DT High Performance File Format Specification

Data Translation, Inc. (DTI) Engineering staff has preg#nes guide for use by DTI
personnel as an explanation of the proper use and operation ofjiipient and software.
The drawings and specifications contained herein are therpradd Tl and shall neither be
reproduced in whole or in part without DTI's prior written applona be implied to grant
any license to make, use, or sell DTI equipment or softwiseaufactured in accordance
herewith.

Information furnished by Data Translation is believed tad®urate and reliable. However,
no responsibility is assumed by Data Translation for itsnmefor any infringements of
patents or other rights of third parties which may resaihfits use. No license is granted by
implication or otherwise under patent rights of Data Tramsiatnc. Data Translation
reserves the right to make changes without notice in thefispéions and materials contained
herein and shall not be responsible for any damages (includingoragial) caused by
reliance on the materials presented, including but not linbitéygbographical or arithmetic
errors, company policy, and price information.

Document Number: 22760, Rev A

Copyright © 2007 Data Translation, Inc. All righteserved.

All rights reserved. No part of this publication may be repredustored in a retrieval
system, or transmitted, in any form by any means, eleciro@chanical, photocopying,
recording, or otherwise, without the prior written permission afal ranslation, Inc.

Data Translation, Inc.
100 Locke Drive
Marlborough, MA 01752-1192, USA
Telephone (508) 481-3700
Home Page http://www.datatranslation.com/

Abstract

This specification documents the native binaryfilanat to be supported across
all Data Translation application software.

Revision History

Date Author(s) Version Comment

02-25-2006 Dirk Schmischke 0.0 Initial Draft

Added :

Header Chunk — Int32 Creatorld
Int64 IndexChunkOffsef

Channel Info Chunk — Int32 NumChannels

Channel Info Xml - PerChannelSampleRate

03-03-2006 Sean Sullivan 0.5
InputChannelNumber

Data Chunk - Int64 dataStartindex
Clarified RangeMin, RangeMax, Offset and G4in
Channellnformation field meanings.

04-27-2006 Sean Sullivan 1.0 Updated EventDefinition and Evemifbamnk

05-09-2006 Sean Sullivan 11 Added tags to EventDefintion for event
parameters.

03-12-2007 Brian Wessels 1.2 Editorial changes.

Table of Contents

DT High Performance File Format Specification..... . .cceveeiiiiinniiiiiiiiiiiiee e 1

D=2l g o] (o] o PO SO 3
(LT L= Ao o3 U] o~ T 4
[LTz 10 [T o] 10T o T 5
Channel iINfOrMAatION CRUNKiee e e ettt e e e e e e st ettt et e e eansaeaeereanes 6
(7= = o 1 10 [] N 11
Event DefiNitioN CRUNK ettt e e et et et e e e e e e et e es seaeneeneanaenss 12
BVENT dAta CRUNK et e r e e e e e et e e 17

[T L) O 410] o PR 19

Description

The HPFF is a chunk file format. Each chunk is defined dyualc 1D, a chunk size including
everything, and the chunk data.

The following chunk types are currently defined:
Header chunk

Channel information chunk

Data chunk

Event descriptor chunk

Event data chunk

Index chunk

Trigger chunk

More chunk types could be added easily if the need arises.

Usually an HPF file has the following structure:
Header chunk

Channel information chunk

Data chunk

Data chunk

Data chunk

The amount of data in a data chunk is not defined but must lbétiplenof 64 KB. The
implementing classes will let you set the data chunk size.

Note: All fields described in this document are required, butealtlers of the format are not
required to support all field values. For example, an apmicatiay choose to only support
the randomDataChannel channel type, but it must be aware thatyihs exist and choose
to ignore them.

Generic chunk

This section describes the generic layout of a chunk. Elemk starts with the following
structure. Every chunk is padded to 64 KB; this is anaoteff using un-buffered file 10.

Int64 chunklD;
Int64 chunkSize;
Int32[] chunkData,;
Padded to 64 KB

chunklID
Identifies the chunk type.

chunkSize

This is the size of this chunk in bytes, including header dakd.this number to the start
address of this chunk to find the next chunk.

chunkData
This is the payload of this chunk. The structure of the churskB@epends on the chunkiD.

Header chunk
Every HPF file has a header chunk in the first position. ftifles the file and file version.

