

DT High Performance File Format Specification

Data Translation, Inc. (DTI) Engineering staff has prepared this guide for use by DTI
personnel as an explanation of the proper use and operation of DTI equipment and software.
The drawings and specifications contained herein are the property of DTI and shall neither be
reproduced in whole or in part without DTI's prior written approval nor be implied to grant
any license to make, use, or sell DTI equipment or software, manufactured in accordance
herewith.

Information furnished by Data Translation is believed to be accurate and reliable. However,
no responsibility is assumed by Data Translation for its use; nor for any infringements of
patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under patent rights of Data Translation, Inc. Data Translation
reserves the right to make changes without notice in the specifications and materials contained
herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical or arithmetic
errors, company policy, and price information.

Document Number: 22760, Rev A

Copyright © 2007 Data Translation, Inc. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Data Translation, Inc.

Data Translation, Inc.
100 Locke Drive

Marlborough, MA 01752-1192, USA
Telephone (508) 481-3700

Home Page http://www.datatranslation.com/

Abstract

This specification documents the native binary file format to be supported across
all Data Translation application software.

Revision History

Date Author(s) Version Comment
02-25-2006 Dirk Schmischke 0.0 Initial Draft

03-03-2006 Sean Sullivan 0.5

Added :
Header Chunk – Int32 CreatorId
 Int64 IndexChunkOffset
Channel Info Chunk – Int32 NumChannels
Channel Info Xml - PerChannelSampleRate
 InputChannelNumber
Data Chunk - Int64 dataStartIndex

Clarified RangeMin, RangeMax, Offset and Gain
ChannelInformation field meanings.

04-27-2006 Sean Sullivan 1.0 Updated EventDefinition and EventData chunk

05-09-2006 Sean Sullivan 1.1
Added tags to EventDefintion for event
parameters.

03-12-2007 Brian Wessels 1.2 Editorial changes.

Table of Contents

DT High Performance File Format Specification..1
Description...3
Generic chunk ..4
Header chunk ...5
Channel information chunk ..6
Data chunk...11
Event Definition chunk...12
Event data chunk..17
Index Chunk...19

Description
The HPFF is a chunk file format. Each chunk is defined by a chunk ID, a chunk size including
everything, and the chunk data.

The following chunk types are currently defined:
Header chunk
Channel information chunk
Data chunk
Event descriptor chunk
Event data chunk
Index chunk
Trigger chunk

More chunk types could be added easily if the need arises.

Usually an HPF file has the following structure:
Header chunk
Channel information chunk
Data chunk
Data chunk
Data chunk
…

The amount of data in a data chunk is not defined but must be a multiple of 64 KB. The
implementing classes will let you set the data chunk size.

Note: All fields described in this document are required, but all readers of the format are not
required to support all field values. For example, an application may choose to only support
the randomDataChannel channel type, but it must be aware that other types exist and choose
to ignore them.

Generic chunk
This section describes the generic layout of a chunk. Every chunk starts with the following
structure. Every chunk is padded to 64 KB; this is an artefact of using un-buffered file IO.

Int64 chunkID;
Int64 chunkSize;
Int32[] chunkData;
Padded to 64 KB

chunkID
Identifies the chunk type.

chunkSize
This is the size of this chunk in bytes, including header data. Add this number to the start
address of this chunk to find the next chunk.

chunkData
This is the payload of this chunk. The structure of the chunkData depends on the chunkID.

Header chunk
Every HPF file has a header chunk in the first position. It identifies the file and file version.

Int64 chunkID = 0x1000;
Int64 chunkSize = 0x10000;
Int32 CreatorId = FourCC (‘datx’)
Int64 fileVersion = 0x10001; // major minor
Int64 IndexChunkOffset;
Char [] XMLdata;
Padded to 64 kB…

Where XMLData has this (extensible) structure:
<RecordingDate>
 “Recording Date text”
</RecordingDate>

fileVersion
This field contains the major and minor version information for the file. The current version is
0x10001.

XML tag <RecordingDate>
This field specifies the start time of the recording. Its format is yyyy/mm/dd hh:nn:ss.xxx.

