
UEIPAC SDK User Manual

UEIPAC Software Development Kit
User Manual 3.0.6

December 2015 Edition

© Copyright 2015 United Electronic Industries, Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means,
electronic, mechanical, by photocopying, recording, or otherwise without prior written permission.

1

UEIPAC SDK User Manual

Table of contents
1. Introduction..6
2. Setting up a development system..8

2.1. Windows Host..8
2.2. Linux Host...10

Preparing your 64bit Linux Host...10
Installing UEIPAC software on your Linux host...10

2.3. SDK directory layout...11
3. Configuring the UEIPAC...12

3.1. Connecting through the serial port..12
3.2. Root file system...15

Booting from the SD card..15
File-system corruption...16
Setting-up root file system read-only..17
Booting from a RAM disk...17
Booting from an NFS share...19

3.3. Configuring the Network...20
Configuring a static IP address..20
Changing the default packet size (MTU)...20
Configuring dynamic IP address (using a DHCP server)..20
Name resolution...21
Connecting through Telnet...21
Connecting through SSH...21
Configuring DHCP server...21

3.4. Configuring Date and Time...22
Changing the date..22
Changing the time zone...22
Connecting to a NTP server...22

3.5. Changing the password..23
3.6. Configuring the web server...23
3.7. System logger..23

4. Transferring files..25
4.1. NFS..25
4.2. FTP Client..25
4.3. FTP Server...25
4.4. SSH..25
4.5. TFTP Client...26
4.6. Windows shared directory...26

2

UEIPAC SDK User Manual

5. Connecting USB devices..27
5.1. USB Mass Storage...27
5.2. Wifi network interface...28

Load kernel modules..28
Connection to an open access point...29
Connection to an access point with WEP security...30
Connection to an access point with WPA/WPA2 security...30
Direct connection to another computer in ad-hoc mode..31

5.3. UMTS/GSM modem...31
Prerequisite..32
Manual configuration...32
Automatic startup...34

5.4. Serial Port..35
Load kernel modules..35
Automatic startup...35

5.5. LibUSB..36
Prerequisite..36
Write a program using libusb...36

6. Serial Port...37
6.1. UEI Serial Server...37
6.2. Using the CPU layer’s serial port for general purpose......................................39

7. Testing the I/O layers...40
7.1. devtbl...40
7.2. Run examples...40
7.3. PowerDNA server..41

8. Application development...42
8.1. Prerequisites...42
8.2. Compiling and running Hello World...42
8.3. Debugging Hello World...43
8.4. PowerDNA Library..44

PowerDNA API...46
Building and running the examples...49
Building your own program...49

8.5. Real-Time Programming...50
8.6. Running a program automatically after boot...51
8.7. Running a program periodically..51

9. Firmware installation and upgrade..53
9.1. Installing or upgrading the Linux kernel...53

UEIPAC with Freescale 5200 CPU (100MBit Ethernet)...53
UEIPAC with Freescale 8347 CPU (1GBit Ethernet)...54

3

UEIPAC SDK User Manual

9.2. Initializing an SD card...54
On a Linux PC...54
On the UEIPAC itself..56

9.3. Running the standard DAQBios firmware..57
Configure UEIPAC with Freescale 5200 CPU to run DAQBios firmware...............57
Configure UEIPAC with Freescale 5200 CPU to run Linux.....................................57
Configure UEIPAC with Freescale 8347 CPU to run DAQBios firmware...............57
Configure UEIPAC with Freescale 8347 CPU to run Linux.....................................57

10. Third-party software..58
10.1. Third-party libraries installed by default on UEIPAC.......................................58

zeromq...58
libmodbus..58
expat...58
sqlite...58
gpsd..58
GSL..58
libusb..58
mosquito..58
audiofile...59

10.2. Building third-party software from source..59
Software coming with an autoconf configure script..59
Other software...59

Appendix A RTMAP API..B-1
a DqRtDmapInit...B-1
b DqRtDmapAddChannel..B-1
c DqRtDmapGetInputMap...B-2
d DqRtDmapGetInputMapSize...B-2
e DqRtDmapGetOutputMap..B-3
f DqRtDmapGetOutputMapSize...B-3
g DqRtDmapReadScaledData...B-3
h DqRtDmapReadRawData16...B-4
i DqRtDmapReadRawData32..B-5
j DqRtDmapWriteScaledData..B-5
k DqRtDmapWriteRawData16..B-6
l DqRtDmapWriteRawData32...B-6
m DqRtDmapStart...B-7
n DqRtDmapStop...B-7
o DqRtDmapRefresh...B-8
p DqRtDmapClose...B-8

Appendix B Event API..B-1

4

UEIPAC SDK User Manual

a DqEmbConfigureEvent...B-1
b DqEmbWaitForEvent..B-1
c DqEmbCancelEvent..B-1

Appendix C Using Eclipse IDE to program the UEIPAC.....................C-1
a Download and Install Eclipse...C-1
b Set-up preferences..C-1
c Open and Build examples...C-2
d Download program to target...C-6
e Execute program...C-16
f Debugging your program on the UEIPAC..C-18

Appendix D Booting from NFS..D-23
a Configure shared RFS on host PC..D-23
b Configure Uboot...D-23

Appendix E Building the Linux kernel...E-25
a Download and patch kernel source...E-25
b Configure and build the kernel for UEIPAC-300 and UEIPAC-600......................E-26
c Configure and build the kernel for UEIPAC-300-1G, UEIPAC-600-1G and RACK
versions..E-26

Appendix F Converting root file system to read only..........................F-28
a Modify RFS on SD card..F-28
b Configure Uboot..F-29

Appendix G Updating RAM disk image...G-30
Appendix H Bonding/Teaming Ethernet ports..H-32

5

UEIPAC SDK User Manual

1. Introduction
The UEIPAC extends the capability of the PowerDNA and PowerDNR distributed data
acquisition systems. With the UEIPAC, you can create programs that will execute directly
on the PowerDNA or PowerDNR hardware. You can create standalone applications that
don’t require any host PC to control and monitor your hardware.

A Linux kernel replaces the standard “DAQBIOS” firmware in flash memory and uses a
SD-Card as its local file system. This file system contains the other components of the
operating system such as libraries, utilities, init script and daemons.

After power-up you have a ready to go Linux operating system with FTP and web servers
as well as a command line shell accessible from either the serial port or telnet and SSH
over the network.

You can also configure the UEIPAC to execute your application after booting-up.

Your application runs as a regular Linux process giving you access to the standard
POSIX API provided by the GNU C runtime library (glibc) as well as any other library
that can be compiled for Linux (for example: libxml, libaudiofile…).

The UEIPAC SDK comes with a library dedicated to communicate with the UEIPAC I/O
layers.
It provides a subset of the hosted PowerDNA API; allowing you to reuse existing
programs that were designed to run on a host PC and communicate with PowerDNA over
the network (see section 8.4 for more information).
You can port those programs to run directly on the UEIPAC with few modifications.

6

UEIPAC SDK User Manual

7

User Space

Kernel Space

Hardware

Networking
File

System
PowerDNA

Drivers

User Application

C Library Other library… PowerDNA Library

CPU layer AI layer AO layer DIO layer Other layer

UEIPAC SDK User Manual

2. Setting up a development system
A development system is composed of the software tools necessary to create an
embedded application targeting Linux on a PowerPC processor.

The development tools can run on a Linux PC or on a Windows PC using the Cygwin
environment.

It contains the following:
 GCC cross-compiler targeting the UEIPAC PPC processor.
 GNU toolchain tools such as make.
 Standard Linux libraries such as glibc.

PowerDNA library to access the various PowerDNA data acquisition devices

2.1. Windows Host
The UEIPAC cross-compiler depends on libraries provided by the Cygwin project.

Cygwin is a collection of tools which provide a Linux look and feel environment for
Windows and a DLL which acts as a Linux API layer providing substantial Linux API
functionality.

Cygwin is available for free as an open source project but you can also purchase a
commercial license (with technical support) from Red Hat:
http://www.redhat.com/services/custom/cygwin/

If you don’t have Cygwin already installed, download and run the installer setup_x86.exe
from http://www.cygwin.com.

UEIPAC software is only compatible with the 32-bit release of Cygwin. Make sure you
select setup_x86.exe (do not use setup_x64.exe).

Running setup_x86.exe will install or update Cygwin. The UEIPAC SDK requires a few
cygwin packages from the following categories:

 Base:tar and gzip packages are required.
 Devel: the make package is required.
 Net: Network utility packages such as ftp, tftp, openssh and telnet are optional.

You can use the Search box to easily find the three required packages and make sure they
are enabled.

8

http://www.cygwin.com/
http://www.redhat.com/services/custom/cygwin

UEIPAC SDK User Manual

Insert the “UEIPAC SDK” CDROM in your CD drive. Then open a cygwin command
line shell.

Go to the CD’s root directory (the example below assumes that the CD-ROM is the D:
drive):

cd /cygdrive/d
./install.sh

The UEIPAC installer modifies the file .bash_profile. It adds the path to UEIPAC cross-
compiler to your PATH variable and creates a new environment variable UEIPACROOT
that contains the UEIPAC software installation directory.
To activate those changes immediately you can either close the terminal window and
open a new one or type the command below:

source ~/.bash_profile

9

UEIPAC SDK User Manual

2.2. Linux Host
Preparing your 64bit Linux Host
The UEIPAC cross-compiler is a 32-bit program. You need to install 32-but run-time
libraries to run it on a 64-bit Linux host

Under Ubuntu run the command below:
sudo apt-get install lib32z1

Under RedHat,CentOS or Fedora run the command below:
sudo yum install glibc.i686 zlib.i686

Installing UEIPAC software on your Linux host
Insert the “UEIPAC SDK” CDROM in your CD drive. You might need to mount it if
your Linux distribution doesn’t detect the CDROM automatically.
To mount it, type:

mount /dev/cdrom /mnt/cdrom
cd /mnt/cdrom
bash install.sh

The UEIPAC installer modifies the file .bash_profile. It adds the path to UEIPAC cross-
compiler to your PATH variable and creates a new environment variable UEIPACROOT
that contains the UEIPAC software installation directory:

#PowerDNA setup: This line was added by the UEIPAC install script
PATH=$PATH:"/home/frederic/uei/ueipac-2.6.0/powerpc-604-linux-
gnu/bin"
export PATH
UEIPACROOT="/home/frederic/uei/ueipac-2.6.0"
export UEIPACROOT
#PowerDNA setup end

The .bash_profile file is automatically sourced at login.
To activate those changes immediately, you can either logout and log back in or type the
command below:

source ~/.bash_profile

You will need to manually update PATH and create UEIPACROOT if your Linux PC is
using a different shell interpreter than bash.

For example:
 if you are using csh, insert PATH and UEIPACROOT in ~/.login
 if you are using dash insert PATH and UEIPACROOT in ~/.profile

10

UEIPAC SDK User Manual

2.3. SDK directory layout
 powerpc-604-linux-gnu: the GCC cross compiler
 doc: the manuals in PDF and HTML format
 kernel: the kernel source code and binary image
 rfs.tgz: archive containing the root file system installed on the SD card
 uImage: the kernel image stored in your UEIPAC flash memory
 sdk: the UEIPAC software development kit

11

UEIPAC SDK User Manual

3. Configuring the UEIPAC
Your PowerDNA/PowerDNR hardware must be pre-configured to run Linux:
 A Linux kernel is loaded in flash memory.

 An SD card containing the root file system is inserted.

Contact UEI to convert your PowerDNA/PowerDNR hardware to a UEIPAC if it is
configured with the standard “DAQBIOS” firmware.

3.1. Connecting through the serial port
Note that the serial port on the CPU layer is used as a console by default. However you
can free that serial port and use it as a general purpose serial port (see section …).

Connect the serial cable to the serial port on the UEIPAC and the serial port on your PC.

You will need a serial communication program:
 Windows: ucon, MTTTY, PuTTY or HyperTerminal.

 Linux: minicom, kermit or cu (part of the uucp package).

The UEIPAC uses the serial port settings: 57600 bits/s, 8 data bits, 1 stop bit and no
parity.
Run your serial terminal program and configure the serial communication settings
accordingly.

Connect the DC output of the power supply (24VDC) to the “Power In” connector on the
UEIPAC and connect the AC input on the power supply to an AC power source.