Int64 chunkID = 0x1000;

Int64 chunkSize = 0x10000;

Int32 Creatorld = FourCC (‘datx’)

Int64 fileVersion = 0x10001; // major minor
Int64 IndexChunkOffset;

Char [] XMLdata;

Padded to 64 kB...

Where XMLData has this (extensible) structure:
<RecordingDate>

“Recording Date text”
</RecordingDate>

fileVersion

This field contains the major and minor version informatiortfierfile. The current version is
0x10001.

XML tag <RecordingDate>
This field specifies the start time of the recordingfdtsnat is yyyy/mm/dd hh:nn:ss.xxx.

“yyyy” — year encoded as 4 digits.

“mm” — month encoded as 2 digits.

“dd” — day encoded as 2 digits.

“hh” — hour encoded as 2 digits. Range 0-23.

“nn” — minute encoded as 2 digits.

“ss” — second encoded as 2 digits.

“xxx” — fractional part of a second encoded as zero to 12sdigit

Channel information chunk

Every HPF file should have at least one channel informatonk. This chunk specifies the
recorded data channels.

In one channel information chunk, all channels must specify the sara increment. This
means all channels must contain the same amount of data pemitnYou can add more
channel information chunks if different time increments jp@noel must be used.

Int64 chunklID = 0x2000;
Int64 chunkSize;

Int32 grouplD;

Int32 NumberOfChannels;
Char [] XMLdata;

Padded to 64 kB...

Where XMLData has this (extensible) structure:
<ChannellnformationData>
<Channellnformation>
<Name>
“channel name text”
</Name>
<Unit>
“channel unit text”
</Unit>
< PhysicalChannelNumber >
“Physical Channel Number text
</ PhysicalChannelNumber >
<PerChannelSampleRate>
“per channel sample rate”
</PerChannelSampleRate>
<ChannelType>
“channelType text”
</ChannelType>
<AssignedTimeChannellndex>
“AssignedTimeChannelindex text”
</AssignedTimeChannellndex >
<DataType>
“DataType text”
</DataType>
<Datalndex>
“Dataindex text”
</Dataindex>
<StartTime>
“StartTime text”
</StartTime>
<Timelncrement>
“Timelncrement text”
</Timelncrement>
<RangeMin>
“RangeMin text”

1

</RangeMin>
<RangeMax>
“RangeMax text
</RangeMax>
<DataScale>
“DataScale text”
</DataScale>
<DataOffset>
“DataOffset text”
</DataOffset>
<SensorScale>
“SensorScale text”
</SensorScale>
<SensorOffset>
“SensorOffset text”
</SensorOffset>
</Channellnformation>
... (More Channelinformation items are possible:)
</ChannellnformationData>

]

grouplD

It is possible to have more than one channel information chuokeriile. This field
identifies the data chunks that belong to this channel informalionk. Additional channel
information chunks with different groupID fields will usually beedsf different time
increments per channel are used.

XML tag <ChannelinformationData>
This XML Tag encapsulates all Channellnformation items.

XML tag <Channelinformation>
This XML tag encapsulates a Channellnformation item.

XML tag <Name>
Specifies the channel name string.

XML tag <Unit>
Specifies the engineering unit string.

XML tag <PhysicalChannelNumber>
The physical input channel number of the device the datacgasred from.

XML tag <PerChannelSampleRate>

The sample rate (per second) at which the data was acquimecandomDataChannels this is
used to calculate the time between samples.

XML tag <ChannelType>
This tag specifies the type of the channel. Currently ttyes are implemented:

“calculatedTimeChannel”

The channel data is implicitly defined by startTime ancttmrement. It is calculated on the
fly using these two fields. No additional data is storethis file. The fields
assignedTimeChannelindex, dataType, datalndex, rangeMin, rangédMaS8cale and
dataOffset are undefined for this channel type.

“randomDataChannel”
The channel data is contained in data chunks. The data couldamaleen values. The
startTime and timelncrement fields are not defined forah&nel type.

“monotonicDataChannel”

The channel data is contained in data chunks. The data mustthiethg monotonic
increasing values. This channel type could be used if — for sggsen — a calculated time
channel is not sufficient. The advantage of this type overatigom data channel type is that
binary searching can be used to find specific entries, an@atsier to determine if data is
within a clipping rectangle or not.