“yyyy” – year encoded as 4 digits.
“mm” – month encoded as 2 digits.
“dd” – day encoded as 2 digits.
“hh” – hour encoded as 2 digits. Range 0-23.
“nn” – minute encoded as 2 digits.
“ss” – second encoded as 2 digits.
“xxx” – fractional part of a second encoded as zero to 12 digits.

Channel information chunk
Every HPF file should have at least one channel information chunk. This chunk specifies the
recorded data channels.

In one channel information chunk, all channels must specify the same time increment. This
means all channels must contain the same amount of data per time unit. You can add more
channel information chunks if different time increments per channel must be used.

Int64 chunkID = 0x2000;
Int64 chunkSize;
Int32 groupID;
Int32 NumberOfChannels;
Char [] XMLdata;
Padded to 64 kB…

Where XMLData has this (extensible) structure:
<ChannelInformationData>
 <ChannelInformation>
 <Name>
 “channel name text”
 </Name>
 <Unit>
 “channel unit text”
 </Unit>
 < PhysicalChannelNumber >
 “Physical Channel Number text“
 </ PhysicalChannelNumber >
 <PerChannelSampleRate>
 “per channel sample rate“
 </PerChannelSampleRate>
 <ChannelType>
 “channelType text”
 </ChannelType>
 <AssignedTimeChannelIndex>
 “AssignedTimeChannelIndex text”
 </AssignedTimeChannelIndex >
 <DataType>
 “DataType text”
 </DataType>
 <DataIndex>
 “Dataindex text”
 </Dataindex>
 <StartTime>
 “StartTime text”
 </StartTime>
 <TimeIncrement>
 “TimeIncrement text”
 </TimeIncrement>
 <RangeMin>
 “RangeMin text”

 </RangeMin>
 <RangeMax>
 “RangeMax text”
 </RangeMax>
 <DataScale>
 “DataScale text”
 </DataScale>
 <DataOffset>
 “DataOffset text”
 </DataOffset>
 <SensorScale>
 “SensorScale text”
 </SensorScale>
 <SensorOffset>
 “SensorOffset text”
 </SensorOffset>
 </ChannelInformation>
 … (More ChannelInformation items are possible:)
</ChannelInformationData>

groupID
It is possible to have more than one channel information chunk in one file. This field
identifies the data chunks that belong to this channel information chunk. Additional channel
information chunks with different groupID fields will usually be used if different time
increments per channel are used.

XML tag <ChannelInformationData>
This XML Tag encapsulates all ChannelInformation items.

XML tag <ChannelInformation>
This XML tag encapsulates a ChannelInformation item.

XML tag <Name>
Specifies the channel name string.

XML tag <Unit>
Specifies the engineering unit string.

XML tag <PhysicalChannelNumber>
The physical input channel number of the device the data was acquired from.

XML tag <PerChannelSampleRate>
The sample rate (per second) at which the data was acquired. For randomDataChannels this is
used to calculate the time between samples.

XML tag <ChannelType>
This tag specifies the type of the channel. Currently three types are implemented:

“calculatedTimeChannel”
The channel data is implicitly defined by startTime and timeIncrement. It is calculated on the
fly using these two fields. No additional data is stored in this file. The fields
assignedTimeChannelIndex, dataType, dataIndex, rangeMin, rangeMax, dataScale and
dataOffset are undefined for this channel type.

“randomDataChannel”
The channel data is contained in data chunks. The data could have random values. The
startTime and timeIncrement fields are not defined for this channel type.

“monotonicDataChannel”
The channel data is contained in data chunks. The data must have strictly monotonic
increasing values. This channel type could be used if – for some reason – a calculated time
channel is not sufficient. The advantage of this type over the random data channel type is that
binary searching can be used to find specific entries, and it is easier to determine if data is
within a clipping rectangle or not.

XML tag <AssignedTimeChannelIndex>
This field specifies which channel should be used as X-axis data for this channel. If the field
is set to -1, no X-axis data is assigned to this channel. This could mean that this channel is
used as X-axis data for other channels.

If this field contains a value greater than or equal to zero and less than the number of
<ChannelInformation> items, a channel containing X-axis data is assigned to this channel.
The assigned channel data is always taken from data with the same groupID.
Note: This field is not defined for <ChannelType> == “calculatedTimeChannel”.