You should see the following message on your screen:

U-Boot 1.1.4 (Jan 10 2006 - 19:20:03)

CPU: MPC5200 v1.2 at 396 MHz
 Bus 132 MHz, IPB 66 MHz, PCI 33 MHz

Board: UEI PowerDNA MPC5200 Layer
I2C: 85 kHz, ready
DRAM: 128 MB
Reserving 349k for U-Boot at: 07fa8000
FLASH: 4 MB
In: serial
Out: serial
Err: serial

12

UEIPAC SDK User Manual

Net: FEC ETHERNET

Type "run flash_nfs" to mount root filesystem over NFS

Hit any key to stop autoboot: 5

This message is coming from the cube’s boot loader U-Boot. It waits 2 seconds to give
the user a chance to alter its configuration if necessary.
After the count-down ends, U-Boot loads the Linux kernel from flash, un-compresses it,
and starts it:

U-Boot 1.1.4 PowerDNA 3.2.1 (Dec 18 2006 - 10:41:01)

CPU: MPC5200 v1.2 at 396 MHz
 Bus 132 MHz, IPB 66 MHz, PCI 33 MHz

Board: UEI PowerDNA MPC5200 Layer
I2C: 85 kHz, ready
DRAM: 128 MB
FLASH: 4 MB
In: serial
Out: serial
Err: serial
Net: FEC ETHERNET

Type "run flash_nfs" to mount root filesystem over NFS

Hit any key to stop autoboot: 0
Booting image at ffd80000 ...
 Image Name: Linux-2.6.28.5-ueipac5200
 Created: 2009-05-01 14:31:47 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 1442840 Bytes = 1.4 MB
 Load Address: 00400000
 Entry Point: 004005e0
 Verifying Checksum ... OK
 Uncompressing Kernel Image ... OK
Using ueipac5200 machine description
Linux version 2.6.28.5-ueipac5200 (frederic@frederic-ubuntu64) (gcc
version 4.0.2) #1 PREEMPT Fri May 1 10:31:32 EDT 2009
Zone PFN ranges:
 DMA 0x00000000 -> 0x00008000
 Normal 0x00008000 -> 0x00008000
 HighMem 0x00008000 -> 0x00008000
Movable zone start PFN for each node
early_node_map[1] active PFN ranges
 0: 0x00000000 -> 0x00008000

13

UEIPAC SDK User Manual

Built 1 zonelists in Zone order, mobility grouping on. Total pages:
32512
Kernel command line: console=ttyPSC0,57600 root=62:1 rw
MPC52xx PIC is up and running!
PID hash table entries: 512 (order: 9, 2048 bytes)
clocksource: timebase mult[79364d9] shift[22] registered
I-pipe 2.4-04: pipeline enabled.
Console: colour dummy device 80x25
console [ttyPSC0] enabled
Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
Inode-cache hash table entries: 8192 (order: 3, 32768 bytes)
Memory: 126376k/131072k available (2808k kernel code, 4548k reserved,
116k data, 436k bss, 152k init)
Calibrating delay loop... 65.53 BogoMIPS (lpj=32768)
Mount-cache hash table entries: 512
net_namespace: 292 bytes
NET: Registered protocol family 16
DMA: MPC52xx BestComm driver
DMA: MPC52xx BestComm engine @f0001200 ok !
NET: Registered protocol family 2
IP route cache hash table entries: 1024 (order: 0, 4096 bytes)
TCP established hash table entries: 4096 (order: 3, 32768 bytes)
TCP bind hash table entries: 4096 (order: 2, 16384 bytes)
TCP: Hash tables configured (established 4096 bind 4096)
TCP reno registered
NET: Registered protocol family 1
audit: initializing netlink socket (disabled)
type=2000 audit(0.208:1): initialized
I-pipe: Domain Xenomai registered.
Xenomai: hal/powerpc started.
Xenomai: real-time nucleus v2.4.7 (Andalusia) loaded.
Xenomai: starting native API services.
Xenomai: starting POSIX services.
Xenomai: starting RTDM services.
VFS: Disk quotas dquot_6.5.1
Dquot-cache hash table entries: 1024 (order 0, 4096 bytes)
msgmni has been set to 247
io scheduler noop registered
io scheduler anticipatory registered (default)
io scheduler deadline registered
io scheduler cfq registered
Generic RTC Driver v1.07
Serial: MPC52xx PSC UART driver
f0002000.serial: ttyPSC0 at MMIO 0xf0002000 (irq = 129) is a MPC52xx
PSC
brd: module loaded
loop: module loaded
net eth0: Fixed speed MII link: 100FD
MPC52xx SPI interface probed at 0xf0000f00, irq0=141, irq1=142
mpc52xx_spi_init_mmc: SDCard is now ready

14

UEIPAC SDK User Manual

mpc52xx_mmc0: p1
mice: PS/2 mouse device common for all mice
TCP cubic registered
NET: Registered protocol family 17
EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
VFS: Mounted root (ext2 filesystem).
Freeing unused kernel memory: 152k init
init started: BusyBox v1.13.3 (2009-04-13 15:41:06 EDT)
loading modules
 pdnabus
 pdnadev
Starting Network...
Checking Network Configuration: [OK]
Loading Static Network Interface: [OK]
Checking Network Connection: [OK]
Starting inetd... [OK]
Starting local script...
PowerDNA Driver, version 2.1.0

Address Irq Model Option Phy/Virt S/N Pri LogicVer

0xc9080000 7 201 100 phys 0027153 0 02.09.03
0xc9090000 7 308 1 phys 0028647 0 02.0e.00
0xc90a0000 7 207 1 phys 0030353 0 02.0c.05
0xc90b0000 7 205 1 phys 0023120 0 02.09.03
0xc90c0000 7 403 1 phys 0034744 0 02.0e.00
0xc90d0000 7 503 1 phys 0025808 0 02.09.03

 [OK]

BusyBox v1.13.3 (2009-04-29 09:50:58 EDT) built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ #

You can now navigate the file system and enter standard Linux commands such as ls, ps,
cd…

3.2. Root file system
Booting from the SD card
The UEIPAC ships with the root file system entirely located on the SD card. It uses the
EXT2 format.

It is recommended to type the command “halt” before powering down the UEIPAC and
the command “reboot” to restart the UEIPAC.

15

UEIPAC SDK User Manual

If you power down abruptly the UEIPAC, the following message will appear at boot time:

EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended

You must check the file system for errors with the following commands:
mount -o remount,ro /
e2fsck /dev/sdcard1
e2fsck 1.38 (30-Jun-2005)
/dev/sdcard: clean, 702/124160 files, 6632/247872 blocks
reboot

File-system corruption
Powering down the UEIPAC while it is writing data to a file can cause file system
corruption even in a non-related part of the file system.

Files which never get written, and which may even be marked in the file-system as read-
only (such as files in /sbin or /lib), can still become corrupted.
The file-system will issue writes in a minimum size, typically 4KB, and a single 4KB
block may have data in it that is part of two different files. Those two files might even be
in different directories, or have different access permissions.
Thus, a simple write to a log file can result in a read and rewrite of part of any file on the
partition. When power goes down in the middle of that rewrite, the result is silent data
corruption.

File-systems also have to modify a lot of metadata in various places in order to just create
a one byte file. A power failure during that operation could, for example, destroy the
names of several other files.

There are three ways to set-up the UEIPAC to ensure that it survives an un-controlled
power failure:

 Set-up the root file system on a read-only partition and store temporary files in a
RAM disk.
This method ensures that the UEIPAC will always boot unless the SD card itself
becomes un-operational (because of wear out or random failure). It consumes a
little bit of memory to store temporary files (log files, lock files etc…)

 Load the root file system as a RAM disk
This method is more robust but consumes more memory (around 10 MBytes) and
only works on UEIPAC 1G (Gigabit Ethernet) and R (Racks) models.. The
UEIPAC will even be able to boot without SD card.

16

UEIPAC SDK User Manual

 Load the root file system from an NFS share
This method requires a network server to be always on to provide the files. Good
for development but not very useful for deployment

Keeping system files in a read-only partition has proven itself to be reliable in multiple
customer applications with frequent un-scheduled power cycles.
However using a RAM disk is ultimately the most robust solution because the UEIPAC
can boot even if the SD card is pulled or fails entirely.

Setting-up root file system read-only
See Appendix F for instructions to convert a read-write UEIPAC root file system to a
read-only one.

Booting from a RAM disk
Booting from a RAM disk is faster than any other method. However the RAM disk size is
limited to 16Mbytes and any data written to the RAM disk is lost when the system shuts
down or reboot.

The RAM disk is very useful if for example you want to re-initialize the SD card or want
to use an NFS share for persistent storage.

The RAM disk can only fit in the flash memory of the UEIPAC models based on the
8347 CPU (UEIPAC-1G or UEIPAC-R). The UEIPAC models based on the 5200 CPU
need to upload the RAM disk image via TFTP each time they boot.

Customizing the RAM disk image
Customizing the RAM drive image is necessary to:

 add your program files to the disk image
 change the default IP address
 tweak the startup script if you wish to start a program automatically.

This can only be done on a Linux PC. You might need to install the uboot mkimage
utility.
For example under Ubuntu or Debian:

$sudo apt-get install uboot-mkimage

1. Extract compressed RAM disk image from uImage file. The following command
converts the file uRamdisk-x.y.z to ramdisk.gz

$ dd if=uRamdisk-x.y.z bs=64 skip=1 of=ramdisk.gz
21876+1 records in

17

UEIPAC SDK User Manual

21876+1 records out

2. Un-compress RAM disk image

$ gunzip -v ramdisk.gz
ramdisk.gz: 66.6% -- replaced with ramdisk

3. Mount RAM disk image

$ mount -o loop –t ext2 ramdisk /mnt

Now you can add, remove, or modify files in the /mnt directory.
Once you are done, you can re-pack the RAM disk into a U-Boot image:

1. Un-mount RAM disk image:

$ umount /mnt

2. Compress RAM disk image

$ gzip -v9 ramdisk
ramdisk: 66.6% -- replaced with ramdisk.gz

3. Create new U-Boot image

$ mkimage -T ramdisk -C gzip -n 'My UEISIM RAM disk' -d ramdisk.gz
new-uRamdisk-x.y.z
Image Name: UEIPAC RAM disk
Created: Wed Apr 11 17:32:41 2012
Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
Data Size: 2425561 Bytes = 2368.71 kB = 2.31 MB
Load Address: 0x00000000
Entry Point: 0x00000000

Loading the RAM disk image to flash
Follow the steps below to upload the RAM disk to memory and boot from it

1. Copy the <UEIPAC SDK>/rfs/uRamdisk-x.y.z file to the root directory of your
TFTP server

2. Power-up your UEIPAC and press any key to enter U-Boot

18

UEIPAC SDK User Manual

3. Configure the UEIPAC’s IP address
setenv ipaddr <IP address of the UEIPAC>

4. Configure U-Boot to use your host PC as TFTP server:
setenv serverip <IP address of your host PC>

5. Upload RAM disk:
tftp 4000000 uRamdisk-x.y.z

6. On 8347 based CPUs, erase flash sectors and copy the RAM disk to flash:
Calculate the number of flash sectors needed to store the RAM disk (a flash sector
size is 64kB (0x10000 bytes))
For example if the RAM disk image is 8MB this gives (8*1024*1024)/(64*1024)
= 128 sectors (0x80)
Starting at fe200000, the image will use sectors fe200000, fe2100000, ….,
fea00000 (=fe200000+0x80*0x10000)
To erase that many sectors type:
erase fe200000 feafffff
cp.b 4000000 fe200000 ${filesize}

7. Update bootargs variable to tell the kernel that its root file system is a RAM disk:
For 5200 based UEIPAC:
setenv bootargs console=ttyPSC0,57600
ramdisk_size=<your RAM disk size> root=/dev/ram0 rw
For 8347 based UEIPAC:
setenv bootargs console=ttyS0,57600 ramdisk_size=<your
RAM disk size> root=/dev/ram0 rw

8. Change boot command to unpack the RAM disk in memory before starting the
kernel:
For 5200 based UEIPAC, RAM disk must be loaded from RAM
setenv bootcmd bootm ffd50000 4000000
For 8347 based UEIPAC RAM disk can be loaded from flash
setenv bootcmd bootm fe000000 fe200000

9. Save environment to make those changes permanent and reset:
saveenv

Booting from an NFS share
It is also possible to use an NFS network share to hold the root file system instead of the
SD card.

Refer to appendix D for instructions.

19

UEIPAC SDK User Manual

3.3. Configuring the Network
Configuring a static IP address
Your UEIPAC is configured at the factory with the static IP address 192.168.100.2 to be
part of a private network.

You can change the IP address using the following command:
setip <IP address>

The IP address change takes effect immediately and is stored in the configuration file
/etc/network.conf

Configuring the auxiliary Ethernet port
Note that setip only configures eth0 on UEIPACs equipped with dual Ethernet controller
(UEIPAC-600R, UEIPAC-1200R, UEIPAC-300-1G and UEIPAC-600-1G).

Use ifconfig to configure eth1:
ifconfig eth1 <IP address>

Insert the ifconfig command in /etc/rc.local to make the change permanent upon reboot.

Changing the default packet size (MTU)
You can change the MTU parameter for an ethernet port (default MTU is 1500 bytes)
with the ifconfig command.

For example to change MTU for eth0 to 9000 bytes:
ifconfig eth0 mtu 9000

The command will complain with the message Invalid Argument if you set the value too
high. The highest value tolerated on current hardware is 9500 bytes.

Insert the command in /etc/rc.local to make the change permanent upon reboot.

Configuring dynamic IP address (using a DHCP server)
If you have DHCP server available, you can configure the UEIPAC to automatically fetch
an IP address when it boots up.
Edit the file /etc/network.conf and change the line:

DHCP=no

To:
DHCP=yes

20

UEIPAC SDK User Manual

You must restart the network to activate the change:
/etc/init.d/network restart

Name resolution
If your UEIPAC uses a static address, you need to edit the file /etc/resolv.conf to add the
IP address of your DNS server.

If your UEIPAC uses DHCP, the /etc/resolv.conf file is automatically populated and name
resolution will work right away.

Connecting through Telnet
Once the IP address is configured, you shouldn’t need the serial port anymore. You can
use telnet to access the exact same command line interface.

Type the following command on your host PC, then login as “root”. The password is
“root”.

telnet <UEIPAC IP address>

Type the command “exit” to logout.

Connecting through SSH
Type the following command on your host PC. The password is “root”.

ssh root@<UEIPAC IP address>

Type the command “exit” to logout.