XML tag <AssignedTimeChannellndex>
This field specifies which channel should be used as X-axésfdathis channel. If the field

is set to -1, no X-axis data is assigned to this chamhed.could mean that this channel is
used as X-axis data for other channels.

If this field contains a value greater than or equal to aatbless than the number of
<Channellnformation> items, a channel containing X-axis datasigned to this channel.
The assigned channel data is always taken from dataheitseime grouplID.

Note: This field is not defined for <ChannelType> == “calcutateneChannel”.

XML tag <DataType>

This field specifies the data type for this channel.
Note: This field is not defined for <ChannelType> == “calcutateneChannel”.
Currently implemented data types are:

“Int16”
16 bit signed integer.

“Uint16”
16 bit unsigned integer.

“Int32”
32 bit signed integer.

“Float”
32 bit IEEE floating point number.

“Double”
64 bit IEEE floating point number.

XML tag <Datalndex>

This field specifies at which location the channel dataccbalfound in the channel
descriptor table in the data chunk.
Note: This field is not defined for <ChannelType> == “calcutateneChannel”.

XML tag <StartTime>

This field specifies the start time of a calculatadetichannel. Its format is yyyy/mm/dd
hh:nn:ss.xxx or “0.” If this field is “0,” the channel spée# time relative to the beginning of
recording.

“yyyy” — year encoded as 4 digits.

“mm” — month encoded as 2 digits.

“dd” — day encoded as 2 digits.

“hh” — hour encoded as 2 digits. Range 0-23.

“nn” — minute encoded as 2 digits.

“ss” — second encoded as 2 digits.

“xxx” — fractional part of a second encoded as up to 12 digits.

Note: This field is only defined for <ChannelType> == “calcutiieneChannel”.

XML tag <Timelncrement>

This field specifies the time increment of a calcedbtime channel. The time increment is
given in seconds. 1.0 means one second.

Note: This field is only defined for <ChannelType> == “calcutiieneChannel”.

XML tag <RangeMin>

This field contains the minimum possible value of a data sampie associated data chunk.
For example, data whose source is a 16-bit binary encoding A/[2itenwould have a
RangeMin = 0, and RangeMax = 65535.

Note: This field is not defined for <ChannelType> == “calcutateneChannel”.

XML tag <RangeMax>

This field contains the maximum possible value of a data saimphe associated data chunk.
For example, data whose source is a 16-bit binary encoding A/[2idenwould have a
RangeMin = 0, and RangeMax = 65535.

Note: This field is not defined for <ChannelType> == “calcutateneChannel”.

XML tag <DataScale>

This field specifies the scaling of the data used to exdntto Volts. The raw data in the data
chunk can be converted to Volts using the equation dataValumaSadde * rawdata +
dataOffset.

Note: This field is not defined for <ChannelType> == “calcutfitaneChannel”.

XML tag <DataOffset>

This field specifies the offset of the data. The ravadiathe data chunk can be converted to
Volts using the equation dataValue = dataScale * rawddttaOffset.
Note: This field is not defined for <ChannelType> == “calcutfiianeChannel”.

XML tag <SensorScale>

This field specifies the sensor scaling of the data, tssednvert it from voltage to its natural
unit. The voltage data can be converted to its natural umifiofpsxample) using the equation
dataValue = dataScale * voltageValue + dataOffset.

Note: This field is not defined for <ChannelType> == “calcutateneChannel”.

XML tag <SensorOffset>

This field specifies the sensor offset of the data. Tieage data can be converted to its
source unit (volts for example) using the equation dataValwaSdale * voltageData +
dataOffset.

Note: This field is not defined for <ChannelType> == “calcutftaneChannel”.

Data chunk
This chunk type contains the data.

Int64 chunkID = 0x3000;

Int64 chunkSize;

Int32 grouplD;

Int64 dataStartindex;

Int32 channelDataCount;

ChannelDescriptor [channelDataCount] channelDescriptor;
Int32 [] data;

Padded to 64 kB...