XML tag <DataType>
This field specifies the data type for this channel.
Note: This field is not defined for <ChannelType> == “calculatedTimeChannel”.
Currently implemented data types are:

“Int16”
16 bit signed integer.

“Uint16”
16 bit unsigned integer.

“Int32”
32 bit signed integer.

“Float”
32 bit IEEE floating point number.

“Double”
64 bit IEEE floating point number.

XML tag <DataIndex>
This field specifies at which location the channel data could be found in the channel
descriptor table in the data chunk.
Note: This field is not defined for <ChannelType> == “calculatedTimeChannel”.

XML tag <StartTime>
This field specifies the start time of a calculated time channel. Its format is yyyy/mm/dd
hh:nn:ss.xxx or “0.” If this field is “0,” the channel specifies time relative to the beginning of
recording.

“yyyy” – year encoded as 4 digits.
“mm” – month encoded as 2 digits.
“dd” – day encoded as 2 digits.
“hh” – hour encoded as 2 digits. Range 0-23.
“nn” – minute encoded as 2 digits.
“ss” – second encoded as 2 digits.
“xxx” – fractional part of a second encoded as up to 12 digits.
Note: This field is only defined for <ChannelType> == “calculatedTimeChannel”.

XML tag <TimeIncrement>
This field specifies the time increment of a calculated time channel. The time increment is
given in seconds. 1.0 means one second.
Note: This field is only defined for <ChannelType> == “calculatedTimeChannel”.

XML tag <RangeMin>
This field contains the minimum possible value of a data sample in the associated data chunk.
For example, data whose source is a 16-bit binary encoding A/D converter would have a
RangeMin = 0, and RangeMax = 65535.
Note: This field is not defined for <ChannelType> == “calculatedTimeChannel”.

XML tag <RangeMax>
This field contains the maximum possible value of a data sample in the associated data chunk.
For example, data whose source is a 16-bit binary encoding A/D converter would have a
RangeMin = 0, and RangeMax = 65535.
Note: This field is not defined for <ChannelType> == “calculatedTimeChannel”.

XML tag <DataScale>
This field specifies the scaling of the data used to convert it to Volts. The raw data in the data
chunk can be converted to Volts using the equation dataValue = dataScale * rawdata +
dataOffset.
Note: This field is not defined for <ChannelType> == “calculatedTimeChannel”.

XML tag <DataOffset>
This field specifies the offset of the data. The raw data in the data chunk can be converted to
Volts using the equation dataValue = dataScale * rawdata + dataOffset.
Note: This field is not defined for <ChannelType> == “calculatedTimeChannel”.

XML tag <SensorScale>
This field specifies the sensor scaling of the data, used to convert it from voltage to its natural
unit. The voltage data can be converted to its natural unit (psi for example) using the equation
dataValue = dataScale * voltageValue + dataOffset.
Note: This field is not defined for <ChannelType> == “calculatedTimeChannel”.

XML tag <SensorOffset>
This field specifies the sensor offset of the data. The voltage data can be converted to its
source unit (volts for example) using the equation dataValue = dataScale * voltageData +
dataOffset.
Note: This field is not defined for <ChannelType> == “calculatedTimeChannel”.

Data chunk
This chunk type contains the data.

Int64 chunkID = 0x3000;
Int64 chunkSize;
Int32 groupID;
Int64 dataStartIndex;
Int32 channelDataCount;
ChannelDescriptor [channelDataCount] channelDescriptor;
Int32 [] data;
Padded to 64 kB…

Where:
ChannelDescriptor =
{
 Int32 offset;
 Int32 length;
};

groupID
It is possible to have more than one channel information chunk in one file. This field
identifies the channel information chunk that belongs to this data chunk. Additional channel
information chunks with different groupID fields will usually be used if different time
increments per channel are used.

dataStartIndex
For data chunks, this is the continued index of the first data entry in this chunk. For example,
if there were two data chunks in the file, each containing 1000 values per channel, the
dataStartIndex for the first data chunk would be 0, and the dataStartIndex for the second
would be 1000. This helps locate the correct data chunk without scanning through the whole
file.

channelDataCount
The number of channel descriptor entries.

offset
The byte offset from the beginning of this chunk where the data of this channel starts.

length
The byte length of the channel’s data.