You can avoid typing the password each time you login using SSH keys:
1. Create private and public SSH keys on your host PC

ssh-keygen –t dsa

2. Copy the public key to /.ssh on the UEIPAC
scp ~/.ssh/id_dsa.pub root@<IP address>:/.ssh/authorized_keys

3. You can now log on the UEIPAC without password

Configuring DHCP server
The UEIPAC comes with the minimal DHCP server udhcpd. You can use it when the
UEIPAC is a server to assign IP addresses to clients. This is useful when configuring
UEIPAC as a wifi access point so that it can assign IP addresses to the wifi devices
connecting to the access point.

Create a file /etc/udhcpcd.conf to specify the network interface that will elase the IP
addresses and the block of IP addresses to lease.

21

UEIPAC SDK User Manual

The start and end of the IP lease block
start 192.168.2.20
end 192.168.2.254

The interface that udhcpd will use
interface eth0

3.4. Configuring Date and Time
Changing the date
The UEIPAC is equipped with a real-time clock chip that preserves the date and time
settings when the UEIPAC is not powered.
By default, the date is set to the current data and time in the UTC (GMT) time zone.

To print the current date and time, use the following command:
date

To change the current date and time use one of the following commands:
date –s MMDDhhmm
date –s YYYYMMDDhhmm.ss

For example “date –s 06021405” will set the new date to June second, 2:05 PM.

To make this change permanent upon reboot, save the date to the RTC chip with the
following command:

hwclock –w -u

Changing the time zone
To set the time zone you need to set the environment variable TZ.

For example if you type the command:
export TZ=EST5EDT,M3.2.0,M11.1.0

It will set the time zone to eastern time with daylight saving time starting on the
Sunday(0) of the second week(2) of March(3) and ending on Sunday(0) of the first
week(1) of November(11).

To make this change permanent upon reboot, add the command to the file /etc/profile

You can find a detailed explanation on the syntax of TZ at:
http://www.gnu.org/software/libtool/manual/libc/TZ-Variable.html

22

http://www.gnu.org/software/libtool/manual/libc/TZ-Variable.html

UEIPAC SDK User Manual

Connecting to a NTP server
The “rdate” utility can be used to retrieve the time from a NTP server.

The following command just prints the time returned by the NTP server:
rdate –p <NTP server IP address>

The following command changes the current date and time to match the ones returned by
the NTP server:

rdate –s <NTP server IP address>

To make this change permanent upon reboot, save the date to the RTC chip with the
following command:

hwclock –w -u

3.5. Changing the password
Type the following command and enter your new password two times:

passwd

You can now logout and login with your new password.

3.6. Configuring the web server
The UEIPAC comes with a simple web server enabled. Copy your html pages in the
folder /www to make them accessible from a remote web browser.

3.7. System logger
UEIPAC comes by default with the system logger disabled to avoid un-necessary access
to the file system.

You can enable the system logger after adding the syslogd command to /etc/rc.local:
Log messages will be written to the file /var/log/messages

You can also enable the kernel logger to log all kernel messages (which are by default
printed on the serial console) after adding the klogd command to /etc/rc.local

Finally to write your own messages to the system logger,include <syslog.h> in your
program and call the POSIX APIs openlog(), syslog() and closelog().

23

UEIPAC SDK User Manual

Note that syslogd won’t work on a read-only file system because it needs to create a
socket in /dev (/dev/log).
A solution to this issue is to create a symbolic link named /dev/log that references a file in
the /tmp folder.

ln –s /dev/log /tmp/.devlog

24

UEIPAC SDK User Manual

4. Transferring files
You can use either NFS, FTP, SSH or TFTP to transfer files between your host PC and
the UEIPAC.

4.1. NFS
If you have a NFS server running on your development machine, you can mount a shared
directory on the UEIPAC. This will make the shared directory available on the UEIPAC
local file system.

To mount a shared directory (for example /shared located on host at 192.168.100.1
mounted on /mnt):

mount -o nolock -t nfs 192.168.100.1:/shared /mnt/nfs_share

After typing this command, all files present in the host PC directory /shared will also be
accessible on the UEIPAC’s /mnt/nfs_share directory.

4.2. FTP Client
To connect to an external FTP server from the UEIPAC, use the commands “ftpput” and
“ftpget”.

To retrieve a file from an FTP server:
ftpget –u <username> -p <password> <FTP server IP address> <local
file name> <remote file name>

To send a file to an FTP server:
ftpput –u <username> -p <password> <FTP server IP address> <remote
file name> <local file name>

4.3. FTP Server
The UEIPAC comes with the vsftpd FTP server. The server is active by default.

You can login as “root” with password “root”. You get read and write access to the entire
file system.

4.4. SSH
The UEIPAC also comes with the SSH server “dropbear” preinstalled.

Use the command scp to transfer a file between your PC and the UEIPAC.
To send a file to the UEIPAC:

25

UEIPAC SDK User Manual

scp <source file path on PC> root@192.168.100.2:<destination path on
UEIPAC>

To receive a file from the UEIPAC:
scp root@192.168.100.2:<source file path on UEIPAC> <destination path
on PC>

4.5. TFTP Client
To retrieve a file from a TFTP server, use the following command:

tftp –g –r <remote file name> <TFTP server IP address>

4.6. Windows shared directory
You can mount a directory shared by a Windows computer or a Network Attached
Storage (NAS).

Load the cifs kernel module:
modprobe cifs

Mount the network share:
mount –t cifs //hostip/share /mnt -o username=<user>,password=<pass>

26

UEIPAC SDK User Manual

5. Connecting USB devices
You can only connect USB devices to PowerDNA cubes or PowerDNR racks equipped
with a USB type A connector.

The Linux kernel supports most USB devices but the UEIPAC only comes with drivers
for USB mass storage devices to save space on the SD card.

Please contact UEI if you plan to use any other USB device.

5.1. USB Mass Storage
USB mass storage devices use multiple form factors. It goes from the smallest USB flash
drive to enclosures used to connect ATA or SATA hard-drives.

The UEIPAC supports all of those devices as long as they comply with the USB mass
storage device class and are formatted with one of the following formats: FAT, EXT2.

After connecting a mass storage device to the UEIPAC, the following kernel messages
will appear on the serial console (if you are connected using telnet or SSH, use the
command “dmesg” to view kernel messages):

usb 1-1: new high speed USB device using fsl-ehci and address 2
usb 1-1: configuration #1 chosen from 1 choice
scsi0 : SCSI emulation for USB Mass Storage devices
usb 1-1: New USB device found, idVendor=08ec, idProduct=0011
usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-1: Product: USB Drive
usb 1-1: Manufacturer: Fujifilm
usb 1-1: SerialNumber: 0713B317290025CC

Load the USB storage kernel driver with the command below:
~# modprobe usb-storage

Note that you must append the string usb-storage at the end of the file /etc/modules to
automatically load this kernel module at boot time.

This should display kernel messages similar to the messages below:

27

UEIPAC SDK User Manual

[288.462755] Initializing USB Mass Storage driver...
[288.473169] scsi0 : usb-storage 1-1:1.0
[288.482325] usbcore: registered new interface driver usb-storage
[288.494529] USB Mass Storage support registered.
[289.483586] scsi 0:0:0:0: Direct-Access SanDisk Cruzer
8.02 PQ: 0 ANSI: 0 CCS
[289.503867] sd 0:0:0:0: [sda] 62562239 512-byte logical blocks:
(32.0 GB/29.8 GiB)
[289.522154] sd 0:0:0:0: [sda] Write Protect is off
[289.532494] sd 0:0:0:0: [sda] No Caching mode page present
[289.543548] sd 0:0:0:0: [sda] Assuming drive cache: write through
[289.559485] sd 0:0:0:0: [sda] No Caching mode page present
[289.570534] sd 0:0:0:0: [sda] Assuming drive cache: write through
[289.585852] sda: sda1
[289.594927] sd 0:0:0:0: [sda] No Caching mode page present
[289.605996] sd 0:0:0:0: [sda] Assuming drive cache: write through
[289.618236] sd 0:0:0:0: [sda] Attached SCSI removable disk

Note the device node name assigned to this USB device, it uses the format “sdxn”:
 x is a for the first drive, b for the second and so on.
 n is the partition number

In the kernel message above, we see that the USB mass storage device’s first partition is
using the device node sda1

You can mount the file system located on this device with the command:
mount /dev/sda1 /mnt

The files are now accessible under the directory /mnt

You must un-mount the file system before un-plugging the device to avoid file
corruption:

umount /mnt

5.2. Wifi network interface
The UEIPAC comes with drivers for Wifi network usb interfaces that use the following
chipsets:

 Realtek RTL8187
 Ralink RT2570, RT2571

Load kernel modules

28

UEIPAC SDK User Manual

At the command line prompt type one of the following commands depending on your
wifi chipset:

modprobe rtl8187
modprobe rt200xusb
modprobe rt2500usb
modprobe rt73usb

Wifi network interface are names wlan0, wlan1 etc…

The iwconfig utility is used to configure wifi communication parameters.

You can verify that your interface was properlt detected by typing the command
iwconfig. A new entry wlan0 should appear:

lo no wireless extensions.

eth0 no wireless extensions.

eth1 no wireless extensions.

wmaster0 no wireless extensions.

wlan0 IEEE 802.11bg ESSID:""
 Mode:Managed Frequency:2.412 GHz Access Point: Not-
Associated
 Tx-Power=0 dBm
 Retry min limit:7 RTS thr:off Fragment thr=2352 B
 Encryption key:off
 Power Management:off
 Link Quality:0 Signal level:0 Noise level:0
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

Connection to an open access point

Specify that you want to connect as a client to a network with an access point:
iwconfig wlan0 mode managed

Set the ESSID of the access point:
iwconfig wlan0 essid <name of your access point>

Bring up wifi interface:
ifconfig wlan0 up

You can now scan the access points accessible by your wifi interface:
iwlist wlan0 scan

29

UEIPAC SDK User Manual

If there is a DHCP server on your network, get an IP address for your wifi interface:
udhcpc –i wlan0 –s /etc/udhcp/default.script

Otherwise, assign a static IP address to your wifi interface:
ifconfig wlan0 192.168.100.3 netmask 255.255.255.0
route add default gateway 192.168.100.1

Connection to an access point with WEP security

The procedure is almost identical to connecting to an open access point. In addition you
need to specify your WEP key:

iwconfig wlan0 key <WEP key in hexadecimal>

128 bit WEP use 26 hex characters, 64 bit WEP uses 10

Connection to an access point with WPA/WPA2 security

Generate the pre-shared key using the access point’s password
wpa_passphrase <name of your access point> <access point password>

Edit the file /etc/wpa_supplicant.conf and update the following fields:
ssid : the ID of your access point
psk : the pre-shared key generated with wpa_passphrase
proto : WPA for WPA security and RSN for WPA2 security
key_mgmt : WPA-PSK
pairwise : TKIP for WPA and TKIP CCMP for WPA2
group : TKIP for WPA and TKIP CCMP for WPA2

For example:

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
ap_scan=1

network={
 ssid=<put your access point ESSID here>
 proto=WPA
 key_mgmt=WPA-PSK
 pairwise=TKIP
 group=TKIP
 psk=<put your pre-shared key generated with wpa_passphrase here>
 priority=2
}

30

UEIPAC SDK User Manual

Specify that you want to connect as a client to a network with an access point in managed
mode:

iwconfig wlan0 essid <name of your access point> mode managed

Run wpa_supplicant in daemon mode to authenticate with the access point:
wpa_supplicant –iwlan0 –c/etc/wpa_supplicant.conf –Dwext –B

Run iwconfig to verify that the authentication worked:
wlan0 IEEE 802.11bg ESSID:"fred"
 Mode:Managed Frequency:2.447 GHz Access Point:
00:13:10:AA:FA:10
 Bit Rate=1 Mb/s Tx-Power=27 dBm
 Retry min limit:7 RTS thr:off Fragment thr=2352 B
 Encryption key:B507-40C4-9A48-806D-D664-910F-B354-6CF4-
DEBF-EA54-CE6F-B291-BD0E-593F-BFA9-405D [2] Security mode:open
 Power Management:off
 Link Quality=80/100 Signal level:-31 dBm
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

If there is a DHCP server on your network, get an IP address for your wifi interface:
udhcpc –i wlan0 –s /etc/udhcp/default.script

Otherwise, assign a static IP address to your wifi interface:
ifconfig wlan0 192.168.100.3 netmask 255.255.255.0
route add default gateway 192.168.100.1

Direct connection to another computer in ad-hoc mode

Specify that you want to connect in ad-hoc mode:
iwconfig wlan0 mode ad-hoc

Set the ESSID of the access point:
iwconfig wlan0 essid <name of your access point>

Bring up wifi interface:
ifconfig wlan0 up

If there is a DHCP server on your network, get an IP address for your wifi interface:
udhcpc –i wlan0 –s /etc/udhcp/default.script

Otherwise, assign a static IP address to your wifi interface:
ifconfig wlan0 192.168.100.3 netmask 255.255.255.0
route add default gateway 192.168.100.1

31

UEIPAC SDK User Manual

5.3. UMTS/GSM modem
The UEIPAC comes with drivers for Sierra Wireless modems.

The UEIPAC supports USB modems connected to the UEIPAC USB port and embedded
mini pci express modems connected to a CAR-550 carrier card.

This manual focuses on using a Sierra wireless MC8790 card that offers UMTS/HSPA
and quad-band GSM/GPRS/EDGE network access for roaming on high-speed networks
worldwide.