Where:
ChannelDescriptor =

{
Int32 offset;

Int32 length;

grouplID

It is possible to have more than one channel information chuokeriile. This field
identifies the channel information chunk that belongs to thisahatak. Additional channel
information chunks with different grouplD fields will usually bged if different time
increments per channel are used.

dataStartindex

For data chunks, this is the continued index of the firstetatty in this chunk. For example,
if there were two data chunks in the file, each contaia®@p values per channel, the
dataStartindex for the first data chunk would be 0, and ttaStatindex for the second
would be 1000. This helps locate the correct data chunk without scahrongh the whole
file.

channelDataCount
The number of channel descriptor entries.

offset
The byte offset from the beginning of this chunk where theafatas channel starts.

length
The byte length of the channel’s data.

Event Definition chunk
The data in this chunk declares the event types that migtgdrein the Event Data Chunk.

Int64 chunkID = 0x4000;
Int64 chunkSize;

Int32 definitionCount;
Char [] XMLdata;
Padded to 64 kB...

Where XMLData has this (extensible) structure:

<EventDefinitionData>
<EventDefinition>
<Name>
“Event name text”
</Name>
<Description>
“Event description text”
</Description>
<Class>
“Event class text”
</Class>
<ID>
“Event ID text”
</ID>
<Type>
“Event type text”
</Type>
<Usesl|Datal>
“true or false”
</ Usesl|Datal>
<UseslData2>
“true or false”
</ Usesl|Data2>
<UsesDDatal>
“true or false”
</ UsesDDatal>
<UsesDData2>
“true or false”
</ UsesDData2>
<UsesDData3>
“true or false”
</ UsesDData3>
<UsesDData4>
“true or false”
</ UsesDData4>
<DescriptionIDatal>
“Description text for iDatal”
</ DescriptionIDatal>
<DescriptionIData2>

“Description text for iData2”
</ DescriptionIData2>
<DescriptionDDatal>

“Description text for dDatal”
</ DescriptionDDatal>
<DescriptionDData2>

“Description text for dData2”
</ DescriptionDData2>
<DescriptionDData3>

“Description text for dData3”
</ DescriptionDData3>
<DescriptionDData4>

“Description text for dData4”
</ DescriptionDData4>
<Parameterl>

“Parameterl value”
</ Parameterl>
<Parameter2>

“Parameter2 value”
</ Parameter2>
<Tolerance >

“Tolerance value”
</ Tolerance>
<UsesParameterl>

“true or false”
</ UsesParameterl>
<UsesParameter2>

“true or false”
</ UseParameter2>
<UseTolerance>

“true or false”
</ UseTolerance>
<DescriptionParameterl>

“Description text for Parameterl”
</ DescriptionParameterl>
<DescriptionParameter2>

“Description text for Parameter2”
</ DescriptionParameter2>
<DescriptionTolerance>

“Description text for Tolerance”
</ DescriptionTolerance>

</EventDefinition>
... more EventDefinition items
</EventDefinitionData>

XML tag <EventDefinitionData>
This XML Tag encapsulates all EventDefinitionData items.

XML tag <EventDefinition>
This XML Tag encapsulates an EventDefinition item.

XML tag <Name>
Specifies the name of this event type. This item is ontyriétional.

XML tag <Description>
Provides a short description of this event type. This iteonlig informational.

XML tag <Class>

The Event Class of this event. The event class helps sepaents from different vendors or
applications. There are some pre defined event classes:

0x0001
Data Translation Event

XML tag <ID>

A number that uniquely identifies this event within the spedivent class. For

QuickDataAcq for .NET, all ID values are enum’s startingx000.
public const int QuickDataAcgEvent Base = 0x1000;

XML tag <Type>
Determines the basic event type.

“Point”
The definition describes a singular event in time.

“Ranged”
The definition describes an event with a startTime anddmfime.

XML tag <UseslIDatal>

Determines whether this event usesibetal field in the event data chunk. This feature
could be used by automated event displays to determine whgtheameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UseslData2>

Determines whether this event usesibeta? field in the event data chunk. This feature
could be used by automated event displays to determine whgtheameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UsesDDatal>

Determines whether this event usesdBatal field in the event data chunk. This feature
could be used by automated event displays to determine whgtheameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UsesDData2>

Determines whether this event usesdbBata2 field in the event data chunk. This feature
could be used by automated event displays to determine whgtheameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UsesDData3>

Determines whether this event usesdBata3 field in the event data chunk. This feature
could be used by automated event displays to determine whgtheameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UsesDData4>

Determines whether this event usesdBata4 field in the event data chunk. This feature
could be used by automated event displays to determine whgtheameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <DescriptionlDatal>