Event Definition chunk
The data in this chunk declares the event types that might be seen in the Event Data Chunk.

Int64 chunkID = 0x4000;
Int64 chunkSize;
Int32 definitionCount;
Char [] XMLdata;
Padded to 64 kB…

Where XMLData has this (extensible) structure:

<EventDefinitionData>
 <EventDefinition>
 <Name>
 “Event name text”
 </Name>
 <Description>
 “Event description text”
 </Description>
 <Class>
 “Event class text”
 </Class>
 <ID>
 “Event ID text”
 </ID>
 <Type>
 “Event type text”
 </Type>
 <UsesIData1>
 “true or false”
 </ UsesIData1>
 <UsesIData2>
 “true or false”
 </ UsesIData2>
 <UsesDData1>
 “true or false”
 </ UsesDData1>
 <UsesDData2>
 “true or false”
 </ UsesDData2>
 <UsesDData3>
 “true or false”
 </ UsesDData3>
 <UsesDData4>
 “true or false”
 </ UsesDData4>
 <DescriptionIData1>
 “Description text for iData1”
 </ DescriptionIData1>
 <DescriptionIData2>

 “Description text for iData2”
 </ DescriptionIData2>
 <DescriptionDData1>
 “Description text for dData1”
 </ DescriptionDData1>
 <DescriptionDData2>
 “Description text for dData2”
 </ DescriptionDData2>
 <DescriptionDData3>
 “Description text for dData3”
 </ DescriptionDData3>
 <DescriptionDData4>
 “Description text for dData4”
 </ DescriptionDData4>
 <Parameter1>
 “Parameter1 value”
 </ Parameter1>
 <Parameter2>
 “Parameter2 value”
 </ Parameter2>
 <Tolerance >
 “Tolerance value”
 </ Tolerance>
 <UsesParameter1>
 “true or false”
 </ UsesParameter1>
 <UsesParameter2>
 “true or false”
 </ UseParameter2>
 <UseTolerance>
 “true or false”
 </ UseTolerance>
 <DescriptionParameter1>
 “Description text for Parameter1”
 </ DescriptionParameter1>
 <DescriptionParameter2>
 “Description text for Parameter2”
 </ DescriptionParameter2>
 <DescriptionTolerance>
 “Description text for Tolerance”
 </ DescriptionTolerance>
 </EventDefinition>
 … more EventDefinition items
</EventDefinitionData>

XML tag <EventDefinitionData>
This XML Tag encapsulates all EventDefinitionData items.

XML tag <EventDefinition>
This XML Tag encapsulates an EventDefinition item.

XML tag <Name>
Specifies the name of this event type. This item is only informational.

XML tag <Description>
Provides a short description of this event type. This item is only informational.

XML tag <Class>
The Event Class of this event. The event class helps separate events from different vendors or
applications. There are some pre defined event classes:

0x0001
Data Translation Event

XML tag <ID>
A number that uniquely identifies this event within the specified event class. For
QuickDataAcq for .NET, all ID values are enum’s starting at 0x1000.
public const int QuickDataAcqEventBase = 0x1000;

XML tag <Type>
Determines the basic event type.

“Point”
The definition describes a singular event in time.

“Ranged”
The definition describes an event with a startTime and an endTime.

XML tag <UsesIData1>
Determines whether this event uses the iData1 field in the event data chunk. This feature
could be used by automated event displays to determine whether a parameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UsesIData2>
Determines whether this event uses the iData2 field in the event data chunk. This feature
could be used by automated event displays to determine whether a parameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UsesDData1>
Determines whether this event uses the dData1 field in the event data chunk. This feature
could be used by automated event displays to determine whether a parameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UsesDData2>
Determines whether this event uses the dData2 field in the event data chunk. This feature
could be used by automated event displays to determine whether a parameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UsesDData3>
Determines whether this event uses the dData3 field in the event data chunk. This feature
could be used by automated event displays to determine whether a parameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <UsesDData4>
Determines whether this event uses the dData4 field in the event data chunk. This feature
could be used by automated event displays to determine whether a parameter needs to be
displayed.

“True”
Use the field.

“False”
Do not use the field.

XML tag <DescriptionIData1>
Specifies description text for iData1 in the event data chunk. This feature could be used by
automated event displays to show a customized parameter description.