Prerequisite

You need to purchase a data plan with a cell phone provider that supports UMTS and/or
GSM/GPRS.
ATT and T-Mobile provide such a service in the USA.
Once you purchased a data plan you will receive a SIM card that you need to insert in the
CAR-550 before being able to establish a connection.
Don't forget to activate your account as soon as you receive your SIM card (usually done
over the phone or on-line).

Manual configuration

From the UEIPAC point of view, the wireless modem is seen as a serial port to which it
can send Hayes AT commands as if it were an old fashion RTC modem.
UEIPAC uses the PPP software to control the modem and configure a network
connection with your phone provider.

Load kernel modules

At the command line prompt type the following commands:
modprobe sierra
modprobe ppp

You should see the following messages printed on the console:
~ # modprobe sierra
usbcore: registered new interface driver usbserial
usbserial: USB Serial Driver core
USB Serial support registered for Sierra USB modem
sierra 1-1:1.0: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB0
sierra 1-1:1.1: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB1
sierra 1-1:1.2: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB2

32

UEIPAC SDK User Manual

sierra 1-1:1.3: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB3
sierra 1-1:1.4: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB4
sierra 1-1:1.5: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB5
sierra 1-1:1.6: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB6
usbcore: registered new interface driver sierra
sierra: v.1.3.2:USB Driver for Sierra Wireless USB modems
~ # modprobe ppp
PPP generic driver version 2.4.2

Configure provider

The system is pre-configured to connect to AT&T network. If you are using a different
provider, edit the file /etc/ppp/peers/gsm_chat
Look for the following line:

OK 'AT+CGDCONT=1,"IP","ISP.CINGULAR"'

Replace it with the APN (Access point name) of you provider.
For example T-mobile's APN is “epc.tmobile.com”, so the line in /etc/ppp/peers/gsm_chat
becomes:

OK 'AT+CGDCONT=1,"IP","EPC.TMOBILE.COM"'

APNs for a few European countries:
Country Provider APN Authentication Phone

Number
User Password

Austria A1 at+cgdcont=1,"IP","a1.net" PAP/CHAP *99***1# ppp@A1net.at ppp
Belgium Mobistar at+cgdcont=1,"IP","web.pro.be

"
Terminal based *99# mobistar mobistar

France Orange at+cgdcont=1,"IP","orange.fr" Terminal based *99***1# orange orange
Germany D2

Vodafone
at+cgdcont=1,"IP","web.vodafo
ne.de"

PAP/CHAP *99***1# none none

Netherlands KPN at+cgdcont=1,"IP","internet" Terminal based *99***1# Internet none
Netherlands Orange at+cgdcont=1,"IP","internet","",

0,0
Terminal based *99***1# none none

Netherlands Vodafone at+cgdcont=1,"IP","web.vodafo
ne.nl"

Terminal based *99# vodafone vodafone

33

UEIPAC SDK User Manual

Start PPP daemon

Issue the following command to start the PPP daemon and configure the network
connection.

/etc/init.d/pppd start

After a few seconds, the script will return printing the message “[OK]” if it successfully
configured the network connection or “[Failed]” if it did not.

~ # /etc/init.d/pppd start
Starting pppd...PPP BSD Compression module registered
PPP Deflate Compression module registered [OK]

In case of failure, type the command “dmesg” to print the log and send that information
to UEI technical support.
Type the command “ifconfig” to print the network connections currently configured on
your UEIPAC. There should be three connections: local, eth0 and ppp0.

eth0 Link encap:Ethernet HWaddr 00:0C:94:00:C5:CB
 inet addr:192.168.100.2 Bcast:192.168.100.255
Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Base address:0x4000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

ppp0 Link encap:Point-to-Point Protocol
 inet addr:166.203.211.199 P-t-P:10.64.64.64
Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:14 errors:0 dropped:0 overruns:0 frame:0
 TX packets:15 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:3
 RX bytes:182 (182.0 B) TX bytes:257 (257.0 B)

Make sure that ppp0 was assigned an IP address.

You can now connect to the internet from your UEIPAC.

34

UEIPAC SDK User Manual

Automatic startup

To automatically load the kernel modules, edit the file /etc/modules and add the following
lines at the end of the file:

sierra
ppp

To automatically start the ppp daemon, add a symbolic link to /etc/init.d/pppd in the
directory /etc/rc.d with the following command:

ln -s /etc/init.d/pppd /etc/rc.d/S30pppd

5.4. Serial Port
The UEIPAC comes with driver for USB-serial devices based on the Prolific PL-2303
chipset.

Load kernel modules

At the command line prompt type the following:
modprobe pl2303

You will see the following messages printed on the serial console (type dmesg to see
those messages when logged in via telnet or ssh):

usbcore: registered new interface driver usbserial
USB Serial support registered for generic
usbcore: registered new interface driver usbserial_generic
usbserial: USB Serial Driver core
USB Serial support registered for pl2303
pl2303 1-5.1:1.0: pl2303 converter detected
usb 1-5.1: pl2303 converter now attached to ttyUSB0
usbcore: registered new interface driver pl2303
pl2303: Prolific PL2303 USB to serial adaptor driver

Make note of the device node attached to the serial port. In the example above it is
/dev/ttyUSB0.

You will use this device node to address the serial port. See example
SampleLinuxSerialPort for an example showing how to program standard Linux serial
port.

Automatic startup

35

UEIPAC SDK User Manual

To automatically load the kernel modules, edit the file /etc/modules and add the following
lines at the end of the file:

pl2303

5.5. LibUSB
The UEIPAC comes with the LibUSB library to facilitate programming of USB devices
for which there is no driver.

It allows the enumeration of USB devices as well as access to USB communication pipes:
 control transfers which are typically used for command or status operations
 interrupt transfers which are initiated by a device to request some action from the

host
 isochronous transfers which are used to carry data the delivery of which is time

critical (such as for video and speech)
 bulk transfers which can use all available bandwidth but are not time critical.

Prerequisite
LibUSB uses usbfs whichis a filesystem specifically designed for USB devices. Once this
filesystem is mounted it can be found at /proc/bus/usb/. It consists of information about
all the USB devices that are connected to the computer.
LibUSB makes use of this filesystem to interact with the USB devices.

Mount USBFS manually
Type the following command to mount USBFS:

mount -t usbdevfs none /proc/bus/usb

Mount USBFS automatically
Add the following line to /etc/fstab to automatically mount USBFS at boot time:

none /proc/bus/usb usbfs defaults 0 0

Write a program using libusb
The UEIPAC ships with a simple example showing how to enumerate USB devices and
query information: SampleLibUSB
LibUSB API documentation is available at http://www.libusb.org

36

http://www.libusb.org/

UEIPAC SDK User Manual

6. Serial Port

6.1. UEI Serial Server
UEI Serial Server makes PowerDNx serial devices (such as SL-501 and SL-508)
accessible as standard Linux serial ports that can be programmed using the POSIX
termios API.

The mapping configuration file is a text file with a [settings] section for global
paremeters and a [ttyUEI??] section for each mapped serial port.

For example:
 [settings]
 timeoutms=1000
 retrycount=4
 pollperiodms=10

 [ttyUEI0]
 ipAddress=127.0.0.1
 device=2
 port=0
 #mode: 0=RS-232, 1=RS-485HD, 2=RS-485-FD
 mode=0
 baudRate=9600
 #parity: 0=none, 1=odd, 2=even
 parity=0
 #stop Bits: 0=no stop bit, 1=1 stop bit, 2=1.5 stop bit
 stopBits=0
 #data bits: 5,6,7 or 8 data bits
 dataBits=8

 [ttyUEI1]
 ipAddress=127.0.0.1
 device=2
 port=1
 mode=0
 baudRate=57600
 parity=1
 stopBits=1
 dataBits=7

This example configuration file configures the serial server to return an error
if it cannot communicate with the IOM after timeoutms milliseconds.
The server can retry communication for retrycount times before giving up.
The server will periodically poll serial ports for new incoming data using the

37

UEIPAC SDK User Manual

pollperiodms value to specify the period in milliseconds.

This file creates two virtual serial ports /dev/ttyUEI0 and /dev/ttyUEI1 to
control physical ports 0 and 1 on device 2 located on the UEIPAC

/dev/ttyUEI0 is configured to run at 9600 bits per sec, no parity, no stop bits and 8 data
bits
/dev/ttyUEI1 is configured to run at 57600 bits per sec, parity odd, 1 stop bits and 7 data
bits

Note that the communication settings are only default values. The serial port will be re-
configured to use whatever communication settings you specify when opening the port
from your application.

Run the serial server with the following command

 ueiserialserver <config file name>

Once the server is started, you can use the /dev/ttyUEI?? nodes like any other
serial port with the termios API or any other program designed to access serial
ports.

The UEIPAC comes with microcom installed on its SD card. You can run microcom to
test the serial ports.

Start the serial server with at least two configured ports: /dev/ttyUEI0 and
/dev/ttyUEI1

We will assume that the two serial ports are connected with a NULL modem cable.

Open two separate command line shells and start the minicom program for each of the
Serial ports you wish to test:

microcom -s 19200 /dev/ttyUEI0

microcom -s 19200 /dev/ttyUEI1

If both serial ports are tied with a NULL modem cable, anything you type in
one of the session will appear on the other session.

38

UEIPAC SDK User Manual

6.2. Using the CPU layer’s serial port for general purpose
Edit the file /etc/inittab and add the character ‘#’ in front of the line:
ttyS0::respawn”-/bin/sh

Then reboot.

This will disable the serial console and let you control the serial port from your program
using the POSIX termios API.

39

UEIPAC SDK User Manual

7. Testing the I/O layers

7.1. devtbl
Run the command “devtbl”, it will print a list of the I/O layers that were detected on this
module.

PowerDNA Driver, version 2.1.0

Address Irq Model Option Phy/Virt S/N Pri LogicVer

0xc9080000 7 207 1 phys 0027887 0 02.0c.05
0xc9090000 7 403 1 phys 0030384 0 02.0c.05
0xc90a0000 7 403 1 phys 0030385 0 02.0c.05
0xc90b0000 7 501 1 phys 0029693 0 02.0c.05
0xc90c0000 7 601 1 phys 0030279 0 02.0c.05

~ #

7.2. Run examples
All the examples were compiled during the install process and are ready to be transferred
and executed.
Compiled versions of each example are also available on the UEIPAC file system in the
“/usr/local/examples” directory.
There is one example for each supported I/O layer named “SampleXXX” (where XXX is
the model ID of each layer).
Go to the directory “<UEIPAC SDK directory>/sdk/DAQLib_Samples” and copy the
chosen example to your UEIPAC using one of the methods described in section 4.

For example using FTP:
ftp <UEIPAC IP address>
bin
cd tmp
put SampleXXX

The example by default uses the first I/O layer (device 0). You can change the device
using command line options. Here are a few of the options available:

-h : display help
-d n: selects the device to use (default: 0)
-f n.nn : set the rate of the DAQ operation (default: 1000 Hz)
-c "x,y,z,..." : select the channels to use (default: channel 0)

For example the following command run the AI-207 test program using device 2 and
channels 3,5,and 7:

/tmp # ./Sample207 -d 2 -c "3,5,7"

40

UEIPAC SDK User Manual

There are 3 channels specified: 3 5 7
 0: ch3 bdata 310dfff6 fdata 15.781501V
 0: ch5 bdata 310dfff7 fdata 15.781501V
 0: ch7 bdata 310dfff6 fdata 15.781501V

 1: ch3 bdata 310dfff6 fdata 15.781501V
 1: ch5 bdata 310dfff6 fdata 15.781501V
 1: ch7 bdata 310dfff6 fdata 15.781501V
...

All examples are configured to stop when they receive the SIGINT signal. You can send
this signal by typing CTRL+C or with the following command if the program runs in the
background of if you are logged on a different console than the one running the program:

killall –SIGINT Sample207

7.3. PowerDNA server
PowerDNA server emulates the behavior of a PowerDNA IO module running the
standard DAQBIOS firmware. It emulates a subset of the DAQBIOS protocol so that the
UEIPAC can be accessed from PowerDNA explorer or the PowerDNA C API.
It only works in immediate, RTDMAP and RTVMAP modes. ACB, Messaging and
Asynchronous modes are not supported.

To run the PowerDNA server, type the command “pdnaserver &”.

41

UEIPAC SDK User Manual

8. Application development

8.1. Prerequisites
Make sure that the directory “<UEIPAC SDK directory>/powerpc-604-linux-gnu/bin” is
added to your PATH environment variable. This will allow you to invoke the GCC cross
compiler without having to specify its full path.
It is required to run the different Makefiles that build the PowerDNA library and the
examples (this should have been done automatically by the install script).

8.2. Compiling and running Hello World
The UEIPAC SDK comes with the GNU toolchain compiled to run on your host PC and
build binaries targeting the PowerPC processor that runs on your UEIPAC.
The SDK comes with all the familiar GNU tools: ar, as, gcc, ld, objdump… To avoid
confusion with a different version of those tools (for example a version compiled to run
and produce binaries for your host PC) , their names are prefixed with “powerpc-604-
linux-gnu-“. For example the GNU C compiler is named “powerpc-604-linux-gnu”.

The following steps will guide you in writing your first program and running it on your
UEIPAC.