Specifies description text faDatal in the event data chunk. This feature could be used by
automated event displays to show a customized parameteiptescr

XML tag <DescriptioniData2>

Specifies description text fdData2 in the event data chunk. This feature could be used by
automated event displays to show a customized parameteiptescr

XML tag <DescriptionDDatal>

Specifies description text faDatal in the event data chunk. This feature could be used by
automated event displays to show a customized parameteiptescr

XML tag <DescriptionDData2>

Specifies description text faData2 in the event data chunk. This feature could be used by
automated event displays to show a customized parameteiptescr

XML tag <DescriptionDData3>

Specifies description text faiData3 in the event data chunk. This feature could be used by
automated event displays to show a customized parameteiptescr

XML tag <DescriptionDData4>

Specifies description text faData4 in the event data chunk. This feature could be used by
automated event displays to show a customized parameteiptescr

XML tag <Parameterl>

Specifies a data value associated with the event. on@e, the upper limit of a Between
event.

XML tag <Parameter2>

Specifies a data value associated with the event. on@e, the lower limit of a Between
event.

XML tag <Tolerance >
Specifies a tolerance factor for doing comparisons.

XML tag <UsesParameterl1>
Determines whethdParameterlis used by this event.

XML tag <UsesParameter2>
Determines whethd?arameter2is used by this event.

XML tag <UsesTolerance >
Determines whethefoleranceis used by this event.

XML tag <DescriptionParameter1>

Specifies description text fétarameterl This feature could be used by automated event
displays to show a customized parameter description.

XML tag <DescriptionParameter2>

Specifies description text fétarameter2 This feature could be used by automated event
displays to show a customized parameter description.

XML tag <DescriptionTolerance>

Specifies description text for Tolerance. This featuredcbelused by automated event
displays to show a customized parameter description.

Event data chunk

This chunk contains events in binary form. The declaratidghesfe events can and should be
found in the Event Definition Chunk.

Int64 chunkID = 0x5000;
Int64 chunkSize;

Int64 eventCount;

Event [eventCount] event;
Padded to 64 kB...

Where:

Event =

{
Int32 Class;
Int32 ID;
Int32 channellndex;
Int64 eventStartindex;
Int64 eventEndIndex;
Int32 iDatal;
Int32 iData2;
Double dDatal;
Double dData2;
Double dDatag3;
Double dData4;

Class

The Event Class of this event. The event class helps sepaents from different vendors or
applications. There are some pre defined event classes:

0x0001
Data Translation Event

ID
A number that uniquely identifies this event within the spedigvent class.

eventStartindex

For ranged events, this is the data sample at which tim teeted. For singular events, this
is the data sample where the event occurred.

eventEndIndex

For ranged events, this is the data sample where the @vished. For singular events, this
field has no meaning.

iDatal

A 32 bit signed integer parameter. The purpose of this gdeains determined by event class
and event ID.

iData2

A 32 bit signed integer parameter. The purpose of this gdeans determined by event class
and event ID.

dDatal

A 64 bit IEEE floating point parameter. The purpose of thisrpater is determined by event
class and event ID.

dData2

A 64 bit IEEE floating point parameter. The purpose of thismater is determined by event
class and event ID.

dData3

A 64 bit IEEE floating point parameter. The purpose of thisrpater is determined by event
class and event ID.

dData4

A 64 bit IEEE floating point parameter. The purpose of thismater is determined by event
class and event ID.

Index Chunk

This chunk — if present — contains a directory of all chunks irfitidt is used to scan
through the file rapidly.

Int64 chunkID = 0x6000;
Int64 chunkSize;

Int64 indexCount;

Index [indexCount] event;
Padded to 64 kB...

Where:
Index =

{
Int64 dataStartindex;

Int64 perChannelDatalLengthinSamples;
Int64 chunklID;

Int64 grouplD;

Int64 fileOffset;

h

dataStartindex

For data chunks, this is the continued index of the firstelaty in this chunk. For example,
if there were two data chunks in the file, each contaid®@p values per channel, the
dataStartindex for the first data chunk would be 0, and ttaStatindex for the second
would be 1000. This helps locate the correct data chunk without scahrongh the whole
file.

chunkID
The chunk ID value.

grouplID
The group ID value.

fileOffset
The offset within the file; where this chunk starts.