XML tag <DescriptionIData2>
Specifies description text for iData2 in the event data chunk. This feature could be used by
automated event displays to show a customized parameter description.

XML tag <DescriptionDData1>
Specifies description text for dData1 in the event data chunk. This feature could be used by
automated event displays to show a customized parameter description.

XML tag <DescriptionDData2>
Specifies description text for dData2 in the event data chunk. This feature could be used by
automated event displays to show a customized parameter description.

XML tag <DescriptionDData3>
Specifies description text for dData3 in the event data chunk. This feature could be used by
automated event displays to show a customized parameter description.

XML tag <DescriptionDData4>
Specifies description text for dData4 in the event data chunk. This feature could be used by
automated event displays to show a customized parameter description.

XML tag <Parameter1>
Specifies a data value associated with the event. For example, the upper limit of a Between
event.

XML tag <Parameter2>
Specifies a data value associated with the event. For example, the lower limit of a Between
event.

XML tag <Tolerance >
Specifies a tolerance factor for doing comparisons.

XML tag <UsesParameter1>
Determines whether Parameter1 is used by this event.

XML tag <UsesParameter2>
Determines whether Parameter2 is used by this event.

XML tag <UsesTolerance >
Determines whether Tolerance is used by this event.

XML tag <DescriptionParameter1>
Specifies description text for Parameter1. This feature could be used by automated event
displays to show a customized parameter description.

XML tag <DescriptionParameter2>
Specifies description text for Parameter2. This feature could be used by automated event
displays to show a customized parameter description.

XML tag <DescriptionTolerance>
Specifies description text for Tolerance. This feature could be used by automated event
displays to show a customized parameter description.

Event data chunk
This chunk contains events in binary form. The declaration of these events can and should be
found in the Event Definition Chunk.

Int64 chunkID = 0x5000;
Int64 chunkSize;
Int64 eventCount;
Event [eventCount] event;
Padded to 64 kB…

Where:
Event =
{
 Int32 Class;
 Int32 ID;

Int32 channelIndex;
 Int64 eventStartIndex;
 Int64 eventEndIndex;
 Int32 iData1;
 Int32 iData2;
 Double dData1;
 Double dData2;
 Double dData3;
 Double dData4;
};

Class
The Event Class of this event. The event class helps separate events from different vendors or
applications. There are some pre defined event classes:

0x0001
Data Translation Event

ID
A number that uniquely identifies this event within the specified event class.

eventStartIndex
For ranged events, this is the data sample at which the event started. For singular events, this
is the data sample where the event occurred.

eventEndIndex
For ranged events, this is the data sample where the event finished. For singular events, this
field has no meaning.

iData1
A 32 bit signed integer parameter. The purpose of this parameter is determined by event class
and event ID.

iData2
A 32 bit signed integer parameter. The purpose of this parameter is determined by event class
and event ID.

dData1
A 64 bit IEEE floating point parameter. The purpose of this parameter is determined by event
class and event ID.

dData2
A 64 bit IEEE floating point parameter. The purpose of this parameter is determined by event
class and event ID.

dData3
A 64 bit IEEE floating point parameter. The purpose of this parameter is determined by event
class and event ID.

dData4
A 64 bit IEEE floating point parameter. The purpose of this parameter is determined by event
class and event ID.

Index Chunk
This chunk – if present – contains a directory of all chunks in this file. It is used to scan
through the file rapidly.

Int64 chunkID = 0x6000;
Int64 chunkSize;
Int64 indexCount;
Index [indexCount] event;
Padded to 64 kB…

Where:
Index =
{
 Int64 dataStartIndex;
 Int64 perChannelDataLengthInSamples;
 Int64 chunkID;
 Int64 groupID;
 Int64 fileOffset;
};

dataStartIndex
For data chunks, this is the continued index of the first data entry in this chunk. For example,
if there were two data chunks in the file, each containing 1000 values per channel, the
dataStartIndex for the first data chunk would be 0, and the dataStartIndex for the second
would be 1000. This helps locate the correct data chunk without scanning through the whole
file.

chunkID
The chunk ID value.

groupID
The group ID value.

fileOffset
The offset within the file; where this chunk starts.