1. Create a file called hello.c

2. Edit the file and enter the following text:

#include<stdio.h>

int main(int argc, char* argv[])
{
 printf(“Hello World from UEIPAC\n”);
 return 0;
}

3. Compile the file with the command:
powerpc-604-linux-gnu-gcc hello.c –o hello

4. Download the compiled program “hello” to the cube:
ftp <UEIPAC IP address>
bin
cd tmp
put hello

42

UEIPAC SDK User Manual

5. Login on your UEIPAC using either Telnet or the serial console and type the
following commands:
cd /tmp
chmod +x hello
./hello

You should see the text “Hello World from UEIPAC” printed on the console.

8.3. Debugging Hello World
The UEIPAC SDK contains a version of the GNU debugger compiled to run on your host
PC and debug binaries targeting the PowerPC processor. Its name is “powerpc-604-linux-
gnu-gdb”.
It allows you to debug a program remotely from your host PC.

The following steps will guide you in debugging the “hello world” program.

1. Rebuild the hello program using the –g option. This will include debug symbols
in the binary file.
powerpc-604-linux-gnu-gcc –g hello.c –o hello

2. Upload the new binary to the UEIPAC using FTP.

3. On the UEIPAC console, start the GDB server to debug the program remotely (It
will communicate with the host on port 1234):
gdbserver :1234 hello

4. On the host, start GDB and connect to the target
powerpc-604-linux-gnu-gdb hello
target remote <UEIPAC IP address>:1234

5. Set the shared library search path so that GDB will find the proper library used by
your program:
set solib-absolute-prefix <UEIPAC Install Dir>
set solib-search-path <UEIPAC Install Dir>/powerpc-604-linux-
gnu/powerpc-604-linux-gnu/lib

Note that this step is only necessary if you wish to step inside the code of the
shared libraries. If you don’t set this variable, GDB will print a few error
messages about library mismatch but you can still go ahead and debug your
program.

6. The program is now in “running” state and GDB paused its execution. Let’s put a
breakpoint at the beginning of the “main” function:
break main

43

UEIPAC SDK User Manual

7. We can now resume execution with the “cont” command and GDB will pause the
execution again when entering the “main” function.

8. You can step in your program using the “n” command to step over each line of
execution and “s” to step inside any called functions.

To avoid typing the same commands over and over when starting a debugging session,
you can create a file named “.gdbinit” in your home directory. This file will contain
commands that you want GDB to execute at the beginning of a session.

For example the following “.gdbinit” file automatically connects to the target and pauses
the execution in the main function each time you start gdb:

set solib-absolute-prefix <UEIPAC Install Dir>
set solib-search-path <UEIPAC Install Dir>powerpc-604-linux-
gnu/powerpc-604-linux-gnu/lib
target remote 192.168.100.2:1234
break main
cont

Read the GDB documentation at http://sourceware.org/gdb/documentation/ to learn how
to fully use the GDB debugger.

8.4. PowerDNA Library
The PowerDNA library implements the API used to program the PowerDNA IO layers:

The source code is installed in “<UEIPAC SDK directory>/sdk/DAQLib”.
Examples are located in “<UEIPAC SDK directory>/sdk/DAQLib_Samples”.

The UEIPAC SDK uses a subset of the PowerDNA Software Suite API. It even allows
you to control other IO modules that run the standard DAQBios firmware from the
UEIPAC the same way you would from a host PC running Windows or Linux.

The PowerDNA API uses the IP address specified in the function DqOpenIOM() to
determine whether you wish to access the layers local to the UEIPAC or “remote” layers
installed in a remote PowerDNA IO module. Set the IP address to the loopback address
“127.0.0.1” and the API will know that you want to access the “local” layers.

The PowerDNA API implements various modes to communicate with the I/O layers:

 Immediate: It is the easiest mode for point by point input/output on all layers. It
also is the least efficient because it requires one call for each incoming and/or

44

http://sourceware.org/gdb/documentation/

UEIPAC SDK User Manual

outgoing request. You cannot achieve maximum performances with that mode
Immediate mode examples are named “SampleXXX”

 Data Mapping (DMAP): This is the most efficient mode for point by point
input/output on AI, AO, DIO and CT layers. Incoming and outgoing data from/to
multiple layers are all packed in a single call.
DMAP mode examples are named “SampleDMapXXX”

 Buffered (ACB): Allows access to AI, AO, DIO and CT layers at full speed.
It is designed to correct communication errors that might happen on the network
link.The error correction mechanisn will cause issues with real-time deadlines
ACB mode examples are named “SampleACBXXX”

 Messaging: Allows access to messaging layers (serial, CAN, ARINC-429) at full
speed. It is designed to correct communication errors that might happen on the
network link.The error correction mechanisn will cause issues with real-time
deadlines
Messaging mode examples are named “SampleMsgXXX”

 Variable Size Data Mapping (VMAP): Allows access to all layers at full speed,
transferring incoming and outgoing data in buffers in one call.
VMAP mode examples are named “SampleVMapXXX”

 Asynchronous: Allows I/O layers to asynchronously notify the user application
upon hardware events.

The UEIPAC SDK only supports the immediate (also known as “point by point”) DMAP
and VMAP modes to control the “local” layers.
The three other modes (ACB, MSG and M3) are designed to work over ethernet and
have built-in error correction which is not needed on the UEIPAC. You can, however use
those modes to control “remote” layers installed in I/O modules that runs the DAQBios
firmware over the network.

Firmware running on the IO module
I/O mode DAQBios UEIPAC/local layers UEIPAC/remote

layers
Immediate Yes Yes Yes
ACB Yes No Yes
DMAP Yes Yes Yes
MSG Yes No Yes
VMAP Yes Yes Yes
Asynchronous Yes No Yes

45

UEIPAC SDK User Manual

PowerDNA API
The following section details the subset of PowerDNA APIs available when running your
program on a UEIPAC.

Refer to the “PowerDNA API Reference Manual” document to get detailed information
about each API.

Initialization, miscellaneous API
Those APIs are used to initialize the library, obtain a handle on the kernel driver and
perform miscellaneous tasks such as translating error code to readable messages.

 DqInitDAQLib
 DqCleanUpDAQLib
 DqOpenIOM
 DqCloseIOM
 DqTranslateError
 All DqCmd*** APIs

Immediate mode API
Those APIs are used to read/write I/O layers in a software-timed fashion. They are
designed to provide an easy way to access I/O layers at a non-deterministic pace.

Each I/O layer comes with its own set of immediate mode APIs. For example you will
use the DqAdv201*** APIs to control an AI-201.

Most DqAdvXYZ*** APIs where XYZ is the model number of a supported I/O layer are
supported on the UEIPAC.

DMAP API
In DMAP mode, the UEIPAC continuously refreshes a set of channels that can span
multiple layers at a specified rate paced by a hardware clock.
Values read from or written to each configured channel are stored in an area of memory
called the DMAP. At each clock tick, the firmware synchronizes the DMAP values with
their associated physical channels.

Supported APIs to use RTDMAP mode are DqRtDmap***.

Here is a quick tutorial on using the RTDMAP API (handling of error codes is omitted):

Initialize the DMAP to refresh at 1000 Hz:

46

UEIPAC SDK User Manual

DqRtDmapInit(handle, &dmapid,1000.0);

Add channel 0 from the first input subsystem of device 1:
chentry = 0;
DqRtDmapAddChannel(handle, dmapid, 1, DQ_SS0IN, &chentry, 1);

Add channel 1 from the first output subsystem of device 3:
chentry = 1;
DqRtDmapAddChannel(handle, dmapid, 3, DQ_SS0OUT, &chentry, 1);

Start all devices that have channels configured in the DMAP:
DqRtDmapStart(handle, dmapid);

Update the value(s) to output to device 3:
outdata[0] = 5.0;
DqRtDmapWriteScaledData(handle, dmapid, 3, outdata, 1);

Synchronize the DMAP with all devices:
DqRtDmapRefresh(handle, dmapid);

Retrieve the data acquired by device 1:
DqRtDmapReadScaledData(handle, dmapid, 1, indata, 1);

Stop the devices and free all resources:
DqRtDmapStop(handle, dmapid);
DqRtDmapClose(handle, dmapid);

Refer to Appendix A for detailed documentation of each RTDMAP function.

VMAP API
In VMAP mode, the UEIPAC continuously acquires/updates data in buffers.
Each layer is programmed to acquire/update data to/from its internal FIFO at a rate paced
by its hardware clock.
The content of all the layer’s FIFOs is accessed in one operation.

Supported APIs to use VMAP mode are DqRtDmap*** and DqRtVmap***.

Initialize the VMAP to acquire/generate data at 1kHz:
DqRtVmapInit(handle, vmapid, 1000.0);

Add channels from the first input subsystem of device 0:
int channels = {0, 1, 2, 3 };
DqRtVmapAddChannel(handle, vmapid, 0, DQ_SS0IN, channels, flags, 1);

47

UEIPAC SDK User Manual

Start all devices that have channels configured in the VMAP:
DqRtVmapStart(handle, vmapid);

Specify how much input data to transfer during the next refresh.
DqRtVmapRqInputDataSz(handle, vmapid, 0, numScans*sizeof(uint16),
&act_size, NULL);

Synchronize the VMAP with all devices:
DqRtVmapRefresh(handle, vmapid);

Retrieve the data acquired by device 0:
DqRtVmapGetInputData(handle, vmapid, 0, numScans*sizeof(uint16),
&data_size, &avl_size, (uint8*)bdata);

Stop the devices and free all resources:
DqRtVmapStop(handle, vmapid);
DqRtVmapClose(handle, vmapid);

Event API
The event API only works when running your program on a UEIPAC. You can’t call any
event function when communicating with PowerDNA over Ethernet.

The event API allows you to get notified in your application when a hardware event
occurs.
The hardware events are:

 SyncIn event: a digital edge was sensed on the syncin pin of the Sync connector.
 Timer event: occurs at each tick of a hardware timer located on the CPU layer.

Here is a quick tutorial on using the event API (handling of error codes is omitted):

Configure hardware timer to generate an event every millisecond.
DqEmbConfigureEvent(handle, DqEmbEventTimer, 1000);

Wait for the next event, if no event occurs or after 2 seconds, the function returns the
event “DqEmbEventTimeout”:

DqEmbWaitForEvent(handle, 2000, &event);

Cancel the timer event:
DqEmbCancelEvent(handle, DqEmbEventTimer);

48

UEIPAC SDK User Manual

Refer to Appendix B for detailed documentation of each event API function.

Unsupported APIs
All other APIs than the one mentioned above are not supported on the UEIPAC.
This includes all the ACB (DqACB***), DMAP (DqDmap***), MSG (DqMsg***) and
Asynchronous (DqRtAsync***) APIs.

Building and running the examples
Change your current directory to “<UEIPAC SDK directory>/sdk/DAQLib_Samples”
and type make to make sure that your setup can build the samples correctly.

If you get any error while building the examples, check that the path to the cross-
compiler is in your PATH environment variable and that the environment variable
UEIPACROOT is set to the SDK directory.

You can now transfer any of the built examples to the UEIPAC, using FTP and run it.

Each example accepts command line options to specify the following parameters:
 -d <device id>: specify the device
 -c <channel list>: specify the channel list
 -f <frequency>: specify the rate
 -n <number of Scans>: specify the number of samples per channels

For example the following command runs the Sample201example to acquire channels 0,2
and 4 from device 1:

Sample201 –d 1 –c “0,2,4”

Building your own program
The first step is to compile your program, use the –I option to tell the compiler where the
PowerDNA API headers are:

powerpc-604-linux-gnu-gcc –I ${UEIPACROOT}/includes –c myprogram.c

Then link your program, use the –L option to tell the linker where the PowerDNA API
library is and the –l option to tell the linker to link against the PowerDNA library:

powerpc-604-linux-gnu-gcc –L ${UEIPACROOT}/includes –lpowerdna
myprogram.o –o myprogram

The PowerDNA API is implemented in two libraries:
 libpowerdna.so implements the PowerDNA API for regular Linux processes
 libpowerdna_rt.so implements the PowerDNA API for real-time tasks

49

UEIPAC SDK User Manual

8.5. Real-Time Programming
The UEIPAC comes with support for the Xenomai Real-time framework (see
http://www.xenomai.org).
Xenomai is a real-time development framework cooperating with the Linux kernel, in
order to provide hard real-time support to user-space applications, seamlessly integrated
into the Linux environment.

Xenomai uses the flow of interrupts to give real-time tasks a higher priority than the
Linux kernel:

 When an interrupt is asserted, it is first delivered to the real-time kernel, instead of
the Linux kernel. The interrupt will be later also delivered to the Linux kernel
when the real-time kernel is done.

 Upon receiving an interrupt, the real-time kernel can schedules its real-time tasks
 Only when the real-time kernel is not running anything will the interrupt be

passed on to the Linux kernel.
 Upon receiving the interrupt Linux can schedule its own processes and threads.
 Xenomai’s real-time kernel highest priority allows it to preempt the Linux kernel

whenever a new interrupt arrives with no delay and repeat the cycle

Xenomai allows to run real-time tasks either strictly in kernel space, or within the address
space of a Linux process.
A real-time task in user space still has the benefit of memory protection, but is scheduled
by Xenomai directly instead of the Linux kernel. The worst case scheduling latency of
such kind of task is always near the hardware limits and predictable.

Using Xenomai parlance, real-time tasks are running in the primary domain while the
Linux kernel and its processes are running in secondary domain.

A real-time task always start in primary domain, however it will jump to secondary
domain (and be schedules by the Linux kernel instead of Xenomai’s RT kernel) upon
invoking a non-rt system call. Non-RT system calls are all system calls that are not
implemented by Xenomai. This includes memory allocation (malloc), file access,
network access (sockets), process and thread management etc…

You need to make sure that the time critical part of your application runs in the primary
domain. One way to do this is to partition an application in two or more tasks, one high
priority tasks runs the time critical code and communicate with other lower-priority tasks
using Xenomai’s IPC objects such as message queues and FIFOs.

