinux
	Preparing Workspace Preferences
	Importing Malibu Projects

	Xilinx SDK Standalone AMP Projects
	Importing Standalone AMP Projects

	Chapter 3: Detailed Host-Target Communication
	Ethernet Communication
	System Logs
	File Transfers
	User Interface Protocols

	JTAG Communication

	Chapter 4: An Example Debugging Session
	Debugging PetaLinux Applications
	Downloading a Bitstream
	Configuring the Debug Profile
	Debug Perspective

	Debugging Standalone Applications
	Downloading a Bitstream
	Configuring the Debug Profile

	Profiling Applications

	Chapter 5: Servo Mode
	Data Acquisition Applications.
	Servo Applications.
	Servoing on Cardsharp
	Servo Timing
	Servo Example
	Tools and Platform Requirements
	Malibu Application Program Layout and Design
	Standalone Application Program Layout and Design

	Usage Procedure
	PetaLinux Application Organization
	ApplicationIo
	Packet Processing

	Inter-processor Communication
	Standalone Application Organization

	Chapter 6: The CardSharp Board Object
	Introduction
	Cardsharp Interface
	Initialization sequence

	Chapter 7: The FmcServo Module Object
	Introduction
	FMCServo Operations
	Object Attachment
	Shared Base Class Operations
	The Input() Device
	Input.GainRange()
	Input().Info()
	Input() Channel Enable Methods
	Input().Cal()
	Input().Trigger()
	Input().Pulse()
	Input.SoftwareTrigger()
	Input.Decimation()
	Miscellaneous Input() methods

	The Output() Device
	Output.DacClockMode()
	Output().Info()
	Output() Channel Enable Methods
	Output().Cal()
	Output().Trigger()
	Output().Pulse()
	Output.SoftwareTrigger()
	Output.Decimation()
	Miscellaneous Output() methods

	The Clock() Device
	Clock().Adc() and Clock.Dac()

	FmcServo FIFO Configuration Devices

	Chapter 8: Aspects of Malibu for Cardsharp
	Buffers and Buffer Access Classes
	Introduction
	Buffer Data Access

	Buffer Classes
	Buffer Class Types

	Buffer Utility Classes
	Holding Template
	CouldHold Template
	Convert Template
	ConvertData Template
	MessageDatagram
	Header Access Datagrams

	Access Datagrams
	Template AccessDatagram<T>
	Template Class DatagramIterator
	Interface Class IDatagrammable
	Interface Class IIteratable
	Predefined Access Datagram Classes

	Hardware Access and Bit Control
	Memory Spaces and Register Classes
	Addressing Space Classes
	BaseboardExtension Template
	Register Class Types
	Register Bits and Fields

	Bit Manipulation Classes
	MultiChannel Data Streaming Support Classes
	Buffer Classes – McBuffer and McHeaderDatagram
	Data Image Classes – McImage
	Streaming Alerts: McAlert
	Streaming External Interrupts: McExternalInt
	Image Mode Transmit Hints: McHintPack

	Chapter 9: Cardsharp Hardware
	Introduction
	QSPI
	eMMC
	PS DDR3 Memory
	PL DDR3 Memory
	USB 2.0 Port
	Gigabit Ethernet Port
	Power Subsystem
	External Power Supply
	Power Consumption

	System Thermal Design
	External Fan Connector J9

	GPS/IEEE-1588 Interface
	JTAG
	On-Board LED Indicators
	Ground Loops
	FMC Module Site
	FMC Module Site Connectivity
	XMC Connectors P15 and P16