50

http://www.xenomai.org/

UEIPAC SDK User Manual

The library libpowerdna_rt.so implements a version of the PowerDNA API that is safe
to call from time critical code running in primary domain.

All real-time examples have the suffix _rt. For example Sample207 is a standard Linux
sample program while Sample207_rt is a real-time sample program.

8.6. Running a program automatically after boot
Edit the file /etc/rc.local and add an entry for any number of programs that you want to
run after the UEIPAC complete its power-up sequence.
In the example below, the /etc/rc.local file is modified to run the Sample201 example at
boot time.

#!/bin/sh
#
rc.local
#
This script is executed at the end of the boot sequence.
Make sure that the script will "exit 0" on success or any other
value on error.
#

listlayers > /etc/layers.xml
sync
devtbl

start Sample201
/usr/local/examples/Sample201 &

exit 0

Note that Sample201 is executed in the background (‘&’ prefix). To stop sample201 you
must send the SIGINT signal with the following command (It is equivalent to typing
CTRL+C on the console if Sample201 was running in the foreground):

killall –SIGINT Sample201

8.7. Running a program periodically
The UEIPAC comes with crond installed to periodically run scripts and programs.

Enable the init script to start crond at boot time:

mv /etc/rc.d/K30crond /etc/rc.d/S30crond

51

UEIPAC SDK User Manual

Add a new schedule entry to the cron configuration file:

crontab –e

Press i to switch to insert mode and type the new schedule entry using the following
format: <minute> <hour> <day> <month> <dayofweek> <command>

<Minute> - Minutes after the hour (0-59).
<Hour> - 24-hour format (0-23).
<Day> - Day of the month (1-31).
<Month>- Month of the year (1-12).
<Dayofweek>. Day of the week (0-6, where 0 indicates Sunday).

An asterisk in a schedule entry indicates "every". It means that the task will occur on
"every" instance of the given field. So a "*" on the Month field indicates the the task will
run "every" month of the year. A * in the Minutes field would indicate that the task would
run "every" minute.

A comma is used to input multiple values for a field. For example, if you wanted a task to
run at hours 12, 15 and 18, you would enter that as "12,15,18".

For example the following entry will append the string “Hello UEIPAC” to the file
/tmp/crontest every day at 2:30 and 15:30.

30 2,15 * * * echo “Hello UEIPAC” >> /tmp/crontest

52

UEIPAC SDK User Manual

9. Firmware installation and upgrade

9.1. Installing or upgrading the Linux kernel
Your UEIPAC comes with the Linux kernel already installed into flash memory.
It is possible to update that Linux kernel if needed.

You first need to install a TFTP server on your host PC and copy the new kernel image
you got from UEI technical support in the TFTP server’s directory. Kernel image files are
are named:

 cuImage.ueipac5200 for the UEIPAC-300 and UEIPAC-600.
 cuImage.ueipac834x for the UEIPAC-300-1G, UEIPAC-600-1G, UEIPAC-600R

and UEIPAC-1200R.

You can find the image of the Kernel that shipped with your UEIPAC in the folder
“<UEIPAC SDK directory>/kernel”

That same folders also contains scripts to download the kernel sources and build the
kernel yourself, see Appendix E.

Connect to the UEIPAC through the serial port and power-up the cube. Press a key before
the 2 seconds countdown ends to enter U-Boot’s command line interface.

UEIPAC with Freescale 5200 CPU (100MBit Ethernet)

1. Erase unprotected part of flash memory:
erase ffd50000 ffefffff

2. Configure the UEIPAC’s IP address
setenv ipaddr <IP address of the UEIPAC>

3. Configure U-Boot to use your host PC as TFTP server:
setenv serverip <IP address of your host PC>

4. Download the new kernel from the TFTP server
tftp 200000 cuImage.ueipac5200

5. Write kernel into flash (make sure you literally type “${filesize}”)
cp.b 200000 ffd50000 ${filesize}

6. Set U-Boot’s boot command to automatically boot Linux
setenv bootcmd bootm ffd50000

53

UEIPAC SDK User Manual

7. Save environment variables to flash
saveenv

8. Reset and boot the new kernel:
reset

UEIPAC with Freescale 8347 CPU (1GBit Ethernet)

10. Erase unprotected part of flash memory:
erase fe000000 fe1fffff

11. Configure the UEIPAC’s IP address
setenv ipaddr <IP address of the UEIPAC>

12. Configure U-Boot to use your host PC as TFTP server:
setenv serverip <IP address of your host PC>

13. Download the new kernel from the TFTP server
tftp 200000 cuImage.ueipac834x

14. Write kernel into flash (make sure you literally type “${filesize}”)
cp.b 200000 fe000000 ${filesize}

15. Set U-Boot’s boot command to automatically boot Linux
setenv bootcmd bootm fe000000

16. Save environment variables to flash
saveenv

17. Reset and boot the new kernel:
reset

9.2. Initializing an SD card
Your UEIPAC came pre-installed with an SD card containing the root file system
necessary to run Linux.
You might want to initialize a new SD card if the factory-installed card becomes unusable
or if you decide to upgrade to a faster or bigger one.

On a Linux PC
Note: You need to run Linux on your host PC to initialize an SD card. This is required
because the SD card must be formatted with the ext2 file system.

Make sure automatic mounting is disabled for removable medias.

54

UEIPAC SDK User Manual

You can either type the command below to manually format and initialize and SD card or
you can run scripts included in the UEIPAC SDK to automate the procedure.
Automated Procedure
The UEIPAC SDK includes scripts to automatically partition and initialize a one or two
partitions SD card:

 <ueipac sdk dir>/rfs/createsdcard.sh creates one ext2 partitions and copy all
system files.

 <ueipac sdk dir>/rfs/createsdcard_2parts.sh creates two ext2 partitions and copy
all system files to the first one. The second partition is entirely available to store
user data.

 <ueipac sdk dir>/rfs/createsdcard_vfat.sh creates one VFAT and one ext2
partition and copyall system files to the second one (otherwise it confuses
windows and you can’t read the vfat partition on a windows PC). The first
partition is entirely available to store user data.

Manual Procedure
1. Insert the SD card in a USB adapter connected to your host PC.

2. Find out the name of the device node associated with the card. Type the command
“dmesg” and look for a message at the end of the log similar to:
SCSI: device sdb: 1984000 512-byte hdwr sectors (1016 MB)
This message tells us that the device node we are looking for is “/dev/sdb”.

3. Un-mount the SD card if necessary
sudo umount /dev/sdb1

4. Erase all partitions from the SD card and create one primary partition using all the
space available on the card (the example below uses a 1GB card with 1016 cylinders, use
whatever default value is suggested for the last cylinder):
fdisk /dev/sdb
Command (m for help): d
Selected partition 1
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4):1
First Cylinder (1-1016, default 1):1
Last Cylinder … (1-1016, default 1016):1016

55

UEIPAC SDK User Manual

Command (m for help): w

5. Un-mount the SD card if necessary
sudo umount /dev/sdb1

6. The device node associated with the partition we just created is “/dev/sdb1”. Let’s
format this new partition with mke2fs (-j option sets file system type to ext3):
sudo mke2fs -j /dev/sdb1

7. CD to a temporary directory and untar the root file system:
cd /tmp
sudo tar xvfz <UEIPAC SDK directory>/rfs.tgz

8. Mount the new partition (on some Linux distributions it might already be
mounted, check with the command ‘df’) then copy the root file system to the SD card:
sudo mount /dev/sdb1 /mnt
sudo cp –rd /tmp/rfs/* /mnt

9. Unmount the SD card and insert it in the UEIPAC. It is now ready to boot.
sudo umount /dev/sdb1

On the UEIPAC itself
Boot the UEIPAC from the RAM disk instead of the SD card (follow instructions detailed
in chapter 3.2).

1. Set the IP address:
setip <IP address of the UEIPAC>

2. Format the SD card:
mke2fs -j /dev/sdcard1

3. Mount the SD card:
mount /dev/sdcard1 /mnt

4. Transfer the root file system image to the UEIPAC from a Linux or Windows PC:
scp rfs-x.y.z.tgz root@<IP address of UEIPAC>:/mnt

5. Un-compress the image:
gunzip /mnt/rfs-x.y.z.tgz
tar xvf /mnt/rfs-x.y.z.tar
mv /mnt/rfs/* /mnt
sync

56

UEIPAC SDK User Manual

9.3. Running the standard DAQBios firmware
Starting with the 2.0 release, UEIPACs come with both a Linux kernel and DAQBios
firmware loaded in flash. You can select which one you want to run by setting a
configuration variable in the u-boot boot loader..

Connect to the UEIPAC through the serial port and power-up the cube. Press a key before
the 2 seconds countdown ends to enter U-Boot’s command line interface.

Configure UEIPAC with Freescale 5200 CPU to run DAQBios firmware

1. Set U-Boot’s boot command to start the DAQBios firmware automatically:
setenv bootcmd fwjmp
saveenv

2. Reset and boot the DAQBios firmware:
reset

Configure UEIPAC with Freescale 5200 CPU to run Linux

3. Set U-Boot’s boot command to start Linux automatically:
setenv bootcmd bootm ffd50000
saveenv

4. Reset and boot the Linux kernel:
reset

Configure UEIPAC with Freescale 8347 CPU to run DAQBios firmware

1. Set U-Boot’s boot command to start the DAQBios firmware automatically:
setenv bootcmd go ff800100
saveenv

2. Reset and boot the DAQBios firmware:
reset

Configure UEIPAC with Freescale 8347 CPU to run Linux

3. Set U-Boot’s boot command to start Linux automatically:
setenv bootcmd bootm fe000000
saveenv

57

UEIPAC SDK User Manual

4. Reset and boot the Linux kernel:
reset

10. Third-party software

10.1. Third-party libraries installed by default on UEIPAC
The libraries below typically implement C APIs that you can call from your own
program.

zeromq
ØMQ (also known as ZeroMQ, 0MQ, or zmq) is an embeddable networking library.

libmodbus
Libmodbus provides a C API to implement MODBUS/TCP or MODBUS/RTU slaves
and masters.

expat
Expat is an XML parsing library.

sqlite
SQLite is a software library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine

gpsd
gpsd is a utility that can listen to a GPS or AIS receiver and re-publish the positional data
in a simpler format.

GSL
The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers

libusb
libusb is a C library that gives applications easy access to USB devices

mosquito
Mosquitto is an open source message broker that implements the MQ Telemetry
Transport protocol (MQTT)

58

UEIPAC SDK User Manual

audiofile
The Audio File Library is a C-based library for reading and writing audio files in many
common formats.

10.2. Building third-party software from source
You can install pretty much any open source software package designed for Linux on
your UEIPAC provided that those software packages can be cross-compiled.
The following sections describe a few standard way of cross-compiling software
packages.

Software coming with an autoconf configure script
Most software packages that use autoconf can be configured with the following command
on a Linux PC:

./configure –-host=powerpc-604-linux-gnu –-build=i686-pc-linux-gnu –-
prefix=<root file system>

Use the following command on a Window/Cygwin PC:

./configure –-host=powerpc-604-linux-gnu –-build=i686-pc-cygwin –-
prefix=<root file system>

The configure script will then verify that the UEIPAC cross-compiler is operational and
create the Makefiles required to build the software package.

To build type:

make

To install the built binaries, type:

make install

Other software
Read the README and INSTALL files that often come with open source packages for
instructions about cross-compiling.

If there are no configure script and no instructions you might still be able to build a
software package to run on the UEIPAC with the command:

CC=powerpc-604-linux-gnu-gcc LD=powerpc-604-linux-gnu-ld
RANLIB=powerpc-604-linux-gnu-ranlib make

59

UEIPAC SDK User Manual

60

UEIPAC SDK User Manual

Appendix A RTMAP API

a DqRtDmapInit

Syntax:
int DqRtDmapInit(int handle ,int* dmapid ,double

refreshRate);
Input:

int handle Handle to the IOM
int* dmapid The identifier of the newly created DMAP.
double refreshRate Rate at which the IOM will refresh its version of the

DMAP.
Return:

DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_NO_MEMORY memory allocation error or exceeded maximum

table size
DQ_SUCCESS command processed successfully

Description:
Initialize the specified IOM to operate in DMAP mode at the specified refresh

rate.

b DqRtDmapAddChannel

Syntax:
int DqRtDmapAddChannel(int handle, int dmapid, int dev,

int subsystem, uint32* cl, int clSize);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located
int subsystem The subsystem to use on the device (ex:

DQ_SS0IN)
uint32* cl Array containing the channels to add to the DMAP
int clSize Size of the channel array

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_BAD_PARAMETER the subsystem is invalid for this device
DQ_SUCCESS command processed successfully

Description:
Add one or more channels to the DMAP.

1

UEIPAC SDK User Manual

c DqRtDmapGetInputMap

Syntax:
int DqRtDmapGetInputMap(int handle, int dmapid, int

dev, unsigned char** mappedData);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located

Output:
mappedData pointer to the beginning of the device's input DMAP

buffer
Return:

DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_SUCCESS command processed successfully

Description:
 Get pointer to the beginning of the input data map allocated for the specified

device

d DqRtDmapGetInputMapSize

Syntax:
int DqRtDmapGetInputMapSize(int handle, int dmapid, int

dev, int* mapSize);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located

Output:
mappedSize size in bytes of the device's input data map.

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_SUCCESS command processed successfully

Description:
Get the size in bytes of the input map allocated for the specified device

2

UEIPAC SDK User Manual

e DqRtDmapGetOutputMap

Syntax:
int DqRtDmapGetOutputMap(int handle, int dmapid, int

dev, unsigned char** mappedData);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located

Output:
mappedData pointer to the beginning of the device's output

DMAP buffer
Return:

DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_SUCCESS command processed successfully

Description:
 Get pointer to the beginning of the output data map allocated for the specified

device

f DqRtDmapGetOutputMapSize

Syntax:
int DqRtDmapGetOutputMapSize(int handle, int dmapid,

int dev, int* mapSize);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located

Output:
mappedSize size in bytes of the device's output data map.

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_SUCCESS command processed successfully

Description:
Get the size in bytes of the output map allocated for the specified device

g DqRtDmapReadScaledData

3

UEIPAC SDK User Manual

Syntax:
int DqRtDmapReadScaledData(int handle, int dmapid, int

dev, double* scaledBuffer, int bufferSize);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located
int bufferSize Number of elements in scaledBuffer

Output:
double*scaledBuffer The buffer containing the scaled data.

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_SUCCESS command processed successfully

Description:
Read and scale data stored in the input map for the specified device.

Note:
The data read is the data transferred by the last call to DqRtDmapRefresh().
This function should only be used with devices that acquire analog data such as

the AI-2xx serie.

h DqRtDmapReadRawData16

Syntax:
int DqRtDmapReadRawData16(int handle, int dmapid, int

dev, unsigned short* rawBuffer, int bufferSize);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located
int bufferSize Number of elements in rawBuffer

Output:
unsigned short*rawBuffer The buffer containing the raw data.

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_SUCCESS command processed successfully

Description:
Read raw data from the specified device as 16 bits integers.

Note:
The data read is the data transferred by the last call to DqRtDmapRefresh().

4

UEIPAC SDK User Manual

This function should only be used with devices that acquire 16bits wide digital
data such as the AI-201.

i DqRtDmapReadRawData32

Syntax:
int DqRtDmapReadRawData32(int handle, int dmapid, int

dev, unsigned int* rawBuffer, int bufferSize);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located
int bufferSize Number of elements in rawBuffer

Output:
unsigned int* rawBuffer The buffer containing the raw data.

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_SUCCESS command processed successfully

Description:
Read raw data from the specified device as 32 bits integers.

Note:
The data read is the data transferred by the last call to DqRtDmapRefresh().
This function should only be used with devices that acquire 32 bits wide digital

data such as the DIO-4xx serie.

j DqRtDmapWriteScaledData

Syntax:
int DqRtDmapWriteScaledData(int handle, int dmapid, int

dev, double* scaledBuffer, int bufferSize);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located
int bufferSize Number of elements in scaledBuffer
double*scaledBuffer The buffer containing the scaled data to send to the

device.
Return:

DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number

5

UEIPAC SDK User Manual

DQ_SUCCESS command processed successfully
Description:

Write scaled data to the output map of the specified device.
Note:

The data written will be actually transferred to the device on the next call to
DqRtDmapRfresh().

This function should only be used with devices that generate analog data such as
the AO-3xx series.

k DqRtDmapWriteRawData16

Syntax:
int DqRtDmapWriteRawData16(int handle, int dmapid, int

dev, unsigned short* rawBuffer, int bufferSize);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP
int dev ID of the device where the channels are located
int bufferSize Number of elements in rawBuffer
unsigned short*rawBuffer The buffer containing the raw data to write to the

device.
Return:

DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_SUCCESS command processed successfully

Description:
Write 16 bits wide raw data to the specified device.

Note:
The data written will be actually transferred to the device on the next call to

DqRtDmapRfresh().
This function should only be used with devices that generate 16bits wide digital

data such as the AO-3xx series.

l DqRtDmapWriteRawData32

Syntax:
int DqRtDmapWriteRawData32(int handle, int dmapid, int

dev, unsigned int* rawBuffer, int bufferSize);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP

6

UEIPAC SDK User Manual

int dev ID of the device where the channels are located
int bufferSize Number of elements in rawBuffer
unsigned int* rawBuffer The buffer containing the raw data to write to the

device.
Return:

DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_BAD_DEVN there is no device with the specified number
DQ_SUCCESS command processed successfully

Description:
Write raw data to the specified device as 32 bits integers.

Note:
The data written will be actually transferred to the device on the next call to

DqRtDmapRfresh().
This function should only be used with devices that acquire 32 bits wide digital

data such as the DIO-4xx series.

m DqRtDmapStart

Syntax:
int DqRtDmapStart(int handle, int dmapid);

Input:
int handle Handle to the IOM
int dmapid Identifier of the DMAP

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:
Start operations, the cube will update its internal representation of the map at the

rate specified in DqRtDmapInit.

n DqRtDmapStop

Syntax:
int DqRtDmapStop(int handle, int dmapid);

Input:
int handle Handle to the IOM
int dmapid Identifier of the DMAP

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:

7

UEIPAC SDK User Manual

Stop operations, the cube will stop updating its internal representation of the data
map

o DqRtDmapRefresh

Syntax:
int DqRtDmapRefresh(int handle, int dmapid);

Input:
int handle Handle to the IOM
int dmapid Identifier of the DMAP

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:
Refresh the host's version of the map by downloading the IOM's map.

Note:
The IOM automatically refresh its version of the data map at the rate specified in

DqRtDmapInit(). This function needs to be called periodically (a real-time OS might be
necessary) to synchronize the host and IOM data maps.

p DqRtDmapClose
Syntax:

int DqRtDmapClose(int handle, int dmapid);
Input:

int handle Handle to the IOM
int dmapid Identifier of the DMAP

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:
Free all resources allocated by the DMAP operation on the specified IOM.

8

UEIPAC SDK User Manual

Appendix B Event API

a DqEmbConfigureEvent

Syntax:
int DqEmbConfigureEvent(int handle, DQ_EMBEDDED_EVENT

event, unsigned int param);
Input:

int handle Handle to the IOM
DQ_EMBEDDED_EVENT event Event to configure.
unsigned int param Event specific parameter

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:
Configure hardware to notify the specified event.
Possible events are:
DqEmbEventSyncIn: Digital edge at the syncin connector, set param to 0

for rising edge or 1 for falling edge.
DqEmbEventTimer: Timer event, set param to desired frequency.

b DqEmbWaitForEvent

Syntax:
int DqEmbWaitForEvent(int handle, int timeout,

DQ_EMBEDDED_EVENT *event);
Input:

int handle Handle to the IOM
int timeout Timeout in milliseconds
DQ_EMBEDDED_EVENT event Received event.

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:
Wait for any configured event to occur. If no event happens before the timeout

expiration the function returns the event “DqEmbEventTimeout”.

c DqEmbCancelEvent

1

UEIPAC SDK User Manual

Syntax:
int DqEmbCancelEvent(int handle, DQ_EMBEDDED_EVENT

event);
Input:

int handle Handle to the IOM
DQ_EMBEDDED_EVENT event Event to cancel

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:
Cancel specified event.

2

UEIPAC SDK User Manual

Appendix C Using Eclipse IDE to program the UEIPAC

a Download and Install Eclipse
There are several ways to install Eclipse with support for C/C++ programming.

If you are already using Eclipse (for java programming for example) you can keep your
existing Eclipse and just install the additional plug-ins CDT (C/C++ developer tools) and
TM (Target management).

Otherwise, download the :Eclipse IDE for C/C++ developers package available at
http://www.eclipse.org/downloads.

Unzip the package in a folder of your choice (for example “c:\eclipse\” under Windows
or “/opt/eclipse” under Linux) and run the program eclipse.exe to start Eclipse

b Set-up preferences
Edit Eclipse preferences to add the path to the cygwin tools (such as make) and the
UEIPAC cross-compiler.
Select the menu option Window/Preferences then click on C/C++/Build/Environment.
Add a variable named PATH with value set to the cygwin bin directory and the powerpc-
604-linux-gnu/bin directory.
For example: c:\cygwin\bin;c:\cygwin\home\fred\uei\ueipac-2.6.0\powerpc-604-linux-
gnu/bin
Add a variable named UEIPACROOT with value set to the UEIPAC SDK install
directory.
For example: c:\cygwin\home\fred\uei\ueipac-2.6.0

1

http://www.eclipse.org/downloads

UEIPAC SDK User Manual

c Open and Build examples
Select the menu option File/New/Makefile Project with Existing Code
Select the project type Makefile Project/Empty Project

Type a project name

Browse to the location of the example you wish to build (examples are located <Cygwin
directory>\home\<your user name>\uei\ueipac-2.6.0\sdk\DAQLib_Samples).

2

UEIPAC SDK User Manual

Click Finish to create the project

Select the menu Project/Build Project to build the example.

3

UEIPAC SDK User Manual

The indexer will report errors about header files it can’t find.
Here is how to configure discovery options to allow the indexer to do its job:

1) Select the menu option Windows/Preferences
2) Select C/C++ then Property Pages Settings
3) Enable Display “Discovery Options” page

4

UEIPAC SDK User Manual

4) Select the menu option Project/Properties and find the C/C++ Build/Discovery
Options page.

5) Change the compiler invocation commands to powerpc-604-linux-gnu-g++ and
powerpc-604-linux-gnu-gcc:

5

UEIPAC SDK User Manual

6) Click on Apply and the indexer will automatically find all header files next time
you build the project.

d Download program to target
Add a Remote Systems view to your current perspective:

6

UEIPAC SDK User Manual

Select Remote Systems and Click on OK.

In the Remote Systems view, click the Define a connection to a remote system button

7

UEIPAC SDK User Manual

Select Linux then click on Next.

8

UEIPAC SDK User Manual

Enter the IP address of your UEIPAC as Host Name and pick a Connection name.
Click on Next

9

UEIPAC SDK User Manual

We will use FTP to transfer files to/from the UEIPAC. Select ftp.files.
Select FTP Connector Service and set the FTP passive setting to true.
Click on Next.

10

ftp://ftp.files/

UEIPAC SDK User Manual

We will use a remote shell to control the processes running on the UEIPAC.
Select processes.shell.linux and click on Next.

11

UEIPAC SDK User Manual

We will use SSH as remote shell to control the UEIPAC.
Select ssh.shells and click on “Finish”.

The UEIPAC will now appear in the Remote Systems pane on the left.
Let’s test the connection by navigating files on the UEIPAC file system. Click on
UEIPAC/Files/Root:

12

UEIPAC SDK User Manual

Enter “root” as User ID and Password

13

UEIPAC SDK User Manual

Select UEIPAC/Shell Process/All Processes to view the processes running on the
UEIPAC

14

UEIPAC SDK User Manual

15

UEIPAC SDK User Manual

Righ-click on UEIPAC/Ssh Terminals and select Launch Terminal to open a remote
shell session on the UEIPAC

e Execute program

Select the Run>Show Run Dialog… menu option to open the Run dialog box.

Select the C/C++ Remote Application option and press the New button to create a new
remote launch configuration:

16

UEIPAC SDK User Manual

Enter a name for this new launch configuration.
Set the Connection to UEIPAC previously defined.
Verify that the project is set properly or press Browse… to select the right project.
Verify that the C/C++ Application is set to the binary built from your project.
Set the Remote Absolute File Path to the path of the executable on the remote target.

Press Run to download the binary to the UEIPAC and execute it. You will see the result
in the Console:

17

UEIPAC SDK User Manual

f Debugging your program on the UEIPAC
The UEIPAC examples are already compiled with debug information. Make sure that
your program does too (add the option –g to the compiler flags).

Select the Run>Show Debug Dialog… menu option to open the Debug dialog box.

Select the C/C++ Remote Application/Sample201 previously created.

In the Debugger tab set GDB debugger to powerpc-604-linux-gnu-gdb

18

UEIPAC SDK User Manual

Click on Debug to download the program to the UEIPAC and start debugging it.

Eclipse will suggest that you switch to the Debug perspective, click on Yes

19

UEIPAC SDK User Manual

The debugger will pause the program execution at the beginning of main().

Set a breakpoint on a line in main() (Right-click on the line and select Toggle
breakpoint) then press F8 to resume execution.

The debugger will pause the program again at the line where the breakpoint was set.

20

UEIPAC SDK User Manual

You can now execute the program step by step pressing the keys F5 and F6

More information about debugging programs is available in Eclipse’s online help. Select
the menu option Help/Help content

21

UEIPAC SDK User Manual

22

UEIPAC SDK User Manual

Appendix D Booting from NFS

a Configure shared RFS on host PC
1. Install an NFS server on your Linux machine
2. Un-tar the rfs.tgz file that comes on the UEIPAC CD-ROM
3. Share the rfs directory (usually done by adding an entry in the /etc/exports file)

/etc/exports file should look like this:

/home/frederic/UEIPAC/rfs
192.168.100.0/255.255.255.0(rw,sync,no_subtree_check,no_root_squas
h)

4. Remove the file rfs/etc/rc.d/S10network (kernel does the network configuration
while booting and overwriting it will kill the NFS session)

5. Create the directory rfs/etc/mnt (used to mount the sd card later)
6. Edit the file rfs/etc/fstab and change the mount point for /dev/sdcard1 to /mnt

rfs/etc/fstab should look like this:

/dev/sdcard1 /mnt ext2 defaults,noatime 1 1
none /proc proc defaults 0 0
none /sys sysfs defaults 0 0
none /dev/pts devpts defaults 0 0

This will make the sd card accessible under /mnt when the UEIPAC boots over
NFS

b Configure Uboot
1. Power-up the UEIPAC and press a key to enter U-Boot.
2. Type the following commands:

setenv gateway <your gateway ip address>
setenv netmask <your netmask>
setenv consoledev ttyPSC0
setenv baudrate 57600
setenv netdev eth0
setenv rootpath <The remote path where rfs is located on your host
PC>
run nfsargs
run addip
setenv bootargs ${bootargs} console=${consoledev},${baudrate}
saveenv
printenv

3. Verify that your bootargs variable looks like this:
bootargs=root=/dev/nfs rw
nfsroot=192.168.100.1:/home/frederic/UEIPAC/rfs
console=ttyPSC0,57600

23

UEIPAC SDK User Manual

ip=192.168.100.2:192.168.100.1::255.255.255.0::eth0:off panic=1

4. Reset the UEIPAC which will now find its root file system on the NFS share
reset

24

UEIPAC SDK User Manual

Appendix E Building the Linux kernel

Note that you can only build the UEIPAC Linux kernel on a PC running Linux connected
to the internet.
Make sure that you have the following tools installed:

 git
 make
 patch
 UBoot mkimage

Use the package manager of your linux distribution to install those tools.

For example, use the following commands on Ubuntu:
sudo apt-get install git
sudo apt-get install make
sudo apt-get install patch
sudo apt-get install uboot-mkimage

a Download and patch kernel source
At a command prompt, change the current directory to <UEIPAC SDK
directory>/kernel

The UEIPAC kernel includes Xenomai real-time extension. The first step is to download
and build Xenomai.

Run the build_xenomail.sh script.
./build_xenomai.sh

Then run the get_kernel.sh script with the option –cpu set to the CPU of your UEIPAC:

For UEIPAC-300, UEIPAC-600:
./get_kernel.sh –cpu 5200

For all other UEIPACs:
./get_kernel.sh –cpu 834x

This script might take a long time to execute depending on the speed of your internet
connection.

Once the script is finished, you will find a new directory linux-DENX-v2.6.28.5
containing the kernel source with Xenomai and UEIPAC patches applied.

25

UEIPAC SDK User Manual

b Configure and build the kernel for UEIPAC-300 and UEIPAC-
600
Change the current directory to the linux source directory

1. Configure kernel with default settings:
make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu-
52xx/ueipac5200_defconfig

2. Customize kernel configuration:
make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu-
menuconfig

3. Compile the kernel:
make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu-
cuImage.ueipac5200

You can find the build kernel in arch/powerpc/boot/cuImage.ueipac5200

c Configure and build the kernel for UEIPAC-300-1G, UEIPAC-
600-1G and RACK versions
Change the current directory to the linux source directory

1. Configure kernel with default settings:
make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu-
83xx/ueipac834x_defconfig

2. Customize kernel configuration:
make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu-
menuconfig

3. Compile the kernel:
make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu-
cuImage.ueipac834x

4. Compile modules:
make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu-
modules

5. Install modules:
make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu-
INSTALL_MOD_PATH=<Your module install path>
modules_install

26

UEIPAC SDK User Manual

You can find the built kernel in arch/powerpc/boot/cuImage.ueipac834x and the
modules in whatever directory you assigned to the INSTALL_MOD_PATH variable.

27

UEIPAC SDK User Manual

Appendix F Converting root file system to read only

a Modify RFS on SD card
1. Edit /etc/fstab as follow to mount a ram disk at /var (ram disk maximum size is set

to 2MBytes):

/dev/sdcard1 / ext3 defaults,noatime 1 1
none /proc proc defaults 0 0
none /sys sysfs defaults 0 0
none /dev/pts devpts defaults 0 0
tmpfs /var tmpfs defaults,size=2M 0 0

2. Create a new script /etc/varsetup.sh with the content below. It setups the folders
needed in /var and maps a few writable folders at /tmp, /mnt and /home

mkdir /var/tmp
mkdir /var/log
mkdir /var/lib
mkdir /var/lib/misc
mkdir /var/spool
mkdir /var/spool/cron
mkdir /var/spool/cron/crontabs
mkdir /var/run
mkdir /var/lock
mkdir /var/mnt
mkdir /var/home

mount --bind /var/tmp /tmp
mount --bind /var/mnt /mnt
mount --bind /var/home /home

3. Edit /etc/inittab as follow to execute varsetup.sh

Mount all filesystem listed in /etc/fstab
::sysinit:/bin/mount –a

Create and mount non-persistent folders
::sysinit:/etc/varsetup.sh

Configure local network interface
::sysinit:/sbin/ifconfig lo 127.0.0.1 up
::sysinit:/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo

run rc scripts
::sysinit:/etc/rcS

Start a shell on the console

28

UEIPAC SDK User Manual

ttyS0::respawn:-/bin/sh

unmount root file system when shutting-down
::shutdown:/bin/umount -a -r

4. Create symbolic links to files stored in /etc that need to be kept writeable.

ln –s /var/resolv.conf /etc/resolv.conf
ln –s /var/layers.xml /etc/layers.xml

b Configure Uboot
1. Connect the console serial port, power-up the UEIPAC and press a key to enter U-

Boot.
2. Type the following commands to load the root file system read-only:

setenv bootargs console=ttyS0,57600 root=62:1 ro
saveenv

29

UEIPAC SDK User Manual

Appendix G Updating RAM disk image

The UEIPAC software CDROM contains a RAM disk image uRamdisk-x.y.z that you
can upload to flash and boot from on 1G and R UEIPAC models (see section 3.2).

This appendix explains how to modify this image to add your own files (typically your
program and associated configuration files).

This operation can only be done on a Linux workstation. You also need to install the
uboot mkimage utility. For example, with Ubuntu type:

bash$ sudo apt-get install uboot-mkimage

4. Extract compressed RAM disk image from uImage file. The following command
converts the file uRamdisk-x.y.z to ramdisk.gz

bash$ dd if=uRamdisk-x.y.z bs=64 skip=1 of=ramdisk.gz
21876+1 records in
21876+1 records out

5. Un-compress RAM disk image

bash$ gunzip -v ramdisk.gz
ramdisk.gz: 66.6% -- replaced with ramdisk

6. Mount RAM disk image

bash$ mount -o loop ramdisk /mnt/tmp

Now you can add, remove, or modify files in the /mnt/tmp directory. Once you are done,
you can re-pack the RAM disk into a U-Boot image:

4. Un-mount RAM disk image:

bash$ umount /mnt/tmp

5. Compress RAM disk image

bash$ gzip -v9 ramdisk
ramdisk: 66.6% -- replaced with ramdisk.gz

6. Create new U-Boot image

30

UEIPAC SDK User Manual

bash$ mkimage -T ramdisk -C gzip -n 'UEIPAC RAM disk' -d
ramdisk.gz new-uRamdisk-x.y.z
Image Name: UEIPAC RAM disk
Created: Wed Apr 11 17:32:41 2012
Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
Data Size: 2425561 Bytes = 2368.71 kB = 2.31 MB
Load Address: 0x00000000
Entry Point: 0x00000000

31

UEIPAC SDK User Manual

Appendix H Bonding/Teaming Ethernet ports

Teaming/Bonding describes various methods to combine multiple network links in
parallel to provide redundancy and/or increase data throughput.

This chapter describes the configuration of a fault tolerant link between a UEIPAC and a
host PC. Bonding is only possible on UEIPACs equipped with two independent network
ports.

In this mode, only one network adapter (the primary) is active. The secondary adapter
takes over as soon as it detects that the primary adapter can't connect to its peer.

 Power-up your UEIPAC and open a serial terminal program

 Tear-down existing network connections

ifconfig eth0 down
ifconfig eth1 down

 Load bonding kernel module with parameters set to:
o monitor the link to the host PC every 500ms
o fault tolerance mode
o use eth0 as primary connection

32

http://uei-wiki1.ueidaq.com/ueiwiki/index.php/Image:Ueipac_bonding.jpg

UEIPAC SDK User Manual

modprobe bonding arp_ip_target=192.168.103.1 arp_interval=500
mode=active-backup primary=eth0

 Bring-up bond0 connection

ifconfig bond0 up

 Assign eth0 and eth1 as slaves to bond0

ifenslave bond0 eth0 eth1

 Configure an IP address for bond0

ifconfig bond0 192.168.103.2 netmask 255.255.255.0

33

	1. Introduction
	2. Setting up a development system
	2.1. Windows Host
	2.2. Linux Host
	Preparing your 64bit Linux Host
	Installing UEIPAC software on your Linux host

	2.3. SDK directory layout

	3. Configuring the UEIPAC
	3.1. Connecting through the serial port
	3.2. Root file system
	Booting from the SD card
	File-system corruption
	Setting-up root file system read-only
	Booting from a RAM disk
	Customizing the RAM disk image
	Loading the RAM disk image to flash

	Booting from an NFS share

	3.3. Configuring the Network
	Configuring a static IP address
	Configuring the auxiliary Ethernet port

	Changing the default packet size (MTU)
	Configuring dynamic IP address (using a DHCP server)
	Name resolution
	Connecting through Telnet
	Connecting through SSH
	Configuring DHCP server

	3.4. Configuring Date and Time
	Changing the date
	Changing the time zone
	Connecting to a NTP server

	3.5. Changing the password
	3.6. Configuring the web server
	3.7. System logger

	4. Transferring files
	4.1. NFS
	4.2. FTP Client
	4.3. FTP Server
	4.4. SSH
	4.5. TFTP Client
	4.6. Windows shared directory

	5. Connecting USB devices
	5.1. USB Mass Storage
	5.2. Wifi network interface
	Load kernel modules
	Connection to an open access point
	Connection to an access point with WEP security
	Connection to an access point with WPA/WPA2 security
	Direct connection to another computer in ad-hoc mode

	5.3. UMTS/GSM modem
	Prerequisite
	Manual configuration
	Load kernel modules
	Configure provider
	Start PPP daemon

	Automatic startup

	5.4. Serial Port
	Load kernel modules
	Automatic startup

	5.5. LibUSB
	Prerequisite
	Mount USBFS manually
	Mount USBFS automatically

	Write a program using libusb

	6. Serial Port
	6.1. UEI Serial Server
	6.2. Using the CPU layer’s serial port for general purpose

	7. Testing the I/O layers
	7.1. devtbl
	7.2. Run examples
	7.3. PowerDNA server

	8. Application development
	8.1. Prerequisites
	8.2. Compiling and running Hello World
	8.3. Debugging Hello World
	8.4. PowerDNA Library
	PowerDNA API
	Initialization, miscellaneous API
	Immediate mode API
	DMAP API
	VMAP API
	Event API
	Unsupported APIs

	Building and running the examples
	Building your own program

	8.5. Real-Time Programming
	8.6. Running a program automatically after boot
	8.7. Running a program periodically

	9. Firmware installation and upgrade
	9.1. Installing or upgrading the Linux kernel
	UEIPAC with Freescale 5200 CPU (100MBit Ethernet)
	UEIPAC with Freescale 8347 CPU (1GBit Ethernet)

	9.2. Initializing an SD card
	On a Linux PC
	Automated Procedure
	Manual Procedure

	On the UEIPAC itself

	9.3. Running the standard DAQBios firmware
	Configure UEIPAC with Freescale 5200 CPU to run DAQBios firmware
	Configure UEIPAC with Freescale 5200 CPU to run Linux
	Configure UEIPAC with Freescale 8347 CPU to run DAQBios firmware
	Configure UEIPAC with Freescale 8347 CPU to run Linux

	10. Third-party software
	10.1. Third-party libraries installed by default on UEIPAC
	zeromq
	libmodbus
	expat
	sqlite
	gpsd
	GSL
	libusb
	mosquito
	audiofile

	10.2. Building third-party software from source
	Software coming with an autoconf configure script
	Other software
	Appendix A RTMAP API
	a DqRtDmapInit
	b DqRtDmapAddChannel
	c DqRtDmapGetInputMap
	d DqRtDmapGetInputMapSize
	e DqRtDmapGetOutputMap
	f DqRtDmapGetOutputMapSize
	g DqRtDmapReadScaledData
	h DqRtDmapReadRawData16
	i DqRtDmapReadRawData32
	j DqRtDmapWriteScaledData
	k DqRtDmapWriteRawData16
	l DqRtDmapWriteRawData32
	m DqRtDmapStart
	n DqRtDmapStop
	o DqRtDmapRefresh
	p DqRtDmapClose

	Appendix B Event API
	a DqEmbConfigureEvent
	b DqEmbWaitForEvent
	c DqEmbCancelEvent

	Appendix C Using Eclipse IDE to program the UEIPAC
	a Download and Install Eclipse
	b Set-up preferences
	c Open and Build examples
	d Download program to target
	e Execute program
	f Debugging your program on the UEIPAC

	Appendix D Booting from NFS
	a Configure shared RFS on host PC
	b Configure Uboot

	Appendix E Building the Linux kernel
	a Download and patch kernel source
	b Configure and build the kernel for UEIPAC-300 and UEIPAC-600
	c Configure and build the kernel for UEIPAC-300-1G, UEIPAC-600-1G and RACK versions

	Appendix F Converting root file system to read only
	a Modify RFS on SD card
	b Configure Uboot

	Appendix G Updating RAM disk image
	Appendix H Bonding/Teaming Ethernet ports

